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ABSTRACT

The problem of low-angle radar tracking utilizing an array of antennas is.
con51dered In the low-angle environment, echoes return from a low flying target via a
specular path as well as a direct path. The problem is compounded by the fact that the
two signals arrive within a beamwidth of each other and are usually fully correlated,
or coherent. In addition, the SNR at each antenna element is typically low and onlya
sméll_ numbcp of data samples, or snapshots, is available for processing due to the
rapid movement of the target. Theoretical studies indicates that the Maximum
Likelihood (ML) method is the: only reliable estimation procedure in this type of
scenario. However, the classical ML estimator involves a multi-dimensional search
over a mulu-modal surface and is consequently computationally burdensome. In
order to fac111tate real time processing, we here propose the idea of beamspace domain
processing in which the element space snapshot vectors are first operated on by a

reduced Butler matrix composed of three orthogonal beamforming weight vectors B

facﬂltatmg a simple, closed-form Beamspace Domain ML (BDML) estimator for the
direct and specular path angles. The computational simplicity of the method arises
from the fact that the respective beams associated with the three columns of the
reduced Butler matrix have all but three nulls in common. The performance of the
BDML estimator is enhanced by incorporating the estimation of the complex
reflection coefficient and the bisector angle, respectively, for the symmetric and
nonsymmetric multipath cases. To minimize the probability of track breaking, the use
of frequency diversity is incorporated. The concept of coherent 'signal subspace
processi‘ng is invoked as a means for retaining the computational simplicity of single
frequency opcration. With proper selection of the auxiliary frequencies, it is shown
that perfect focusing may be achieved without iterating. In order to combat the effects
of strong interfering sources, a novel scheme is presented for adaptlvely formmg the
three beams which retains the feature of common nulls. :



CHAPTER 1
INTRODUCTION

1.1 Motivations for Beamspace Domain Processing

The idea of extracting information about a "scene” of targets or radiating
sources from the data outputted from an array of sensors by operating in the
beamspace domain as opposed to element space has recently caught the
interest of a number of researchers: in the field of array signal processing
[BUCKS88], [XUs8], [VANSS], [FORSS87|, [GABRS88]. In element space, the
data is taken to be the "raw" snapshot vectors containing a simultaneous
sampling of all the array element outputs at a particular instant in time. In
the case of beamspace domain processing, the "raw" snapshot vectors are first
operated on by a matrix beamformer producing a beamspace snapshot vector
typically of lower dimensionality. There are a number of advantages to

working in the beamspace domain. First, the lower dimensionality of the

beamspace domain snapshot vector serves to reduce the computational
burden. Second, as each component of the beamspace domain snapshot vector
is formed as the weighted sum of a large number of array element outputs, it
is often adequate to assume Gaussian statistics in the beamspace domain. In
the case of Maximum Likelihood (ML) based estimation, the Gaussian
assumption leads to a tractable least squares problem. Third, the process of
beamforming serves to filter out undesired sources such as clutter and
jammers. Finally, the "spatial” white noise assumption which is typically
invoked but not very often the case in practice, may indeed hold to a good
approximation in beamspace. The pertinent assumption here is that the
spatial passband associated with the matrix beamformer is narrow enough
such that the spatial distribution of the noise over the passband is essentially
flat. These advantages of beamspéce domain processing over element space
processing have lead to the development of beamspace domain versions of the
Minimum Variance algorithm. For the narrowband case we have the w‘ork of
Byrne and Steele [BYRNS87] while for the wideband case we have the work of
Gabriel [GABRSS|]. Beamspace domain versions of MUSIC [SCHM79] have also |
been developed For the narrowband case, we have the work of Forster and



* Vezzosi '[FORSSI'ZV"Mayhan' and Niro -|"MAYH87l and Van Veen [VAN88] For.

the wideband case¢, we have the work of Buckley and Xu [BUCK88] [XU88]

who have also developed beamspace domain, wndeband versions of other .

,spatlal spectra] estimators such as Mmlmum "Variance, BASS ALE, etc.. We
" here develop a beamspace ‘domain based Maximum leellhood estlmatlonf
scheme for’ the low angle radar trackmg problem ‘ s

lf.‘2 OV}erQiew ,o_.f-',ML’Estimation for Low Angle Radar Traeking

The . low. ahgle*radar, tracking ‘problem has been ‘well 'studied:in the

- literature [KESL80|, [HAYKS83], [HAYK84), [DAVI76] |GABRS4], [CANTS1],
" [MAYHS7], [BALI 87] [KEZYS8S8], [KSIE68], [BART74] [WHIT74], [SKOLSO]'

. [ZOLT88a), [ZOLT89b-d.. Barton provrded a model for the scenario in
o -;b,[BART74] The goal is- to track a’ target flying at a low altltude, in relatlve,
terms, over a fairly smooth reﬂectlng surface: such as a calm sea, for example L

" The problem is. complrcated bv the fact that the angu]ar separatlon between

the echoes returning from the target via the ‘specular path iand those arriving

L via the “direct path is tvprcally a fractlon of -a beamwndth The classmal’f
e _monopulse bearlng estlmatlon techmque breaks down under these condltlons
“as it assumes- a smgle target w1th1n ‘the mam]obe wrdth of the sum beam
[GABRS4]: As a _consequence, a number of alternative estlmatlon techniques
v-have .been - proposed each theoretlcally capable of . resolvmg two. targets.
‘angularly separated by less than a beamw1dth ‘Note that the low-angle radar |
ftracklng scenarlo may be v1ewed as a two target problem, one of the targets
_ is "real” whlle ‘the other is’ s1rnp]y its multlpath reﬁectlon In particular, a-
o _number of Maxxmum Likelihood (ML) ‘based estimation schemes have been
'*_developed ‘an‘d _prop_osed [KESL80], [HAYK83] [HAYK84], [HAKY85},
[DAVI76], [CANTS1}, [MAYHS7], [BALL87], [KEZY88], [KSIE6S], [WHIT74).
The ML: estlmator is.particularly attractlve in hght of its theoretlcal ability to
- handle: the s1ngle snapshot case, as the term monopulse 1mphes, and 100%
K, - correlation between the direct and specular path s1gnals ‘In these. two extreme
- situations, most Dlrectlon of-Arrival (DOA) finding- techmques suﬁer severe:
o degradatlon ‘or_may ‘even totally break. ‘down . [BRESSG] The various ML '
:':_““vbased estlmatlon schemes proposed ‘may be classified under two major
‘ ‘categories: those which operate in element space and. those whlch operate in
, ’beamspace Some early treatment. of the element 'space- based ML estlmator
~can be" found in- the pioneering’ work of K51ensk1 and McGhee [KSIE68] and
“that of White [WHIT74] ‘More rec_ent,,work; on th\e_,eler__nent s_pace‘_b'ased ML



estimator can be found in the papers of Haykln |[HAYKS85] and Ballance and
Jaffer [BALLS"} One of the major drawbacks of the element space based ML
estimator is the attendant computational complexity. In the case of K targets,
the element space based likelihood function is a K-dimensional, multi-modal
surface. A major contribution in this regard was a computationally efficient
algorithmic formulation of the element space based ML estimator for multlple
targets proposed by Bresler and Macovski [BRES86] referred to as the
Iterative - Quadratlc Maximum Likelihood (IQML) algorithm. Ziskand and
Wax [ZISK88; have also developed a computationally efficient implementation
of the element space based ML estimator based on alternating projections.
‘However, even in the simple case of two targets, neither of these formulations -
leads to a simple, closed-form expression for the ML estimates of the two
respective target angles, except in the case of a three element array. The
greatest attribtite of the monopulse bearing estimation technique; and the
reason for its widespread use in radar systems,‘is that even in the case of a
large phased array, t the angle of the target is found via a simple computation
involving the ratio of the difference beam to the sum beam ' [GABR84],
[SKOL80]. In [DAVI76], Davis et. al. show that the monopulse bearing
estimation technique is, in fact, the ML estimator of the target angle given as
data the sum and dlﬁerence beams formed from the array element outputs.
That is, it is a beamspace domain based ML estimator in which M-dimensional
element space, where M is the number of elements in the array, is transformed.
into a 2-D beamspace. This insight has lead to an investigation of the use of
three bearns, i. e., a beamspace domain based ML estimator ‘in which M-dim.
element space is transformed into a 3-D beamspace, for the case of two targets
angularly separated by less than a beamwidth.

One such 3-D beamspace domain based ML estimator is that proposed by
Cantrell et. al. [CANTS1]. In this technique, the transformation” from element
space to 3-D beamspace is achieved by applying the same beamforming weight
vector to each of three identical, non-overlapping subarrays. A benefit of
working with non-overlapping subarrays is that if the noise is independent at
the element level, it will also be independent at the beamspace ports. Another
interesting aspect of Cantrell et. al.’s subarray. based prescription for
converting from element space to beamspace is that the Vandermonde
structure of the element space manifold, achieved with a umformly spaced
array of identical sensors, is retained by the beamspace manifold vector. It is
due to this phenomenon that Cantrell. et al. are able to formulate the BDML
estimates of the direct and specular path arrival angles, glven as data the



three subarrav outputs formed from a single snapshot, in, terms of the roots of
a quadratlc equation corresponding to a simple, closed-form estimation
scheme. However, a major shortcoming of their method is that the “spatial
passband" achieved by such a matrix beamforming scheme is that associated
with ‘the subarray which is approximately three times as large as that
achievable by applying.three different beamforming weight vectors to all of
the array element outputs as proposed by Kesler and and Haykin [KESLSO]

[HAYKS3], [HAYKS84]. The importance of this observation has to do with the
fact that although we may be only interested in two targets located in the
general vicinity of broadside, there will undoubtedly be clutter and possibly
interfering sources in the field of view of the array. In light of this, it is best
to keep the width of the "spatial passband” about broadside as small as
possible. ‘ ' '

The low-angle radar tracking scheme formulated by Kesler and Haykln is
referred to as the least squares adaptive antenna (LSAA) a]gorlthm and is on]y
applicable in the case of- symmetric multipath. The conditions for which it is.
valid to invoke the symmetric multipath model are described in Section 2.3.
The LSAA al‘gorithm works in the following manner. Three beams are formed
by processing the entire set of array signals with three different sets of weights
producing a reference beam pointed to broadside and two auxiliary beams
symmetrically positioned about broadside. The scenario is depicted in Figure
1.1. An error criterion is set up as the difference between the reference beam
output and the sum of the two auxiliary beam outputs weighted by a scalar w.
The optimum weight w which minimizes the mean-square value of this error
‘criterion may be computed via a closed-form expression. The correSpo’nding
estimate of the direct path anglé is then subsequently determined via the use
of a calibration curve [HAYKS85]. Although this technique appears to be
somewhat ad-hoc, in Section 2.3 we show that under certain conditions it very
nearly  corresponds to the beamspace domain ML estimator. However, in
general, the procedure does not yield the ML estimate primarily due to the -
fact that it does not account for the correlation between ‘the noise at the
beamspace ports. In general, the noise between the three beamspace ports is
correlated even if the noise in element space is "spatially white". In addition,
in Section 2.3 we show that the use of the calibration curve, which essentially
involves a 1-D search, may be avoided if a Butler matrix beamformer is
employed. In this case, the beamspace domain ML estimate of the direct path
angle may be computed via a simple, closed-form expression similar to the
monopulse expression for:a single target. ’ '
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Polar depiction of the respective array patterns associated with
the reference, upper, and lower beamforming weight vectors
superimposed upon an illustration of the corresponding
transformation from element space to 3x1 beamspace. The
relative orientation of the direct and specular path rays is
depicted as well. ' ‘



1.3 Introduction to BDML Estimation Scheme |

. !
~ We will derive the beamspace domain Maximum Likelihood (BDML)
estimator of the direct and specular path angles in a multipath scenario when
the three beams are formed in a symmetrical fashion about broadside in the
manner suggested by Haykin and Kesler. For the case of symmetric mutipath,
Three different algorithmic implementations of the BDML estimator are
presented. The development of one is motivated by the auxiliary beam
subtraction and calibration curve procedure of Haykin described above. In
effect, we make the necessary changes to Haykin’s scheme in accordance with
the above arguments in order to put it on a Maximum Likelihood foundation.
The two other procedures developed also follow directly from Maximum
- Likelihood considerations. In ‘the one procedure the symmetry of the
multipath is ezplicity exploited while in the other it is implicitly exploited.
Although the "explicit” procedure is the more computationally simplistic of
the two, the "implicit” procedure provides great insight into the performance
of the estimator in the case where the multipath is “coherent” or 100%
correlated with the direct path signal.. Specifically, the development of the
"implicit" procedure gives rise to the execution of a single forward-backward
average on the 3x3 beamspace correlation matrix. Note that, in contrast to
Cantrell’s three subarray method, the beamspace manifold vector achieved by
processing the entire set of array signals with three different sets of weights
according ' to Haykin’s scheme is real-valued and does mnot exhibit the
Vandermonde structure. Hence, the applicability of forward-backward
averaging, as it is applied in element space, is not apparent. Indeed, the effect
of the forward-backward average in beamspace is quite different from the
effect of forward-backward averaging in element -space, as will " be
‘demonstrated in Section 2.3, and is only applicable in the case of symmetric
multipath With the BDML scheme for symmetric multipath established, we
‘consider the special case of a Butler matrix beamformer Wthh facilitates a
simple, closed-form expression for the estimator.

The development of the BDML method for the nonsymmetnc multlpath ‘
case is a s1mple extension of that for the symmetrlc case. It is shown that'if a~
Butler Matrix bearnformer is employed, the: BDML ‘angle estimates may be
simply determined from the roots of a ‘]_ud’lClOUSly constructed quadratic
equation. This is a significant contribution due to the fact that the 3x1
beamspace manifold vector does not exhibit the Vandermonde structure in
contrast to the situation with Cantrell’s three subarray method as discussed



previously. The abllrty to nevertheless formulate the estlrnates in terms of the
roots of a quadratlc equation arises frorn the fact that the respectlve array
patterns associated with each of three columns of the Butler beamforming

" matrix_have M-3 nulls in common (M is the nurnber of elements). The

appropriate. development exploiting this property may be found in Appendix

The analysis of the perforrnance of the BDML estimator-..fordbo‘th the

”syrnme'tric ‘and nonsymmetric cases under coherent multipath conditions is
" presented. We show that the BDML- Method for nonsymmetric case can
- handle coherent multlpath SO long as the direct and specular path signals are

not perfectly in-phase or perfectly 180° out-of-phase at the center element of

“ the array. This i is in contrast to MUSIC which, without- pre-processmg in the
~ form of spatial smoothing or forward- ‘backward averaging lSHAN85a

[WILL88|, [EVANS2| breaks down in a coherent multipath scenario for any
value of the phase difference. For the symmetric. multipath case, it is shown,
that the only conditions for which breakdown occurs is the extreme case where
the ‘direct- and specular path signals arrive 180° out-of-phase at the center:
element of the array and the magnitude of the reﬂectlon coefficient is ‘exactly

~ equal to unity. Under such condltlons, the two s1gnals cancel each other out
entxrely at the center element and very nearly cancel each other out at all
- other elements of the array, depending on how large the array is and how

closely-spaced in angle the two signals are. The correctness of the analysis is

* verified by computing the correspondlng Cramer-Rao Lower Bounds (CRLB)

for unblased estimates.

1.4 Generalized Butler Be_a.mformers and BDML Estirnators

The ability to formulate the BDML estimates in terms of the roots of a

' quadratic equation arises from the fact that the respective array patterns

associated with each of three columns of the Mx3 Butler beamforming matrix-
have M-3 nulls in common (M is the number of elements), the locations of
whlch are known regardless of the parameters chosen. The property of M-3
common nulls thus manifests itself as a-priori knowledge for the BDML -
estimation problem. Motlvated by the equivalence between the mu]tlphcatlon

~ of polynomials and the convolution of sequences, it is possible to factorize the
‘Butler beamforming matrix as a product of an Mx3 banded, Toeplltz matrix

with another 3x3 matrix. The Mx3 Toeplitz matrix thus obtained corresponds:

- to those common: nulls and the 3x3 matrix is related to the remaining



- uncommon nulls. One important aspect of the above mentioned factorization
is that it allows one. to generalize the Butler beamformer by simply replacing
‘the two matrix factors with other 3ud1crously constructed matrices such that -
the resultlng weight vectors have M-3 nulls in common.

v The factorization of “the Butler matrix beamformer motivates - an
| alternatlve way of formu]atlng the BDML estimation prob]em The Toeplitz
: structure of the Mx3 matrix associated with the common nulls indicates that
Butler beamforming is accomphshed first by forming beams from the outputs
of three. 1dentlcal adjacent, overlapping subarray, each one having all but one
element in common with the adjacent one. ,The '3x3 matrix associated with
the uncommon nulls serves to. tranvsform the resulting 3x1 output vector into a
'3)(1 real beamspace manifold vector. An interesting aspect of the overlapping
subarray based beamformmg is that the Vandermonde structure of the
element space manifold vector, achieved with a linear umform]y-spaced array
of identical sensors, is retained by the beamforrmng output vector. As a
consequence, the Mx3 banded, Toeplitz "common null" matrix, viewed as a
beamforming matrix itself, provides an alternative approach to formulatlng
the BDML estimator as that associated with the roots of a quadratlc equation.
In this case, the BDML estimates for the symmetric. (nonsymmetric) case are
determined ‘via a 3x3 real (complex) generalized eigenvalue decomposition as ‘
opposed to the BDML estimator employing ‘the regular ‘reduced Butler
‘beamformer which requires only a 3x3 real eigenvalue decomposition.

| 15 AUXiliarjr Procedores for BDML Methoa )

If the surface of reflection is fairly smooth i. e the sea. is relatively calm,
and the target is not moving too fast in relative terms, the specular specular
multipath signal is merely a tlme-delayed amphtude—attenuated replica of the
direct path signal over multiple looks, i e, multlple snapshots This condltxon
is referred to as coherent multipath.” In this case; the two signals are related
: j’by a complex scalar multlple, called the reﬂectlon coefficient. The fact that the
reﬂectlon coefficient is constant over the observation ‘interval changes the
‘complexion of the ML formulation of the problem of estlmatlng the direct
path angle. - Indeed, it- represents a-priori- ‘information ' about” a  coherent
‘multipath scenario which needs to be incorporated into"the ML estimation
scheme. Ballance and Jaffer [BALL87] found that at the expense of increased
k computation, exploitation of the coherence gives rise to an element space
based ML estlmator exhlbltlng 1ncreased performance over that achieved with



the ML estxmator in element space whlch does not account for the reﬂectlon
coefﬁment As we shall see, this is the case in beamspace as well. In- Section

4.2, an 1terat1ve algorithm is presented for 51multaneously estimating the

dlrect path angle and the complex reﬂectlon coefficient in the case of
symmetric multlpath . L _ L -

A contradictory phenomenon observed by many researchers in the field of
low-angle radar tracking is that;for the nonsymmetric coherent mu.ltlpath

. casé, ML based estimators yield almost as bad a result for the 0% in-phase case

as for the 180° out-of-phase case, where the phase is measured at the center of
"the array. In fact, Cantrell et. al. {CANT81] argue that an estimator which
. exhibits significantly better performance than the ML estimators in the 0° case
‘must be biased. In fact, some beamspace domain ML estimation procedures
~ will even. tota]]y break down under 0° and 180° phase difference conditions.
_ However, the problem with the 0° 'phase difference does not show up for . the
case of symmetrlc multlpath and more interestingly, the 0° case gives rlse to
the best performance In light of these observations, it is desirable to develop a
procedure which would. . convert. convert a nonsymmetric problem to a
symmetrlc one. In -Section 4 3, we propose an ad-hoc scheme to accomphsh‘

- this. based ‘on certain dlstmctlve propertles of the beamspace correlation

matrix in the case of symmetrlc multlpath In partlcular, we will be concerned
with the three-beam based BDML method wherem the conversion - from
'nonsymmetrlc to symmetric multlpath is simply some secondary steering, or
fine tunlng, of the three beams so that the pomtlng angle of the center beam i is
the bisector ang]e of the two- -paths.

The idea of employing frequency d1vers1ty to combat the signal
" cancellation problems occurring in low-angle radar tracking has been proposed
by several researchers including Skolnik [SKOL80] and Kezys [KEZY88]. The
" idea is to have the radar transmitter emit multiple narrowband signals spaced
in frequency with the frequency spacings judiciously chosen so ‘that the phase
difference occurring at the center of the array at each transmission frequency

is significantly different from frequency bin to frequency bin. In Section 4.4,

. we invoke the coherent signal subspace concept, developed by Wang and
 Kaveh in their extension of the MUSIC algorithm -for wideband sources
[WANGSS] [HUNGSS] as a means. for retaining the computatlonal simplicity
of the BDML -estimation schemes while still incorporating in a- ~coherent
" manner the additional data provided by the use of the aux1hary frequencles

“In the apphcatlon of coherent srgnal subspace processmg here, focusmg

matrices serve to. coherently comblne the signal or target energy at each
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frequency while, at. the same tune, the noise energy in the different frequency v
bands is combmed in an mcoherent fashion. By proceedmg in this fashion, we

 find that the only growth in computatlon with" respect to single frequency'v

'_'operatlon is’ the computatron and 1mplementat10n of the focusmg matrices. }
v ThlS claim is tempered somewhat by the fact that the focusmg matrlces are
not known a—pr10r1 giving - rise. to an 1terat1ve procedure and, hence, additional -
-computatlon Along these llnes, it is. also it is also shown in Sectlon 4.4 that if
" one is able and w1lllng to work a restrlcted set of ' specral frequency values,
perfect "focusing” _may be achleved at the outset i. e. without 1terat1ng, such,
that the computational complexrty may be reduced to that associated with
‘single frequency operation! The "special” frequencres‘are those satisfying (
= él\h%fo vwher'e’ Mi is afi integer less thanlM ,the,-total number of array'

i :
;»elements, and fo is ‘some reference frequency which is typlcally chosen to be
that frequency for which the elements. are spaced by a half-wavelength
although it .doesn’t have to ‘be.. It turns out that if spatial smoothing is
: _,performed in a JIId]ClOIlS manner. at each aux1hary frequency satisfying this-
relationship, the beamspace domain- based focusing matrices -necessary for
, coherently comblnlng the - 51gnal 1nformatlon contained at each frequency are‘
each a known scalar multiple of the identity matrix. As a’ final note, we note
~that. the use of coherent srgnal subspace processing - in conJunctlon with
‘ ,frequency dlversrty in the manner described -above :once again- 1llustrates the

 .dramatic. computatlonal advantage of workmg in- beamspace in element

space the focusmg matrices are MxM. and complex whereas in beamspace they’ ‘
~ are 3x3 and real regardless of the number of elements o '

L BYAdaptive Interference Cancellation’ )

: Although we here -only- concern ourselves W1th the estlmatlon ‘of the
angles of two signals arriving in the vicinity of broadside, we are not
presupposmg that these are the only 31gnals 1mp1ng1ng upon the array.’ “There
‘may, | in fact, be echo returns from clutter and other targets as well. What we
“are here assuming ‘is that the sidelobes of the array pattern assoclated with
each of -the three beamformlng welght vectors are low" enough such that the
;'contrlbutlons of those - sources not located within a few ‘beamwidths of
_ broadside may be regarded as neglrglble In the case of strong. 1nterferers, it is
necessaty to employ adaptively: formed reference, upper, and lower auxrllary in
‘much the same way that adaptlve‘ly formed sum and .dlflerence beams may be
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employed in monopulse radar tracklng in the manner proposed: by Dav1s et.
alin - [DAVI76] . and Gabriel [GABR84] Synthesis ~ techniques for .
determining weights whlch result in a desired. pattern response have been
proposed by Capon [CAPO69], Griffiths et. al. |GRIF87], and Frost

[FROS76]. These methods involved defining a performance criterion such as
- maximum output SINR; minimum mean-square error (MMSE), or minimum

varijance (MV) and then finding the weight vector resulting in an optimization
of the crlterlon The pattern nulls are formed in the d1rect10n of strong
interfering sources and sidelobe patterns are adjusted accordingly to provide
the best performance agalnst noise in an interference environment. Motivated
by the relationship between the. three columns  of the Butler matrix
beamformer analyzed within, a novel procedure is de51red wherein the upper,
center, and lower beamforming weight vectors are constructed with adaptively

~steered nulls in the direction of interfering sources in such a fashion so as to

nevertheless achieve a simple, closed-form expresswn for the BDML estlmates

~of the direct and specular path angles

In this thes1s, we propose several modlﬁed performance criteria for

_ constructing the optimum beamforming matrix, or three beamforming weight
 wvectors, such that prescribed nulls are formed to cancel the interferences and

M-3 common nulls are formed for each of the three beams Our development
is based on the linearly constrained minimum variance (MV) criterion, the
Jeast. squares (LS) criterion, and the factorization property associated with the
But]er matrix beamformer. The optimum beamformer obtained with the MV
crlterlon minimizes the expected output noise power from the three beam
ports while producing unit gain in the desired directions of look. The LS- based

" criterion leads to a matrix beamformer whose three columns form a set of

mutually orthogonal vectors. The optimality is defined in terms of a least

- squares fit to the Butler beamforming matrix. In order to retain real-valued
* beamspace manifold vectors for the BDML methods, an additional constraint

is imposed to ensure complex conjugate symmetry of the three weight vectors

1.7 Outlme of the Thesns

The thesis is organlzed as follows Chapter 2 develops the beamspace
domaln maximum likelihood (BDML) estimator for both the symmetric and
nonsymmetrlc multipath scenarios when the three beams are formed

~ ‘symmetrically about the broadside. A s1mple close-form expression for the
' BDML estimator is derived for the case of the reduced Butler matnx
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beamformer perforrnance analys1s as the theoretrcal CRLB of the BDML.
estimator for both the symmetric and nonsymmetric’ cases under coherent
;multlpath conditions ' is discussed.’ Sxmulatlon results illustrating the
‘performance ‘of the: BDML estimator for. ‘various comblnatlons of s1gnal'
- parameters are presented. ' , » '

. Chapter 3 deals with the structural ‘analysis and generalization of the
Butler matrix beamformer. By exploiting the relationship between polynomials -
" and seqUences, we. convert, the beamforming' problem considered herein into
- that associated with some judiciously constructed matrices and based on that,

: f‘we develop a new class of BDML estimators and derlve a parametnc.

