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Improving the Diversity of Spatial Modulation in
MISO Channels by Phase Alignment
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Abstract—The performance of spatial modulation (SM) is
known to depend on the minimum Euclidean distance in the re-
ceived SM constellation. In this letter, a symbol scaling technique
is proposed for spatial modulation in the multiple-input-single-
output (MISO) channel that enhances this minimum distance. It
achieves this by aligning the phase of the relevant channels so that
the received symbol phases are distributed in uniformly spaced
angles in the received SM constellation. In contrast to existing
amplitude-phase scaling schemes that are data-dependent and
involve an increase in the transmitted signal power for ill
conditioned channels, here a phase-only shift is applied. This
allows for data-independent, fixed per-antenna scaling and leaves
the symbol power unchanged. The results show an improved SM
performance and diversity for the proposed scheme compared to
existing amplitude-phase scaling techniques.

Index Terms—Spatial modulation, multiple-input-single-
output, pre-scaling.

I. INTRODUCTION

TRADITIONAL spatial multiplexing has been shown to
improve the capacity of the wireless channel by ex-

ploiting multi-antenna transmitters [1]. More recently, Spatial
Modulation (SM) has been explored as a means of encoding
information in the index of the antenna used for transmission,
offering a low complexity alternative [2]. It’s two central
benefits include the absence of inter-channel interference (ICI)
and the fact that it only requires a subset (down to one) of
Radio Frequency (RF) chains compared to spatial multiplex-
ing, for the transmission of data. Early work has focused on
the design of receiver algorithms for SM aiming at minimum
error performance and complexity. The work has looked at
several approaches, from low-complexity matched filtering, to
maximum likelihood (ML) detection and reduced-space sphere
detection [2]-[6].

Recent work has focused on constellation shaping for SM
by means of symbol pre-scaling at the transmitter, aiming to
maximize the minimum Euclidean distance in the received SM
constellation [7], [8], [9]. This is known to be central to the
performance of SM detection. In [10] the transmit diversity
of coded SM is analyzed for different spatial constellations,
denoting the possible sets of active antennas at the transmitter.
While spatial constellation shaping is discussed in [10], we
note that this is distinctly different to the focus of this
paper and [7], [8] which is on the design of the received
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Fig. 1. Block diagram of Spatial Modulation transmitter with per-antenna
symbol scaling.

SM constellation which combines the choice of the transmit
antenna as well as the constellation of the transmit symbol.
The constellation shaping approach in [7], [8] has been to fit
the receive SM constellation to one of the existing optimal
constellation formats in terms of minimum distance, such
as e.g. quadrature amplitude modulation (QAM). The strict
constellation fitting requirement in both amplitude and phase
tens to reduce the received signal to noise ratio (SNR).

To alleviate this shortcoming, in this letter we introduce a
new pre-scaling scheme which is based on unit-power factors
that only influence the phase of the transmit signals. A similar
phase-only approach is shown in [9] for Space Shift Keying
(SSK) transmisison. We note however that the proposed tech-
nique applies to the more generic SM scenarios, while it is
also accompanied by a mathematical diversity analysis. Using
the existing amplitude-phase structure of the MISO channel,
here the aim is to shape the receive SM symbols so that the
angles of the constellation points are uniformly spaced within
the [0, 2π) spread in the received constellation. This therefore
statistically enhances the minimum Euclidean distance in the
constellation. In comparison to existing amplitude-phase pre-
scaling techniques, the key benefits are that a) it is channel-
only dependent as opposed to the data- and channel- dependent
scaling of [7], [8], b) it does not alter the transmit power and
no power scaling (with the associated SNR loss) is further
required and c) the transmit power per symbol time is nor-
malized to the power budget on an instantaneous basis, which
facilitates the use of a low-cost power amplifier. Accordingly,
the proposed pre-scaling provides better performance than the
existing approaches for an equal transmit power.

