327 research outputs found

    3-D Beamspace ML Based Bearing Estimator Incorporating Frequency Diversity and Interference Cancellation

    Get PDF
    The problem of low-angle radar tracking utilizing an array of antennas is considered. In the low-angle environment, echoes return from a low flying target via a specular path as well as a direct path. The problem is compounded by the fact that the two signals arrive within a beamwidth of each other and are usually fully correlated, or coherent. In addition, the SNR at each antenna element is typically low and only a small number of data samples, or snapshots, is available for processing due to the rapid movement of the target. Theoretical studies indicates that the Maximum Likelihood (ML) method is the only reliable estimation procedure in this type of scenario. However, the classical ML estimator involves a multi-dimensional search over a multi-modal surface and is consequently computationally burdensome. In order to facilitate real time processing, we here propose the idea of beamspace domain processing in which the element space snapshot vectors are first operated on by a reduced Butler matrix composed of three orthogonal beamforming weight vectors facilitating a simple, closed-form Beamspace Domain ML (BDML) estimator for the direct and specular path angles. The computational simplicity of the method arises from the fact that the respective beams associated with the three columns of the reduced Butler matrix have all but three nulls in common. The performance of the BDML estimator is enhanced by incorporating the estimation of the complex reflection coefficient and the bisector angle, respectively, for the symmetric and nonsymmetric multipath cases. To minimize the probability of track breaking, the use of frequency diversity is incorporated. The concept of coherent signal subspace processing is invoked as a means for retaining the computational simplicity of single frequency operation. With proper selection of the auxiliary frequencies, it is shown that perfect focusing may be achieved without iterating. In order to combat the effects of strong interfering sources, a novel scheme is presented for adaptively forming the three beams which retains the feature of common nulls

    Cost-effective aperture arrays for SKA Phase 1: single or dual-band?

    Full text link
    An important design decision for the first phase of the Square Kilometre Array is whether the low frequency component (SKA1-low) should be implemented as a single or dual-band aperture array; that is, using one or two antenna element designs to observe the 70-450 MHz frequency band. This memo uses an elementary parametric analysis to make a quantitative, first-order cost comparison of representative implementations of a single and dual-band system, chosen for comparable performance characteristics. A direct comparison of the SKA1-low station costs reveals that those costs are similar, although the uncertainties are high. The cost impact on the broader telescope system varies: the deployment and site preparation costs are higher for the dual-band array, but the digital signal processing costs are higher for the single-band array. This parametric analysis also shows that a first stage of analogue tile beamforming, as opposed to only station-level, all-digital beamforming, has the potential to significantly reduce the cost of the SKA1-low stations. However, tile beamforming can limit flexibility and performance, principally in terms of reducing accessible field of view. We examine the cost impacts in the context of scientific performance, for which the spacing and intra-station layout of the antenna elements are important derived parameters. We discuss the implications of the many possible intra-station signal transport and processing architectures and consider areas where future work could improve the accuracy of SKA1-low costing.Comment: 64 pages, 23 figures, submitted to the SKA Memo serie

    Sensor array signal processing : two decades later

    Get PDF
    Caption title.Includes bibliographical references (p. 55-65).Supported by Army Research Office. DAAL03-92-G-115 Supported by the Air Force Office of Scientific Research. F49620-92-J-2002 Supported by the National Science Foundation. MIP-9015281 Supported by the ONR. N00014-91-J-1967 Supported by the AFOSR. F49620-93-1-0102Hamid Krim, Mats Viberg

    MODELING AND DESIGNING A FULL BEAMFORMER FOR ACOUSTIC SENSING AND MEASUREMENT

    Get PDF
    Acoustic sensing is a viable approach for solving issues related to many applications, namely, biomedical, distance measurements, mechanical, health infrastructure monitoring, etc. It is generally sustainable and of no negative impact on the object under test. The use of acoustic sensing under beamforming technique is an important asset to be exploited, especially for the aforementioned applications. This paper illustrates a generalized approach of modeling and designing a full beamfomer using two specific classes: LCMP (Linear Constrained Minimum Power) beamformers that are used to overcome robustness limitations and MVDR (Minimum Variance Distortionless Response) beamformers. Any aspect of modeling and designing is always related to the DOA (Direction of Arrival). The obtained results are based on assumptions extracted from an actual case of constructed system