_representatlon for the beamspace manifold vectors. '

- In Chapter 4, three aux111ary procedures for 1mprovmg the BDMLb
estlmator under - coherent multipath scenario are investigated. First, an
lteratlve algorlthm is presented to SJmultaneously estimate the beamspace

mamfold vector of the dlrect path s1gnal and the complex reﬂectlon coefficient. -

Performance improvement is achieved as the a-priori 1nformat10n about s1gnal,
"coherence is 1ncorporated Tt is shown that with Butler beamformer, the

- computatlonal load is s1mply that associated W1th the solution of a quartic

equatlon Second ~an ad-hoc scheme is developed for converting . a’
nonsymrnetrlc problem to a symmetric one. The 1dea was motivated by the
fact that”the BDML estimator for nonsymmetri¢ case breaks down for 0° and
180° ‘phase differences while the ‘BDML estimator for symmetric case can
handle any phase difference with 0° giving rise to the best performance. The

conversion is a two-stage procedure: the bisector angle of the direct and
~ specular paths is first estimated, followed by a secondary steering of the three

‘beams. Slgmﬁcant mmpllﬁcatlons can be achieved again' with the use of a

‘Butler: beamformer. Finally, frequency diversity is incorporated in order to
- .alleviate the rank deficiency and signal cancellation problems occurred at 0°
and 180° 'phas'e differences. We first invoke the coherent signal subspace
~ concept as a means for. retalnlng the . simplicity of the BDML schemes. It is -
then shown that s1gn1ﬁcant reduction of computatlonal load is achleved if the
frequencles used belong to-a restricted set of values Slmulatlon results for =
' each of the above three schemes are presented.

Chapter 5 presents three novel adaptlve beamforming technlques to
‘eﬁ‘ectlvely combat the 1nterference and clutter. problem often occurring - in
practice. The optimum weight vectors are détermined via the minimum noise
power and mutual orthogonality crlterla The idea i is to adaptlvely form the
‘center, upper, and lower beams in a fashion so as to achieve a simple closed-
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form expression for the BDML estimator. Computer simulations are conducted
to demonstrate the efficacy of the new beamforming schemes.
Chapter 6 concludes the thesis by commenting on the results of these

studies and discussing possible future research topics.
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CHAPTER 2 g
BEAMSPACE DOMAIN ML ESTIMATION
FOR SPECULAR MULTIPATH

2.1 Introduction

One of the primary motivating factors for the early development of
phased arrays was the prospect of "beamforming” to achieve very high gains in
signal-to-noise ratio (SNR) at the beamformer output relative to the SNR at
each sensor element. The idea, of course, is to coherently combine, or add up-
in phase; the desired signal at each of the array sensors by judicious weighting
of the various array signals.. A simple calculation shows that if the noise at
each of the sensors is independent and of equal power, the gain in- SNR
achieved by compensating for the linear phase shift on the desired signal
across the array, due to the different lengths traveled from the source to each’
sensor, is equal to the number of sensors in the array, a number which can be
made quit large. It was subsequently found that classical beamforming was
quite robust in that the SNR gain exhibited a graceful falloff from this optimal
value when the phase compensation was mismatched for whatever reason.
However, this robustness of classical beamforming manifests itself in terms of
poor resolution when two closely-spaced signals impinge upon the array. In
simple terms, a nearby interfering source, within a fraction of a beamwidth of
the desired source, will pass through the beamformer with an SNR gain nearly

equal to that for the desired source. This aspect of classical beamforming has

immplications with regard to the dual problem of estimating the respective
bearings of two closely-spaced sources. The poor resolution of classical
beamforming based direction finding ultimately lead to the development of
_ numerous parametric-based estimation algorithms capable of sub-beamwidth
resolution. Among these algonthms, the ones which stand out in terms of
versatility and performance are the popular MUSIC algorlthm [SCHM79] and
the statistically based Maximum Likelihood (ML) algorithm [WHIT74).

- Although both of these algorithms have indeed demonstra.ted superior

- performance, particularly with respect to classical Fourler-based direction
finding, they nonetheless have limitations in terms of a significant degradatlon
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in the sub-beamwidth resolution capability when the SNR of the received
signal is very low. The primary application of interest herein is the lo‘W—angIe 7
radar tracking problem [BART74] wherein two signals, the direct and specular
path signals, arrive near broadside to the array within a beamwidth of each
other. The SNR associated with either signal at any given sensor is typically
~low compared to other scenarios. In addition, the number of snapshots
available for tracking updating is usual]y very small, sometimes only one is
available. To adequately deal with this problem, we propose. the idea of
applying either ML or MUSIC in so-called beamspace for the purpose of
advantageously explmtmg the poor resolutlon of classical beamf'orrnmg to'
convert the element space data vectors to beamspace data vectors having a
higher SNR and a lower dimensionality. | '

 In this thesis, we will be primarily interested in the two-ray multipath .
scenario encountered in low-angle radar tracking and concern ourselves
specifically with the problem of estimating the arrival angle of the direct path
signal, the actual bearlng of the target, when both the direct and specular
path signals arrive near broadside to a linear array of antennas within a
beamwidth of each other. We will here assume that the antenna elements
comprising the array are identical and uniformly-spaced by a half-wavelength;
the half-Wavelength spacing avoids the infamous igrating lobe problerﬁ ‘We
further assume the number of antennas to be odd such that M=2L+1. A
slight’ modification to each of the results developed within is required if M is
even. For brevity, however, we do not include the appropriate modifications
for M even. We will also assume that the target is in the far field of the array
such that the returning echoes may be modeled as planewaves Finally, we
will also invoke the narrowband signal model.

We begin this chapter by briefly mtroducmg fundamental arra.y
principles and  aspects of conventional beamforming in Section 2.2. In
particular, an analysis of beamformlng SNR gain with respect to various
welghtmg schemies is presented. With the knowledge of the array signal model
‘and the concept of beamforming intact, we proceed to develop the ML
estimator for the direct path ‘angle. Section 2.3 will be exclusively concerned
with the symmetric multipath problem wherein the angle of the specular path
signal, with respect to broadside, is merely the negative of the angle of the
direct path signal. Speclﬁcally, three different algorlthmlc ‘implementations of
the beamspace domain ML (BDML) estimator are presented. It is shown that
if a Butler matrix beamformer is employed, the BDML estimate may be
simply determined via a quadratic equation, leading to significant reduction in
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computatlonal complex1ty Sectlon 2. 4 develops the BDML estlmator for the
‘non-symmetric mulmpath case, Wh]Ch is a straightforward extension .of the
~ estimation for the symmetric mulmpath case.. In. Section 2.5, a. rigorous
performance analysis for both the symmetric and. nonsymmetric BDML
estimators is presented. The results are shown to agree with the behavior of
the theoretical Cramer-Rao Lower Bound (CRLB) discussed in Section 2.6.
Finally, simulation results are presented in Section: 2.7 to demonstrate the
performance of the beam space - dornam ML estlmators under- vanous'
combinations of signal parameters. '

2.2 Arr'a.y ‘Principles a.nd; ‘Co’nventiona.l Beamforming

In this sectlon, we. brleﬂy review the narrowband array SJgnal model

K Whlch underscores the concept of usrng an array to achleve a gain in SNR To

thls ‘end, consrder a smgle planewave impinging upon a unlformly-spaced
linear array of M=2L+1 1dent1cal sensors at an angle §, with respect to
“ broadside. The geometry of this scenario is illustrated in Figure 2.1. Let f,
‘denote the center of the frequency band of width B which the signal occupies;

 A.=c/f., where c is the speed of light, is the associated Wavelength Further,

- let & denote the length of the array. If this collection of array and . 51gnal
'parameters satisfies (B/f.)( L/’/Xc sin(6,) << 1, the narrowband array ‘signal
model may be invoked. Undér these -conditions, the element space snapshot
vector, denoted as x(n), composed of the of the complex envelopes, x,(n)'
i=-L,...,~1,0,1,....L, sensed sensed at each of the M= 2L+1 array elements at
- the n-th snapshot may be expressed as

X(0) = co(m)alue) +n@) @)

where co(n) is the complex amplltude of the signal obtamed at the n-th
L ,snapshot the phase of which is that measured at the center of the array (the
" element indexed 0) such that ' -

i g gt (2
a(u,) = ) ,e 1,777, ,€ (2.2)

~ accounts for the (uniform) linear phase varlatlon across the array The
. quantity u,=sin(f,) is the so-called reduced angle [STEI76] associated with
8,. We will throughout work with the reduced angle u=sin(f). There is a
" one-to-one correspondence between u and 6 over the angular interval
—90° < 9=<90°, corresponding to the so-called visible region [STEI76]. We will
herefore concentrate on estlmatlng u from whlch 9 may be recovered via the



- source

Figure 2.1 ,Geometry of a uniformly-spaced linear érrdy. with a single
planewave source arriving from angle 6 with respect to
broadside. ' ' :
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~ inverse sine transformation without ambiguity. Finishing the definition of the
* quantities in (2.1), the elements of ‘n(n), denoted 1;(n), i=-L,...,-1,0 5 D
'constltute the addltlve noise present at each sensor at the n-th snapshot '
The most noteworthy aspect of the narrowband array signal model is that
the comp]ex envelope of the signal is temporally coincident across the array;
this is signified by the fact that ¢,(n) in (2. 1) is a scalar quantity. This makes
the _]ob ‘of coherently combining, or adding up in phase, the desired signal at
each of the antenna elements a simple task of judiciously weighting -and
summlng the various. array signals. A simple calculation shows that if the
noise at each. of the antennas is independent and of equal power, equal to ,21,
say, the gain in SNR achieved by compensatlng for the linear phase shift on
the desired signal across the array is equal to the pumber of elements in the
array. The approprlate argument is as follows ‘The SNR at the i- th element,
1—-L +-1,0,1,. Llsglvenby o ST S -
| 1@ e

SNR; = =" 2.3)
E(la@l®} @ (23)

which is the same for each antenna element. We are here assumlng that the
additive noise at each of the antenna elements is prlmarlly receiver generated
We will discuss practical "noisy" sources such as clutter and interferences at a
later point. In the case of receiver generated noise, we make the assumptron
that the addltlve noise at each element is 1ndependent and of the same power
equal o} 5 i e., the noise is spatlally whlte Let us consider formlng a beam
W1th the welght vector w with elements wl 5 i=-L,...,-1,0, 1,...,L, accordlng to

b(n) = wx(n) = {WHa(uo)]co(n) + w¥n(n) (2.4)

Note that b(n) is 31mply a number, i. e., a scalar quantity. Under the same
definition as that for the element level, we find that the new SNR assocxated
with the beamspace element is [STEI76]

' I [wH a(uo)]co(ﬁ) | 2 ) I wHa(uo) | 2 . :
SNR,, = E{ W@ 7 = - SNR- - (25)
: _where we have used the fact that E{n nf(n)} = 0’21 Thus, the quantlty
et whauaPue |
SNRG(u,) = o I(; = ';Hiv | (2.6)

., represents the SNR gain achieved by beamformrng As (2 6) is a ratio of two
" simple quadratic forms, it is easily proven that it .is maximized when

w = oa(u,), where a is arbitrary, which corresponds to classmal ‘beamforming



' to the ~array power factor | wha(u

o IW1th Fourler-based Pphasing . and rectangular welghtmg Substltutxon of thls
welght into (2.6) indicates that the maximum SNR gain is M the number of

array elements. The significance of (2.6) for our ‘purposes ‘here is best
understood by considering u,=sin(6,) to be variable such that (2.6) represents
the SNR gai‘n’achieVed by beamforming with the vvparticu]ar set of weights -
cOmprising w as a function of the signal angle u,. If we drop the subscript o,

~we arrive at the not too surpnsmg result that the gain pattern is proportional

)|2. However, the constant of

- proportionality, the reciprocal of |w'|2' is critically important when

comparing the SNR gain performance of various welghtmg schemes. We'

. demonstrate this point in the examp]e to fol]ow

We illustrate the utility of the preceding development for operatlng in the :

~beamspace domain with an example. Consider forming a beam to broadside

with rectangular weighting such that w = a(o) = 1, where 1 is an Mx1 vector

‘comprised of all ones Substltutxon 1nto (2 6) leads to the array galn pattern »

117a(w |2 _ 4 {sm Mm/2)]

sin(7u/2) : (2'.7),

~ which exhibits the maximum gain of M at u=0 (6=90°, broadside). Of

course, signals arriving sllght]y off broadside appear. at the beamformer output
with a . 31gn1ﬁcant amount of gain as well. In fact, for |u' < .88/M,

corresponding to the 3dB beamwidth, M/2 < SNRG(u) <'M which can be
quite large if M ‘is large. This is indeed a manlfestatlon of a well known

characteristic of classical beamform‘ing":' poor resolution. The goal here is to
exploit this shortcoming of classical beamforming and at the same time reduce

 computation and we will do so shortly. First, we would like to point out the

significance of the denominator in (2.6). For this purpose, consider forming a
beam to broadside with a triangular taper defined by wj —L+l—|1|, i=
L 1 0,1,. L In ‘general, the SNR gain achleved with a real set of welghts

: L
Wl for a 31gnal arnvmg at broadS1de is glven by (% Wi)'z /(3 wh), whxch is
1=—L ' 1==—-L
approx1mately equal to .75M for trlangular weighting when L>2 (M= 2L+1)
The point is that in- addition to the classical observatlon that triangular

weighting gives rise to a mainbeam of twice the width of that obtained with

rectangular welghtmg but W1th much reduced sidelobes, it is also gives rise to

a max SNR gain which is- only three—fourths that achieved W1th rectangular
weighting. A 3dB beammdth calculation for the case of triangular tapermg

.[STEI76] finds that 3M/8 < SNRG(u) < 3M/4 for |u| <1.27/M. .
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| 2 3 BDML Estim’ator for Sybmr‘r:xvetric Mu]tipath

The symmetric two-ray mu]trpath model holds to a good approximation
if (a) the target is at a great distance from the array site such that the direct
and specular path rays are approxrmately parallel, and (b) the array is
mounted orthogonally to the surface of reflection for the multlpath This
scenario is depicted in Figure 2.2. We point out, however that in;some cases,
- calibration may be necessary in order to compensate for the dxstortron due to
atmospherlc refraction and the curvature of the earth.

2.3.1 ‘Comp'ositionA of Data Snapshot Vectors ‘

Under the narrowband assumptlon descrlbed in the precedmg sectlon the'
‘n-th element space snapshot vector, x(ri), for the symmetric multlpath
'scenarlo may be written as [HAYK84], BART74] . _

x(n)_cl( ) (u )+C2( n)a(—u )+n(n) n=1v'°°’N

lcg(n)

The descrlptlon of the various terms in (2. 8) are as follows. First, uo—sm((i )
where 6, is the angle of the direct path s1gna] with respect to broad51de ¢i(n)
is the sample value of the complex envelope of the direct path echo at the n-th
snapshot. The phase angle of ¢;(n ) is that measured at the center of the array '
(the antenna element indexed 0) such that : '

a(u) — [ —jnLu ce e —ZJWU..e—J”U.- 1 e_]rru’e2_|77u R e_)rrL-u]. ' (2.9)

= [alu) al-u0)] lq(n)] el =Ado) 4nl) (29

with u = u, accounts for the (uniform) linear phase variation across the array
due to the planewave assumption. cy(n) is defined similarly with regard to the
specular path signal. Again, the elements of n(n), denoted 1/( ), i=-L,..
‘1,0,1 .,L, constitute the additive noise present at each antenna output at the
n-th snapshot.

" Following the lead of Haykin [HAYKS3], [HAYKS4], [HAYK85]
* [KESL80], we form three beams by operating on all of the array elements with
three different sets of weights. Frguratrvely speaking, we form two auxxhary
beams symmetrrcally pointed above and below the horizon at u = ug and
u = —ug, respectrvely, and a "reference" beam pointed directly along the:
horizon at u = 0 (broadside). ug then represents a design parameter which
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‘must be determined a-priori. The approach of forming three beams may be
simply viewed as an extension of monopulse radar tracking wherein two beams
are formed in the angular vicinity of a single target to accurately estimate its
bearing. A natural generalization is to form three beams in the vicinity of two
closely-spaced targets.  Mathematically, the formation of three beams may be
represented as a transformation from M-dim. element space to a 3-D
"-_beamspace as described by '

xaln) = Sx(n)  where S = [s(u) £ 5(0) ¢ a(us)|  (210)

The Mx3 matrlx S is referred to ‘as the beamformlng matrix. The three
&colurnns of S are referred to as beamformmg or steerlng vectors and are
~ described below ’

-8(up) _:—V::,.Daa(uB‘) 5 8(0) =D;a(0) ; s(—up) = D,a(—up) (2.11) |
~ where D, =diag{a, - " ,a1,20,31, """ ,ap } , and
’:D*— diaglr .t ;T1,TgsTy, © * *,TL} are real, diagonal MxM matrices with
elements ‘symmetric about the central dlagonal element. The a;, i =0,1,...,L;
serve to shape each of the two the auxiliary beams. while the r;, i =0,1,...,L,
~serve to shape the. reference beam such that, in contrast to Haykin’s LSA_A

~ method, we do. not here require that the tapering for the reference beam be

’the same as that for the two aux1hary beams. Note that a; and rj, i=0,1,. L
represent design parameters which must be determined a-priori.

- From its definition in (2.9), we may deduce the following properties of the
element space manifold vector a(u):

(2) a'(u) =a(—u); (b) iMa(u);a*(u); ' (c) Iya(u) = a(—u) (2.12)

where I, is an nxn reverse permutation matrix defined as follows

0 0 1]
00 -0
I=: - (2.13)
01 - 0 |
1 0 0]

Note that I satisfies iT =1 and 11 =1 which indicates that it is is a unitary
matrix equal to its own transpose. (2.12b) is a mathematical statement that
a(u) is conjugate centro-symmetric for all u. From the two properties of a{u)
described in (2.12) and the symmetric nature of the tapering, we deduce the
following properties of S. o ”
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(a) SI3 =8’ (b) iyS=8 (o IvSI; =S (2.14)

The properties of the beamformmg matrix S described by (2.14) will be
1nvoked at varlous points in our development.

Invoklng the above notation and definitions, we may expresbs the
composition of the 3x1 beamspace domain snapshot vector, xg(n), in a format
similar to that in (2.8) for x(n), the element space snapshot vector, - '

xy(n)=[blacFb(—u)|e(o) + na(m)=Be(n) + ng()  (215)

where ng(n) = S"n(n), b(u)v = S"a(u), referred to as the beamspace manifold
vector, and B = S"A = |b(u,) | b(—u,)]. As a consequence of the property
of S described by (2.14b) and that of a(u) described by (2.12b), we have |

" b(u) = S¥a(u) = S¥IyIya(u) = 8a (v) =b'(v) (2.16)
which indicates that b(u) is a real-valued 3x1 vector for all u. Hence, B in
(2.15) is real. Note that from (2.15) and (2.16), we may deduce the following
relationship between b(u,) and b(—u,) which will be hlghly instrumental in
our development of the BDML estimator of Uyt

b(—u,) = 3 b(u,) B ‘(2.17)

where i3 is the reverse permutation matrix of order 3 defined by (2.13). This
property of b(u) mimics that property of a(u) described by (2.12c). However,
in contrast to a(u), b(u) = S"a(u) is composed of purely real elements, does
not exhibit centro-symmetry, and does not possess the Vandermonde
structure. As an example of a beamspace mamfold vector, consider the case of
rectangular weighting, i. e., no tapering, for all three beams. In this case, i. e.,
D, =D, =1 such that S = [a(up) ; a(0) : a(—up)]. The components of b(u)
are simply the respective array patterns associated with each of the weight
vectors, a(ug), a(0) and a(—up). The array pattern associated with the

reference beam, denoted G;(u), is that produced by the weight vector a(0), a

vector composed of all ones. G;(u) is thus simply the following familiar array

pattern:
: , L siﬁ(—I\im) ’
Gu) = af(0)a(u) = 3 M= ——  (218)
‘ i=-L " sxn(; u) L

The array patterns associated with the upper and lower auxiliary beams are
simply this pattern shifted to the right and left, respectively, by the amount



S ug, i e, a.H(Iu'B)a;(u) = G(u — up) and a' —uB)a( )=
'beemspace manifold vector with S = [a(up) i a(0): ( p)] is of the following
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G(u + ug). Thus, the

form:
T

|zf

M. M
sm( 7(u—up)) sin(—7u) sin
b(u) = | — —_

vSiD(%(U'—UB))‘ sin(v—%—u)r sin(

m(u+up))

(2.19)
(U+UB»

MI\‘ N

Note that the noise terms in the beamspace snapshot vector are, in

'-'-‘general correlated even 1f the noise terms in the element space snapshot
- vector are independent. If we assume spatlally white noise at the element
~level such that E{n(n)n"(n )]=c21, the covariance matrix of the noise in
‘beamspace, denoted Rgn, simplifies as follows.

RY=E{ns(n)nd(n)}=S"E(n(n)n"(n)}S=cis"s  (2:20)

| ~Let Q SHS Invoking the propertles of S described by (2. 7) we deduce the
v fol]owmg propertxes of Q

(o) ToQls — TSl =578 = Q ;

(b) Q =8Ts’ =i3SHSi3 =1,Ql; = Q ” - - (2.21)

'where we have used. the fact that Iyly =1 These results indicate that
,Q sHs is real symmetric, and per-symmetrlc (symmetrlc about the anti-
:dxagonal) Finally, we mnote ‘that Q is diagonal if and only if the three

beamforming vectors s{ug) , 8(0 ) and s(—up) are mutually orthogonal. This
special case will lead to certain simplifications as will be seen shortly.

2.3.2 Development of Beamspace Domain ML Estimator}

With this structural analysis of the beamspace snapshot vector, xg(n), as

a backdrop, we briefly develop the the Maximum Likelihood (ML) estimator of
' given as data the beamspace snapshot vectors: xg(n), n=1,...,N. It should
" be kept in mind that this ML estimator will yield different estlmates than
‘those obtained from the ML estimator working with the raw data, i. e., the

- element space snapshot vectors.