II. SPATIAL MODULATION WITH PHASE ALIGNMENT

A. System Model

Consider a multiple-input-single-output (MISO) system
where the transmitter is equipped with Nt antennas. For
simplicity, in this paper we assume that the transmit power
budget follows P = 1. We focus on the single RF chain
SM approach where the transmit vector is in the all-but-one
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zero form s = [0, . . . , skm, . . . , 0]T where the notation [.]T

denotes the transpose operator. Here, sm,m ∈ {1, . . . ,M} is a
symbol taken form an M -order modulation that represents the
transmitted waveform in baseband domain conveying log2(M)
bits and k represents the index of the antenna used for
transmission conveying log2(Nt) bits in the spatial domain.
Clearly, since s is an all zero vector apart from skm there is
no inter-channel interference.

The pre-scaling approach proposed here is shown in Fig.
1. The signal fed to each antenna is scaled by a complex
coefficient αk, k ∈ {1, . . . , Nt} for which |αk| = 1, where
|x| denotes the amplitude of a complex number x. Defining
the MISO channel vector as h = [h1, h2, . . . , hNt ] where hk

denotes the complex channel coefficient from the k-th transmit
antenna to the receiver, the received symbol can be written as

y = hAs + w (1)

where w ∼ CN (0, σ2) is the additive white Gaussian noise
(AWGN) component with variance σ2 at the receiver and A =
diag(a) is the pre-scaling matrix with a = [α1, α2, . . . , αNt ].
diag(x) denotes the diagonal matrix with its diagonal elements
taken from vector x. Note that the diagonal structure of A
guarantees an all-but-one zero transmit vector t = As, so that
the single RF chain aspect of SM is preserved.

Existing pre-scaling schemes for SM aim at maximizing
the Euclidean distance between adjacent points yi,yj in the
receive SM constellation so that

A∗ = argmax
A

min
i,j

||yi − yj ||2, i �= j (2)

subject to A∗ having a diagonal structure.

B. Amplitude-Phase Pre-scaling (SM-AP)

Accordingly, in [7] the receive SM constellation is fitted to
a Q-QAM constellation with Q = NtM by choosing

α̃k
m =

q(m−1)M+k||h||
hksm

√
Nt

(3)

where qn is the n-th constellation point in the Q-QAM
constellation, ||x|| denotes the norm of vector x and the factor
||h||√
Nt

is used to normalize the receive constellation so that
E{q} = 1.

We note that, while the scaling in (3) normalizes the receive
constellation, it does not normalize the transmit power. To
illustrate this, Fig. 2(a) shows the probability distribution of
the transmit power for E{|sm|2} = 1 using the factors α̃k

m

proposed in [7]. It is clear that the transmit power is not
constrained and its average is above one. Therefore, power-
normalized scaling coefficients should be used in the form

αk
m =

α̃k
m

||ã|| . (4)

These result in the power distribution shown in Fig. 2(b).
Still, it is observed that the distribution spreads up to multiples
of the average power (more than 5 times the average power
for the example shown). This makes the design of the power
amplifier at the transmitter challenging. It can also be seen that
for badly conditioned channel coefficients, even for just one of
the transmit antennas, this leads to low power-scaling factors
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Fig. 2. Probability distribution of the transmitted power of amplitude-phase
scaling [7] with and without power normalization.

f = 1/||ã|| which limits the performance of transmission for
all transmit antennas. Finally, note that αk

m are data dependent
as evidenced by the index m, which does not allow for a fixed
per-antenna scaling coefficient as in Fig. 1.