    Calibration Challenges for Future Radio Telescopes

    Full text link
    Instruments for radio astronomical observations have come a long way. While the first telescopes were based on very large dishes and 2-antenna interferometers, current instruments consist of dozens of steerable dishes, whereas future instruments will be even larger distributed sensor arrays with a hierarchy of phased array elements. For such arrays to provide meaningful output (images), accurate calibration is of critical importance. Calibration must solve for the unknown antenna gains and phases, as well as the unknown atmospheric and ionospheric disturbances. Future telescopes will have a large number of elements and a large field of view. In this case the parameters are strongly direction dependent, resulting in a large number of unknown parameters even if appropriately constrained physical or phenomenological descriptions are used. This makes calibration a daunting parameter estimation task, that is reviewed from a signal processing perspective in this article.Comment: 12 pages, 7 figures, 20 subfigures The title quoted in the meta-data is the title after release / final editing

    Vehicular Connectivity on Complex Trajectories: Roadway-Geometry Aware ISAC Beam-tracking

    Get PDF
    In this paper, we propose sensing-assisted beamforming designs for vehicles on arbitrarily shaped roads by relying on integrated sensing and communication (ISAC) signalling. Specifically, we aim to address the limitations of conventional ISAC beam-tracking schemes that do not apply to complex road geometries. To improve the tracking accuracy and communication quality of service (QoS) in vehicle to infrastructure (V2I) networks, it is essential to model the complicated roadway geometry. To that end, we impose the curvilinear coordinate system (CCS) in an interacting multiple model extended Kalman filter (IMM-EKF) framework. By doing so, both the position and the motion of the vehicle on a complicated road can be explicitly modeled and precisely tracked attributing to the benefits from the CCS. Furthermore, an optimization problem is formulated to maximize the array gain by dynamically adjusting the array size and thereby controlling the beamwidth, which takes the performance loss caused by beam misalignment into account. Numerical simulations demonstrate that the roadway geometry-aware ISAC beamforming approach outperforms the communication-only-based and ISAC kinematic-only-based technique in tracking performance. Moreover, the effectiveness of the dynamic beamwidth design is also verified by our numerical results

    UWB Pulse Radar for Human Imaging and Doppler Detection Applications

    Get PDF
    We were motivated to develop new technologies capable of identifying human life through walls. Our goal is to pinpoint multiple people at a time, which could pay dividends during military operations, disaster rescue efforts, or assisted-living. Such system requires the combination of two features in one platform: seeing-through wall localization and vital signs Doppler detection. Ultra-wideband (UWB) radar technology has been used due to its distinct advantages, such as ultra-low power, fine imaging resolution, good penetrating through wall characteristics, and high performance in noisy environment. Not only being widely used in imaging systems and ground penetrating detection, UWB radar also targets Doppler sensing, precise positioning and tracking, communications and measurement, and etc. A robust UWB pulse radar prototype has been developed and is presented here. The UWB pulse radar prototype integrates seeing-through imaging and Doppler detection features in one platform. Many challenges existing in implementing such a radar have been addressed extensively in this dissertation. Two Vivaldi antenna arrays have been designed and fabricated to cover 1.5-4.5 GHz and 1.5-10 GHz, respectively. A carrier-based pulse radar transceiver has been implemented to achieve a high dynamic range of 65dB. A 100 GSPS data acquisition module is prototyped using the off-the-shelf field-programmable gate array (FPGA) and analog-to-digital converter (ADC) based on a low cost solution: equivalent time sampling scheme. Ptolemy and transient simulation tools are used to accurately emulate the linear and nonlinear components in the comprehensive simulation platform, incorporated with electromagnetic theory to account for through wall effect and radar scattering. Imaging and Doppler detection examples have been given to demonstrate that such a “Biometrics-at-a-glance” would have a great impact on the security, rescuing, and biomedical applications in the future

    Wideband Direction of Arrival estimation and sparse modeling for underwater surveillance

