6,281 research outputs found

    Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling

    Full text link
    Solving linear regression problems based on the total least-squares (TLS) criterion has well-documented merits in various applications, where perturbations appear both in the data vector as well as in the regression matrix. However, existing TLS approaches do not account for sparsity possibly present in the unknown vector of regression coefficients. On the other hand, sparsity is the key attribute exploited by modern compressive sampling and variable selection approaches to linear regression, which include noise in the data, but do not account for perturbations in the regression matrix. The present paper fills this gap by formulating and solving TLS optimization problems under sparsity constraints. Near-optimum and reduced-complexity suboptimum sparse (S-) TLS algorithms are developed to address the perturbed compressive sampling (and the related dictionary learning) challenge, when there is a mismatch between the true and adopted bases over which the unknown vector is sparse. The novel S-TLS schemes also allow for perturbations in the regression matrix of the least-absolute selection and shrinkage selection operator (Lasso), and endow TLS approaches with ability to cope with sparse, under-determined "errors-in-variables" models. Interesting generalizations can further exploit prior knowledge on the perturbations to obtain novel weighted and structured S-TLS solvers. Analysis and simulations demonstrate the practical impact of S-TLS in calibrating the mismatch effects of contemporary grid-based approaches to cognitive radio sensing, and robust direction-of-arrival estimation using antenna arrays.Comment: 30 pages, 10 figures, submitted to IEEE Transactions on Signal Processin

    Displacement Data Assimilation

    Full text link
    We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information important. While the displacement transformation is not tied to any particular assimilation scheme, here we implement it within an ensemble Kalman Filter and demonstrate its effectiveness in tracking stochastically perturbed vortices.Comment: 26 Pages, 9 figures, 5 table

    Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation

    Full text link
    In this paper, we aim at recovering an unknown signal x0 from noisy L1measurements y=Phi*x0+w, where Phi is an ill-conditioned or singular linear operator and w accounts for some noise. To regularize such an ill-posed inverse problem, we impose an analysis sparsity prior. More precisely, the recovery is cast as a convex optimization program where the objective is the sum of a quadratic data fidelity term and a regularization term formed of the L1-norm of the correlations between the sought after signal and atoms in a given (generally overcomplete) dictionary. The L1-sparsity analysis prior is weighted by a regularization parameter lambda>0. In this paper, we prove that any minimizers of this problem is a piecewise-affine function of the observations y and the regularization parameter lambda. As a byproduct, we exploit these properties to get an objectively guided choice of lambda. In particular, we develop an extension of the Generalized Stein Unbiased Risk Estimator (GSURE) and show that it is an unbiased and reliable estimator of an appropriately defined risk. The latter encompasses special cases such as the prediction risk, the projection risk and the estimation risk. We apply these risk estimators to the special case of L1-sparsity analysis regularization. We also discuss implementation issues and propose fast algorithms to solve the L1 analysis minimization problem and to compute the associated GSURE. We finally illustrate the applicability of our framework to parameter(s) selection on several imaging problems

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin
    corecore