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Abstract—This paper deals with the design of a robust hierar-
chical multi-loop control scheme to solve motion control problems
for robot manipulators. The key elements of the proposed control
approach are the inverse dynamics-based feedback linearized
robotic MIMO system and the combination of a Model Predictive
Control (MPC) module with an Integral Sliding Mode (ISM)
controller. The ISM internal control loop has the role to com-
pensate the matched uncertainties due to unmodelled dynamics,
which are not rejected by the inverse dynamics approach. The
external loop is closed relying on the MPC, which guarantees an
optimal evolution of the controlled system while fulfilling state
and input constraints. The motivation for using ISM, apart from
its property of providing robustness to the scheme with respect
to a wide class of uncertainties, is also given by its capability of
enforcing sliding modes of the controlled system since the initial
time instant, allowing one to solve the model predictive control
optimization problem relying on a set of linearized decoupled
SISO systems which are not affected by uncertain terms. The
proposal has been verified and validated in simulation, relying
on a model of a COMAU Smart3-S2 industrial robot manipulator,
identified on the basis of real data.

Index Terms—Model predictive control, integral sliding mode,
robot manipulators, uncertain systems.

I. INTRODUCTION

IN robotics technology recent research trends focus on per-
forming particularly critical tasks in an optimal way, while

fulfilling some plant constraints in order to avoid failures, wear
of the electromechanical parts or to guarantee safe and close
robot-human interactions [1], [2]. Yet, typically, industrial
robots are controlled by classical PD or PID controllers [2],
which can fail in guaranteeing this kind of features.

In the last decades, among the control algorithms published
in the literature, Model Predictive Control (MPC) represents
an appropriate and effective solution to solve this kind of
problem, providing an optimal control strategy in case of
even complex constrained dynamical systems [3]–[6]. Hence,
the online optimization typically can lead to an increased
computation time with respect to “classical” control laws. For
this reason, MPC has been efficiently used in several industrial
processes, such as chemical plants or oil refineries [7], but its
application to robotic systems in a true industrial environment,
in which unavoidable modelling uncertainties and external
disturbances affect the system, is still limited [8]–[11].

Moreover, the MPC method requires the knowledge of
the dynamical model of the system, according to which the
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Figure 1. Scheme of the overall hierarchical multi-loop control scheme for
robot manipulators

uncertainties can occur, recent research has been devoted to
develop robust MPC approaches able to satisfy the system con-
straints even in these critical cases [12], [13]. In this direction,
the two main approaches proposed in the literature are the so-
called min-max approach, able to fulfill the plant constraints
considering the worst possible uncertainty realization, but at
the price of a very high computational burden [14]–[16], and
the so-called open-loop nominal approach, where the real
constraints are shrunk to guarantee that the original constraints
are fulfilled for any possible uncertainty realization [17]–[19].

In this paper, inspired by [20], taking into account the class
of robot manipulators, and having the aim of keeping the
computational complexity to a minimum, in order to make
the proposal really usable in practice, an alternative robust
hierarchical multi-loop control scheme is proposed (see Figure
1). More specifically, the control scheme consists of three
loops: an inner loop based on the so-called Inverse Dynamics
approach [2], aimed at transforming the nonlinear MIMO
robotic system into a set of perturbed linearized decoupled
SISO systems (the number of systems is equal to the number of
the joints of the robot manipulator); a second loop including a
controller designed according to the so-called Integral Sliding
Mode (ISM) control approach [21], which has the role of
rejecting at a higher rate all the matched uncertainties [22],
[23]; finally, an external loop involving a controller of MPC
type with the role of guaranteeing the optimal evolution of the
controlled system in the respect of state and input constraints.
By the virtue of the linearizing and decoupling effects of the
Inverse Dynamics approach, and of the capability of the ISM
controller to make the controlled system insensitive to matched
uncertainties since the initial time instant, standard linear MPC
methodology [5], running at a slower rate, can be designed in
the outer loop, with a clear benefit in terms of containment of
computational complexity. A preliminary version of this work
without proofs of the generalized approach and evaluation of
the computational costs has been presented in [24].