If the number of antenna elements, M, is large, each of the three
components of the 3x1 beamspace nois‘e vector np(n) is a weighted sum of a
large number of random noise variates. Assuming the noise to be independent
from element to element, it is therefore reasonab]e to 1nvoke the Central Limit
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Theorem and thus approximate the noise inv,beamspace as‘f being"‘Gaussian e
distributed. Thus, assuming the beamspace domain noise to be '_Gau.ss'ian and _
the sequences c;(n) and cy(n), n=1,...,N, to be unknown but..determiniistic, the
Likelihood function is given by: ' B L o
117 ™R3, | exp{—[xp(n)—Be(n )}HREE ][XB( )“‘Bc( )]} - (2.22)
n=1 y - S
 Proceeding in the typical fashion by taking the natural ]oga‘rithrn‘ of the
likelihood function and throwing out those terms which do not depend on B :
we arrive at the following optimization prob]em '
N

Minimize 3 [Ixg(n) —=Be(n)lg  (223)
we(l),e(N) 2 5(n) - (n)llg . | (2.23)

where the norm is defined such that Hy]]?Q = yH Q7! y"and‘Q——'—SHS as

defined previously. It is well known [8] that in the estimation of Uy, the
problem is separable such that we may proceed by substituting in for c('vnv),,‘
n=1,...,,N, the respective least, square error solution
cs(n)=BTQ!'B]"'BTQ 'x5(n); n=1,...,N. Substitution of ess(n) into
(2.23) yields, after some manipulation, the following objective function to be
minimized over U, only:

Mmlmlze L Bm)Q 12 P§ _(u,) Q V*xg(n) . (2.24)
R n=1

where P§_(u,) =1—Q 2 BBTQ'B|"!BTQ !/? is a projection operator

onto the orthogonal complement of the span of Q—l/_2b(uo) and Q172 b(—ug),
the "whitened" columns of B. With the estimator formulated in this fashion,
the ML estimate is-obtained by varying u,, and, hence, Pl“;'w(uo), in accordance
with some numerical search technique until the minimum of the objective
function in (2.24) is reached. For the purpose of developing a much simpler
means for finding the optimum value of u,, we here convert the optimization.
problem in (2.24) to an equivalent one motivated by the IQML ‘algorifhm
formulated by Bresler for ML based direction of arrival estimation. in-elementv
space [8]. We briefly sketch the appropriate development. : ' -

The orthogonal complement of the span of Q~ 1/2b(uo) and Q™ l/“’b(—u )

is, of course, a 1-D space such that PB (u,) may be expressed in"the form"

dd" where d is orthogonal to both Q_l/zb( ) and Q l/2b(—~-u )-

Ildll2
Alternatively, if we let d = Ql/2 v, PBw(uo)_ may be expressed in the form
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QJ/ZV vHQl/?

vh Qv v _
this expression for Pg (u,) into (2.24) yields the following alternative

where v is orthogonal to b(u(;) and b(—u,). Substitution of

expression for the objective function in terms of v:

v L H H
) xg(n) v v" xg(n) H A
n=1 : 4 Rbb v :
o =N —f—— (2.25)
v Qv v Qv
. A 1 N H . ‘ . : .
where Ryp = N \ xg(n) x5(n) is the sample correlation matrix formed in

n=1

beamspace. Now, for the expression in (2.25) to be equivalent to the objective

function in (2.17), v must be orthogonal to both b(u,) and b(—u,), as pointed
out previously. We make two relevant observations. First, b(u,) is a real-
valued 3x1 vector as is b(—u,) Thus, without loss of generality, v may be
taken to be real-valued. Second, b( —u,) —I3 b(u,), as indicated in (2.17),

- giving rise to the followmg observatlon

VT [b(uo) £ b(=ug)] = vT b(u,) ¢ Igb(u)

VT (I b =0 (220

" From this observation we may deduce that igV =v, 1. e, that v must be

centro-symmetric. Taking account these restrictions on v, we formulate the

" following optimization equivalént to that described by (2.24):

T ) ,
: v ReiR v
Minimize T{ b (2.27)
v v Q v

subJect to: isv =v

Recall that Q=S"S is real as proved in (2. 21). With the solution v to this

~optimization problem, one may determine the corresponding value of u, which

solves the optimization problem in (2:24), the BDML estimate of u,, as the

- solution to v'b(u,) = 0. Since b(u) = SHa(u), one may also determine u, as
_ the solution to vISHa(u,) =0. Note that in light of the centro-symmetry

constraint, the optimum v has only two distinct elements. Also, note that the

B obJectlve function in (2.27) is invariant to a scale change in v such that we

may fix one of its elements equal to one, for examp]e The point is that the

_']optlmlzatlon problem described by (2.27) is, in fact, a single parameter

optimization problern as is the original optimization problem described by
(2:24).
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‘We now present three methods for determining 'the'opti‘murn v satisfying
(2.27) and the corresponding u, which serves as the Beamspace Domain ML

. (BDML) estimate of the direct path angle. The three methods should, in
* theory, provide the same numerical value for the BDML estimate of u,; the

diﬁeren'ce lies in their computational requirements. As a final observation at
this point, note that the beamspace correlation matrix, Ry is related to the

element space correlation matrix, R,, = % ) x(n )xH(n) according to
n=1 S
5 1 X H H§ > og’
R =1 L'XB(H) xp(n) =S" Ry, S (2.28)

Method I: Explicit Exploitation of Centro-Symmetry. Since v is
centro-symmetric, we may express it as v = [v; v, v,|T, where v, and v; are
real. To account for the centro-symmetry constraint, define

s = s(Q) ¢ s(ug) + s(4uB)] and V' = [Vo vl]T | , (229)

such that Sv-= S'v'. Note that in contrast to S, which is Mx3 as defined in
(2.10), the Mx2 matrix S’ is real due to the fact that s(—up) =s (up).
Substituting S'v' for Sv in (2.27) allows us to express the constrained
optimization problem in (2.27) as an unconstrained one in the following
fashion: _ ' . '

L v'T S'TRe{R,, }S' v/

Minimite  —— 2

where we have exploited the fact that S’ is real. The solution to (2.30), of
course, is such that v’ is that generalized eigenvector (GEVEC) of the 2x2 real,
symmetric pencil {S'TRe{Ry,}S’ , S'TS'} associated with the smaller of the
two generalized eigenvalues (GEV’s). Given this v/, u, may be estimated as
that root of Ge(u) = eTa(u), where e = S'v*, in the vicinity of u=0. Note that
the two columns of S are real and centro-symmetric such that e = S'v' is real

(2.30)

: . . - _ T
‘and centro-symmetric as well. Hence, e = S'v' = [eL “rcoejepe eL}

such that

(‘;e(u) =eTa(u) = L e &M = e, 42 L € COS(/llll) | (2.31’)
’ i=-L i=1 S '

Note that Ge(u) may be viewed as an array pattern .associatedeith the weight

vector e = S'v!. In any case, G,(u) is a real and even function of u and
exhibits a local maximum at u=0. The BDML estimate of u, is then that



28

angle at which the first null of the array pattern G,(u) occurs, i. e., that null
closest to u=0. One may employ a Newton-Raphson search, for example, in.
\ order to locate this null. In the case of tracking, the search should be started

at the most recent estimate of u,. Asa practical note, it is recommended that

» . . . . 1
the search be terminated and a failure be registered if the value u = up + ——

M

is exceeded before a null is located. up + —I\}/I— is approximately the location of

the first null on the upper side of the mainlobe of the array patter'n associated
with the upper. aux111ary beam A summary of BDML method I is delineated
. below. = : :

Algorithmic Summary of BDML Method I

, . o ;
1) With 8 = [0 s(uB)+s-(—uB)] Cand Ry =—§7 3 o) x"(n)
) n=1 P

compute v' as "smallest” GEVEC of 2x2 penc11 {S'TRe{R x}S' s'Ts! }

: : T
(2.) With - S'v! = [eL e ege eL] , form
L
Ge(u) = e, +2 ] ¢ cos(7iu) -
' 1=l‘

(3.) u, is estimated as the first null of Ge(u) occurring w1th1n the interval (0,

1
up + —I\/T).

Method II: Implicit Exploitation of Centro-Symmetry. As an
alternative to the previous means of accounting for the centro-symmetric
constraint on v, consider that if, in fact, I,v = v, then (I3v) Re{Rbb }13v =

TRe{Rbb}v Likewise, (I3v)T QI3V = vT'Qv. Hence, we may express the
~ objective function in (2.27) in the following alternative fashion.

b
% yTRe{Ryy) + LRe(Ruplllv _ v TRe{Rb v
Minimize —— = 5
v % vT [Q + LQI;]v viQv

(2.32)

subject to: is.v =v

whefe we have exploitedbthe properties of Q =SHS described by (2.21) and
~ where '
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. b .
Rbb = — Rbb + LRyl (2.33)

- may be interpreted as the forward-backward averaged beamspace correlation

'»matnx {SHANSS] LEVANSQ] [WILL88|. It is easy to show that
I;;Re{Rbb }13 = Re{RLb} which when combined with the fact that Re{Rbb} is
symmetric indicates that it is per-symmetric, i. e., symmetnc about the anti-
diagonal, as well. In Appendix A, we prove that two of the three GEVEC’s of
the pencil {Re{Rbb} Q] exhibit centro-symmetry while the third exhibits
centro-anti-symmetry. An nxl vector, x, exhibits centro-anti- -symmetry if
inx = —x. In the case of n odd, this implies that the center element of x is
zero. These observations combined with the fact that the centro-anti--
symmetric GEVEC spans a space orthogonal to the space spanned by the two
centro-symmetric GEVEC’s produces the final result that the solution to the
constrained optirniZatidn_ problem described by (2.32) is such that the
mlnlmlzmg v is that centro-symmetric (CS-) GEVEC of the 3x3 real pencil
{Re{Rbb} Q} associated with the smaller GEV. ‘ :

With thls partlcular Vv, u, may be determlned as in ‘the prev1ous method
as the solution to e Ta(u,)=0 where e =Sv. In light of the Vandermonde

structure of a(uo) as 1llustrated by substituting A=e'™" in (2.9) yielding
a(u,) = [X"L, cee NTENTL LN, >\2 < XL], we may alternatively find
. L M-1.
2, =€ " as a root of the polynomlal e(z) = % ez, where e, i=1,...,M-1, is
: ’ =0
: T
the i-th element of e = Sv, i. e.,, e =Sv = [eo 1€, €, """, eM_l] LU

may then be extracted from z, in the obv1ous manner. Note that e is real and
centro—symmetrlc as ‘before, the centro—symmetry follows from the following
argument IMe = IMSI3I3V = Sv = evv As a consequence, it is easy to show

that if z; is a root of e(z), then zl ) zl , and 1* are roots as well. A summary
R i Z; :
of BDML method 11 is delineated below.

*- Algorithmic Summary of BDML Method II

(1) With S—[('a)' 50): sl-u)] & Rx;;%f % (n) *(a), form

Rbb.: S¥R,,S.
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. A fb A ~ A ~ o -
(2.) With Ry, .=% {Rbb +13Rbb13l, compute Vv as CS-GEVEC of 3x3
~fb ., ‘
pencil {Re{Ryy }, S"S} assoc. with smaller GEV.

| . T .
(3.) With Sv = [eo‘, €1, €, °° ", eM—l] , form e(z) =

(4.) 2, =€ is estxmated as that root of e(z) in the vicinity of 2=1;
u, = —ln{zo} ‘
Jm ‘

Method I: Auxiliary Beam Subtraction and Calibration Curve.
We can arrive at an algorithm.somewhat similar in form to the _LSAA
algorithm = of Haykin [HAYKS3|, [HAYKS84] if we express v as v =
[—wo , 1 , wo]T Here we have normallzed v such that its center element is
equal to one, i. e, vo=1. Such a normalization appears feas1b]e since the

objective function in (2.27) is invariant to a scale change on v.

As in the deve]opment of Method 1 we may express Sv as S'v' where

S = [s(O) i s(up) + '(—uB)] and v =[1, —w,]". ' Substituting

vi=1]1, —w,)T in (2. 23) we find that the resulting objective function to be

mlnumzed with respect to w, may be expressed as a ratio of two quadratlc

functlons of w, in the followmg manner ‘
Tt 2rWo + r22wg

Minimize — 2 v - (2.34)
‘ W $11 — 2521 Wo t+ S22 Wo ‘~ '

where r;; and sy, i,j=1,2, are the i,j-th elements the 2x2 real, symmetric
matrices S'TRe{R,,}S' and S'TS', respectively. Differentiating with respect to
w, and equating to zero leads us to find that solution of the quadratic
equation (rasSp; — Fo18z2) Wo + (F11Sa2 — raaSi) Wo + (F21811 — F11Sy) =0 for
which the obJectlve functlon in (2.34) is smaller. :

At this pomt we remark that in contrast to the above procedure,

Haykin’s LSAA algorithm finds the optimum weight w, as that value which

minimizes the quadratic function vTS'TR S'v' =
{8(0) — w, [s(up) + 8(—up)] NT Ryx {8(0) — wols(up) + s(—ug)]}. This quadratic
polynomial is similar to the numerator of the objective function in (2.34) with
the exception that Re{Rxx} is replaced by Rxx. An immediate consequence of
this observation is that the w, obtained from Haykin's procedure is not
guaranteed to be real as it should be. More importantly, however, the fact
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that only the numerator is involved in Haykin's method is a manifestation of
the fact that the method does not account for the correlation between the

noise at the beamspace ports.. Recall that, in general, the noise between

beamspace ports is correlated even 1f the noise in element space is "spatially
white". - As a consequence of these observations, the LSAA algorithm only
corresponds to the beamspace domain based Maximum Likelihood (BDML)

method if flxx satisfies IMﬁxxIM = R:x and the columns of S are orthogonal.

- After the optimum w, is determined, we may once again invoke the
relationship vTSHa(uo)=0 to determine ‘the corresponding u,. = As-
Sv = S'v' = 8(0) — w,[s(ug) + s(—up)], this translates into a statement that

~u, may be determined from w, as the solution to the equation

{8(0) — wo[s(up) + s(—us)] {T a(u,) = 0. Motivated by the calibration curve
of Haykin, consider solving this equation for w,. Denoting the solution as
W, We have:

sT((I) a(u,)
[8(ug) +s(—up)]” ﬂ(uo)‘

Consider plotting w,) as a function of u,; all the quantities on the right hand
side of (2.35) are known except for u,. The result may be thought of as a

Weal ™

(2.35)

calibration curve which may be discretized and stored in memory on a
computer. With the optimum w, estimated via the procedure outlined
previously, the corresponding value of u, may be simply gleaned from the
calibration curve. - Note that this calibration curve is identical to that
constructed by Haykin [HAYKS84| for the LSAA  algorithm. However, in
contrast to the present procedure, Haykin generated his calibration curve by
examining the effect of letting the SNR go to infinity in his least squares error
criterion. This is similar to the case here as the calibration curve was

ge‘nerated assuming the ideal value of w,, that value which would be obtained

if the SNR was infinite corresponding to either no noise or infinite signal

power. A summary of method III is delineated below.

Algonthmlc Summary of BDML Method III

N L
V) x(n) x*(n), form
=1 ' :

| (1.) With S',‘;—‘ [3(0) : 8(up) +_3(“UB)] and R, = _I%I—
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- ot S1) S2i |

T 1 g S, T _ el
S Re{Rxx,S B - S"S! = ‘
Toy Tog : ; S21 S22

(2.) With the elements of the 2x2 matﬁces fbrrvhed' in (1.), form the:fo'llo,wing |
2nd order polynomial and compute its two roots: - v v

(rapSzr — FarSa2) W2 + (T118p2 — ToS11) Wo + (1811 — Tism) = 0

(3) With V' =

Cw ],v select value of w, from i(2) minimizing
o : . e

v'T S'TRe|Ry, IS’ V'
IT S'TS'
| (4 ) Locate value of u0 on cahbratlon curve correspondmg to m1n1m1z1ng wo
from (3.). ' '

2.3.3 Sxmphﬁcatlons for Butler Matnx Beamformer

The last step in each of the three BDML. methods outllned prev1ously

may be forrnulated as finding z, = ¢ eJ i

1. In l]ght of the practical consideration that the signals arrive near broadside
to the array, we may restrict our search to finding that root "closest’ to z=1
on the unit circle. Although root finding algorithms which- allow one to
restrict the search for roots to some specified region in the complex plane do
exist, the root finding problem may be greatly s1mpllﬁed if a Butler
Beamformmg Matrix is employed. In this case, we select. unlty magnitude
weighting, i. e., no tapering such that D, =D, =1 in (2.11), and up as ‘the
locatlon of the first null of the reference beam pattern which, in this case, is
descrlbed by (2.18). The first null of the reference beam is, in fact, located at
u= 2 M; hence, ug = 2/M. The beamforming matrix in this case is t,hen

[2/M) ‘a(0) : a-—2/M] , - (2.36)

as a root of a polynomlal of order M-

~ which when invoking the definition of a(u) in (2. 9) may be seen to correspond

to a Mx3 Butler Matrix Beamformer [GABR84], [BUCKSS], [FORS87]. The
respective three beams for the case of M=15 are plotted in Figure 2.3. Note
‘that the respective peaks of the mainlobes associated with the upper a.nd lower
auxiliary beams are located at the nulls of the reference beam occurring at .
u=2/M and u=—-2M, respectively. This is a manifestation of the fact that

the 3 columns of the Butler Matrix Beamformer in (2.36) are orthogonal This -
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Plot of the respective array patterns associated with the three
columns of a 15x3 Butler matrix beamformer for the case of a 15
element uniformly- spaced linear array. The array patterns have
12 nulls in common. ‘ ' o
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also 1rnplles that if the noise is uncorrelated in element space, it will be so in
beamspace as ‘well, i. e., "spatial whlteness of the noise is preserved with the
Butler Matrix Beamformer. However, a more important observatlon is that
the three beam patterns have M-3 nulls in common.  This fact may be

"exp101ted to reduce the computatlon involved in the final step of each of the

three BDML methods as drscussed above. The approprlate development is as
follows. ’ R :

Define the Vandermonde vector z as follows:

z=11z 22 2 ... MT . (2.37)

- Thei inner product of any Mx1 vector with the Vandermonde vector z 1s then a

polynomlal of order M-1. ~Recall, that for the sake of simplicity, we have
assumed throughout that M is odd. The final step in each of the three BDML
methods outlined previously may be formulated as finding the roots of the
(M-1)-th order polynomlal e(z)=(Sv)T2z, where v=[v;, Vo, vi|T. More
specifically, we seek a pair of complex conjugate roots of the (M—l) -th order
polynomial (Sv)"z in the vicinity of z=1 on the unit circle: the direct and
specular path signals arrive within 2 beamwidth of broad51de The full
development may be found in Appendix B but the. fact that the respective
array patterns. associated with each of the beamforming welght vectors

a(2/M), a(0), and a( ——2/M ) have M-3 nulls in common is a mamfestatron of

the fact that the respectlve polynomials afl 2/M)z, 1(0)z, and afl(—2/M)z

2rm

jErm

have M-3 roots in common equal to z =e M
of this observation becomes apparent when we view the (M-1)-th order

polynomial e(z)= (Sv)"z as a linear combination of these three polynomials as

, m=2,...,M-2. ‘The importance

follows _ A
e(z) = (Sv)z = v; a%(2/M)z + vo a™(0)z + vial(—2/M)z  (2.38)
Since any root common to all three polynomials is a root of any linear

combmatlon of the three polynomlals, it follows that regardless of the values
; 2rm

Ui

: of vo and vy, M-3 roots of the polynomial (Sv)Tz occur at z=e ,
- m=2,...,M-2. This statement involves no approximation whatsoever. Thus,
_the roots of interest are those of a quadratlc equatlon obtalned via the

following polynomial division: -
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| o o (sv)T o '
q(z) = q + @z + a2’ == (8v) = : ' (2.39)
T - M-=2 , jHI_n_ .
N z—e M)
m=2 :

»The detalls of this’ polynomxal division may be found in Appendlx B Where 1t |
is shown that the coefﬁclents of' q(z) are as follows :

' T 2T
Qo =Vo — 2v1cos(—) =q ; q = 4v1cos( M) - 2v0cos(—M-) (2;40)

"Letting q=1[9,9,: q2] we note that q is real and centro—symmetnc, L e,
" qo = Qu, such that q(z) = q;2z + qofl +1%). Asa consequence, the two roots
of the polynomial q(z )—q z either form a complex conJugate pair with both
roots lying on the unit circle or are real with one the reciprocal of the other.
"The latter situation may be 1nterpreted as a case where the direct and"
specular path signals are not resolved.

It will be easier for us to work with a normahzed version of q(z) obtained
by d1v1dmg the coefficients above by q¢ = q2 giving rise to the polynomlal '
14 oz + 22 where : '
| "4v1'cos(—l\%)w—‘ 2v0_cos(-i4i) - o
o= — ' - . (2.41)

. o N ) :
- 2v1 cos(ﬁ-) : » L

: The two roots of a polynomlal of the form 1 + az + 22, where o is real, are

located on the unit circle if and only if |a|<2 in whlch case the two roots are

%
Zo ='—E- +J-;— \% 4—(12 ,. 01———3——_]—;- V 4—'012 v' (242)
It is"eé,sy to show that these two roots do indeed have unity magnitude. As a
~ practical matter, the roots should be located in the vicinity of z=1. We thus
further. restrict o to be strictly non-positive such that -2 < « <.0. With a
given by (2.41) and v normalized such ‘that v, is non-negative, it is easily
shown that this constraint is satisfied as long as v, and v, satisfy the

given by

~ inequality vo > 2v1cos(;;); From "obs'ervation‘s gleaned from numerous

- simulations, we recommend that- ‘this condition be used as a flag for
determining whether the signals have been resolved or not. That is, it 1s

recommended that the condltlon Vo < 2v1cos(-ﬁ) be taken as a flag that the
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algorithm has failed to resolve the two signals.

The value of Z, given by (2. 42) with « given by (2.41) is the ML estimate

) T

of z, = ¢™"". In order to obtain the ML estimate of u,, we must compute the

argument or phase angle of i,. With io given by (2.42), the phase angle is

- N 4_n2 .
given by arg(zo)=tan‘1{_i:£_},with a given by (2.34). Trivial

manipulation yields the following expression for the ML estimate of ug:

11
2 -

| Vo — 2v1cos(—;%) 2 |
1 "2 ' -1t (243
vocos(——) — 2v, cos(

M

\!

M)

L

As a check on the correctness of this formula, consider the -case

u, =ug =2/M, i. e., the angle of the direct path is exactly equal to the
location of the peak of the mainlobe associated with the upper auxﬂ]ary beam,
which corresponds to a null in the reference beam. Substituting up = 2 M
into (2.19) and evaluating at u=2/M and u=—2/M, we find that the
beamspace manifold vectors for the direct and specular path arrivals are
b(u,) =M, 0, 0]" and b(—u,) = [0, 0, M]7, respectively. The vector v of
unit length orthogonal to both of these vectors is v = 0,1, 0] . The reader
may verify that substitution of vq =1 and v, =0 into (2.43) does indeed
prowde the correct value u, =2/M. Another test case of interest is that of
= 0 which corresponds to a single signal arriving directly broadside to the
array In this case, the beamspace manifold vector according to (2.19) is
b(0)=[0,M , 0]T. The appropriate centro-symmetric v vector for this case
is: v =[1 2,0, lf\/;]T. The reader may easily verify that substitution
of the values vo =0 and v; = 1/\/-2— into (2.43) does indeed produce the
correct value 4, = 0. Note that BDML Method III outlined previously, based
on Haykin's LSAA algorithm, forces vo to be equal to one and thus breaks
down in this test case. From this observation, we deduce that as the direct
path angle u, becomes smaller and smaller approaching u = 0 corresponding

" to broadside, the middle component of v, v,, becomes smaller and smaller

approaching zero as well, regardless of how v is normalized. A practlcal

: implication of this observation, therefore, is that BDML Method III, and hence
" the LSAA algorithm of Haykin, may exhibit numerical difficulties such as high

sensitivity to round-off errors, for example, when the direct and specular path =



angles are only a couple of tenths of a beamwidth away from broadside. In
terms of the calibration curve, we note that with ug =2/M and no tapering,
~ the denominator in the expression on the right hand side of (2.35) is zero when
u, =0. This implication is that for Butler matrix beamforming the
calibration curve defined by (2.35) tends to infinity as u, approaches zero
making it difficult to discretize and store the curve for small values of u. '

In closing, we present the appropriate version of BDML Method II when
the Butler Matrix Beamformer in (2.36) is employed which incorporates the
simplification developed above. The summary is as follows. '

Algorithmic Sundmary of BDML Method II
With Butler Beamformer

(1.) wm;' s=[a(2/M)sa(o)za(—z/M)] & fzxx=§§x(n)xﬂ(p), form

. . n=1
Ry, =S"R,,S.
(2.) Cofnpute v=[v,v,v,|T as that CS-EVEC of Re{ﬁ{;} =

- —;—.Re{ftgb + i3ftbbi3] associated with the smaller EV.

(3.) With v from (2.) normalized such that v, >0 , if vy < 2v1cos(—£1—)
- signals not resolved. - ‘

(4.) Otherwise: With vo and v; determined in (2.), estimate u, according to:

- '_ . 1

Vo — 2v1cos(l-) 21
» TIEM

tan™ 1 — 1 !