C. Proposed Phase-only Pre-scaling (SM-P)

To alleviate the the drawbacks of the above technique, a
phase-only scaling is proposed which is does not change the
power of the transmit symbols and therefore does not require
power scaling that introduces performance losses. Moreover
it preserves normalized instantaneous power which allows
simple power amplifiers at the transmitter and facilitates
fixed, data-independent scaling at each transmit antenna. The
relevant coefficient for the k-th antenna is defined by the
expressions

αk = ejϕk (5)

ϕk = θi − ϑk (6)

where ϑk is the phase of hk and θi is the i-th angle taken
form an equally spaced angle arrangement within [0, 2π) in
the form

θi =
2π

NtM
(i− 1), i ∈ {1, . . . , Nt}. (7)

Since the channel coefficients are estimated at the receiver
for detection [2]-[6], (5)-(7) can be used to derive the above
factors independently at the receiver. Therefore no feed for-
warding of αk is required. With the proposed scaling, while
the amplitudes of the symbols in the original received constel-
lation are preserved in the modified constellation, the received
phases are arranged such that a constant phase difference
appears between adjacent constellation points. A characteristic
example of this operation is illustrated in Fig. 3 showing the
original and scaled received constellation for a 4 × 1 SM
MISO system. It can be seen that, while suboptimal in the
constellation design sense, the proposed pre-scaling enhances
the minimum distance in the constellation with respect to
conventional SM. In addition, it will be shown in the results
section that the absence of power scaling also improves the
error rate of the system compared to conventional SM and the
SM-PA of [7]. First, we analytically characterize the diversity
gains of the proposed approach in the following section.
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Fig. 3. An example of received constellation for conventional SM and
proposed pre-scaled SM in a 4× 1 MISO channel using 4QAM.

III. DIVERSITY ANALYSIS

The proposed constellation shaping by means of phase
alignment as shown above leads to an increase in the transmit
diversity. That is, while the transmit diversity of the single-RF
SM is known to be one, the proposed pre-scaling introduces
a phase diversity in the transmission. For the single receive
antenna scenario, the system is said to have diversity order d
if the bit error probability decays with γ−d in the high-SNR
region, with γ being the SNR. To analyze diversity we note
that the pairwise error probability (PEP) for SM scales with
the Euclidean distance between constellation points as [10]

PEP (yi,yj) = Q
(√

||yi − yj ||2
2σ2

)
(8)

where Q(x) denotes the Q-function and

||yi − yj || =
√
||yi||2 + ||yj ||2 − 2yi • yj (9)

=
√
||yi||2 + ||yj ||2 − 2||yi||||yj || cos(Δφ)

where a • b denotes the dot product of vectors and Δφ
denotes the phase difference between the two points. The
proposed technique leaves the amplitudes and norms in (9)
unchanged and improves diversity by increasing the minimum
Δφ with respect to conventional SM. Accordingly, since the
PEP is dominated by the minimum Euclidian distance and
here the amplitudes of the received constellation points are left
unchanged, we focus on the gain in minimum phase separation
between adjacent constellation points for the proposed SM-P,
defined as

G =
ΔφSM−P

E{minΔφSM} (10)

where ΔφSM−P is the constant phase separation obtained
with SM-P and minΔφSM is the minimum phase separation
with conventional SM, both shown in Fig. 3. By (9) and (10)
and the associated pairwise error probability analysis it can be
seen that the diversity gain of SM-P can be approximated by
d ≈ √

G, which we verify empirically in the results section.
With respect to (10), firstly, it is clear from (7) that

ΔφSM−P =
2π

NtM
. (11)

To quantify G we derive minΔφSM for SM in a channel
where the phases of the channel coefficients hk are uni-
formly distributed within [0, φ). Under this condition, the

phase separation ΔφSM = θi − θj between two receive
SM constellation points follows a triangular distribution [13]
in [0, φ) with its probability density (PDF) and cumulative
distribution functions (CDF) expressed respectively as

fΔφSM (x) =
2

φ
− x

2

φ2
, (12)

FΔφSM (x) = 1− (φ− x)2

φ2
. (13)

For the receive SM constellation with Nt channels and M -
order modulation this yields n = NtM constellation points.
For the minimum phase separation in the constellation we use
the results from order statistics [14], [15] by which

fminΔφSM (x) = n (1− FΔφSM (x))
n−1

fΔφSM (x), (14)

to obtain its PDF as

fminΔφSM (x) = NtM

(
φ− x

φ

)2NtM−1
2

φ
. (15)

Hence, the average minimum phase separation with con-
ventional SM is given as

E{minΔφSM} =

∫ φ

0

xfminΔφSM (x)dx =
φ

1 + 2NtM
.