The present paper is organized as follows. In Section II,
the model of the robotic system is introduced, and dynamical
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Figure 2. Anthropomorphic robot manipulator with three joints. a spatial schematic view with base-frame and end-effector frame. b planar schematic view
with joints and links numeration

The present paper is organized as follows. In Section II,
the model of the robotic system is introduced, and dynamical
aspects are recalled. In Section III, the Inverse Dynamics
approach is described and the control problem to solve is
formulated. In Section IV, the proposed control scheme is
discussed, illustrating the ISM control component and the
MPC control law, while in Section V the stability analysis
is reported. Section VI is devoted to present simulation results
obtained by relying on the model of an industrial manipulator,
i.e., a COMAU Smart3-S2 anthropomorphic robot (see Figure
3). Both the model and the noise used in simulation have
been identified on the basis of experimental tests, so that the
simulation environment is quite realistic. Finally, keeping in
mind an implementation in practical cases, the computational
cost of the proposed algorithm is also discussed.

II. THE ROBOT MODEL

In order to formulate the model of a generic n-joints robot
system, dynamical aspects have to be recalled.

Figure 3. The anthropomorphic robot manipulator COMAU Smart3-S2

For the sake of simplicity, without lost of generality, refer
to the three joints (n = 3) robot manipulator schematically
shown in Figure 2b. Let li, i = 1, 2, . . . n denote the length
of the i-th link, q1 denote the orientation of the first link with
respect to x-axis clockwise positive, and qj , j = 2, 3, . . . n,
denote the displacement of the j-th link with respect to the
(j − 1)-th one clockwise positive. Let O − {x, y, z}, denote
the base-frame of the robotic manipulator, and Oe − {n, s,a}
denote the end-effector frame as indicated in Figure 2a.

The dynamics of the robot can be written in the joint space,
by using the Lagrangian approach, as

M(q)q̈ + n(q, q̇) = τ (1)
n(q, q̇) = C(q, q̇)q̇ + Fvq̇ + Fs sgn(q̇) + g(q) (2)

where M(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n

represents centripetal and Coriolis torques, Fv ∈ Rn×n is the
viscous friction matrix, Fs ∈ Rn×n is the static friction matrix,
g(q) ∈ Rn is the vector of gravitational torques and τ ∈ Rn

represents the motors torques.

III. PROBLEM FORMULATION

In this section, the considered globally feedback linearized
MIMO system will be introduced and the corresponding state-
space model will be defined.

A. Inverse Dynamics Control

In order to reduce the nonlinear MIMO robotic system to a
linear system, the so-called Inverse Dynamics approach [2] is
used. The inverse dynamics of the robot manipulator can be
written, in the joint space, as a nonlinear relationship between
the plant inputs and the plant outputs, relying on (1)-(2), so
that the control law can be expressed as

τ = M(q)v + n̂(q, q̇) (3)

where v is an auxiliary control variable. Typically, the iden-
tified M(q) coincides with the actual one, while n̂ is an
estimate of n, which does not necessarily coincide with n
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the plant inputs and the plant outputs, relying on (1)-(2), so
that the control law can be expressed as

τ = M(q)v + n̂(q, q̇) (3)

where v is an auxiliary control variable. Typically, the iden-
tified M(q) coincides with the actual one, while n̂ is an
estimate of n, which does not necessarily coincide with n
[25]. By applying the feedback linearization to system (1)-(2),
the resulting model is

q̈ = v − η(q, q̇) (4)

where η(q, q̇) takes into account the modelling uncertainties
and external disturbances, i.e.,

η(q, q̇) = −M−1(q)(n̂(q, q̇)− n(q, q̇)) . (5)

B. State-Space Model

After the application of the Inverse Dynamics control,
the original MIMO system is reduced to n SISO decoupled
systems, one for each joint, in which the state vector is
xi = [x1i x2i ]

T = [qi q̇i]
T , while ηi represents the so-called

matched uncertainty [22] such that
{
ẋ1i(t) = x2i(t)
ẋ2i(t) = vi(t)− ηi(t) (6)

which is a double integrator, with ẋ2i = q̈i being the
acceleration of the i-th joint.