VoCOS(-i,I—W) - 2v, cos(-I:—TI—)

Note that 1nherent in step 2 is the fact that in the case of the Butler Matrix
Beamformer Q = S#S = MI.  We also point out that Re{Rbb} in step (2.) is
both symmetric and per-symmetric. As a consequence, out of its nine
_elements, only three are distinct making its eigenvalue decomposition a fairly
trivial task. These advantages combined with the avoidance of the task of
finding a root of a (M-1)-th order polynomial illustrates the dramatic
reduction in computation achieved by working with the Butler beamformmg :
matrix S defined by (2.36). ‘
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2. 4 BDML Method for Nonsymmetnc Multlpath :

In this sectlon we cons1der the case where the multipath is not symmetnc
about broadside or u =0. The composition of the element space snapshot"
_vector and the corresponding beamspace snapshot vector are described by
(2 8) and (2.15), respectively, with u, replaced by u; and —u, replaced by us.
We seek the ML estimator of u, and that of u, given as data N snapshot .
'vectors in 3-D beamspace. Similar to the development for - symmetric
multipath which lead one from the description of the joint dens1ty of the
, beamspace snapshot vectors in (2. 22) to the "equivalent” optlmlzatlon problem
over v in (2.27), we find that we may formulate the desired BDML estimation
scheme as finding a 3x1 real- valued vector v, related to u; and u, according to

Tb(ul)--O Tb(u2)—0 o (2.44)

. as the so]utlon to the following optlmlzatlon problem

. 7 :

- Minimize v R,f Rbb}v = M Re{S HRHS}V v (2.45)

v Qv _ vI sts v : ,

Note that although the centro-symrnetnc constraint on v is not appllcable in
~ the nonsymmetric case, the restriction that v is real, which follows from
(2 44), is applicable. From (2. 45), the optimizing v is that GEVEC of the 3x3 "
- real pencil {Re{Rbb 5 SHS} associated with the smallest GEV. With this v,
the BDML estimates of u; and u; are obtained as the two roots to the.
nonlinear equation vIb(u) = vTSHa(u) =0 in the general vicinity of u=0
(within plus or minus a beamwidth from broadside.) This corresponds to
locating two nulls of the array pattern e Ha(u), where the weight vector e is
equal to Sv. This "double null tracker” type of estimation procedure has
arisen in various element space based approaches to both the symmetric and’
‘ nonsymmetrlc multipath problems proposed in the literature [CANTS1],
[MAYHS87|, [BALLS87], [KSIE68], [WHIT74]. As a consequence of the uniform
‘spacing of the antenna elements, the search for u; and uy may be formulated

' in terms of finding zl =™ and 1, = ¢'™: as the two roots of the (M-1)-th

order polynomlal ef'z in the vicinity of z=1. As in the case of symmetric
multipath, the root finding problem may be greatly reduced if the Butler
matrix beamformer in (2.36) is employed In this case, we d1V1de out of the
(M-1)-th : ~order - polynomial

e(z) = (SV)Hz.zzvl al(2/M)z + v, a"(0)z + vzai(—2/M)z each of the M-3

- roots, z.=¢€ M m=2,.,M-2, common to each of the three polynomials
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a!(2/M)z, ’aH(O.)z,:and a(—2/M)z individually. The appropriate development, -
is found in Appendix B where it is shown that the two roots of interest are
those of a second-order polynomial q(z)==qy + q;z + q;2° Where
, e e C
o ) -j-ﬁ : ’ .J_ﬁ *
qop =—V; € +v2—vv3e__=_qZ‘

T 2/1
- 2v co

| M,) pc0s(—— |

- Consider the normalized version of q(z), denoted g, (z), obtained by dividing ’

- each of the coefficients by q;, which is observed to be real: :

a1 = 2(vy + va)eos( - ) as)

qq , )
Q@(t) = = + 24 —222 =0 ~ o (247)
N and q; are given by (2.46). qu(z), of course, has the same roots as q(z).
The two roots of a quadratic polynomial of the form o + 2z + a 2%, where in’
~- 9 - —1+\/1—4|o(|2
our case a= —, are glven by z12 =
q; . 20

shown that both of the roots have unity magmtude, i. e., 11e on the unit circle,

It is ea,sﬂy‘

1f |a | >-2—. We also note that classical algebra dictates that the product of

the two roots of q( ) must be equal to Lo -9—;, whlch is observed to have
a2 P

unity magnitude. From thls we deduce that the magnitude. of one. root must
" be equal to the reciprocal of the magnitude of the other root. This condition
s, of course, satlsﬁed if both of the roots lie on the unit circle as is the case

~when | o] >E. From these observatlons as: well as from observations gleaned

from the mmulatlon resu]ts, we recommend that the condition |a|<§ be

taken as a ﬂag that the algonthm has failed to resolve the two signals.. v
For the sake of brevity, we here summarize the. BDML Method for a

' nonsymmetric multipath scenario only for the case where the Butler Matrix

beamformer is employed. The steps are delineated below. ‘

'BDML Method for Nonsymmetric Multipath
W1th Butler Matrix Beamformer ‘

(1) With 8 [ 2/M) a(0 (-—2/M)] and Ry= x 3 x(a)x"(n), form

n==l
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Ryp,= S"R,,S.
(2.) Compute v =1Iv; vy, v3]T as EVEC of 3x3 matrix Re{Ryy} assoc.
with smallest EV. ‘ o o
(3.) With v;, i=1,2,3; from (2.), form q(z)=qp + q1z + qoz? where:

=
N

: ’ T C2m
B—— +vg— M; = 2(vy4V3)eos(— )—2vgcos( —
Jo V) € V2 _»V3 € qj (v1 3) (M) 2 (M )

(4.) Let a = 2.1 ol <—12-, multipath signals not resolved. Otherwise:

q .
2 L B 1
A1 =-3V4lalt=-1 __. 1, .
19 = ! 2(' | 7 Gy = ——In{iz}
. b Jn

2.5 Performance Analysis of BDML in
Coherent Multipath Scenario

- If the surface of reflection is fairly smooth, i. e., the sea is relatively calm,
'and the target is not moving too fast in relative terms, the specular multipath
signal is merely a time-delayed, amplitude-attenuated replica of the direct.
path signal over multiple looks, i. e., over multiple snapshots. Due to the
sinusoidal nature of the returning signals, the time-delay translates into a
phase-shift such that cy(n) = pe*¥¢;(n), n=1,...,N, where ¢;(n) is the direct
path complex signal, ¢y(n) is the specular path complex signal, p is the
magnitude of the surface reflection coefficient, p<1, and AV is the phase
difference between the two signals occurring at the center of the array. Again
assuming spatially white noise and that the signal is uncorrelated with the
noise, the expected value of the element space correlation matrix has the
following form ’

R, —Efx(n) <)} =ARwA" + 021 (248)

where A = [a(uo) : a(—uo)] for symmetric multipath and A = [a(u,) : &(112)]

for nonsymmetric multipath. The 2x2 matrix R in (2.48) is referred to as

:the source covariance matrix and, under the coherent multipath condition

stated, can be expressed in the following manner
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pdtot  pPa

| 1H —ja
~cl(n)} [cl(n)], I e R s

1

2
=7 :
1

/N jAY ’

1, pe73=Y] . (2.49)

where of =E{|¢;(n)|?}. Note that Ry is of rank 1 regardless of the values
of p and AV. With R, given by (2.48), the beamspace correlation matrix
takes on a similar form ‘ P -

Rpp = SHRxx S = BRSSBT + UIZJQ ‘ | (2.50)

where B = [b(uo) : b(—uo-)] for symmetric multipath and B = [b(ul) : b(uz)]
for nonsymmetric multipath; Ry is given by (2.49). Now, consider the form
of the beamspace correlation matrix in (2.50) employed in both the BDML
Method II for symmetric multipath and the BDML Method for nonsymmetric
‘multipath outlined above as well. We deal with the nonsymmetric case first.

The BDML Method for nonsymmetric multipath dictates that we take v
as that GEVEC of the 3x3 real pencil {Re{Ryy},Q} associated with the
smallest GEV. - Since B in (4.3) is  real, we have that
‘Re{Ry,} = BRe{R}BT + 02Q where the real part of Ry in (2.49) is given
by | B e A .
1 peos(AVY)

Re{R,} = o3 -
e{ ss} gy pcos(A\]J) p2

(2.51)
Invoking observations made in the formulation of the MUSIC algorithm [22]
it is easy to show that as long as Re{Rg} is of rank two, the "smallest"
GEVEC of the pencil {Re{Ryy},Q]} is, in fact, orthogonal to both b(u;) and
b(u;) indicating that the BDML estimation scheme produces the true values of
u; and up in the asyrnptotlc case. -This property follows from the fact that
when Re{R,) ‘is of rank 2, range {BRe{R(}BT} = range(B} =
span{b(u;),b(uy)}. Now, observing (2.51), Re{R.,} is of full rank equal to 2
despite the coherent nature of the multipath so long as AV does not equal to
either 0° or 180°. In these two cases, Re{R} is of rank 1 such that range
{BRe{R,,JBT} = span{b(u;) % pb(u;)}, where "+" is for the AV =0° case

“and "—"is for the AW = 180° case. All we can say in these two cases is that
the "smallest” GEVEC of the pencil {Re{Ry;},Q}, v, is orthogonal to the
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linear comblnatlon b(ul) =+ pb(uz) whlch does not lmp]y that v is orthogonal
to b(u;) and b(uy) individually. *Thus, the BDML Method can handle
coherent multipath so long as the direct and specular path signals are not

“perfectly in-phase or perfectly 180°: out-of—phase‘ at the center element of the

array. This is in contrast to MUSIC ‘which, without pre-processmg in the

' form of spatial srnoothlng or forward- backward averagmg (WILLSS], breaks

down in a coherent multipath scenario for any value of the phase difference,
AV, This is true even in the case of MUSIC applied in beamspace. Note that,

| ‘without hindsight, beamspace domain based MUSIC (BD-MUSIC) applied here
would have simply computed v as the "smallest” GEVEC of the pencil

{Rbb,Q} It is interesting to note, though, that BDML ‘and BD- MUSIC are -
equivalent, for ‘the nonsymmetrlc case, if the transformatlon to beamspace is

v performed on the matrix R,(x = -—-{Rxx + IMRXXIM} as opposed to Rxx itself.

_ Thls claim is substantiated by the fol]owmg argurnent

1
s”Rxxs =gH_ {Rxx + IMRxxIM}S = Es“Rms + . sTRxxs

=Re{S.HRxxS}=Re{Rbb} S | _---.(‘2.52):

~ Ib .
_where we have employed (2. 14b) Use of R,y as-defined above corresponds to
. ﬁrst performlng a single forward-backward average in element space [WILLSS]
. before the transformation to beamspace

We next consider the execution of BDML Method 1I for symmetric
multlpath outlined in Section 2.3, when Ry is given by (2.50) with Ry, in
turn, given by (2. 49) correspondmg to an ideal coherent multipath scenario.
BDML Method II dictates that we take v as that GEVEC of the 3x3 real-
penc11 {Re{Rbb} Q} assocnated with the smallest GEV, where Rbb =

= Rbb + I3Rbe3 ‘We have proved in Appen’d‘lx A that the v thus obtal_ned

is centro—symmetrlc, I3v =v, a very important property which will be
~ illustrated shortly. We first ‘analyze the effect of the backward average in -

beamspace. Recall that the two columns of B in the symmetric case are

. related according to b(—u,) = I b(u,) such that 13B12 =B. ‘This property of

B gives rise to the following 1nterest1ng result:

o 1. ~ .
R} = -2-.{Rbb + Istbh]
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{BRSSB +13B1212R ii,B 13} -;-

"]2— Q-+ 13 Qla}

i i we

vwhere have mvoked (2. 21) LI,=1 and the fact that B is real Th_lis,xR{R)-_

can be expressed in the form BR“’B’r + 0‘,,Q, where Rfs is glven by

' | ‘1‘+:p2 peosAVY -
; 1. . 2. ’ ‘ : o
: Rgs = Rss + I2RssIZ = G% A o 2 (254)
" ? : pcovsAb\I' 1 -;p - .

where we have substltuted (2 49) for R,,. We note that the elements of Rg’

are purely real.” Combined with the fact that B and. Q are real this implies |

that be in (2.53) is real as well. Note, however, that we are “only guaranteed
that ﬁbb is real in the asymptotic case, due to the complex additive noise, -

~ such that v should nevertheless be computed as the ‘GEVEC of the pencll'f
k{Re{Rbb} Q}. Returning to the issue at hand, though, we remark that it is

easily proved RIFin (2. 54) is of rank 2 such that range{BR BT} = range{B}
= span{b( uo), (=u,)} even if A\I/ =0° or AV = 180" so long as p is not at
the same time- equal to umty That i is, the only condltlons under which Rf "

B (2 54) will be of rank 1 is when AV equals either 0° or 180° and, at the same

time, p is equal to one. Under these conditions, range {BR’e{be}VBT} =

- span{b(u,) = b —uo)} where, as before, + is for the AY =0° case and — is

for the AW =180° case. This is in contrast to the situation with Re{Rss}
which is rank 1 when either AW =0° or AV =180° regardless of the value

of p. As a practical matter, the amplitude of the specular multipath signal

will always be less than that of the direct path signal, due to losses incurred at
the surface of reflection, such that p is strictly less than one. Nevertheless, the

BDML Method - can, in fact, handle the ideal scenario in which
AV =0° and p=1 despite the rank deficiency problem. Its ability to do so is
- directly attnbutable to the centro—symmetry of v whlch ylelds the fol]owmg :

mterestlng result

V?{b(uo) '+P;b(+'ﬁo)}.v= VT{b(uo)‘ﬂv- pcisb(}io)}
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;(1_+/':)Vc)va(1.1§)’=0 - ’v(2.5’5)'

" This implies that if v is orthogonal to the linear combination

b(u,) + pcb(—u,), where pc = pei>V, it is also orthogonal to b(u,) itself, so

' long as p. does not equal to —1 corresponding to the case AV =180° and

p = 1. Specifically, we may deduce from (2.55) that for p. =1, _corresponding -

- to the case AV =0° and p =1, the condition vT{b (uo) + b(—u,)} =0

implies v b(uo) =0 which, in turn, indicates that the BDML estimation
scheme will produce the true value of u, in the asymptotlc case under. these

: condltnons

Thus, the only condltnons for which the BDML Method breaks- down ina -

" symmetric multipath scenario is the extreme case where AV = 180° and p=1.

Under such conditions, the two signals cancel each other out-entirely at the
center element, and very nearly cancel each other out at all other elements of

~the array, depending on how large the array is and how closely-spaced in angle

the two signals are. One of the ways to deal with the practical situation
where the direct and specular path signals arrive at the center element of the
array very nearly equal in amphtude and perfectly or very nearly 180° out of
phase is to employ frequency diversity. This is the subJect of the next section.
Note that the use of frequency diversity will also remedy the problem
occurring with BDML in the nonsymmetric case when the phase difference
between the two signals at the center of the array is 0°. We should point out

» that the . problem with AV =0° in the nonsymmetric case is not confined to

the ML method in beamspace It isa problem with the element space based
Maximum Likelihood method as well as observed by White [WHIT74].
Cantrell et al [CANTS81] also encounter the problem in their three subarray

. based beamspace domain ML method. Cantrell et al, in fact, argue that if an -

estimator exists which significantly outperforms the ML estimator in the
nonsymmetrlc case when A¥ =0°, the estimator must be biased.

As a ﬁna] note with regard to the effect of the single forward-backward
average in ‘beamspace illustrated by (2.53), observe that the diagonal elements
of the effective source covariance matrix achieved by this process, R defined

by (2.54), are equal. The forward-backward averaging process, "in _effect,
' explmts the inherent symmetry to "redistribute” the comblned power equally

among the two signals. This has implications with regard to the much

: observed phenomenon that the ability to resolve two very closely spaced
ey 51gnals (in angle) largely depends on the strength of the weaker source,
"'“fassumlng a moderate 51gnal to-noise ratlo The smgle forward- backward
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| average in beamspace effectively equalizes the strengths of the two. sxgna]s’
vprov1d1ng the optlmum condltlon for resolution given all the other relevant‘
- parameters fixed such as phase difference, noise power, etc. We note that the
forward- backward average in beamspace as defined by (2.53) is only appllcable”'
“in the case of symmetrlc multlpath

2.8 Cramer-Rao Lower Bounds for Coherent ‘Mult’ipath Soenario

When the statistical model for an estimation problem is well defined, it is -
~ usually possible to derive an e)iplicit expression for the performance bounds
" associated with the estimator. In particular, we are interested in the -

performance bounds associated with unbiased estimators. It is well known that

the Cramer-Rao Lower Bound (CRLB) [VANG68] provides a lower bound for
the covariance matrix of the estimation error of all nnbiased estimators.
_Spec1ﬁca]ly, if’ 0 is any unblased estimator of ¢ based on the. observatlon ‘bold
'z, then the covarlance of the error in the estlmator satisfies the followmg
' 1nequahty '

E(-B) (6=} > 3 (250

‘vvjhere
J=E [ In p(z |9)}[ o p(z |9)] ¢ (257)

- and p IB) is the condltlona] den51ty of 2 glven 6. Equallty holds in (2. 56) 1f
and only 1f - '

Znsalg=copd G

where ¢(f) is a constant depending on 4. The matrix J is the well known‘

Fisher Information Matrix [VAN68] An interesting relationship between the

- CRLB and the ML estﬁimétots is that if an estimator satisfies the equality in

'~ (2.58), it can be formulated as an ML estimator. In other words, if the CRLB
can be attained, it can always be done with the ML estimator.

©. . Their ‘are two advantages to working -with the CRLB: ‘1) analytic
- expressions are usually attainable; 2) it can handle multlple parameters; i. e.,
‘1t prov1des bounds for multlple parameters 51multaneous]y The computation
of the CRLB has been a topic of considerable interest in the area of array
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signal processing. Schmidt [SCHM79] developed a formula for computing the
Fisher Information matrix for the problem of MUSIC DOA estimation. Trunk
et. al. [TRUN79b]| derived an explicit expression of the Fisher Information
matrix for the scenario of low-angle radar tracking and compared it with their
ML estimates. Wang and Kaveh [WANG85]| presented a simplified expression
for the CRLB for wide-band cohererit'signal subspace DOA estimation. More
recent ‘work includes that of Stoica and Nehorai [STOI8S, [S’TOISQ] and
Ottersten et al [OTTES89]. Stoica and Nehorai considered the asymptotical
behavior of both MUSIC and ML DOA estimators and compared their
performance with the CRLB they derived. Ottersten et al, on the other hand,
concerned themselves exclusively with the total least squares [VANS84] based
ESPRIT algorithm. These CRLB’s can be classified in.two major catégories:
the stochastic CRLB and the deterministic CRLB. The latter includes those
derived by Triifik et al and Stoica and Nehorai. The former includes those of
Wang and Kaveh, and Ottersten et al In the derivation of the stochastic
CRLB, the emitter signals are ‘assumed to be random with a given
distribution, which is usually assumed to be normal. The unknown parameters
are the DOA’s, the signal covariance matrix, and the noise power. The
deterministic CRLB, on the other hand, considers all unknown quantities as
desired parameters that remain to be estimated. ’

The CRLB developed by Stoica and Nehorai is particularly attractive
primarily due to its simple, closed-form expression. "Under the two-ray
multipath conditions and the spatially white Gaussian noise assumption, their
CRLB for u; and uy is given by '

J! = _‘f;_{i Re[YH(n)Ag(IM - A(AHA)_IAH)AdY(n)]]— (2.59)
n=1 .

where

Y(n)=lclv(n) 0} | (2.60)

(2.60b)

¢;(n) and cy(n), n = 1,...,N, are the direct and specular path signals received
at the center element of the array at the n-th snapshot, respectively, as
defined in Section 2.3, A is the DOA matrix, and 0% is the noise power. Trunk
“ et. al. also derived a close-form expression for the Fisher Information matrix,
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‘but restricted themselves to the single snapshot case. For the stochastic
~CRLB’s, Schmidt proposed an explicit way of computing the compbnents of
the Fisher Information matrix described as follows

a 6) o 6) IRy JR
E{ np(zl ) ln}?(zi )] t{R 1 Ry xx] (2.61)

where R,, = E{x(n)x"(n)} is the array output correlation matrix. The
parameters over which 6; and ¢, range may differ from case to case, depending"
on the assumptions made. The deterministic CRLB of Stoica and Nehorai can
be easily modified for the case of symmetric multipath. The point is that in

- symmetric case, the DOA matrix A = a(u,) : a(—u,)| involves only one

parameter u, such that we may replace A4Y(n) in (2.5!5) by
 Oa(u,) () da(—u,)

¢;(n) — ———c4(n).
N ™" 2(n) |
Ot‘te‘rsten [OTTES89] argue that the = deterministic CRLB is ‘more
optimistic than the stochastic CRLB, i. e., the former is lower than the latter,
which is somewhat intuitively contradictory. Stoica and Nehorai [STOI89]

confirmed. this statement by showing that the deterministic CRLB cannot be
‘attained asymptotically by the ML estimator with finite number of array
“elements. As a consequence, the stochastic approach appears to be more
appropriate. For the application of BDML method, the deterministic
lapproach is nevertheless recommended since no a-priori information about the
distribution of the echoes was incorporated. Recall that the first step involved
in the development of the BDML estimator was to substitute into the cost
function the least squares solutions for ¢(n), n = 1,..,N. In addition, in the
case of very few snapshots, the difference between the stochastic and
deterministic CRLB’s is insignificant. In the following simulation studies,
therefore, we will adopt the approach of Stoica and Nehora1 for computlng the
. CRLBs.

The CRLB derived by Stoica and Nehorai agrees with the analysis
presented in  the  preceding section, as can be seen from the examples
illustrated in Figure 2.4. First, the CRLB for symmetric case is strictly
increasing as AWV increases form 0° to 180°. Second, the CRLB' for
nonsymmetric case is symmetric about AV =90° and reaches its maxima at
AWV =0° and 180°. Similar observations hold with regard to the CRLB
derived by Trunk et. al. [TRUN79b]. This suggests that an estimator for
nonsymmetric case that yields low variance at AW = 0° must be biased. The
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Cramer-Rao lower bounds for unbiased estimates of the direct
path angle 6, for the case of Gaussian additive noise when
6,=2°, 6,=—2°, M=15, N=1, p=0.9, and SNR=5 dB. Both
the symmetric and nonsymmetric cases are shown on the same
plot.
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~ problem associated with nonsymmetric multipath at AV =0° phase difference .
has remained unsolved for many years. The "improved" three-aperture method - -
proposed by Gorden (GORDS83] did not yield a definitive solution. In fact, as
’ Will_ be seen' in Section 4.3, the impr0ved three-aperture scheme produces large

bias and variance for the specular path angle in an attempt to increase the

accuracy for the direct path angle. In light of the good performance of the
symmetrlc BDML _estimator at AV =0°, we recommend that a scheme be
developed to convert a nonsymmetrlc problem into a symmetrlc one. It is

‘interesting to investigate the possibility of breaking the CRLB if the above -

mentioned conversion can be successfully done. However, it should be kept in

‘mind that the estimator thus developed must exhibit bias at small phase

differences and cannot outperform the corresponding BDML. estlmator for

vsymmetrxc multipath.. A detail discussion will be provided in Sectlon 4.3. '

2.7 Computer Simulations v'

Computer simulations were conducted for the purpose of determining
_how well the various beamspace domain based ML estimation schermes
; d‘eveloped within perform in a simulated low-angle radar tracking scenario. In
all test cases, the array employed was linear consisting of M=15elements
‘uniformly-spaced by a half-wavelength Echoes from a smgle target angularly -
- located near broadside returned to the array via a specular- path as well as via
.- adirect path. Each execution of the appropriate BDML est'imation algorithm

~'was conducted with N=10 snapshots collected over an interval in which the

" ratio of ‘the amplitudes, p, and ‘the phase difference between the direet -and
specular path signals, AV, was constant ‘corresponding to a coherent
‘multipath scenario. A practical value of p = 0.9 [BART74], [STEI76] was
used as the magmtude of the complex reflection coefficient in the model. The

transformation to- beamspace was accompllshed via a Butler Matnx' ”

beamformer of the form in (2 36) where up _'-122/1_ = 133 In terms of degrees,'

this corresponds to upper and lower auxnhary beams pomted at 93 =1, 64
'and —9}3 =—7.64" "y respectively. Finally, the additive noise was modeled to
be spatlally white and uncorrelated ‘with the received -echoes. Agam, these
parameters a.nd quantltles were common to each and every snmulatlon run.

In order to talk about the relative proximity. of the direct and specular,
path signals, a measure of the beamwidth assoelated with the array is needed.