    Get PDF
    In underwater surveillance sources, such as ships or submarines, are localized using the acoustic noise emitted by the source engines, propellers and other machinery. The acoustic signals propagate in the sea and are recorded with an array of acoustic sensors. Processing the recorded signals to obtain the locations of the sources is known as Direction of Arrival (DOA) estimation in the field of signal processing. A simple mathematical model relating the sensor array geometry to the DOA of the source exists when the frequency of the source signal is known. The model is directly applicable to a narrowband DOA estimation problem where the energy of the source signals is concentrated around a single carrier frequency. For underwater surveillance, however, the source signals are wideband which complicates the problem. This thesis reviews existing methods for wideband DOA estimation: Simple extensions of well known narrowband methods MVDR and MUSIC, the so called coherent methods and the most recent methods belonging into the sparse framework. An original idea for extending MVDR using a likelihood based combining of subbands, MVDR-LBC is developed. The thesis models the sensor signals as a sparse autoregressive process by linear prediction and the original algorithm GRLS. The sparse model is shown to be effective compared to the conventional non-sparse one. The model can be used to compress the data recorded in underwater surveillance. The wideband DOA estimation methods are tested with a number of simulations and with real data recorded in the sea. MVDR is shown to be robust and effective, the accuracy and resolution of which can be improved using MVDR-LBC. MUSIC provides good resolution, is computationally efficient and can be implemented quite simply. The coherent methods are the most complicated and need good pre-estimations for the source directions but can resolve close sources best

    On the detectability of multiple input multiple output (MIMO) radar signals using conventional electronic warfare support (ES) receivers

    Get PDF
    A research report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering. Johannesburg, 2016Multiple-Input Multiple-Output (MIMO) radar is a more general form of phased array radar, where each antenna in the array transmits linearly independent or mutually orthogonal signals. Sustained growth in computational power as well as the decline in the cost of integrated radio frequency (RF) components has made MIMO more viable than in the past. The potential emergence of practical MIMO radar has prompted an investigation into the detectability of MIMO radar signals using existing conventional Electronic warfare Support (ES) receivers such as the Crystal Video Receiver (CVR) and a specific type of superheterodyne receiver (superhet) known as the Zero IF Receiver (ZIFR). Literature on the detectability of MIMO radar signals is extremely scarce and this investigation aims to offer insights into the detectability of MIMO radar signals by means of computer simulations. The fundamental theory necessary for this research includes phased array radar theory, MIMO array radar theory and ES receiver signal detection theory. The detection of MIMO radar signals is compared to a reference phased array case to provide relative context. This investigation focusses on co-located Uniform Linear Arrays (ULA) based radar systems. The result of interest is the relative Signal-to-Noise Ratio (SNR) at which each type of radar can be detected by the ES receiver. Therefore, a lossless transmission, without loss of generality, is assumed. Constraints such as the equal transmit power over all antenna elements in the arrays, are used for a fair comparison. Many different array simulation setups are simulated. These setups are achieved by varying the number of elements in the array and the inter-element spacing. The phased array radar transmitted complex linear chirp signals, and the MIMO radar transmitted Hadamard sequences, interpolated using a Constant Envelope Linear-Route-of-Unity (CE-LRU) technique. The CVR and ZIFR detection thresholds were determined for a Probability of False Alarm (PFA) of 10-4. For all of the setups, the phased array radar was found to be more detectable than the MIMO radar at values of Probability of Detection (PD) below 0.6. The in phase coherent combination of phased array radar signals in its main beam resulted in a signal gain caused by the constructive addition of the signals. This gain thus increases with the number of antenna elements. In contrast, the MIMO signals also add coherently, but the instantaneous phase for each signal is a function of the transmitted signal as well as the direction of propagation relative to the array face. The set of orthogonal signals thus add constructively and destructively, resulting in the average signal power remaining approximately constant despite the number of antenna elements increasing. The difference in detectability of the phased array radar over MIMO radar therefore increases as the number of antenna elements is increased, due to the fact that each element is constrained to transmit a fixed power. Comparing the performance of the ZIFR and CVR, the ZIFR outperforms the CVR. This is due to the fact that the ZIFR implements a quadrature ES receiver, and was able to detect both types of radar signals at a lower SNR than the CVR. However, both ES receivers struggle to detect MIMO radar signals in comparison to detecting phased array radar signals and this performance margin widens as the number of transmitting elements is increased. This result suggests that research into dedicated techniques for the detection of MIMO radar signals using ES receivers may be necessary should the need arise to detect MIMO radar signals in future. This is the first quantitative analysis of the detectability of MIMO radar signals using conventional ES receivers that the author is aware of.MT201