System (6) can be written in a matrix compact form as the
following constrained linear SISO system

ẋi(t) = Aixi(t) +Bi(vi(t)− ηi(t)) (7)

where xi ∈ R2 is the state vector, vi ∈ U is the current
control variable, with U ⊂ R being a compact set containing
the origin point, and ηi ∈ R the disturbance term of the system.
Moreover, Ai ∈ R2×2, and Bi ∈ R2×1 is full rank. Assume
also that the state variables are restricted to fulfill the following
constraint

xi ∈ X (8)

where X is a compact set containing the origin as an interior
point, while the control variable is such that

‖vi‖ ≤ vimax
(9)

with vimax
= U sup := supv∈U{‖v‖} being the limits of the

actuators in terms of acceleration. The uncertainty term ηi is
also bounded such that

ηi ∈ D (10)
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System (6) can be written in a matrix compact form as the
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where X is a compact set containing the origin as an interior
point, while the control variable is such that
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with vimax
= U sup := supv∈U{�v�} being the limits of the

actuators in terms of acceleration. The uncertainty term ηi is
also bounded such that

ηi ∈ D (10)

where D is a compact set containing the origin with known
Dsup := supη∈D{�η�}.

C. Problem Statement
We are now in a position to be able to formulate the

control problem to solve. Given the robot system described in
Section II, the control objective is to design a control system
in order to make the robot manipulator track a pre-specified
reference trajectory. In the following section, a functional
multi-rate architecture which combines a MPC module and
an ISM controller is designed to solve the aforementioned
control problem. The role of the MPC is to make the robot
manipulator follow the reference trajectories in an optimal
way with respect to input and output constraints. The ISM
control rejects matched disturbances and uncertain terms due
to unmodelled dynamics, which are not compensated by the
Inverse Dynamics approach.

IV. MODEL PREDICTIVE CONTROL/INTEGRAL SLIDING
MODE CONTROL: THE CONTROL STRATEGY

Making reference to the general control scheme in Figure
1, the control law is designed on the basis of the feedback
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Figure 4. Detailed MPC/ISM control scheme applied to the considered
feedback linearized robot manipulator COMAU Smart3-S2

linearized system (7). More specifically, the whole auxiliary
control variable v(t) is chosen as follows

v(t) = u(t) + uISM(t) (11)

where u and uISM are generated by the MPC controller and
the ISM controller, respectively. The ISM controller is based
on the continuous-time model of the system and on the signal
generated by the MPC controller, which, in turn, is based on
the discrete-time model of the original system. For the sake of
simplicity, in the following subsections we consider only the
single SISO system and the subscript i is omitted, when it is
obvious.

A. The Considered Control Scheme

In Figure 4 the proposed control scheme is illustrated in
detail. This scheme consists of three control loops. The first
loop is based on the Inverse Dynamics approach, described in
Section III. After the inverse dynamics feedback linearization,
the second loop is closed relying on the ISM controller which
computes uISM ∈ Rn and rejects the matched uncertainty
affecting the system. The third loop is designed to implement
the MPC based controller which computes the control u ∈ Rn

combined with uISM so as to solve the reference tracking
problem in an optimal way while satisfying the constraints.
The position error of the controlled system, given as input to
the MPC module, is defined as e = qref − q, qref being the
desired reference trajectory.

B. Integral Sliding Mode Controller

The ISM control has the feature to provide robustness to
the scheme in front of a wide class of uncertainties, and to
enforce sliding modes of the controlled system since the initial
time instant. This control approach requires i) the knowledge
of a nominal model of a system that can be also nonlinear, ii)
a properly designed high level control law (MPC in our case),
and iii) a discontinuous control action in order to remove the
uncertain terms. Considering the dynamic system (6), assume
that, for each joint, the so-called integral sliding variable σi ∈
R (see [21]) is defined as follows

σi(xi(t)) = Si

�
xi(t) − xi(t0) −

� t

t0

[x2i
(ζ), ui(ζ)]

T dζ

�

(12)

Figure 3. Detailed MPC/ISM control scheme applied to the considered
feedback linearized robot manipulator COMAU Smart3-S2

where D is a compact set containing the origin with known
Dsup := supη∈D{‖η‖}.

C. Problem Statement

We are now in a position to be able to formulate the
control problem to solve. Given the robot system described in
Section II, the control objective is to design a control system
in order to make the robot manipulator track a pre-specified
reference trajectory. In the following section, a functional
multi-rate architecture which combines a MPC module and
an ISM controller is designed to solve the aforementioned
control problem. The role of the MPC is to make the robot
manipulator follow the reference trajectories in an optimal
way with respect to input and output constraints. The ISM
control rejects matched disturbances and uncertain terms due
to unmodelled dynamics, which are not compensated by the
Inverse Dynamics approach.