A good approXimatioﬁ to the 3 dB beamwidth is»%i‘ads. =Y7.6‘4‘°, wh-ich" is
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' half the separatlon between the first nul] on either 51de of the maxnlobe of the

reference beam when rectangular weighting is employed. In: the exarnples to.
follow, angle measurements may be periodically cited in units of beamwidths,
denoted BW, where one- beamwidth is 7.64°.

-The ﬁrst simulation results compare the performance and computational

.load of BDML Method 1II for symmetric multipath outlined in Section 2.3 with

that of the IQML  algorithm : of Bresler and - Macovski [BRESS6), a

computationally- efficient element space based ML estlmatlon scheme For
‘each trial run, the target angle was 2° such that the angular separation

between the direct and specular path signals was 4/7.64 = .52 beamwidths.

- The SNR for the direct ‘path signal was'5 dB at each element. Sample means

and sample standard deviations in degrees for both the BDML estimates and
the IQML estimates computed from: 100 independent trials for seven different
values of the p"hase difference measured at the center of the array as well as
the corresponding CRLB’s are shown in Table 2.1 and Flgure 2.5. For each
trial run, the polynomial coefficients gleaned from the IQML algorlthm were
those obtained after the execution of five iterations.. Recall that. the IQML

algorithm is not a closed form procedure as discussed prev1ously Comparing

results, we note: the performance of the two algorithms to ~be quite
comparable. Interestingly enough, for all cases the sample standard deviation

. of the IQML estimates is smaller than those of the BDML estimates while the

differéence between the sample mean and the true target angle is smaller for
the BDML ‘estimates. In both cases, the sample standard deviation- increases

~as the phase difference AV increases from 0.° to 180°. This phenomenon is
" characteristic of all ML based estimators developed for symmetric multipath

[HAYKS5], [CANTSI], [KSIE68], [WHIT74]. Note that a failure was
registered whenever the estimate obtalned from elther algorithm was equal to

. 0° corresponding to a situation in which the direct ‘and specular. signals are -

not resolved. In the case of AW = 180", 35 failures occurred with the BDML

estimator, giving rise to a large bias and standard deviation, while no failures

were incurred with the IQML estimator. The fact that the IQML algorithm

-outperforms the BDML algorithm in the case of AV =180° may be
‘ ‘attrxbuted, in part, to the fact that it inherently mcorporates some spatial -

smoothlng of the array data. The BDML estimator could be modified to

o incorporate spatlal smoothlng prior to the transformation to beamspace but
‘this ~was not done so here. - We also note . that the IQML estimator is

nevertheless heavily biased in the case of AV =180° such that neither

: "algorlthm provides reliable estimates under thls condltlon As argued
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Comparlson of the performance and computatlonal load of the

Table 2.1 .
" BDML method with that of the IQML method in a symmetric - -
" multipath  scenario with target angle 6,=2°, M=15, N=10,
SNR=5 dB for direct path, and p=09 The bottom row
indicates the respective approximate number of floating poxnt -
operations required for each trial run for both methods. 6 and 0
~ represent the sample mean and sample standard deviation in
degrees computed from 100 independent trials. The rlghtmostv
column shows the corresponding CRLB’s for a.
. BDML . IQML | CRLB
AV — ‘
9 & # failures [ & | # failures ‘
“0° 2.0014 | 0.1748 -0 2.0694 | 0.1651 0 - | 0.1689 |
22.5° 1.9986 .| 0.1816 0 2.0712 | 0.1693 0 0.1722
45° - 1.9942 | 0.1959 0 20789 1 0.1792 | 0 0.1825°
67.5° | 1.9869 [ 02213 | o . | 20022 [o0.1995 | 0 - | o0.2022
- 90° | 1.9744 | 0.2668 0 2.1237 | 0.2322- 0 -0.2365
112.5° | 1.9500 | 0.3573 0 2.1881 | 0.2883 0 |o2973|
135° 1.8816 .| 0.5858 v 3 2.3511 | 0.3806 0 - 0.4171
157.5° | 1.7197 | 1.0355 17 2.8282 | 0.5176 o 0.7022
180° | 3.5874 | 46536 | 35 | 3.5909 | 0.5120 | 0 1.1774
) 5.3 x 110‘ flops/run _ 1.2 x 107 flops/run
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Direct Path Sample Standard Deviations

S . : . :
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‘Comparison of the performance of the BDML method and that

of the IQML method with the theoretical CRLB in a symmetric
multipath scenario with target angle 6,=2°, M=15, N=10,
SNR—5 dB for direct path, and p=0.9. Sample mean and
sample standard deviation were computed from 100 independent

trials.
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p‘réviously, this is due to severe signal cancellation occurring across the array.
The BDML estimator does, however, provide reliable estimates as long as AV
is not too close to 180°, as does the IQML estimator. Comparing the sample
standard deviations associated with both methods with the corresponding
CRLB, we find that the BDML estimator approaches the CRLB for small
phase differences while the IQML estimator produces standard deviations

smaller than the CRLB for all phase differences. The behavior of the IQML

estimator here is of no contradiction since it exhibits bias for all phase
differences as can be seen from Table 2.1. The drastic reduction in the
amount of computation incurred with BDML with respect to that of ‘IQML is
indicated by the average number of floating point operations per algorithm
execution which is listed in the bottom row of Table 2.1. This number was
determined using the PRO-MATLAB software package and did not include
the initial com'putation involved in setting up the data.” We note that the
computational load of BDML 1is three orders of magnitude less than that of
IQML!!" We should point out that the disparity between the computational
loads of the two algorithms becomes even greater as the number of array
elements increases. Except for the initial transformation from element space
to beamspace, which effectively involves the computation of 3 values of an M-

- point DFT, the computational burden of BDML remains essentially the same:

a 3x3 eigenvalue decomposition (EVD) and subsequent evaluation of the
formula in (2.43). As a final point, we note that if M is large, the required 3
values of the M point DFT may be computed in an efficient manner via the

 Goertzel algorithm. . -

~ The second set of simulation results presented in Tables 2.2 and 2.3
provide an indication as to the performance of the BDML - estimator in a
coherent symmetric multipath scenario for various combinations of target
elevation angle, phase difference, and direct path SNR. For each particular
set of parameters, sample means and sample standard deviations were
computed from the results of 100 independent trials. Table 2.2 illustrates the

-trend in estimator performance as the angular separation between the direct

and specular path signals increases while the phase difference between the two
at the center of the array and the direct path SNR remain constant. In each

case, the direct path SNR was 5 dB at each element. The five target elevation

angle test cases were 1°,2°,3°, 4°, and 5° corresponding to angular
separatlons between the direct and specular path signals of .26 BW, .52 BW,
.78 BW, 1.04 BW, and 1.96 BW, respectlvely Again, the unit BW is the 3 dB
beamwidth equal to 7.64 °.  As before, a failure was registered whenever the
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Performance of the BDML estimator in a symmetric multipath

Table 2.2
scenario for five different target angles with M=15, N=10,
SNR=35 dB for direct path, and p=0.9. The 3-dB beamwidth of
the quiescent array pattern is approximately 7.6°. ¢ and a
~ denote the sample mean and sample standard deviation in
, degrees ’computed from 100 independent trials.
AV =1° | #=2° | §=3° | =4 | 6=5"
0.9420 | 2.0014 | 3.0037 | 4.0032 | 5.0028
0° o 0.4120 0.1748 0.1134 0.0884 0.0847
# failures | 9 0 0 0 0
9 0.9151 1.9942 2.9993 3.999>8 4.9997 |
45° o 0.4609 0.1959 | 0.1280 | 0.0992 0.0925
' | # failures 13 0 0o 0 0
[ 0.8907 1.9744 2.9892 3.9926 4.9936
90 ° K 0.5274 | 0.2668 | 0.1727 | 0.1336 | 0.1226
# failures 15 0 0 0 0
| [ | 0.8570 1.8816 2.9598 3.9768 4.9848
135° o 0.7411 0.5858 | 0.3350 0.2561 0.2344
4 failures | 33 3 o0 | o | o
g 3.2218 3.5874 4.2664 4.2603 4.4583
180° & 48142 | 46536 | 5.0073 | 3.8272 | 3.6688
‘ 4 failures | 42 35 28 | 26 | 25
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Table 2.3 Performance of the BDML estimator in a symmetric multipath
- scenario for seven different direct path SNR values with target
angle 6=1°, M=15, N=10, and p=0.9. The 3-dB beamwidth of
the quiescent array pattern is approximately 7.6°. ¢ and &
denote the sample mean and sample standard deviation in
degrees computed from 100 independent trials. .

AV || SNR— | 0dB | 5dB |10dB | 15dB | 20dB | 25 dB | 30 dB

[ 0.9210 | 0.9420 | 0.9882 | 1.0007 | 1.0021 | 1.0017 | 1.0011

0° i 0.5959 | 0.4120 | 0.2185 | 0.1126 | 0.0625 | 0.0351 | 0.0197
# failures | 21 9 0 0 0 0 0

[ 0.9021 | 0.9151 | 0.9776 | 6.9959 | 0.9999 | 1.0006 | 1.0005

45° & 0.6337 | 0.4609 | 0.2379 | 0.1261 | 0.0703 | 0.0396 | 0.0223
4 failures | 24 13 0 o | o 0 0

~ [ 0.8765 | 0.8007 | 0.9341 | 0.9818 | 0.9940 | 0.9978 | 0.9991

90° & |0.7274 | 0.5274 | 0.3491 | 0.1734 | 0.0945 | 0.0528 | 0.0297
# failures | 28 | 15 | .4 0 0 0 0

g 0.9358 | 0.8570 | 0.8627 | 0.9177 | 0.9718 | 0.9893 | 0.9953

135° | & |0.9676 | 0.7411 | 0.5533 | 0.3684 | 0.1876 | 0.1000 | 0.0555
| Afailures | 42 | 33 20 | 6 0 o | o

[ 4.3657 | 3.2218 | 1.2696 | 1.0037 | 0.8885 | 0.8593 | 0.9035

180° & 4.5328 | 4.8142 | 1.5713 | 1.0433 | 0.7979 | 0.6050 | 0.4160
# failures | 32 | 42 | sz | 43 38 24 9
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algorithm produced an estimate equal to 0°. Similar to the trend observed in
Table 2.1, we note that the performance of the BDML estimator decreases. as
the phase difference, AV increases from 0° to 180°. Observe that a large
number of failures occurred for each target elevation angle test case when the
phase difference was 180°, although the bias and standard deviation of the
' estimates did decrease somewhat as the angular separation between the two
signals increased. However, it may be inferred from these results that under
the condition AV = 180° and p=.9, the symmetric BDML estimator does not
provide reliable estimates when the angular separation between the direct and
specular path signals is less than a beamwidth and the SNR is less than 20 dB,
thus necessitating the use of frequency diversity. This will be discussed in
Section 4.4. Note that the smaller the magnitude of the reflection coefficient,
p, the lesser the amount of signal cancellation across the array and, hence,
degradatlon in performance. o ’

In contrast to Table 2.2, Table 2.3 illustrates the trend in estimator
performance as the direct path SNR is increased while the phase difference
and angular separatlon between the direct and specular path signals remain
constant In each case, the target elevation angle was 6 =1° corresponding to
an angular separation between the direct and specular path signals of .26 BW.
We observe that a significant number of failures were incurred in the case of
direct path SNR = 0 dB for each value of the phase difference, although the
sample mean was not too far off from the true value in all cases except
AV =180°.. For a fixed phase difference, though, the bias and standard
deviation of the estimates did decrease as the direct path SNR was increased
as would be expected. Once again, though, the results in Table 2.3 indicate
that without spatial ‘smoothing pre-processing or frequency diversity, the
symmetric BDML estimator does not provide reliable estimates in the case
AW¥=180° unless the direct path SNR is well over 25 dB. ‘

‘Table 2.4 is similar to Table 2.3 except that the multipath scenario
simulated was a nonsymmetric .one as opposed to a symmetric one
necessrtatlng the use of the BDML estimation scheme outlined in Sect. 1.
Specifically, Table 2.4 illustrates the trend in the performance of the BDML
estimator for the nonsymmetric multipath case as’the direct path SNR is
increased while the angles of the direct and specular path signals remain fixed
at 6; =2° and 6, =—1", respectively. Note that these test angles
correspond to an angular separatlon of approximately .4 BW. For each
- particular combination of direct path SNR and phase difference, sample means
and sample standard deviations were computed from the results of 100
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- Table 2.4  Performance of the BDML estimator in a nonsymmetric

' ~ multipath scenario for seven different direct path SNR values
with target angle ,=2° specular path angle 6,=—1° M=15,
N=10, and p=0.9. The 3-dB beamwidth of the quiescent array
pattern is approximately 7.6°. ¢ and & denote the sample mean
and sample standard deviation in degrees computed from 100
independent trials. ,

AV || SNR — | 0dB | 5dB | 10dB | 15dB | 20 dB | 25 dB | 30 dB
6, | 7.2339 | 7.1861 | 6.3242 | 6.3116 | 7.1098 | 7.0075 | 6.9677
&y 14.2508 14.2476|11.9758 | 11.9671 |14.0673 |13.5727 |13.3977

0° 5‘2 -8.8693 [-8.9785 {-9.9942 {-10.1247 (-9.4200 | -9.4229 | -9.4253
Ty 15.9760{16.0743|18.1285 18.4851 |17.512117.5264 |17.5382 :
# failures 1 0 0 0o 0 0o | 0

8, 5.1689 | 2.2779 | 2.0472 | 2.0095 | 2.0015 | 1.9997 | 1.9995
&, [11.6015|1.1751 | 0.4196 | 0.2137 | 0.1165 | 0.0648 | 0.0363 |

|45° 6, -2.5086 |-1.2232 {-1.0608 | -1.0240 |-1.0110 |-1.0055 |-1.0029
& | 5.2645 | 1.1485 | 0.5002 | 0.2576 |0.1403 | 0.0778 | 0.0435
|4+ failures| 0 0 0 0 0 0 0

B |2.1785 | 1.9945 | 1.9907 | 1.9936 | 1.9962 | 1.9979 | 1.9988
E? 1.2995 | 0.5147 | 0.2579 | 0.1416 | 0.0791 | 0.0444 | 0.0249

90° | 6, -1.1134 |-1.0065 [-1.0080 | -1.0061 |-1.0040 |-1.0025 |-1.0014]
5 | 1.3300 |0.6200 | 0.3255 | 0.1802 | 0.1008 | 0.0566 | 0.0318
u#.failures 7. 1 | o 0 0 0 0

%, |1.8910 | 1.8483 | 1.9163 | 1.9721 |1.9881 | 1.9944 10072

5, | 1.1330 |0.7311 | 0.4524 | 0.2213 |0.1212 | 0.0677 | 0.0380

135° | B, |-0.8360-0.8537 [-0.9280 | -0.9809 |-0.9937 |-0.9977 |-0.9991
5y 1.3153 | 0.8315 | 0.4940 | 0.2491 | 0.1374 | 0.0769 0.0432

|# failures| 20 14 3 | o | o o | o0

8, |5.7741 | 57616 | 5.2044 | 5.1602 | 5.1425 | 5.1413 | 5.1406
& | 6.2038 |8.1700 | 4.2438 | 4.1145 | 4.0694 | 4.0449 | 4.0351
180° | G, |-4.0581|-4.0492 |-5.0131|-4.9927 |-4.0969 |-5.0102 |-5.0184
& |6.6271 |6.3873 | 7.1030 | 6.7137 | 6.5854 | 6.5304 | 6.5069
4 failures| = 27 28 27 28 | 28 27 | 28
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independent trials. For the case of direct path SNR = 0 dB, we note that the
algorithm performed quite miserably, although the sample means were not too
far off from the true values in the cases AV = 90° and AV = 135°. A failure
was registered whenever the algorithm supplied the same angular value for
both estimates. For the cases AW =45°, AW =90° and AV = 135°, we
observe that the bias and standard deviation of the estimates decreases as the
direct path SNR increases with AW = 90° giving rise to the best performance.
In the cases AW =0° and AV =180°, however, we observe that the
nonsymmetric BDML estimator provides totally unreliable estimates regardless
of the value of the direct path SNR. This shortcoming of the nonsymmetric
BDML estimator is due to a rank deficiency phenomenon occurring with these
two phase differences as discussed in Section 2.5. Again, we could remedy the
problem somewhat by spatial smoothing prior to the transformation from
element space to beamspace. However, in chapter 4, we will present several
novel procedures for overcoming this problem.
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| CHAPTER 3
GENERALIZED BUTLER MATRIX BEAMFORMERS
' ' AND BDML ESTIMATORS ‘

3.1 Introduction '

, At .the end of Chapter 2, we showed that signiﬁcant simplifications in

computatlon for the BDML estimation procedure may be achieved with the.
use 'of an Mx3 Butler matrix beamformer. In fact, the BDML angle estimates.
- may be slmply determlned l'rom the roots of a _]udlClOUSly constructed -
quadratlc equation. This is a slgnrﬁcant contribution due to the fact that the .
3x1 beamspace manlfold vector does not exhibit the Vandermonde structure in.
contrast to the situation with Cantrell’s three subarray method as discussed
prevrously The ability to nevertheless formulate the estimates in terms of the
roots of a quadratic equation arises from the fact that the respective array
beam patterns associated w1th each of ‘three columns of the Mx3 Butler
= beamformlng matrix have M-3 nulls in common (M is the number of
elements), the locations of which are known regardless of the signal and noise
parameters. The property of M-3 common nulls may be v1ewed as a-priori
knowledge for the underlying estlmatlon problem

Due to the Vandermonde structure of the element space manrfold vector,
it is approprlate to interprete the common nulls assocxated with the three
columns of the Butler beamformer as those common roots ‘associated with
the' three polynomlals correspondlngly constructed Motivated by the
equlvalence between the multlpllcatron of polynomlals and the convolution of
‘sequences, it is poss1ble to factorize the Butler beamforming matnx as a
product of an ‘Mx3 banded, toeplitz matrix and a 3x3 matrix. ‘The Mx3
toeplitz matrix thus obtained corresponds to the M-3 common nulls while the
~ 3x3 matrix corresponds to the remalmng uncommon nulls. An 1mportant
' aspect of this factorization is that it allows one to generalize the Butler
beamformer by simply replacing the two matrix l‘actors with other judiciously
constructed matrices such that the resultlng weight vectors have M-3 nulls i in
common Further extensrons can be made to the generallzed Butler
‘ beamformers if we adopt the concept of polynomlals and roots Under such a
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- ~ premise, the polynomials associated with the three columns of a generalized
Butler beamformer need not have all of their roots lie exactly on: the unit

circle. Consequently, the common and uncommon roots represent two groups o

. of design parameters that must be carefu]]y determlned a-priori.

Although the idea of gerieralized Butler matrix beamforming facilitates
substantial reduction in computational complexity, applying it directly to the

BDML estimation scheme does not necessarily lead to reliable estimates. As :

was discussed in the preceding chapter, the performance of the BDML
vestimators. relies heavily on the beamformer employed, especially for the
symmetric multipath case. In order to nevertheless exploit the advantages of
processing in the beamspace domain, some modifications should be made for
the generalized Butler beamformers. First, the beamforming weight vectors
should exhibit - conjugate centro-'Symmetry so as to prod‘uce"a purely real
- beamspace manifold vector. Second the lower and upper auxiliary weight
vectors should be constructed in such a fashion that they produce mutual]y»
reverse beamspace domain manifold vectors when the multlpath is symmetric.
These two design considerations are crucial in our development of the BDML
methods as- ev1denced by the performance analysis’ presented in Section 2. 5.
' Combined with the SNR gain consideration, they constitute a new area of
, ‘beamforming problems. A primary objective of this: chapter is to provide a
~ structural description of the common roots property, anddevelop BDML
ﬂestlmators based on the new: generahzed Butler beamformers. . S

" The chapter is organized as follows. Section 3.2 describes the structure of
the Butler matrix beamformer and its associated factorization property.
Section ' 3.3 develops- alternative BDML estimators for both symmetric and
nonsymmetric multlpath cases based on the generahzed Butler beamformers :
Specifically, 'a new processing technique is developed to exploit the
Vandermonde structure in beamspace domain obtained with -a generalized
‘Butler beamformer. Finally, Section 3.4 develops a parametric representation
for the beamspace domaln vector ‘and dlscusses its applications to BDML ’
‘.bestlmatlon ' ' : '

‘f v ‘3 2"Factorizationv of the Butler-B‘eamforming Matrix

In the precedlng chapter, we found out that the property possessed by
‘the Mx3 Butler matrix beamformer, i. e., the three ‘beamforming weight
vectors have M-3 nulls in common, leads to significant simplifications in
computation for the BDML estimation procedure. The main point is that we



61

" were able to convert the orig’ihal (M-1)-th’ order pol’ynomial equation necessary
- for finding the angle estimates into a. quadratic equation without loss of
information. The procedure mvolved was in fact a polynomial division “in
which the (M 3)-th order "common” polynomial was factored out of the (M-
'1) th order polynomlal mentioned above. The problem is best understood with-
the aid of polynomial notation. ‘We first introduce the followmg notatlon
relatmg vectors, sequences, and’ polynomla]s ’

. T : -
p= Po ) Pl s T PN—l] - o ' (3.1a) -
{p} = {po 3 pl g T pN-—.l.}‘ S ' ' (31b)
p( ) = Po + PI’Z + tot + Pn- IZN—I g : ‘(3.10)

That is, if p is an Nx1 vector glven by (3.1a), ‘then its associated sequence and -
polynornial representatlons are given by (3. lb) and (3. lc) respectlvely
- Motivated by the equlvalence between the multlphcatlon of polynomlals and
¢onvolution of sequences, ‘three expressions in accordance w1th the above

o notatlon ‘are as fOHOWS

o) =aer®) ()

ph-fare 63
qo 0o [ro 0o
| loq oo for 00 o
p=1t ::+ ¢ i]lr=ft ::tila (32
. 00 q 0 j00 r 0
'LO-O Oq »LOO Or

 where ™" denotes sequence linear convolution. To further simplify notations,
we ‘denote as X the banded, toeplitz matrix constructed with the
correspondmg vector x in the following fashion

[x 0o o0

jox 00 B |
X=| 5 0 (3.3)

oo xof I

__00.0x“

'The dimension of X depends upon the order of the. polynormal multlphed with |
'x(z), the polyromial- representatnon of x. In general, «f the: product is an 'N-th



62

_order polynomial, then X must have N+1. rows. - With this notation

estabhshed the structure of the Mx3 Butler beamforrmng rnatnx can be easrly

* analyzed i in a few steps.

Let. sl, Bc, and. 8, denote the lower, center, and upper beamformmg

'welght vectors corresponding to the three columns of the Butler beamforming
- matrix S.- “The common nulls property of S suggests the fol]owrng express1ons
- for the these three weight vectors. e -

e = Hel v S : (3.48,) .

L

|

=)

:‘<
o o

nm

Il

o o

oo
-~ g == Mo

Ole, =He, (3.4b)

h 0 0] e T
s, =|0 h 0 eu’,=Heu‘ R (3.4c)

“where h denote the vector representatlon of the (M—B) th order ' common '

polynomlal glven by , _
, . = orm

,=v VM-’z".—‘ jgm e g
h(z) o ] “ (z e’ ) o . ”(3'5)'

and e, e, and e, correspond to the remalnlng uncommon nulls assoc1ated
with the lower, center, and upper beams, respectlvely, in the followmg fashlon

-3 o .
aW=a-DE—c M) (@)

. » _1_2_—. j_&"', S ‘
ee=o.(z—e M)(z—eM) - (3.6p)
s e 2-. o o
'_eu=0¢-u (z—l)(z—e M) ' . (3:6¢c)

Note that a, al, Qe and @, are complex scalars ensuring. that each of the

above four’ polynomlals has a set of conjugate centro—symmetrlc coefficients. .
' Combining (3.4a), (3.4b), and (3. 4c) and puttlng in matrix form, the Mx3

Butler beamformmg matrix has the following factonzatron
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h 0
0 h
0 0 h

0
0

S = HE = [el' fegt eu] (3.7)

Note that S is Mx3, H is Mx3, and E is 3x3.