    Direction of Arrival Estimation in Low-Cost Frequency Scanning Array Antenna Systems

    Get PDF
    RÉSUMÉ Cette thèse propose des méthodes d'estimation de la direction d'arrivée (DOA) et d'amélioration de la résolution angulaire applicables aux antennes à balayage de fréquence (Frequency Scanning Antenna ou FSA) et présente un développement analytique et des confirmations expérimentales des méthodes proposées. Les FSA sont un sous-ensemble d'antennes à balayage électronique dont l'angle du faisceau principal change en faisant varier la fréquence des signaux. L'utilisation des FSA est un compromis entre des antennes à balayage de phase (phased arrays antennas) plus coûteuses et plus complexes, et des antennes à balayage mécanique plus lentes et non agiles. Bien que l'agilité et le faible coût des FSA les rendent un choix plausible dans certaines applications, les FSA à faible coût peuvent ne pas être conformes aux exigences souhaitées pour l'application cible telles que les exigences de résolution angulaire. Ainsi, cette recherche tente d'abord de caractériser les capacités de résolution angulaire de certains systèmes d'antennes FSA sélectionnés. Elle poursuit en explorant des modifications ou extensions aux algorithmes de super-résolution capables d'améliorer la résolution angulaire de l'antenne et de les adapter pour être appliqués aux FSA. Deux méthodes d'estimation de la résolution angulaire, l'estimation du maximum de vraisemblance (Maximum Likelihood ou ML) et la formation du faisceau de variance minimale de Capon (Minimum Variance Beamforming ou MVB) sont étudiées dans cette recherche. Les deux méthodes sont modifiées pour être applicables aux FSA. De plus, les méthodes d'étalonnage et de pré-traitement requises pour chaque méthode sont également introduites. Les résultats de simulation ont montré qu'en sélectionnant des paramètres corrects, il est possible d'améliorer la résolution angulaire au-delà de la limitation de la largeur de faisceau des FSA en utilisant les deux méthodes. Les critères pour lesquels chaque méthode fonctionne le mieux sont discutés et l'analyse pour justifier les conditions présentées est donnée.----------ABSTRACT This research investigates direction of arrival (DOA) estimation and angular resolution enhancement methods applicable to frequency scanning antennas (FSA) and provides analytical development and experimental validation for the proposed methods. FSAs are a subset of electronically scanning antennas, which scan the angle of their main beam by varying the frequency of the signals. Using FSA is a trade-off between more expensive and complex phase array antennas and slower and non-agile mechanical scanning antennas. Although agility and low-cost of FSAs make them a plausible choice in some application, low-cost FSAs may not comply with the desired requirements for the target application such as angular resolution requirements. Thus, this research attempts to first characterize the angular resolution capabilities of some selected FSA antenna systems, and then modify or extend super-resolution algorithms capable of enhancing the angular resolution of the antenna and adapt them to be applied to FSAs. Two angular resolution estimation methods, maximum likelihood estimation (ML) and Capon minimum variance beamforming (MVB), are studied in this research. Both methods are modified to be applicable to FSAs. In addition, the calibration and pre-processing methods required for each method are also introduced. Simulation results show that by selecting correct parameters, it is possible to enhance angular resolution beyond the beamwidth limitation of FSAs using both methods. The criteria for which each method performs the best are discussed and an analysis supporting the presented conditions are given. The proposed methods are also validated using the measured antenna radiation pattern of an 8-element FSA which is built based on a composite right/left-handed (CRLH) waveguide. In addition, the experimental results using a beam scanning parabolic reflector antenna using a frequency multiplexed antenna feed is given. The design limitations of this antenna reduces the performance of angular resolution enhancement methods. Therefore, a hybrid scanning system combining mechanical and frequency scanning using the beam scanning reflector antenna is also proposed
    corecore