IV. MODEL PREDICTIVE CONTROL/INTEGRAL SLIDING
MODE CONTROL: THE CONTROL STRATEGY

Making reference to the general control scheme in Figure
1, the control law is designed on the basis of the feedback
linearized system (7). More specifically, the whole auxiliary
control variable v(t) is chosen as follows

v(t) = u(t) + uISM(t) (11)

where u and uISM are generated by the MPC controller and
the ISM controller, respectively. The ISM controller is based
on the continuous-time model of the system and on the signal
generated by the MPC controller, which, in turn, is based on
the discrete-time model of the original system. For the sake of
simplicity, in the following subsections we consider only the
single SISO system and the subscript i is omitted, when it is
obvious.

A. The Considered Control Scheme

In Figure 3 the proposed control scheme is illustrated in
detail. This scheme consists of three control loops. The first
loop is based on the Inverse Dynamics approach, described in
Section III. After the inverse dynamics feedback linearization,
the second loop is closed relying on the ISM controller which
computes uISM ∈ Rn and rejects the matched uncertainty
affecting the system. The third loop is designed to implement

the MPC based controller which computes the control u ∈ Rn
combined with uISM so as to solve the reference tracking
problem in an optimal way while satisfying the constraints.
The position error of the controlled system, given as input to
the MPC module, is defined as e = qref − q, qref being the
desired reference trajectory.

B. Integral Sliding Mode Controller

The ISM control has the feature to provide robustness to
the scheme in front of a wide class of uncertainties, and to
enforce sliding modes of the controlled system since the initial
time instant. This control approach requires i) the knowledge
of a nominal model of a system that can be also nonlinear, ii)
a properly designed high level control law (MPC in our case),
and iii) a discontinuous control action in order to remove the
uncertain terms. Considering the dynamic system (6), assume
that, for each joint, the so-called integral sliding variable σi ∈
R (see [21]) is defined as follows

σi(xi(t)) = Si

(
xi(t)− xi(t0)−

∫ t

t0

[x2i(ζ), ui(ζ)]T dζ

)

(12)
with σi(xi(t)) = 0 being the associated integral sliding
manifold, t0 the initial time instant, Si the row vector [ci, 1],
and ci a positive constant.

Now, the control law can be expressed as follows

uiISM = −Uimax
sgn(σi) (13)

where Uimax
> Dsup is suitably chosen in order to enforce

the sliding mode, with Dsup depending on the modelling
uncertainties and disturbances (5).

Remark 1: Note that ISM control can imply the so-called
chattering phenomenon [26] which can be avoided by using
integral higher order sliding modes as that in [27]. �

Having in mind a robotic application, as shown in [21], an
effective solution, able to cope with chattering and avoid high
frequency switching of the variable structure component of
the control torque, consists in using the so-called equivalent
control [22]. The equivalent control cannot be computed,
since it depends on the uncertain terms affecting the system.
However, in [21], it is shown that an approximation of the
equivalent control can be obtained via a first order linear filter
with the real discontinuous control (13) as input signal, i.e.,

ũiISMeq
(t) =

1

µi

∫ t

t0

e
− 1
µi

(t−ζ)
uiISM(ζ)dζ (14)

where µi is the time constant of the filter, while the sliding
variable has to be redesigned as

σi(xi(t)) =

Si

(
xi(t)− xi(t0)−

∫ t

t0

[x2i(ζ), vi(ζ)− uiISM(ζ)]T dζ

)

(15)

with vi(t) = ui(t) + ũiISMeq
(t). Note that, since a first

order linear filter is used to obtain the equivalent control,
the sliding variable has to be modified as in (15) so to take
into account the difference between the filtered control (14)



4

and the discontinuous one (13), intrinsically compensating
the mismatch between the actual equivalent control, uiISMeq

,
and its average value, ũiISMeq

. This implies that the sliding
manifold is continuously adapted in order to guarantee the
ideal sliding mode generation ∀ t ≥ t0.

The effect of the ISM control law is that of rejecting the
uncertainty of system (6) so as to obtain

{
ẋ1i(t) = x2i(t)
ẋ2i(t) = ui(t)

(16)

that is
ẋi(t) = Aixi(t) +Biui(t) (17)

which is a double integrator without disturbances affecting
the system. Note that the ISM control cannot violate the state
constraints due to the fact that the sliding variable also depends
on the MPC control law.