An indication inherent in the above factorization is that the beamformlng. :
achieved with the Butler matrix can be considered as a two-stage procedure:
1) transform form M-dimensional element space to 3-dimensional beamspace
using H matrix; 2) shape the thiree beams obtained in 1) by the transformatlon
E. This operation may be mathematically described by

() e) =H'ae) (5:59)
(2) b(u) = Eefu) sy

We here concern ourselves solely with nonsingular E matrix, which can be

- guaranteed by judiciously choosing' the uncommon nulls. The advantage to

working with nonsingular E will become clear in the next section. It is
interesting to note that stage 1 produces three beams pointing at the same

~ direction but with a different phase center. A close look at the Toeplitz

structure of H reveals that they differ by a constant phase dlsplacement”
corresponding to that occurring between two adjacent array elements. This
indicates that the components of c(u) exhibit Vandermonde structure as
described in the following fashion ‘ | '

eim U o
c(u)=| 1 |G(u) ' - (3.9)
ejﬁu :
where v |
G(u) = hfay_,(u) - (3.102)
o M-3 ms |7 -
aM—z(U)= e_Jr_E——u7 M 7e~2j'-lu;e_fiﬁuylyejﬂu,ezjﬁua .« e ae)” 2 ‘ (3.10b)

‘Therefore the beamspace manifold vector constructed with H has the same
‘¢ompositional form as the element space manifold vector except for the gain

factor. G(u) and the reduced dimensionality. This phenomenon that the
Vandermonde structure of the ‘element space manifold is retained by the
beamspace manifold vector with a banded, Toeplitz beamformlng matrix is
the basis for why the Mx3 Butler beamformer facxhtates sunple BDML
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computation. Indeed, if we substitute into the orthogonality - condition

vTb(u) = 0 as described in Section 2.3 the alternative expression for b(u)
‘ glven by (3:8b) and (3.9), we obtain | o
‘ vTb(u) = vTERc(u) = (Ev)ie(u)

= (g1e77™ + g5 +gze™) G(u) =0 - (11)

where g; is the i-th component of Ev. Assuming G(u)#0, or u does not belong
to one of the M-3 common nulls, (3.11) can be formulated as a quadratic
equation as described by ‘

g(z) =g +g12 +g2" =0 | (3.12)

The estimates of u; and u, can then be determined as two unit roots of g(z).
A direct computation verifies that the coefficients of g(z), given according to

g = —Vvye M tvy—vge M , ' (3.13a)

go =2(vi + v3)cos(—T—) - 2v2cos(-g-7i) ~ (3.13b)
= i o

=i e by —vge M (3.13¢)

are exactly identical to those given in (2.46).

Of course, the Mx3 Butler matrix beamformer is not the only one
possessing the M-3 common nulls property. In fact, any beamforming matrix
that can be factorized in a form similar to that described by (3.7) will also
lead to simplifications in computation. However, both H and E matrices
should be judiciously chosen so as to retain high SNR gain‘in' the desired
directions and provide sufficient supression for noise and interferences outside
the mainlobe region. This is the topic of Chapter 5.

3.3 Generalized Butler Matrix Beamformers

This section discusses a class of generalized Butler matrix beamformers
“and their associated BDML estimators. In particular, a new approach to the
BDML estimation scheme will be developed. : '
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3.3.1 Construction of Beamformers

To begin with, we introduce the following definition:

Definition An Mx3 genera]izéd Butler matrix beamformer Wy is a matrix
exhibiting the following factorization

WB=[wliw2Ew3]=CU (3.14)
where C is an Mx3 banded, toeplitz matrix given by
lc 00 |
C=10c O (3.15)
00c¢
and U =|u; i up iug]is 3x3. This indicates that the three columns of Wg

are related through ¢ in terms of polynomials as:
wy(2) = ¢(z) uy(2)
wy(2) = ¢(z) uz(2)

ws(z) = ¢(z) us(z) | (3.16)
which implies that the three polynomials w(z), wy(z), and ws(z) have M-3
roots in common determined by c(z) =0. The generalized Butler matrix
beamformers retain the Vandermonde structure in beamspace domain, up to a
nonsingular transformation, in exactly the same way the Mx3 Butler
beamformer does. In order to apply the generalized Butler beamformers in
BDML estimation, it is necessary to account for the following two factors: 1)
the weight vectors must produce a purely real beamspace domain manifold
vector ; 2) for symmetric multipath, the beamspace domain manifold vectors

must satisfy b(—u) = I;b(u). We now investigate the sufficient conditions for
1) and 2) individually. '

The first constraint is easily accounted for if we make each of the three
columns of Wy conjugate centro-symmetric, i. e.,
Iyw; =w;; Iywy =wp; Iyws = W3 (3.17)

which also implies iMWB =W;. Due to the conjugate centro-symmetry
property of the element space manifold vectors as described by (2.2), it is
straightforward to show
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b{u) = Wha(u) = WilJya'(5) = Wia () = b'(w)  (3.18)
Therefofe; b(u) is reﬁl for all u. The second constraint states that
I;WHa(—u) = WHa(u) . (3.19)
Incorporating the fact that #(—u) = iMa(u) and that iMWB = Wg, (3.18) can
be written as

LWEyIya(—u) = LWHIya(u) = Wha(u) ‘ (3.20)

which is guaranteed by taking iswgiM = W}. These two constraints on Wiy
combined together suggest that the three columns of Wy should be chosen in
the following manner

WB=[wlszSiMwl]

- with : iMwl = wI ; iMwo =W, =W, : (3.21)

The center beamforming weight vector is thus restricted to be purely real.
Substitution of (3.21) into (3.14) yields

iMClll = iMCi3i3u1 = C*UI . (3223)
iM,Cllz = iMCigigLIz = Cu2 = C*u; ) . (322b)
iM>CU3 = iMCi3iau3 = Cu] " (3.22C)
Sufﬁcie_np conditions for satisfying (3.22) are easily found to be . |
| iMCi3 =C = C* ' (3.238.)
Lu; =u; =u; ‘ (3.23b)
Lu, = uy, = u, ‘ (3.23¢)

with (3.23a) in turn guaranteed by
iMfzc =c=¢ o (3.24)

Note that the real quantities involved in the above relations are ¢, C, u,, and
‘Wo. (3.21)-(3.23) provide a guideliné for constructing generalized Butler matrix
beamformers for the BDML estimation schemes developed in Chapter 2.
However, we mention that some auxiliary procedures should be performed to
account for the SNR gain and sidelobe problems occurred in low-angle radar
tracking. For example, we might want to maximize the response of the
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beamformer -at desn'ed look dlrectlons whlle at the -same time rejecting

.unde51red returns. from clutter and noise as well. In the. case of .strong
' interferences, it is necessary to form adaptlve lower, center, and upper ‘beams
vsuch that each beam has a null in each interfering dlrectlon and the three
.bearns have M-3 nulls in common The generalized Butler beamformer so

constructed may not exhibit the properties described by (3.21)- -(3.23). As a
result, the BDML est_imators may fail to handle »‘0°rphase difference in the case
of symmetric multipath. To remedy this ‘difficulty, we propose, in the next

subsection, an alternative approach to formulating . the BDML problems,

utilizing the fact that the Vanderrnonde structure is retained in beamspace
domam via the use of C. ‘ :
3 3. 2 Alternatlve BDML Methods

A structura] means for mterpretlng the C matnx given by (3.15) is that 1t
can be considered as a beamforming matrix itself with three beams formed

from the outputs of three identical, adJacent overlapping subarrays of size

M-2, each subarray having all but one sensor in common with the adjacent
one. The welght vector ¢, correspondlng to the common roots, is applied to
each subarray This represents a c]ass of e]ement space to beamspace
transformatlons alternative to that proposed by Cantrell et. al. [CANTS1].
The main dlﬁerence between these two methods lies in that Cantrell et. al.
developed thelr ML estimators based on "nonoverlapping” subarrays. ‘We here
develop new ‘BDML estimators with the overlapping subarrays approach.

Let ay(u) denote the Nx1 array manifold vector associated with angle u
as given by '

N ' | o N-1 T
-1 . ) - -
LR e i - j==5—ul (3.25
2 cee e 2]ﬂu ,e Jﬂu’l’e_],'l'u’e2_]7l'u’ ce- e 2 ( )

The transformatlon from an Mx1 element space manifold vector to a 3x1

beamspace manifold vector achleved with the Mx3 generalized. Butler matrix
beamformer WB is described by

Waam( ) UHCH (“)'v= U?‘aa(-ﬁ)G(u) ’ - (3.26)
where o L e
| . G(u) = CH_&Mfz(u) - ’ “ o (3.27) ‘,
whlch leads to the esymptotic beamspace cofrelation matrjx given by

»
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Ry, = W‘g[ARSSAH'+ U§I3JW§_
= UHCHAR_APCU + o2UMCHCU

=U"A,RSANU + s2URCECU

=U“[A‘3RSGSA‘; %agc“cJU éﬁH_RCCU N | '(3.'28‘)'
“where ) | B | _ »
Ac=[m)im)]  am)
| RS = GRvsst*’ | E o (3.29b) |
c |G (3.291&)’
o G(uy) R

and G(u) is defined by (3.27). This states ‘that the beamspace correlation
matrix thus constructed has exactly the same compos1t10nal structure as the
element space correlation matrix except for the multiplicative matrix factor U
‘which is usually chosen to be nonsingular. Under such a condition, R is
: s1mply obtained from Ry via the following relation o

= (U*)'Ry, U™ O (3.30)
Wlth R.. constructed, ' we proceed to develop the correspondlng BDMLYI
estimators. We first consider the more ‘general nonsymmetnc multipath case.’

 Following the development in Sectlon 2.3 and 2.4, we obtam an
optlmlzatlon problem described by ' ‘ '

Ha i .

vER  v. , -
‘Minimize —iﬁ—ci—i B (3:31)
v, vc,P‘vc- : R

where  Rg = (U") 'R, U!, P=CHC, and v,  satisfies
via,(uy) = v?as(uz) =0. If v, = [vg Veo vc3] is the solution to (3.31), then
™ and ™ can be estimated as the two roots of the following polynomial -

equation: _ o
» vc(z) = v + Voo + V32t =0 o (3 32)

"To account for the fact that the roots must lie on the unit c1rcle, we 1rnpose '

.
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the constraint I;v. =v. in (3. 31), knowing that it is only a necessary
- 'condxtlon for v(z) to have unit roots. Utilizing the technique described in
Sectlon 2. 3 for solving the symmetric BDML problem, (3.31) combmed with
'th(_a conjugate centr_o symmetry constraint can be written as

H A ‘vT & A A x
ve Ree ve +ve LR I3 v .
Minimize c = = < ~3 = 3* < (3.33)
ve vI P v+ vil;PIzv,

subject to i3vc = v:

Note that v RCCVC and vc P v, are real such that (3.33) s1mp11ﬁes to

vi {R +IRI}V ’vHﬁ.fbv
‘Minimize : < ~3 ,cf EIRLA ; fcl: : : (3.34)
v, vE{P +LP I3} v, ve PUove

¥

subJect to I?,vC =’vc _

A proof similar to that given in Appendlx A shows that each of the three‘
generalized eigenvectors (GEVEC). of the matrix pencil {Rcc , be} exhibits
conjugate centro-symmetry such that the minimizing v, for (3.34) is simply
taken ‘to be the one associated with the smallest generalized eigenvalue.
Denotlng as i, 1,4 ]T the optimum v, thus found, with the mldd]e
component nérmalized to be unity, the two roots of v(z) =p+2+ 1 22 are

—-'1;'*_‘\/1—-4]/1]2

given ""b"y . ]eadlng to the following ML estimates of u,
i1
and uj:
o B — —
fy = —lny 2H V1= alel® b (3.352)
, J7 2 ] '
— — --— 2 ‘ - .
fiy = —lpy A= V1—4 [l (3.35b)
7T : 2/

Consequently, the two signals are not resolved if 1—4 I Mk >1 or I/t | <—

~ We here summanze the new BDML method for nonsymmetrlc multlpath
‘case. '
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Algorithmic Summary of Non-Symmeﬁric BDML Method
with Generalized Butler Beamformer

(1) With Wg = [wl P wy w3] =CU as given by (3.14) and

2

R,, = %I_ VY x(n)x"(n), form »l‘ibb = WER,, Wj.

n=1

(2.) Form R, = (U")'Ry,,U™! and P = C"C.
~ b . ~ At ' v ST
(3) With Re = l{RCC + IsRcclsl and P® =P +LPI;, compute

Cve=lu,1,p ]T as GEVEC of 3x3 pencil {Rcc , be} associated with
smallest GEV :

(4.) If | 7 | <-2—, multipafh signals not resolved. Otherwise:

1+V1-—4|p] _';62=;._1n{ 1-V1—4|u] ]

1

5) 1, =
()ul i

In , -
2/ T 21

The above development can be easily extended to the symmetric
multipath case with slight modification. To begin with, consider the quadratic

polynomial v.(z) with two unit roots occurring at z = e 1M

ve() = (z = &™) (z —e7™) . (3.38)

The two roots of v (z) form complex conjugate pair, implying that each of the
" coefficients of v (z) must be real, and together they must exhibit centro-
symmetry property. Combining this observation with the fact that
x"Rx = x"Re{R}x if x is real and R is hermitian, we arrive at the following
optimization problem leading to the ML angle estimates for symmetric

multipath
~ b,
H Re{R .
Minimize V; el f;} Ye - (3.37)
v, ve Re{P'®} v,
subject to I3vc =V,
vwhere Re{Rcc} and Re{be} satisfy -
Re{Rcc} = Re{Rcc}T I3Re{RCC \I; = Re{Rcc}  (3.38a)
Re{P™)} =Re{P™}T ; I;Re{P™}; = Re{P™} - (3.38b)

Therefore, (3.37) manifests itself as a problem identical in form to that
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deéscribed by (2.32). The minimizing Ve, then, is ‘th’a,t ‘centro-symmetric

generalized  eigenvector (CS-GEVEC) " of the 3x3 matrix pencil

{Re{ﬁ:tc’} , Re{be}} associated with the smaller generalized eigenvalue.

Letting [1, 7, 1] be the optimum real, centro-symmetric vector, the two roots

of the polynomial 1 + -z + 2% form complex conjugate pair and are located on

the unit circle if and only if |-]<2, in which case they are given by
1 ,

—':21 =+ j-—2— V4 — -2, The ML estimate of the direct path angle u, is then

determined by
o (3.39)

with |~ | >2 serves as a ﬁag'that‘ the algorithm failed to resolve the two
signals. . » ‘

~ We conclude this section by presenting the algori‘thmic’sur’hmary' for ‘the

~ symmetric BDML method when a generalized Butler beamformer is employed

Algorithmic Summary of Symmetric BDML Method
with Generalized Butler Beamformer

(1.) With W = [Wl' Pwg Ws] =CU as given: by (3.14) and
' . N = . - . ) . v T

% 3 x(@)x"(n), form Ry, = WHR W.
n=1

(2.) Form R, = (U¥)"'Ry,U™" and P = CHC.

. 'vAv
Rxx =

o afb A o L ,1; | '
(3) With R = {Rcc + I3Rcc13] “and bev = ’;‘{P +LP I3]7 compute

4N>|v—t

ve=1[1,~,1"T as CS-EVEC of 3x3 real pencil {Re{fiiﬁ} , Re{be}] , ‘

assoc. with smaller EV.

(4.) If |~ 1>2, multipath signals not resolved. Otherwise:

: vo. 1 “ .1 ,
(5) vug = '._’ln[—'é' +JE 4 — AY?},

it
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,'.3.4[Para'meterization ‘of'Beamspace Mdnifold Vectors

As was dlscussed in the prevxous sectlon, the generallzed Butler

beamformers facilitate simple, efficient BDML estimation primarily due to the - '

fact that the Vandermonde structure of the element space manifold vector
achleved with a linear uniformly-spaced array is achieved in beamspace as
" well. The transformation from an Mx1 element space Vandermonde manifold
vector a(u) to a 3x1 real beamspace manifold vector b(u ) using a beamforming
matnx given in (3.14) is accompllshed by a two-stage procedure. First, an
Mx3 beamforming matrix C corresponding to three overlapping subarrays
transforms a(u) into a 3x1 Vandermonde vector ¢(u) having the same
compositional form as a(u 1). Second, ¢(u) is transformed into another 3x1 real
~ vector b(u 1) by a 3x3 nonsingular matrix U". Since the second stage involves
only a nonsmgu]ar transformation, it is possible to recover the element space
* manifold vector from the beamspace manifold vector perfectly without loss of
~information by the following steps

ey = [ ;lsw]%w“)—lb(u) Gl (3.400)

| e MLy IR ' | | i M_lu (3.40b
cafu)=| T —%jmu i3 Sru 9 SR .
: ( ) et T, e A ITE y GITU QAT e __ 2 ).

“where G(u) is given by (3.27). It is then ‘clear that a(u) is fully recoverable
from b(u) as long as' G(u) # 0, which is true when u'is not equal to any of the -
M-3 common nulls. Since two Vandermonde ai‘ray manifold vectors are linear
mdependent if and only if they correspond to different angles, the above

observation may be alternatively 1nterpreted as that there exists a one-to-one
mapping between the element space manifold vectors and the beamspace'
manifold vectors except for those assoclated “with the common nulls. This
indicates that a simple- parameterlzatxon of b(u) is possible w1th a generahzed
Butler matrix beamformer.”

Consider again the equation relating (u) and b(u) as g"iven- by (3.40a).
Slnce we choose U to be such that 13U U’ and b(u) is real, we have

i (UH) lb(u) (U“I )-lb( ) = (UT) lb(u) [(:U“:)’lb(u)]*; (3.41)

: .Thns verifies that (U“)'Ib(u) exhlblts the desired conjugate centro—symmetry
- property as indicated by (3: 40a) and is real-valued as well. Assuming
G(u) #0, (3.402) implies that the first and second components of (Uﬂl}I Tb(u)

‘must have the same nonzero ‘magnitude. Thus, |u1 u)| |a,b u)|
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- where u; and u, denote. the first and second columns. of U™ ], respectlvely
This leads to

b Re{Vd} (u) =0 - (3.42)

where
[Gimim | =vr 4w
Vd = ulul -— UQUZ v (3.43b)

where we have used the fact that b(u) and u u2 are real. DehOting as b; the i-th
component of b(u), and vj; the (i i,j)-th component, of Re{Vd} we obtam from
- (3.42) the following parametric equation for b(u) :

Vi b? 4 vgabd 4 vaabl + 2V12b1b2 + 2vizbybs + 2v93bsbs =0 (3.44)

knowing that Re{V,} is real and symmetric. (3.44) represents a quadratic
surface in a three dimensional space indexed by (bj,bs,bs). It is rather
interesting. to note that the shépe of this parametric surface is completely
determined by Vg4, which is in turn determined by U. In other. words, the
parametenzatlon of the beamspace manifold‘ vectors. is completely
characterized by the uncommon nulls associated with the generalized Butler
beamformer. It should be kept in mmd however, that the generalized Butler
matrix beamformer itself is charactenzed not only by the uncommon nulls,
but also by the common nulls.

The parametrlc expression described in (3.44). simplifies greatly if - we
substitute in the respective quantities associated with the Mx3 Butler matrix
~ beamformer as given by (2.36). From (3.6) and (3.7), it is easily derived that
the U matrlx assocnated w1th the Mx3 Butler beamformer can be expressed as

_ -
o RV |
o
e Mo , e’ M
' . T 27 T ,
=F = |—2cos— —2c0s— —2c08— 3.45
U E cosM OSM 200N ( ‘ )
_j_”_ o '.j_f_
e M 1 e M

with its inverse given by
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e M g e M ' o
' _Jl"'_ ' _|-2—7r— | | |
fe M ¢ feM ]
' whoré
’ .3_ R et : - -1 ‘ .
¢ = 12c08—t — 208 —— s = |2 — 2cos . (3.47
£ cos 4 osMJ i [ cosM]‘ - ( | )

~ Substitution of (3.46) and (3.47) into (3.43) accompanied by some algebraic
mampu]atlon yields the following expression for Re{V4} for the case of an
‘Mx3 Butler beamformer

27 457

| 0 | f/(oos-I—\/I— .— 1) E(cos—ﬁ -1) |

Re{Vpa} = E|necos22 —1) 0 nleos2z —1)|  (3.48)

ey VBdy = S| M o »l M '
(cos%"— 1) 7}(cosi4; = 1) 0

It is noteworthy that Re{Vgq} has only three distinct components, 0,

47

EZ(cosﬁ —1), and En(cos—i/[l —1). Since (3. 42) is invariant under scallng,

we may normahze Re{Vp4} by its (1,2)-th component and substitute the
resulting normalized quantities into (3.44). Not surprisingly, the parametrlc
equation in this case sunplles greatly to the followmg forrn

(b; +b3)by + fbjbg =0 (3.49)
‘wh‘ero | | |
o n(cos%—l) S
8= et P (3:50)

As should be noted, (3.49) defines the relationship between the three
components of b(u) only in relative terms. That is, we can multiply b(u) by an
_»ar'bitrary scalar and still s;atisfy' (3.49). However, since we have alfea’dy shown
that two beamspace manifold vectors associated with two distinct -angles
(except for those associated with the common nulls) are- lmearly independent,
multiplying b(u) by a nonzero scalar does not cause amblgultl‘es at-all. As a
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check, we consider several cases that appear to be interesting.

(1) by = 0: This implies b;b; = 0. Three possible cases are:

2

. 2
bl#O&b3=0ﬁ3‘u=K4—
b, =0 & by =0 I u = any common null

(2) by # 0: In this case, we can set by to be unity and relate b; and by by
b - - ' (3.51
S (&8

Some interesting cases are:

b1=0&b3=0@'u=0
] +b8—0 7 4 —2
: M

It is easily verified that within the interval (—,-1\27,%), both by, and 14b; 3 are

nonzero such that b(u) can be expressed in terms of a single parameter as
given by

b(u) = b(t) = ; | (3.52)
138

Wlth thls parametric expression for b(u), we may proceed to obtain u as é
function of t. From (3.40a) and (3.43), el™ can be written in terms of b(u) in
the following fashion
_H
Cire U3 b(u)

e = —g—r (3.83)
us b(u)

which in turn leads to



76

H
u, b(u :
u = —,l—ln —:;—(—)— (3.54)
7T Uy b(u)

Upon substitution of (3.46) and (3.52) into (3.54), we end up Wwith the
following equation relating u and t for the Mx3 Butler matrix beamformer _

2 i

u= L_ (Ee My +77)( + 5t) — Ee M | '_(3.55)_
T ()14 A = & -

The above described parameterization for b(u) provides an alternative
approach to obtaining the BDML estimates from the optimum v vector
orthogonal to both b(u;) and b(u,). First, substituting into vTb(u) =0 the
parametric expression given in (3.55) yields a quadratic equation in t in the
following form

vy + (vi—va+ve At + v 52 =0 (3.56)

which has two solutions for t given by
- —(vi—v3+vy 9) ‘\ﬁ’l—"s'*‘vz —4vyVy
t’l 2 = (3.57)
’ 2V1 6

Since t must be real, we have the following constraint on the components of v

(v;—v34veB)F — 4v;ve= 0 | (3.58)

which is easily shown to 'be equivalent to that described in Section 2.4.

Therefore, a failure should be registered if v fails to satisfy (3.58). Second,

with f,l and 52 available, the angle estimates @; and G, are simply determined
by |

2T - 27 o

. ;%(&Mq+m0+%y¢th  (359a)

o (€8, +n)(1 + 84) — &
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.27 . 2R

({'em_ by + m)(1 + Bty) — e M | (3.59b)
(&6 +n)(1 + Bty) — €

" 1
Ug = —_——'ln
v

For the special case of symmetric multipath; v; = vg such that (3.57) simplies
to ' ‘ v

. v V(B — v

1,2 2\’1.6 ( )

with (vo5)? — 4v;v, <0 indicating failure. By direct calculation we can show
that 'El and %2 are related according to

A —t | . |
1+ Bty
- e
b = ———— . | (3.61b)
1+ Sty ' ' ’

which implies that the two associated beamspace manifoid vectors satisfy -
i;b(iy) = (i) o (3.62)
From A(3.59), the BDML estimate of the direct path angle is given by ‘

B e »
(e M i, 4+ )1 +6h)—e Mi (383)
(€41 + (1 + ) — &y

Substituting (3.61b) into (3.63), we get, after a little manipulation, the
following relation - -
. 277" - .27
! —J_M—A , /'A J_h—i»\
Lipde Mty +m(1+58ts)—Le "t

ﬁl = P n -
37 (€t +m)(1 + Btg) — b
2 | .'—j—éi * |
_ e Ml B~ M (3.64)
J?T

(€t + m)(1 + Bty) — @2

Since the argument of the log function in (3.64) has unity magnitude, it is



easily deduced that 4, = —i, as was expected. -

The BDML estimation procedures for both symmetric and nonsymmetric
cases employing an Mx3 Butler matrix beamformer and the parameterization
described above are summarized below. To be consistent with the notations
used previously in Chapter 2, we denote as u, and t, the direct path angle
‘and its associated parameter for the symmetric case.