(16)
For the uncorrelated Rayleigh fading the phase spread is

φ = 2π. Combining (16) with the expressions for φ and
ΔφSM−P from above we have

G =
2π

NtM
2π

2NtM+1

=
2NtM + 1

NtM
. (17)

The above phase separation gain reflects a diversity gain for
SM while it is known that the transmit diversity for conven-
tional SM is one. The simulation results in the following
show that the diversity of the system can be empirically
approximated as

d ≈
√

2NtM + 1

NtM
(18)

with limn→∞ d =
√
2 for high dimensional (large Nt, M )

transmission.

IV. SIMULATION RESULTS

To evaluate the benefits of the proposed technique, this
section presents numerical results based on Monte Carlo
simulations of conventional SM without scaling (termed as
SM in the figures), SM with amplitude-phase scaling (SM-
AP) and the proposed phase only pre-scaled SM (SM-P). A
Rayleigh fading channel is used whose impulse response is
assumed perfectly known at the transmitter. Without loss of
generality we assume the transmit power restricted to P = 1.
4×1 and 8×1 MISO systems employing 4QAM and 16QAM
modulation are explored while it is clear that the benefits of the
proposed technique extend to larger scale systems and higher
order modulation.

First, we show the bit error rate (BER) performance with
increasing transmit SNR for the three schemes for a 4 × 1
MISO employing 4QAM in Fig. 4. The graph includes both
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Fig. 4. BER vs. SNR for a 4× 1 MISO with SM, SM-AP, SM-P, 4QAM,
including diversity trend where Pe denotes error probability and c is a generic
constant.

versions of SM-AP with (4) and without (3) power normal-
ization, to illustrate the losses introduced by power scaling
for the technique in [7]. Clearly, while SM-AP without power
normalization shows vast performance gains, once the transmit
power is normalized back to P , the BER performance moves
much closer to the once for SM. As mentioned, this is because
(3) involves a channel inversion which for badly conditioned
channels leads to large symbol scaling factors α̃k

m and low
power scaling factors and received SNRs. On the contrary,
the proposed scheme applying only a phase change, avoids
this shortcoming. A significant SNR gain of almost 10dB can
be observed between the proposed SM-P and conventional
SM at the BER of 10−3. This is due to the enhancement
of the minimum Euclidean distance on the received SM
constellation, as illustrated in Fig. 3. The relevant SNR gain
with respect to SM-AP is around 7dB.

Fig. 5 explores systems with more antennas and higher order
modulation. Three systems with 4, 8 and 16 transmit antennas
are shown for both 16QAM and 16PSK. It can be seen that the
performance gains of the proposed SM-P approach compared
to SM persist. To verify the above diversity analysis, both
Figs. 4,5 include the theoretical curves illustrating diversity,
represented by the dashed lines. For the parameters used in

the figures we have d =
√

2NtM+1
NtM

≈ 1.42 for SM-P for all
systems, while clearly SM provides transmit diversity equal
to one. The graphs show that indeed the BER follows the
diversity trend as analyzed above, and thus SM-P provides
important diversity gains with respect to conventional SM.

CONCLUSION

A new constellation shaping approach has been introduced
for spatial modulation in the MISO channel. Conventional
constellation shaping techniques offer limited gains compared
to SM due to the strict fitting to a fixed constellation, which
often requires the inversion of ill conditioned channel coeffi-
cients. It has been shown that, by influencing only the phase
of the received constellation points, the proposed algorithm
offers significant performance and diversity gains to existing
SM constellation shaping approaches.
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