Remark 2: As suggested in [21], the time constant µi
should be set such that the fundamental component of the
discontinuous action is not distorted. �

C. Model Predictive Controller

By virtue of the rejection of matched uncertainties and
external disturbances through the use of the ISM controller,
the MPC controller can be designed starting from the nominal
system, i.e., the dynamical system without matched uncertain-
ties. For this reason it is not necessary to consider conservative
robust MPC approaches [16], [19], but only a nominal MPC is
required, with a significant beneficial effect in terms of com-
putational burden. In the following, for the sake of simplicity,
the subscript i will be omitted, when obvious.

The MPC controller is designed on the discrete time system
of (17), i.e.,

xi(tk+1) = Ãixi(tk) + B̃iui(tk) . (18)

Note that, for the design of a continuous time MPC and
a rigorous proof of stability, one can refer to [28]. The
adopted MPC controller is based on the solution of the so-
called Finite-Horizon Optimal Control Problem (FHOCP).
The latter consists in minimizing, at any sampling time tk,
a suitably defined cost function with respect to the control
sequence u[tk,tk+N−1|tk] := [u0(tk), u1(tk), . . . , uN−1(tk)],
where N ≥ 1 is the prediction horizon. In our case, the
cost function to minimize with respect to u[tk,tk+N−1|tk] is
a quadratic function as

J(ei(tk),ui[tk,tk+N−1|tk]
, N) =

N−1∑

j=0

‖ei(tk+j)‖2Qi + ‖ui(tk+j)‖2Ri + ‖ei(tk+N )‖2Πi
(19)

where the notation ‖·‖2W stands for the square norm of a vector
weighted by a matrix W .

The cost function (19) is subject to the hard constraints
represented by the dynamics of system (18), and inequalities

constraints on states and input variables, i.e.,

xi(tk+j) ∈ X (20)
xi(tk+N ) ∈ Xf (21)
‖ui(tk+j)‖ ≤ vimax

− Uimax
(22)

with j = 1, . . . , N −1. Moreover, Xf is the so-called terminal
set such that xi(tk+N ) ∈ Xf , with

Xf := {xi | ‖x− x̄iref‖2Π ≤ ρ}, Xf ⊆ X (23)

for any constant x̄iref ∈ Xref such that (x̄iref , 0) is an
equilibrium point for systems (18) and with Xf containing the
origin as an interior point. In order to define the terminal set
and the terminal penalty, one needs to introduce an auxiliary
control law κif (ei) that can be

κif (ei(tk)) = KLQei(tk) (24)

KLQ being the control gain of an infinite horizon Linear-
Quadratic (LQ) controller with the same cost function. Note
that, the value ρ in (23) is a positive real number such that
∀xi(tk̄) ∈ Xf , ∀ tk > tk̄ it yields,

xi(tk) ∈ Xf (25)
‖κif (ei(tk))‖ ≤ vimax

− Uimax
(26)

with ei(tk) = xi(tk) − x̄iref (tk). In (19), Qi is a positive
definite matrix, Ri is a scalar weight, and Πi is the positive
definite terminal state weight associated with the terminal
penalty Vf = ‖ei(tk+N )‖2Πi

which is assumed such that

Vf(ei(tk+1))−Vf(ei(tk))+‖ei(tk)‖2Qi+‖κif (ei(tk))‖2Ri ≤ 0
(27)

so as to ensure the stability of the controlled system. The ma-
trix Πi represents instead the solution of the Riccati equation,

(Ãi − B̃iKLQ)
TΠi(Ãi − B̃iKLQ)−Πi = −Qi −KT

LQRiKLQ.
(28)

Then, according to the Receding Horizon strategy, the
applied piecewise-constant control law is the following

ui(t) = κMPC(ei(tk)), t ∈ [tk, tk+1) (29)

where tk+1 − tk = T is the MPC sampling time, and

κMPC(ei(tk)) := uo
i0(tk) (30)

with uo
i0

(tk) the first value at tk of the optimal control
sequence for the i-th joint, obtained by solving the FHOCP.

V. STABILITY ANALYSIS

With reference to the proposed control approach, the fol-
lowing results can be proved.

Lemma 1: Given the MIMO nonlinear robotic model (1)
and (2), by applying the Inverse Dynamics approach in (3),
one obtains n decoupled perturbed double integrators. �

Proof: The proof of this lemma in case of an ideal
compensation is reported in [2]. Since unavoidable modelling
uncertainties are present, applying the Inverse Dynamics (3)
to (1), one obtains

q̈ = v +M−1(q)(n̂(q, q̇)− n(q, q̇)) = v − η(q, q̇)) (31)
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with the uncertain terms such that (5) holds. Hence, the result
is a set of n decoupled perturbed double integrators as

{
ẋ1i(t) = x2i(t)
ẋ2i(t) = vi(t)− ηi(t) (32)

with x1i = qi and x2i = q̇i, i = 1, . . . , n, which concludes
the proof.