Algorithmic Summary of Symmetric BDML Method
With Butler Beamformer and Parameterization

: 27
L -1 ! n(cos— —1)
(0.) £= [2.cos%4ﬁ— —2cos%~ ;o= [2 - QCOS%] ;O = . ;vi » '
V(cos-—M— )
(1) With s=[alz/Mpa0Fal-2/M)] & R Rk T xa(n),  form

n=1

R'bb—'S Rxxs : ) .
~ {b .
(2.) Compute v =[v;, vy, v;|T as that CS-EVEC of Re{R{,b}- =

| %,Re Ry + igﬁbbis associated with the smaller EV.
(3.) If (vp )% — 4v,v; <0, signals not, resolved‘

(4.) Otherwise: Wlth v and v; determined in (2.), compute t, according to: -
2 1

_ —V2»5+ \[Vzﬁ) —4vyvy

° 2V1 }f

(5.) Estimate u, according to:

: .o ’ i
J+A ~ I A
$ A (€e M to + 7)(1 + Oto) — &e M to

Uy = _—111 —
(€ + m)(1 + Bho) — €lo

jm.

'v Algofithmic\ Summary of Nonsymmetric BDML Method
With Butler Beamformer and Parameterization

) —

o , -1 -1 n(cos——- =1)
(0) €= [Zcos% - 2cos—;%] ;N = '[2 - 2cos—2N—I7-T—] i B=— ‘1:4 :
- E(cosﬁ -1)
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(1.) With Sé[a(Q/M)Eﬁ(O)Ea(—-QN)] & Ro=
Ry, =SHR,,S. -

(2.) Compute v =[v; , vz, v3]" as EVEC of 3x3 matrix Re{Ryy | assoc.
with smallest EV.

N -
VY x(n)x"(n), form
n=1

z|~

(3.) If (vi—v3+vy B)? — 4v vy = 0, signal not resolved.

(4:) Otherwise: With v;, vy, and v3 determined in (2.), compute t; and t,
according to:

—(vi—=v3+v, 5) + '\,/(\vilv—v5+v2[7’)2‘ —-4V1V2

S
1,2 2V1 A’/‘))

(5.) Estimate u; and u, accordingto:

i ='—Lln‘ (Ee Mt + 0+ 5ty) —&e M ty |
: T - ~ —
! (6l + )+ ) - €
j&'r_ L ‘ 2
n M : y " _ M A~ L
Uy = -J%lm (€e tf +n)(1 + lﬁtf)‘ ‘Ee. | ty 1
(Etp + n)(1 + Bty) — &ty

As a final remark, we note that the above described parameterization for
the beamspace manifold vectors depends only upon the uncommon nulls and
can be readily extended to other generalized Butler beamformers. For the
special class of beamformers whose uncommon nulls are formed in a fashion
identical to that associated with the Mx3 Butler beamformer, we have exactly
the same parametric equation as that described by (3.49). However, this does
not mean that all Mx3 generalized Butler matrix beamformer with the same
set of .uncommon nulls will produce the same BDML estimates since the
estimation of the optimum v vector in (3.56) depends upon selection of the
common nulls as well. To achieve good performance, one needs to assure that
selection of both the common and uncommon nulls leads to high SNR gain in
the vicinity of the two targets. It should also be noted that the two alternative
BDML estimation procedures summarized above are not computationally more
efficient than the original ones developed in Chapter 2. Rather, the major
motivation of working with the parametric expression is that it provides a
simpler way of illustrating the behavior of the beamspace manifold vectors,
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simpler way of illustrating the behavior of the beamspace manifold vectors,
which may not have closed-form expression in terms of u in general.
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CHAPTER 4
- REFINEMENTS TO BEAMSPACE DOMAIN ML ESTIMATOR
FOR COHERENT MULTIPATH

4.1 Iptroducti‘on

We noted in Section 2.4 that the performance of the BDML estimator for
both the symmetric and nonsymmetric multipath cases degrades severely in a
coherent environment when the direct and specular path signals arrive at the
center element of the array very nearly equal in amplitude and perfectly or
very nearly 180° out of phase. In addition. the BDML Method for
nonsymmetric multlpath breaks down when the direct and specular path
signals arrive perfectly 0° in-phase.at the center element of the array as well.
To overcome these problems, we propose three auxiliary algorithms for the
BDML estimator. The first algorithm presented in Section 4.2 deals solely with
the symmetric multipath scenario. The a-priori information about the
constant complex reflection coefficient in the case of coherent multipath is
incorporated in order to reduce the track breaking probability. In Section 4.3,
an ad-hoc procedure is developed for converting a. nonsymmetric problem into
a symmetric one. Estimation of the bisector angle between the two paths is
first done, followed by a secondary steering of the three beams. A novel
efficient frequency diversity scheme, which is equally applicable to both the

-symmetric and nonsymmetric cases, is then presented in Section 4.4.

4.2 Estimation of thé Reflection Coefficient

If the surface of reflection is relatively smooth, and the target is not
moving too fast in relative terms, the specular mu]tlpath s1gnal is merely a
tlme-de]ayed amphtude-attenuated replica of the- direct path signal over
multlple snapshots This condition is referred to as coherent mu]tlpath Due
to the sinusoidal nature of the returning signals, the time-delay translates into
a phase-shift such that c;(n) = pe”wcl( ), where p is the magnitude of the
surface reflection coefficient and AWV is the phase difference between the two
signals measured at the center of the array.
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4.2.1 Development of the Algorithm

Let p, = pe=? denote the complex reﬁectxon coefficient. The beamspace' '
snapshot vector in the case of coherent symmetric multipath rnay be expressedr

-in the following manner:

xp(8) = [b{uc) + b )ies(n) + mp(n) n=lN  (41)

The fact that p. is constant over the observation interval changes the
complexion of the ML formulation of the problem of estimating the direct
pa‘th angle. Indeed, it represents a-priori. information about a coherent
multipath scenario which needs to be incorporated into the ML estimation
scheme. Of course, we are assuming that N, possibly one corresponding to a

“single snapshot, is'small or the assumption of coherence may be invalidated.

We proceed motivated by the work of Ballance and Jaffer [BALL87] who

"incorporate multipath coherence into the ML estimator for low angle radar

tracking based in element space. Ballance and Jaffer found that at the expense

- of increased computation, exploitation of the coherence gives rise to an

element space based ML estimator exhibiting increased performance over that

~ achieved with the ML estimator in element space which does not account for -

PE constant. As we shall see, this is the case in beamspace as well. 'Of'course,r-

similar to the situation throughout, the beamspace domain based ML

estimator for coherent mu]tipath is dramatically less computatlonally
burdensome than the’ counterpart procedure ‘in element space: proposed by
Ballance and Jaffer. We will deal solely with the ¢ase of symmetrlc multxpath

' whlch admits a simple iterative implementation.

As before, the practlca] assumption that the noise in bea.mspace is
Gaussian distributed leads to a generalized least squares problem whxch wrth
xp(n ) given by (2. 10) is as follows o

Mimimize 5 | xa(n) = [b(so) + rebl(—wo)er(a)f (42)

»(umf'r:CI(l); T vcl(N))

subject: |pc I < 1

'where Q SHS Note that the constramt on |p. | arises from the fact that
the amplitude of the specular path signal is no larger than that of the direct
~ path. Let b(uy,p.) =b(u,) + pcb(—u,). Substituting the least square error

solution for ¢;(n), i. e., the LS solution to the equation b(u,,p.)e;(n) =xp(n),
into (4.2) leads to the following optimization problem: S B
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N xB(n) Q7b(uop )b (a,0)Q 7 xp(n)
Maximize ) = —— e
{v.r)  poi b (uoapc)'Q l?,(u"orp'c').
b¥(ug,0.)Q Rip Q' blus,pc)
b“(uo,-pc)Q’lb‘(uo,,pc)

sub_]’ect' lpoe | <1 o

where Rbb is' as deﬁned prev1ously in Chapter 2. The optlmlzatlon problem

~ described by (4.3) cannot be manipulated into & closed form expression for 4.

To avoid having to search over two variables one of which is complex, we take
a suboptlma] approach by decomposmg the problem into two single variable
optlmlzatlon problems which may be solved 1terat1vely The algorlthm is as -

follows.  Assume = an initial estimate of uo'v is available. Let

B(u,) = [b(uo). b(—u, ) and p= [1,p¢]T uch that b(uo,pc) B(u,)p. An
alternatlve expresswn for (3 3) is then - : :
' - o T 15 g - B
B R B(u,)r .
Maximize — }(I ’E‘Q‘ t_’t;Q .(UO)p (4.4).
s P'B(3)Q Bluo)r '

‘s‘ubject‘ | oc | <1

: Where we have assumed that u, is ﬁxed at the mltlal estimate resultlng in' an

optlrmzatxon problem with respect to the single complex variable Pc- Since
(4.4) is quadratic, the optlmal p. is either a solution to. the corresponding -
unconstrained problem, or it must satisfy | p. | =1. As a consequence, we

“shall ﬁrst solve the following unconstramed problem. .

oo T 1 —1 ST
Maximize pH'B uO)Q Rbe B(uO)p, o (4.5)
o pHBT uo)Q 1B(uo)p :

We note that the objective function in (4. 5) is invariant under scaling for p
‘such that the solution is to take p as a scalar multlple of the generalized
ﬁ elgenvector o of the 2x2 © matrix pencil
{ BT (u)Q~ lebQ"lB(uo) BT(uo)Q_l'B(uo)’}' associated with the larger of
“the two ‘generalized elgenvalues The optimal value of p is then the ratio of
) the second component of the optlmal p to the first component

- If the optlmal p. thus found fail to satisfy | oc | <1, ‘we lnstead solve the
equahty constrained problem glven by L
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: o -T’. -1R.. 0" :
C B o R B o ) . . B
- "Maximize }gu ,I),Q Et;Q : (u0)r - . (4.6)
S 2 VBv (uo)Q B(uo)/)v -

subject |,0c | =1

Agaln, since the cost functlon is 1nvar1ant under complex scallng, the problem

~ can be eqmvalently stated as

T 1 1 S
Maximize pHB (1)Q” Rbe Bl IR C O

e BT ()@ B(uo)p

 subject: Izp = /)* |

. w1thout loss of generality. Following a similar argument as that made in

Section 2.3 regarding Method II for symmetric BDML estimation, we easily

find that the maximizing p is a scalar mu]tlple of the generalized eigenvector

of the pencil {BT(u,)Q I{Rbb +13Rbbl3}Q lB (o), BT(uo)Q 1B( o)}
corresponding the the smaller generalized elgenvalue The optimal p. is agaln.
the ratio of the second component of the optimal p to the first component

- Next, CODSldel' the value of p. thus found to be substltuted into (4.3) and‘ k

‘the ensulng problem of ﬁndlng that value of u, which maximizes (4 3) given
- this p.. To manipulate (4 3) into a form amenable to a closed-form solution,

we invoke the relationship b(—u,) = I;b(u u,) noted previously in (2.10).

- Substituting (uo,pc)'—- (I + pd3)b(u,) into (4.3) yields the following
valternatlve expression for the obJectlve function in (4.3):

. bT(uo) Re{(l; + pdyFQ Ry QNI + Pcla)} b(u,)
Maximize - . T
b(u,) b (Uo) {13 + pI3)" Q (13 + Pcla)} b( uo):

(4.8) |

’ where we have invoked the fact that b(u,) is 2 real-valued vector and that
v (I3 + pJ)HQ" 1Rbe—1 (I3 + pcl3) is a Hermitian matrix. Note that we have

expressed - the resultmg optlmxzatlon problem as a search over b(uo) as’
opposed to a search over u, itself. . ‘We do this prxmarlly so that ‘we may
approx1mate the solution for u, by taking b(uo) to be the generalxzed
eigenvector “of the . 3x3 = real “matrix pencil

{ Re{(I; + pcda)PQ 'Ry Q7 (Is + i)} , Re{(I; + pel3 )P Q! (Is + pcl3)} }

, assoclated with the largest generalized eigenvalue. At this pomt the optimal

(uo) thus found may be substituted back into (4. 4) to obtain a new value of
Pe correspondlng to the second 1terat10n L1kewnse, the new value of p. may
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be subsequently substituted into (4.5) to obtain the estimate of b(u,) at the
second iteration. The procedure may be iterated in_ this fashion, alternating
between the computation of the largest GEVEC of a 2x2 pencil in determining
the optimum p at the k-th iteration, denoted yy, and the computatidn of the
largest GEVEC of a 3x3 pencil in determining the optimum vector b(u,) at
the k-th iteration, denoted by(uy). Of course, by(u,) is 'determined only to
- within an unknown scalar multiple. The procedure may be terminated when
" the 2-norm of the difference between b(u,) and by, (u,), both normalized to
have a 2-norm equal to one, is less than some pre-determined threshold ¢. The
specific steps-will be delineated in algorithmic form shortly.

At the end of the iterative procedure outlined above, we have an estimate
of the vector b(u,) from which we desire to recover u,. There are 2 number of
ways we may proceed to do this. An efficient approach is compute the
projection operator onto the orthogdnal complement of the yl-D'space'spann‘ed‘
by b(u,) as Pg =1— b(u, ){b(us)Tb(u,)] b (u,) and search for that value
of u such that b(u) = §¥ a(u) is orthogonal to the range of Pt . Note that due
to additive noise, P¢ b(u) is nonzero for all u and we shall instead compute u
via the following optimization problem: ‘

Minimize ||P¢ b(u)l|* = ||rj§§~ SHa(u)|? = a(u)SHPE ng(u) (4.9)

The search may be accomplished via any of the numerica_l techniques such as
Newton descent, Golden Section search, etc, and should be started at the most
recent estimate of u,.

4.2.2 Simplifications for Butler Matrix Bea.mforrrier

The use of the Mx3 Butler beamformer in this ‘case leads to substantial
simplifications. First, the noise covariance matrix Q is simply a scalar
multiple of the 3x3 identify matrix. Second, the numerical search required in
the final estimation of u, can be avoided by employing the "common nulls”
property described in Section 2.3.

Upon substitution of (3.7)-(3.10), the problem in (4.9) simplifies to .
 Minimize ||Pi Efag(u)||? = a3(u)EP5 Efa3(u) (4.10)
u

where E is given by (3.7) and a(u) is defined according to (3.25). Note that
we have assumed that u is small such that G(u) in (3.10) does not vary much
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within- the  angular region of interests. Let o =¢e™ Due to the
Vandermonde structure of az(u), (4.10) can be formulated as a quartic
equation given by : v

—2q'z*-f2 — gt 4 qw + 2q, F=0 . (4.11)

- where ql =P3(1,2) + Pe(2 3), g =P§(1,3), and P{(i,j) is the (1,j)-th -

component of P§ = EP¢ Efa;(u). The quartic equation in (4.11) has at least
two roots on the unit circle and the optimum solution is the one minimizing
the cost function given in (4.10).

The Beamspace Domain ML algorithm utilizing the Mx3 Butler matrix
beamformer modified for the case of coherent symmetric multipath is
summarized in algorithmic form below. ' '

p-Based BDML Method for Cohe'ren‘t Symmetric
Multlpath with Butler Matrix Beamformer

o 1 N,’ "

(1) With 'S = V_[ Z/M) ( 2/M] & Rxx "N Z x(n‘)x'(n),
form Rbb = sH RXXS. 7

(2.) With initial estimate of u,, form by (u,). (k=1: first iteration.)

(3.) With by(u,), form By = [bk(uo) : iabk(uo)}

(4.) Compute M = [p1 , p3]T as "largest” GEVEC of 2x2 pencil {BfRy,By,
'BfB,}. ' : , -

(5.) If |pq | <|m | , go to (6.). Otherwise:

‘ Compute - g, = [0 5 p2] as 'largest’” GEVEC of 2x2 pencil
{B{Ry,By + IszRbkaI2 , B{By + IszBkI2}

(6.) With D i = pz/pl, form J, =I5 + Pc,k13~ v

(7.) Compute by,i(u,) as "largest' GEVEC of 3x3  pencil
(Re{IFRu I}, TH i) | |

by+1(u,) by (u,)

(8) If byt (uo)ll2 ~ Tib(uo)ll

> € go to (3).

| | |  beabl
(9.) With by (u,), construct: Py =E|[I3 — —l:—lil— EH
: | | bic+1bit1
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(10.)Solve 9y —qr a4 qp P+ 2qF =0
where q; = P§(1,2) + P§(2, 3) and ¢ = Pe(l 3).
(11)8, = —In%
7 . . _
where 7~ is the unit root found in (10.) which minimizes the cost
function in (4.10). ’ ' '

Slmulatlons illustrating the 1mprovernent in performance achieved with this
estimation scheme in a coherent multipath scenario over that obtained with
the Butler matrix beamformer based BDML method outhned at the end of
Section 2.3 will be presented in Section 4.5. In closing, we point out in the
case of a single snapshot, i.e.., N=1, the two methods are the same, as one
would expect. This may be easily shown but is not done so here__for sake of
brevity. ’

4.3 Biééctbr Angle Estimation for Ndnsyrhmé_t.}riic‘Mﬁlliti’pé.th '

We noted in Section 2.5 that the BDML method for nonsymmetric
multipath breaks down when the direct and specular path signals arrive
perfectly in-phase or 180° out-of—phase On the other hand, the BDML method
for symmetric multipath theorectically performs best for AW =0°. One may
thus expect to achieve significant 1mprovement in performance at AV =0°
provided that a procedure is available to convert a nonsymmetric problem to
a symmetric one. In this section, we will develop a scheme to. estimate the
bisector angle between the direct and specular paths based on a characteristic
property of the beamspace correlation matrix for symmetric multipath. The
conversion from nonsymmetric to symrnetrlc multipath is done with. 2 second
steering of the three beams such that the pointing ang]e of the center beam is
the estimate of the bisector angle. For the sake of simplicity, we here restrict
the beamforming matrix S to be the Mx3 Butler matrix beamformer.

4.3.1 Development of the Algorithm

(2.50) describes the asymptotic form of the beamspace correlation matrix
under both. symmetric and nonsymmetric multipath conditions. The only
difference between the two is that in the case of symmetrlc mu]tlpath B
satisfies the property I3B12 =B. It is thls property which gives meaning to
the forward- backward beamspace correlation matrlx, Rbb, as’ analyzed in
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(2.53) and (2.54). Indeed, the bisector angle estimator (BAE) to be developed
in this seetion is based on the fact that the forward-backward average ln
* beamspace described by (2.33) is meaningless in the case of nonsymmetric
. multipath. Denote the noiseless component of R{R, as C®. More speciﬁcall“y', _
the BAE is based on the fact that under symmetric multipath conditions C{R)
is of rank two, while under nonsymmetric multipath conditions Cci® is of full
rank prov1ded AV is not equal to either 0° or 180° Thus, in the former case
the determinant of CIY is zero, while in the latter case the determmant of
C is nonzero. The peculiarity occurring with either AV =0° and’
A‘lf =180° is averted by employing the well known technlque of spatlal '
smoothing [SHAN85a|, [WILL8S|.

Consider the signal-only component of the forward-backward averaged
beamspace correlation matrix, denoted Cci®, under symmetric multipath
conditions. Invocation of the pyroperty I3Bi2 = B yields

clh == BRSCBT +I;BR.B 13} -

- B%{RSS + izR-ssig}BT =BRQB' (4.12)

where R® is defined by (2.54). It was observed prev1ously that R is real-
valued and of full rank equal two in the practical case where the magnitude of
the reflection coefficient is less than unity. Thus, under symmetric multipath
conditions C{}{, is a real-valued, symmetric 3x3 matrix of rank two. Hence,

det [C{}{,] = det [Re{C{R,»] =0 under symmetric multipath conditions
regardless of the phase difference AV. For thetnonsymmetric multipath case,
consider the real part of the signal-only component of the forward- backward

averaged beamspace correlation matrix
Re{CR}) = %{Bne{nss /BT + I;BRe{R, }B"I; - (4.13)

Under nonsymmetric multipath conditions, the relationship I3B12 =B does
not hold. such that we cannot simplify (4. 13) any further. We noted
previously that Re{R,}, defined by (2.51), is of full rank equal to two so long
as A\I’ is not equal to either 0° or 180°. In the case of Re{Rss} of ful] rank
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range

Re Cbb }] = range{BRe{RSS}B'r +. I3BR€ s }B 13

= span) h(ull)v', b.(»u2:) , i3b(u1), igb(U2)J

=span‘ b(uy), b(u2) b(—ull b("uzl} (414)

From ‘the deﬁmtlon of b( ) in (3.8-9), 1t is easrly proved that any’ three
members of the set of four vectors {b(u;) , bluy) ; b(—uy), b(—u,)} are

. - linearly. lndependent provided both u; and uy lie in the range ( _21\2 , 1\24 ) and :
_'u2 # =Up. This, indicates that Re{C %} is of full rank equal to 3 and, as a
consequence, det Re{C ] > 0 under nonsymmetrlc multlpath condltxons as

long as. A\l/ is not equal to elther 0° or 180°. In these two cases, Re les} is of.
rank one such . that. range{Re{Cbli,}} = span
{b(u,) = pbluy) , I3{b(u;) = b( (ug)}}, where - the "+" is. for the case
AV =0’ and "—" is for the case AV = .180°. Thus, when A\l/ is equal to

either 0° or 180° the rank of Re{C b ) is two and det [Re{Cbb }J = 0 whether
‘the multipath is symmetric or nonsymmetric. Since we ‘wish to. use
: det[Re{Cbb}] as a d1scr1m1nator between the symmetrlc and nonsymmetric

multipath cases, we employ spatial averaging [SHAN85a] [WILL88] as a
means for avertmg the peculiarity occurring w1th AV equal to either 0 or
180°. , |

Spatral smoothing is employed to insure that Re{Rss} is of full rank equal
to two regardléss of the phase difference. - In: this mode of operatlon, the
beamspace correlation matrix is spatially averaged. over a number of identical,
overlapping subarrays extracted from the overall array. The procedure

" exploits the fact that the phase difference between the direct and specular-

signals at the center of each subarray is different. We emphatlcally point out
that spatial smoothing is only recommended for the purposes of estlmatlng the
blsector angle, denoted U, between the direct and specular paths, i. e,

U = —{ul + uy }. Once, the blsector angle is estlmated, it is recommended

that the BDML method for symmetric multlpath outllned in Sectlon 2.3 be
employed w1th the modification that S\,=[ ,\( —) %1(0) &u(—,?()]l be



replaced by S = '[axl(ﬁ - ‘,?4‘) : a.xl(ﬁ"c,l:E a\l(ﬁc + Ta_)]’ Whlere ﬁc ' isf the
o bisector angleestimate A peJoratlve side effect of spatlal smoothlng is that',. '
‘the effective aperture is that of the subarray Although the reduction in

eﬂ”ectlve array aperture is not critical in the estimation - of the blsector angle,

- the correspondlng loss in resolution may ‘prove crltlcal 1n the. subsequent o
. estimation of the angles of the direct and specular paths We will outhne the

overall procedure at the end of this sectxon

The subarrays employed in spatial smoothmg are each composed of a

" number of contlguous elements, say L. Adjacent subarrays have all:but one -~ - e

element in common. AnM element array is composed M-L+1 such subarrays
~A typical number for L is -—M (WILL88]. The extract.x,on of the snapshot B

~ vector for the k-th subarray, denoted x4(n; k) k=1,..,.M-L+1, from x(n),
which contalns the outputs of all array elements at the n- th snapshot may be

- expressed mathematlcally as -

| R
(n k) Ekx( ) where: E, ={Il ~ LxL -~ = :(4.15)
o] e

, Wrth these subarray snapshot vectors, the spatlally smoothed e]ement space
-correlatlon matnx, denoted Rxx, is constructed as '

~ 1 NMSL+1 " + ' o 6
o N(M—L+1) }1 = x?,(n )xS (n ) L ( ‘)-

Finally, the spatially smoothed beamspace sample correlation matrix,’ denoted'
Rbb, is constructed as '

Ry =SYR, S, : N SRR (4.1v7)_ |
ys*h'ere o | o ‘
S, = [al (L) a,(0): 'a.,(—f-)] . o ' (4.18)

Assume w1thout loss of generality that L is odd, 8 (u) is descrlbed by (3. 25)

. with N= L Note that the three columns of S, are mutually orthogonal such

that SHS, = LI;. It can be: shown [SHAN85a] [WILL88] that the sxgnal-on]y
’ .(no noxse) component of Rbb, denoted Cbb, may be expressed as :

Cbb —BRssBH IR B ,,,_(4}.:}19) |

where
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B, _ [t (01): St (uz)] = [afu) by(uw)| (4.20)

and, more importantly,

ﬁ 1 M-L+1 1 1 ¢k . _ o= —jmu; -
Ree = ——— M PR ') where: ® = ' . 1(4:.21
ss ‘ M—L+1 k:1 ‘ss( ) w f:re | 0 i, ( )

~

R, is the effective sampled source covariance matrix achieved with spatial

smoothing. From the theory espoused in [SHANSSa], it is readily deduced '
that Ry of full rank equal to two as long as us#u, and M-L4+1 = 2. In the
case under consideration, however, where the difference between u, and uy is
quite small, fi’.ss may be ill-conditionéd making Re{fi’.ss} ill-conditioned in the

case of AV =0" ‘and AV =180°. The choice of L = —i—M corresponds to |

averaging over approximately M/3 subarrays. Simulations have indicated
that this is adequate to insure that Re{f{ss} is of full rank equal to two even
for angular separations between. the direct and specular paths as small as a
tenth of a beamwidth. ' ’ _
~ Under practical conditions, it is easily argued that that Ry, has the
following asymptotic form 3 ' '

E{Ry)} = BsRuBY + ofuls- o (4.22)

Since ébb is positive semi-definite of rank 2, it follows that the smallest
 eigenvalue of E{Ryy |, denoted AP s of,. Cyyp may thus be estimated as
~ ~ ~bb
| Cpy, =Rip = Aminls | - (423)
¢bb ~ : : ' .
where Apip is the smallest eigenvalue of Ryp,. With this estimate of the
signal-only con?}?onent of the spatially smoothed beamspace sample correlation
matrix Ryp,, Cpp is constructed according to
-fb 1= s ox
Cw = E{Cbb +I;Cppl5} (4.24)
From the arguments made previously, it follows that in the asymptotic or no
noise cases, the 3x3 real matrix Re{Cypp} will have full rank in the case of
nonsymmetric multipath, regardless of AW, and rank two in the case of
symmetric multipath. This implies that in the asymptotic or no noise cases,
~ fb L. . e .
,det[Re{Cbb }] — 0 under symmetric multipath conditions, while under

-~

: : epe fb .} . .
nonsymmetric multipath conditions det[Re{Cbb}) > 0. Alternatively, we can
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. ‘ X ~fb . ‘ .o, . . N .- -.
say that Re|C,,} is positive semi-definite under symmetric multipath

conditions, while under nonsymmetric multipath conditions, Re{ébb} is

- strictly positive definite. These observations prompt the following scheme for
estimating the bisector angle u,. First, in the formation of Rbb according to

(4.16-4.18), replace S, = [&;,(—.{-) P a,(0): a]:(—i-) | ' by-.'

