15 research outputs found

    A scalable performance–complexity tradeoff for constellation randomization in spatial modulation

    Get PDF
    It is widely recognised that traditional single RFchain aided spatial modulation (SM) does not offer any transmit diversity gain. As a remedy, constellation randomization (CR), relying on transmit pre-scaling (TPS), has been shown to provide transmit diversity for single RF-chain aided SM. In this paper we propose a low-complexity approach to SM with the aid of constellation randomization (SM-CR) that considerably improves the transmit diversity gain of SM at a reduced computational burden compared to conventional SM-CR. While conventional SM-CR performs a full search amongst a set of candidate TPS factors in order to achieve the maximum minimum Euclidean distance (MED) in the received SM constellation, here we propose a thresholding approach, where instead of the maximum MED the TPS aims to satisfy a specific MED threshold. This technique offers a significant complexity reduction with respect to the full maximization of SM-CR, since the search for TPS is terminated once a TPS set is found that satisfies the MED threshold. Our analysis and results demonstrate that a scalable trade-off can be achieved between transmit diversity and complexity by appropriately selecting the MED threshold, where a significant complexity reduction is attained, while achieving a beneficial transmit diversity gain for the single-RF SM

    Adaptive OFDM Index Modulation for Two-Hop Relay-Assisted Networks

    Get PDF
    In this paper, we propose an adaptive orthogonal frequency-division multiplexing (OFDM) index modulation (IM) scheme for two-hop relay networks. In contrast to the traditional OFDM IM scheme with a deterministic and fixed mapping scheme, in this proposed adaptive OFDM IM scheme, the mapping schemes between a bit stream and indices of active subcarriers for the first and second hops are adaptively selected by a certain criterion. As a result, the active subcarriers for the same bit stream in the first and second hops can be varied in order to combat slow frequency-selective fading. In this way, the system reliability can be enhanced. Additionally, considering the fact that a relay device is normally a simple node, which may not always be able to perform mapping scheme selection due to limited processing capability, we also propose an alternative adaptive methodology in which the mapping scheme selection is only performed at the source and the relay will simply utilize the selected mapping scheme without changing it. The analyses of average outage probability, network capacity and symbol error rate (SER) are given in closed form for decode-and-forward (DF) relaying networks and are substantiated by numerical results generated by Monte Carlo simulations.Comment: 30 page

    A simplified spatial Modulation MISO-OFDM scheme

    Get PDF
    Index modulation is one of the promising techniques for future communications systems due to many improvement over the classical Orthogonal frequency division multiplexing systems such as single RF chain, increased throughput for the same modulation order, achieved tradeoff between the efficiencies of the power and the spectral, and elimination of inter-channel interference. Many forms of index modulation researches exist where symbols are conveyed in antennas, subcarriers, time slots, and the space-time matrix.  Spatial modulation is one member of index modulation family where symbols are conveyed in activating transmit/receive antennas. In this paper, a modification to a standard multiple input single output scheme by integrating spatial modulation using simplified mathematical procedure is achieved. In the transmitter side, data and activation symbols are distributed simultaneously using mathematical module and floor functions. At the receiver, a simplified maximum likelihood detector is used to obtain transmitted pair of symbols. To verify this, MATLAB SIMULINK is used to simulate a downlink system where spatial modulation is applied to a base station. Results for different transmit antenna number and modulation order are obtained in the form of bit error rate versus signal to noise ratio

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Improving the Diversity of Spatial Modulation in MISO Channels by Phase Alignment

    Get PDF
    The performance of spatial modulation (SM) is known to depend on the minimum Euclidean distance in the received SM constellation. In this letter, a symbol scaling technique is proposed for spatial modulation in the multiple-input-single-output (MISO) channel that enhances this minimum distance. It achieves this by aligning the phase of the relevant channels so that the received symbol phases are distributed in uniformly spaced angles in the received SM constellation. In contrast to existing amplitude-phase scaling schemes that are data-dependent and involve an increase in the transmitted signal power for ill conditioned channels, here a phase-only shift is applied. This allows for data-independent, fixed per-antenna scaling and leaves the symbol power unchanged. The results show an improved SM performance and diversity for the proposed scheme compared to existing amplitude-phase scaling techniques
    corecore