Lemma 2: Given system (7), controlled via (11), (14) and
(29), with the sliding variable (15) such that the matrix SiBi

is nonsingular, then an integral sliding mode is enforced on
the integral sliding manifold σi = 0, ∀ t ≥ t0. �

Proof: The proof directly follows from [21] (see also
[29, Chapter 7] for further details), according to which the
fact that an integral sliding mode is enforced since the initial
time instant t0 can be straight forward using the Lyapunov
Second Method by considering the function VISMi = 0.5σ2

i

as Lyapunov candidate.
In the following theorem, the equivalent system controlled

by the MPC component will be obtained and the role of the
ISM component as perturbation estimator will be exploited.

Theorem 1: Given system (7), controlled via (11), (14) and
(29), then ∀ t ≥ t0 the equivalent system results in being

ẋi(t) = Aixi(t) +Biui(t)

with i = 1, . . . , n. �
Proof: By virtue of Lemma 1 and Lemma 2, since the

initial time instant t0 one has that σi = 0 so that also its time
derivative is σ̇i = 0, i.e.,

σ̇i = Siẋi − Si[x2i ui + ũiISMeq
− uiISM

]T

= cix2i + vi − ηi − cix2i − ui − ũiISMeq
+ uiISM

= ui + ũiISMeq
− ηi − ui − ũiISMeq

+ uiISM = 0 . (33)

According to the equivalent control concept (see [22] for a
definition), one has that in Filippov sense

0 = ui+ ũiISMeq
− ηi−ui− ũiISMeq

+uiISMeq
= uiISMeq

− ηi .
Hence, one can conclude that uiISMeq

= ηi. Substituting
the latter expression into system (7), controlled via (11), the
equivalent system results in being (17), which proves the
theorem.

Starting from Lemma 1, Lemma 2 and Theorem 1, the
following theorem can be proved.

Theorem 2: Given system (18), controlled via (29), obtained
by solving the FHOCP with cost function (19) subject to the
system dynamics, input and state constraints (20)-(21), then,
xi = x̄iref , ∀ i = 1, . . . , n, results in being an asymptotically
stable equilibrium point of the controlled system. �

Proof: The proof of the theorem has to be carried out
in two steps. First, it is necessary to prove the recursive
feasibility, i.e., given an optimal solution at time tk, it is always
possible to find a solution at time tk+1 that satisfies all the
constraints.

Step 1 (Feasibility) Consider the optimal solution given
at tk, uo

i[tk,tk+N−1|tk]
:= [uo

i0
(tk), uo

i1
(tk), . . . , uo

iN−1
(tk)].

According to the Receding Horizon principle, only the first
element of the optimal sequence is applied. At the time instant

tk+1 the control sequence

ũi[tk+1,tk+N |tk+1]
=

{
uo
i[tk+1,tk+N−1|tk]

κif (ei(tk+N ))
(34)

fulfills the constraints (20), (21), and (22). In fact, since
it holds ũi[tk+1,tk+N−1|tk+1]

= uo
i[tk+1,tk+N−1|tk]

, constraints
(20) and (22) are fulfilled. Moreover, from (21), it holds
that xi(tk+N ) ∈ Xf . Hence, from (26), it also holds that
‖κif (ei(tk+N ))‖ ≤ vimax

− Uimax
and xi(tk+N ) ∈ X , so

that (20) and (22) are satisfied also for j = N . Finally, from
(25), it follows that xi(tk+N+1) ∈ Xf , which concludes the
proof of the feasibility.

After having proved the recursive feasibility, the second step
is to prove the stability properties of the system controlled via
the MPC law.

Step 2 (Stability) In order to prove the asymptotical stability,
we need to find a Lyapunov function candidate. We chose
the function Jo(ei(tk), tk) > 0,∀ ei 6= 0, and Jo(0, tk) =
0, associated with the cost function (19). Consider the cost
function J̃(ei(tk+1), tk+1) associated with the feasible control
sequence (34). Since, this function is not a priori the optimal
one, it holds Jo(ei(tk+1), tk+1) ≤ J̃(ei(tk+1), tk+1). From
(19), by using (27), one has that

J̃(ei(tk+1), tk+1)− Jo(ei(tk), tk)

= −‖ei(tk)‖2Qi − ‖κif (ei(tk))‖2Ri + Vf(ei(tk+N+1))+

−Vf(ei(tk+N )) + ‖ei(tk+N )‖2Qi + ‖κif (ei(tk+N ))‖2Ri
< −‖ei(tk)‖2Qi − ‖κif (ei(tk))‖2Ri < 0

(35)
which implies that Jo is a decreasing function. Then, one can
conclude that xi = x̄iref , ∀ i = 1, . . . , n, results in being
an asymptotically stable equilibrium point of the controlled
system, which concludes the proof.

VI. A CASE STUDY

The robotic system we are dealing with is a 6-joint robot
manipulator. For the sake of simplicity, we consider only
vertical planar motions of the robotic manipulator, locking
three of the six joints of the robot. However, the proposed
control scheme and the design of the controllers could have a
more general validity, even in the spatial case for 6-joint robot
manipulators.

The control strategy, previously proposed, has been applied
in simulation to the model of a COMAU Smart3-S2 anthro-
pomorphic industrial robot by using the software MATLAB
Simulink. Note that the model has been identified on the
basis of real data through experimental tests [25], so that the
simulation environment is quite realistic.

The simulation scenario has also been made more realistic
by injecting the disturbance terms η = [η1, η2, η3]T to
the acceleration of the joints on the basis of the effective
disturbances registered during experimental tests [27]. These
disturbances represent modelling uncertainties, such as fric-
tion, centripetal or Coriolis forces, which are not completely
compensated by the Inverse Dynamics control (3). The cor-
responding bounds of the uncertainties for joints 1, 2, 3 are
20, 30, 80 rad s−2, respectively. Moreover, according to the
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Figure 4. Time evolution of the joint variables for each joint, and the velocity
q̇3 when only the nominal MPC is used

0 2 4 6 8 10

−200

−150

−100

−50

0

50

100

150

200

time (s)

v
1
(r
a
d
s−

2 )

 

 

v1
v1max

0 2 4 6 8 10

−300

−200

−100

0

100

200

300

time (s)

v
2
(r
a
d
s−

2 )

 

 

v2
v2max

0 2 4 6 8 10

−500

−400

−300

−200

−100

0

100

200

300

400

500

time (s)

v
3
(r
a
d
s−

2 )

 

 

v3
v3max

0 2 4 6 8 10
−3000

−2000

−1000

0

1000

2000

3000

time (s)

τ
(N

m
)

 

 

τ1
τ2
τ3

Figure 5. Time evolution of the auxiliary control variables and of the torque
for each joint when only the nominal MPC is used

Table I
STATE AND INPUT CONSTRAINTS FOR EACH JOINT

Joint i qimax (rad) q̇imax (rad s−1) vimax (rad s−2)

1 1.83 2 145
2 2.71 3.5 250
3 3.49 6.3 350

mechanical limits of the real robot, the position, velocity and
acceleration constraints are those reported in Table I. Note that,
these values are the same provided by the robot manufacturer
and imposed by the limit switches fastened on the real system.
The initial conditions of the joint variables are q0 = [0, 0, 0]T ,
while the target position is qref = [π/4, π/3, 2π/4]T . In or-
der to show the effectiveness of the control law (11), the latter
is compared with the case in which a nominal MPC without

0 2 4 6 8 10

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time (s)

q
1
(r
a
d
)

 

 

q 1r e f

q 1
q 1max

0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

time (s)

q
2
(r
a
d
)

 

 

q 2r e f

q 2
q 2max

0 2 4 6 8 10

−5

−4

−3

−2

−1

0

1

2

3

4

5

time (s)

q
3
(r
a
d
)

 

 

q 3r e f

q 3
q 3max

0 2 4 6 8 10

−8

−6

−4

−2

0

2

4

6

8

time (s)

q̇
3
(r
a
d
s−

1 )

 

 

q̇ 3

q̇ 3max

Figure 6. Time evolution of the joint variables for each joint, and the velocity
q̇3 when the MPC/ISM strategy is used
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Figure 7. Time evolution of the auxiliary control variables and of the torque
for each joint when the MPC/ISM strategy is used

ISM control is applied to the robot manipulator. The sliding
variable has been chosen as in (15) with ci = 10, i = 1, 2, 3,
the ISM control is as in (14), while the ISM control gains
are 20, 35 and 85, respectively. The MPC parameters have
been chosen such that for each joint Qi = diag(100, 100),
Ri = 0.1, and the terminal weight equal to

Πi =

[
5213.4 165.8
165.8 221.3

]
. (36)

Moreover, the sampling time of the simulation has been set as
in the real case equal to ts =0.001 s, while the sampling time
of the MPC loop has been set as T =0.02 s, with prediction
horizon N = 10.

A. Results and Comparison

The tracking control performance is evaluated through the
following indexes: the root mean square (RMS) error (eRMS)
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Figure 9. Performance indexes normalized with respect to the worse case

Table II
PERFORMANCE INDEXES FOR EACH JOINT

Strategy Joint i eRMSi (rad) Eci (rad s−2)

MPC
1 0.2105 8.0303
2 0.3749 13.4839
3 1.0458 41.2172

MPC/ISM
1 0.0070 8.0600
2 0.0102 13.4217
3 0.0152 34.8530

Table III
TIME CONSUMPTION OF THE PROPOSED CONTROL STRATEGY IN SECONDS

Algo. mean min. max. std. dev.

MPC 0.018 0.017 0.71 0.011
ISM 2.9× 10−5 2.7× 10−5 0.0086 1.4× 10−4

and the RMS value of the control action (Ec). Table II shows
the outcome indexes achieved through the MPC standalone
and the proposed MPC/ISM strategy. The RMS error in
steady-state is significantly smaller when the MPC/ISM is used

for all the joints with respect to the case with only MPC.
This is clearly represented in Figure 4 where the uncertainty
strongly affects the position tracking performance and the state
constraints are violated (see position and velocity of joint 3),
when only MPC is used. Figure 5 shows the corresponding
auxiliary control variables and the torques directly fed into
the plant. On the other hand, a very precise tracking with
constraints satisfaction can be observed in Figure 6 when
the MPC/ISM control is applied. The corresponding auxiliary
control variables and torques are illustrated in Figure 7.
This beneficial effect is given by the ISM component which
perfectly estimates and rejects the uncertain terms affecting the
systems (Figure 8). As for the control effort, it results in being
very similar in both cases, except for Joint 3 for which it is
smaller in case of MPC/ISM control, as can be observed in the
graphical rendering of the performance indexes, normalized
with respect to the worse cases, in Figure 9.

B. Evaluation of Application

To evaluate the computational costs of the proposed con-
trol strategy in practical robotic cases, an implementation in
MATLAB code, with quadprog as MPC solver, running on a
laptop-computer with an Intel Core 2 Duo at 2.4 GHz with
4 GB RAM, has been performed. The time measurement has
been made over four thousand executions of each algorithm.
This can be considered as a conservative upperbound of a
practical implementation made with any imperative assembly
language. Table III reports the results expressed in terms of
mean, minimum, maximum and standard deviation of the
execution time. Their respective sum for each algorithm is an
estimation of the total execution time. As expected the higher
computational burden is required by the MPC component, but
by virtue of the reduction of the complexity of the optimization
problem relying on a simple constrained linear system, it
results in being reasonable to be implemented in any standard
recent robot control unit or embedded systems such as FPGA
(Field Programmable Gate Array). As for the ISM compo-
nent, the obtained execution time confirms its computational
lightweight which makes ISM control a powerful easy-to-
implement solution even in an industrial field.

VII. CONCLUSIONS

In this paper a hierarchical multi-loop control scheme based
on the combination of Model Predictive Control and Integral
Sliding Mode control has been proposed to solve motion
control problems for robot manipulators. A basic Inverse
Dynamics feedback linearizing approach is applied to obtain a
set of linearized decoupled SISO systems. The Integral Sliding
Mode control, which runs at higher rate, makes the systems
insensitive to the matched uncertainties presence. Finally, the
external loop is characterized by the Model Predictive Control
component with the aim to ensure the optimal evolution of the
controlled system in the respect of state and input constraints,
while keeping the computational complexity to a minimum.
This makes the proposal really usable in practice, as also
verified by evaluating the possible computational costs of the
involved algorithms. The proposed control scheme has been
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validated in simulation relying on a realistic model of an
industrial COMAU Smart3-S2 robot manipulator, identified on
the basis of experimental tests.
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