S¢ = (&, (u. — {—) a(u) i oa(u + -;'i—)] to form f{bb(uc). Second, subtract '
~bb . . s . _
Aminls from Rpp(ue.)  to form Cpp(ue). Third, form
~ b . ~ ~ o~ ~ . . -
Chppl(ue) = %{Cbb(uc) + I3Cpp(uc)I3 ). Finally, estimate the bisector angle as
' | Sfb )
Re{c_bb(uc)}l

achieves its minimum value. - We state this procedure in a more

that value of u. in the interval (——-I%, %) for which det

mathematically explicit manner below.
First, the two matrix beamformers S, = [az,(_-f-)i a,(0) &1_({-)] and
S¢ = [a,,(uc - _]"’_) b a(u) ! oa(ue + —f-)] may be related through a diagonal

transformation as ‘ o
| ' ” ST = D(uC)SI. | Wh,‘.fref D(u.) = diag{ax.(uc)} (425)

~ The notation diag{a, (u.)} indicates that D(u.) is a LxL diagonal matrix the ii
component of which is the i-th component of the Lx1 vector a (u.) described

by (3.25) with M=L. The spatially smoothed beamspace sample correlation

matrix obtained with the translated beamformer ST may thus be ex_pressed as

1:;"bb(uc) = SEHﬁ'xxsnc. = SﬁD*(uc)ﬁxxD(uc)sL o (4'26)

Note that D(u.) defined above satisfies D (u)D{u,) =1, such that
S¢HSC¢ = LI,. From ‘this property it may be proved th‘af the noise-only
component of E{Rpp(u.)} does not vary with u.. Hence, the signal-only
component of Ryyp(u,) is estimated as - ‘ o
= o cbb o

' Cup(u) = S{ID (ue)RyyD(uc)S, — Aminls R (427) '
, ~ &bb ~ ’
where ‘Apip is the smallest eigenvalue of Ryy. Hence, the estimate of the
bisector angle, u., is the solution to the following optimization problem.

. | x ~ p » ~‘ * ~ - ‘ ‘, nbb .__'
Min‘ilmize det ';—Re{stlD (uc)RxxD(uc)Sl"*'ISS{,’D (uc)RxxD(uc)sLIS _>\mmI3
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subject to u, 6(——% , -1\2_/1—) : (4.28)
where we have used the fact that 1313 —13 The interval constraint on vucv
reflects the condition that the direct and specular path signals arrive w1th1n a
beamwidth of broadside to the array. Ostensibly, the objective function in
(4.28) is too complicated to allow a simple closed- form solution for ue, the,
bisector angle estimate. Thus, it appears that a 1-D search procedure is
required such as Golden Section Search, for example. However, a Simple
closed-form estimation procedure may in fact be achieved by exploiting the
result in (3.7). Exploitation of this result allows us to formu]ate the search for
.. as the root of 2 quartlc equatxon The

appropnate development is prov1ded below.

4.3.2 Simplifications of the Cost Function

S, may be factored in a manner similar to that in (3'.'7)' for S:
| | S, =HE, | R : (4.29)
where H, is the Lx3 Toeplitz matrix -

hL 0 0 ‘ o S
H =(0h 0f (4.30)
0.0 b} o
h, =[hg, by, - hL 3] is the coeflicient vector for the polynomial of -

order L-3 whose roots are the roots common to each of the three polynomials
formed with a particular column of Sy, as the coefficient vector.

’ . , _ L- . 2rm ) ,
h(Z) = ho + hlz + h2z2 + - + hL,_3‘ZL—3" = alvl n [Z '__ e‘l’_%n_ ] (4-31)

m=2

where o, is defined similar to o in (3. 5). EL in (4. 29) is 3x3 described by
(3. 45) with M replaced by L:

e T 1 T
E = 2cos(%) —2cos(%7:)‘ 2cqs(.—E—). _(4,32)
s g
—e L 1 —e L
L

- Note that E, exhibits the following properties
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| | ()isE}'-—E‘, ; (b) BL; =E, ;()IzEla—E L (4.33)
| The spatlally smoothed beamspace sample correlatlon matrlx Rbb may be v‘
|expressed in terms of H and E, as’ ‘ o

- Rbb = SPR,,S, =E“HHRxxH E EHthE o (434)
. where th is the 3x3 matrix g U
- Ry =H'R,H, —(E“) RyET  3s)

, Invokmg the result in (3. 8-9), it is easrly shown that the s1gnal only (no n01se) |
"component of th, denoted Chh, may be expressed as '

. G =AGRLG'AY  (430)
where A; is the 3x2 matrix | ‘
efj T, :e'—‘j ﬁu._; v .

As=| 1 1| (a37)

and G is the 2x2 diagonal matrix - , . N
hla(qy) 0 o -
G=| . . (4.38
[ -0 v hHal(u2)‘ ( v ) ‘
Note that (4 34) 1mp11es that Cbb and Chh are related accordmg to ,
o L Cbb =E! Cth o | - (4.39)
,Exploxtatxon of the propertles of E, described by (4 33) ylelds the result

' Re{ébb} = ?{E{léthl. + Egéhh‘E:] = 5{E§éthE.. + Eﬁséhhi'sEL]

: = E ';— Chh+I3Cth3]E E Cth - . " (440)
b | S - o | |
where Cyy, is defined as
~ fb ’ - B S
Cun =7 Chh +Ischhl3 o (s4)

- Note that the definition of the forward- backward average of Chh in (4. 41) is

different from that of Rbb in (2 33) due to the conJugate on Chh in the second '
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term within the brackets on the right hand side of (4.41). Invoking the
property that Az in (4.37) satisfies 13A3 A;, yields the following expression
for Chb

éfb 1 s o AT
bh 'é' A3GRssG A + A3 {GRssG J" Aj I3_

= A; Re{GR,,G } A} (4.42)
Let’s consider the case of symmetric multlpath wherein u, = —u,;. With

uy = —u; in (4.37), we find that A satisfies Al, =A". This property only
holds for the symmetric multipath case. Invoking this property: yields the
following expression for Re{Chh} for. the case of symmetric multlpath

~ b 1}=~fb ~ fb*
Re{Chh} = E‘{C‘hh + Chin ]
= —;—{A3Re{GRSSG JAY + A;I,Re{GRG }I2AH|

= A3 l{Re{Gﬁss'G‘} +I,Re{GR,G’ }iz] A}  (4.43)

We observe that Re{Chh} a 3x3 matrix, is of rank 2 in the asymptotic and no
noise cases under symmetric multipath condltlons It is easily shown that
under nonsymmetric multipath conditions, Re{Chh} is of full rank equal to 3.
Similar to the preceding, we can emulate symmetric multipath condltlons by
operating on Aj in (4.37) by the matrix

ei™ g 0 ‘
Wu)=| 0 1 o o (a49)
: 0 0 ej .

with u. = ——{ul + uyg }.

From these observations, it follows that the bisector angle es;clmatlon
~ procedure in (4. 28) may be equivalently formulated in terms of Re{Chh} as

Mini{uiize det[Re{W‘(uc)éth(uc)}] o - (4.45)
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~ b g ~ fb
where Cy, is determined from Re{Cyy) as _ o ;
~ fb = fb ‘ L
Cyp =EF'Re{Cwp JET' - (4.46)
This relationship is deduced from (4.40). Note that E, is ..con'structed_ "

according to (4.32) and is easily inverted. More 1mportant]y, note that

‘whereas D(u.) in (4.28) is LxL, where L is the number of elements in each
‘subarray employed in the process of spatial smoothing, W(u.) in (4.45) is only"

3x3. As a consequence, the optimization. problem posed in (4.45) is much

easier to solve than the equivalent one posed in (4.28). In fact, it is shown in

Appendix A that the solution procedure is tantamount to solving for the roots o

J2|u

of a quartlc equation. Let >\c = e . It is shown in Appendlx A that >\c is a

root of the polynomial

(>‘)—‘2P0—P1>\+p1>\ +2P0\4_0 : _ (447)'

fb
where the coefficients p, and p; are a function of the components of Chh,

denoted [Chh] , ,j=1,2,3.
' ~ fb 2"[~fb] [~fb] '[~fb]2’ '-;' PR
- 1 =1&el ¢ (448
Po = [Chh]lz Cinf . = (Cm),, (Cr)yy ‘7(. )

fbb 2
65,

It is easily shown that at least two of the roots of p()) in (4.47) lie on the "uﬁi‘t

~ fb ~fb'v ~ fb )2 -
C J —2[0 ] [C ] 4.49
ei) -elen) (en),

pp =2

‘circle. Thus, >\ = eJ2 i is that root lying on ‘the unit circle whlch mlmmlzes'
the objective function in (4.45). '

Once, the bisector angle is estimated, it is recommended that the BDML
method for symmetric multipath outlined in Section II be employed with the
modification  that S, = [au( %) Ev a,(0): a_\n(;z;)] “be - replaced by

S§1 = [a»!\l(ﬁc "Tza’) Day(de) i ay(d + —2—)]. A summary of the symmetriZed.

M
BDML method is delinea’ped below.



Algorithmic Summary of Symmetrized BDML Method

With L:%M, S, = [ax.(“‘%)z a,(0) aL(‘IZ;)], and N snapshots x(n),

n=1,...,,N, form

, o] (k—1)xL
xp(n;k) = ST Ef x(n) where: Ey = |1 LxL
. . 0| (M—L—k+1)xL
k=1,..,.M-L+1 ;" n=1,.,N .
C R 13 T S koxd sk
onstruct = —— \ ) ;k)xg(n;
bb NM—Lt+1) = = xp(n;k)xp (n;k)

~ bb ~
compute Api, as the smallest eigenvalue of Ry, and form
= fb ) I s~ = ~bb
Cob =5 {‘Rbb + I3Rpp 13J — Aminls

~ fb ~ fb
form Cy, = E 'Re{Cy,, JE[’ where E, is given by (4.32).
.) Compute roots of p(}\) = —2p. —P1r + p A + 2pgr? = 0 where

. ~fb )2 - fb - fb ~ fb )2
- (en), (o), - ek, leh)
Po (Chh] hh |, hh |, |Cbh

12 13
TS S b fb )2
—s|(eh) | (eR) —2lem), ()
P: ‘ bh 12 hh 13 ‘ hb nt hh 12
i =—1—ln($\c), where . equal to that root of p(X) having unity

j2m
magnitude for which det [Re{W*(kc)é;iW(kc)}] is minimum where

A

O *

0
W) = 0

o = O

0
0 A
With S, = [a_\4(ﬁc - Ti—) : 3-\1(ﬁc) : am(ﬁc + Tz,f):ls form

1 N _ :
Ry, = < Yxp(njxi(n)  where: xp(n) = S5 x(n)

Compute v = [v;, V2 , vl]T as that centro-symmetric eigenvector of

~ b . . =
Re{Ryp} = —;—Re Ry, + I3RppI;3 { associated with the smaller eigenvalue.
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(9.) estimate u, according to

—

v — 2vycos(—)
._]< © M o 1 ’

27 w
m—-) - QVICOS(K/I—) ’

>

Vg cos(

(10.)finally: 4; =1Q, + G, ; Gy = =0, + U

4.4 Performance Improvement Via the Use of Frequency Diversity _

We noted in the previous section that the performance of the BDML
estimator for both the symmetric and nonsymmetric multipath cases degrades
severely in a coherent environment when the direct and specular path signals

‘arrive at the center element of the array very nearly equal in amplitude and

perfectly or very nearly 180° out of phase. In addition, the BDML Method

for nonsymmetric multipath breaks down when the direct and specular path

signals arrive perfectly in- phase at the center element of the array as well.
Provided the appropriate hardware is available, one of the obvious ways to
avoid having the track broken under either of these conditions is to employ
frequency diversity [KEZY88], [SKOL80]. In this case, the radar transmitter
emits multiple narrowband signals spaced in frequency with the frequency
spacings judiciously chosen so that the phase difference occurring at the center
of the array at' each transmission frequency is significantly different from
frequency bin to frequency bin. Depending on the system hardware, the
pulses at the various frequencies may be transmitted simultaneously and/or in
rapid succession ‘corresponding to frequency hoppmg An example of a real
radar system where frequency diversity is employed is the Multi- parameter
Adaptive Radar System (MARS) described by V. Kezys and S. Haykin
[KEZY88]. This experimental bistatic radar array consists of a 32-element,
horizontally polarized linear array operating coherently over the band 8.05 to
12.34 GHz. Each antenna element is followed by two receiver channels
allowing for simultaneous reception on two separate frequencies: one fixed at
10.2 GHz and the other agile over the band 8.05 to 12.34 GHz in 30 MHz

steps. Many - defense radar systems employ frequency diversity in some

manner as well
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~ Let T, denote the frequency for which the' M elements of the array are
~ spaced by a half-wavelength; fo will be referred to as the reference frequency.
~Consider J-1 additional frequencies denoted fj, i= 1,...,J-1, employed such that
“for a given observation interval 'a total of J distinct frequencies are .
transmitted. We are here assuming that the same M element array described
in Sect. II is employéd for all frequencies. This, of course, has practical
. implications with regard to the range over which ‘the frequencies may vary.

We simply note here as an example the parameters ‘of-t'h'e MARS system cited
~above. We will assume that during the observation interval, IN; snapshot
vectors for the transmission frequency f;, denoted x(n ;1;), are collected.
‘Ag’ai‘n,‘ N;, i=0,..,J-1, may be as small as one in some p,ra'ctica]‘situations.

- Now, for the sake of generality, consider the nonsymmetric 'multipath
scenario.. Similar to before, our goal is-to compute the ML estimates of uy and
u, -given. as data the beamspace snapshot .vectorsva('n s £,) = SP({f)x(n ; £),
i=0,...,J-1, n :‘——1-,.._.,N-,,i‘where S(f;) is.an Mx3 beamforming matrix which, as

' implied, may be different for each frequency. To this end; let a(u ;1;) denote

~ the element space manifold vector associated with the frequency f;, i=0,...,J-1.

" The element space manifold vector for the reference frequency, fo, is described
by (2.2). ‘a(u) in (2.2), now denoted a(u; fo), may be easily generalized for

- frequency values other than fy. The result for fj, i=0,...,J-1, is as follows: '
PO [P I Sl S L e T(4 50)

.a(u§fi)= ST e T e L Tle e, r, | 4-20)

- Note that the difference between a(u ; f,) and a(u ; fo) is simply a scaling of
- the argument which is illustrated 'by observing that 'a.(—fo-—'u s £;) = a(u;fo). ‘

Now, given S(f;) the beamspace manifold vector associated with frequency f; is

 simply b(u;f;) = SH(f,)a(u ; f;) with a(u; f;) given by (4.50). A development

similar to that which lead from (2.22) to (2.24) leads to the result that the
BDML estimates of u; and up may be found as the solution to the following
- optimization problem: . ' S

_ -1 N | v | . ,
Minimize 3 3 xf(n;f;) Q“1/2(fi)'Pi=Ei“,(u1,uz‘;fi)Q’_]/z(fi)xB(n;fi) (4.51)
U jogp=l : D

b,“whier,e Q) ="SH(fi)S(fi) and Pg_(u;,u; ; f;) is the projection operator onto

" the “orthogonal = complement of ~the span of ’Q—1/2(f;)b('u1_:fi) and

Q’l/z(fj)b(uz ; ;). Due to the dependence of P;';;"‘,_(ul,uz ; ;) on the index i, i.

e., on the value of f;, we cannot formulate a closed-form procedure for the



focusing matrix is

100

'BDML 'e_Stimates of u'l‘ and uy, the solution to (4. 51)' similar to the BDML _
Method outlined in Section IIl. The best we can do is to convert the ob_]ectxve S

function in (4. .51) to a sum of ratios of two quadratic forms of the type-in -
(2.45) giving rise to a set .of coupled optimization problems It is our goal here
to retain the computational simplicity of the BDML eStimation schemes
outlined previously while - still incorporating m a coherent manner- the

" additional data provided by the use of the auxiliary frequencles In partlcular, -

we would like to achieve simple, closed-form expressions similar to those’

.'obtalned‘ previously in the case where the beamforming matrix is of the Butler ,
type in (2.36). To do so, we invoke the coherent signal subspace concept
~developed by Wang and ‘Kaveh in their extension of the MUSIC algorlthm for

Wldeband sources [WANGSSJ, [HUNGSS]..

'”4.4.1 Coherent Signal'Subspace PrOcess‘i'n'g

In a nutshel] the basic idea behlnd coherent s1gnal subspace processmg

:applled here is to apply a matrix transformation T, to xp(n'; f; ) such that if
7_ xp(n;fi) = = ci(n; f)b(y sf) 4+ eofn; £;)b(uy ,f)+1/(n ) then'
Tixg(n; f) = ¢ (n; fi)blu; ; fo) + ¢y(n; fi)b(uy ; fo) + Tin; f;). That i is, -

we attempt to translate the signal information at each of the aux111ary‘
frequencies f;; i=1 J-l to the reference frequency fo where it may be

~ coherently comblned It is apparent that the matrlx T must satlsfy the
. followmg relatlonshlps ' e . SRR ' ‘

T b(ul,f) = (ul,fo) and Tv-h(u2;f')‘=_b(u2;fo) 1=1,,J-—-1 ‘(4.;52)
A matrix satxsfymg (4:52) 'is referred to .as a focusmg matrix. With
B, = [b(ul' i fi): bug; f,)], =0,...,J-1, one pos51b1e ch01ce for for the

T, BO[BTBJ Bl il (483)

Note that T; in (4 53) is a real 3x3 matrix. Now, the cumulatlve effect of the‘

) coherent signal subspace transformations: applled to each of the beamspace :
' snapshot vectors may be equlvalently 1rnplemented as a transformatlon on the
. beamspace correlation matrices. ‘The end result is that the BDML Method: for

"nonsymmetrlc multxpath outlined in Sect. III is ‘executed’ w1_th the coherently

‘ iq 3-1
comblned beamspace correlation matrix Ry=— M T, R (f; )TT, where
i= 0

_Rbb(f )= SH(f ) Rxx(f ) S(f; ), i=0 J-l as opposed to belng executed thh .
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‘the beamspace correlation matrix at a single frequency. Note -that in this

formulation Ty = 1.

To- briefly illustrate the eﬂicacy of the coherent signal sfubspacé approach,

~ consider  the asymptotic form of Ryy(f;) which, based on (2.50), may be

expressed as -

Rus(fi) = B Ra(1)BT(5) + o2 SH(1)S() (459

v‘v‘vhere B(f;) = [b(ul;fi) :

b(liz;fi)], i=0,...,J-1. Employing the ideal focusing

mapricés in (4.53), we ﬁnd that Ry has the folloWiﬁg. astpt’,Otic form:

. - 19-1 .
Ry =73 % TRy ()T
| T2 »

: .
130 o n enT T 1971 4 H(EAG (1 '

=3 3 TiB(f;)Rss(fi)B” (H)T] + 5 X0, TS (£)S(f)Tv
i=0 . DS

©1=0

1=0 -

- B(fo){ | J§Rss(f;')] BT(1,) + 15 ot Q)T

‘ | i=0

Tl

SBERBT W FQ e

~ where, as implied, Ry is the algebraic average of the source covariance

matrices R, (f;) associated with each of the frequencies fj, i=0,...,J-1. (4.55)
implies” that R, is the effective source cbvariaﬂce matrix achieved with
coherent signal subspace processing. For a single fréquency, Rgs(fi) is of the
form in (2.49) with AV replaced by AV;, the phase difference occurring at the
center.of the array at frequency f;, i=0,...,J-1." The success of this frequency
diversity scheme in combating the rank deficiency problems occurring with the
BDML estimator for nonsylvnmet_ric,‘coherent multipath hinges on AWY; being
different for each transmitted frequency. If this is the case, ﬁss will be of full
rank equal to 2, as will it’s real part, as long as at least one additional
frequency is employed. With Ry of » full rank, the aforementioned problems
are avoided in accordance with arguments providéd in Section - 2.5.

~ Furthermore, an argument may be provided similar to that for spatial
. smoothing in [SHANSS], [EVANS2] that as the number of frequencies J -

" increases, R appi'o,aches the highly desirable diagonal form, provided the

‘frequencies are chosen judiciouély, As far as combating signal cancellation is
) Canefﬁed, it is, of course, highly desirable that the freq‘ilenciesﬂbe chosen such
" the probability of AW; being approiimately equal to 180° at more than one
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;,frequency is qu1te low.

A point glossed over earlier is that construction of T, accordmg to (4. 53)
lrequxres knowledge of the angles ‘which we are trying to estimate. This
'suggests an 1terat1ve procedure wherein we begln by constructing an initial set
“of focusing matrices based on some coarse estlmates of the angles. Proceedmg

:with the initial set of focusing matrices yields estimates of the angles

corresponding to the first iteration. ‘The new pair of angles are used to
construct an updated set of focusing matrices which, in turn, yield - the

- estimates of the angles at the second iteration. The procedure is then lterated‘ -

until the absolute value of the dxﬁerence between respective angle estlmatesv
obtained at the (k+1)-th and k-th iterations is less than some threshold for

 both the direct and specular paths. As the angles of interest in the low-angle

trackmg problem are w1th1n a beamw1dth of broadsrde, the initial estlmates of
u; and u2, denoted u? and ud, respectively, may be taken to be zero. With -
uw? =ud =0, the initial set of focusing matrlces ‘must  satisfy

T, b(Of) = b(0; fo), i=1,...;,J-1. At this point, let us specxahze and consider -
only the case where the Butler matrix beamformer is applied at each

frequency. To this end, let up denote the angle of the upper aux111ary beam :
"’formed at frequency f; such that - ' '

,S(fi) =[ (uB ;s £) ¢ a(O f) a(— uﬁ. ,f)] | 1=0 J_1 (456)

Y.Invoklng the prev1ously cnted property that a(u; f; ) in ‘(4 50) satisfies
By
a(.——

U fi) = (u fo)a it follows that a Butler matrix is achieved for each,
] L

»frequency if up, —'fi:-%d-, i=0, J-I In' this case, the columns of S(f) are :
. 1
orthogonal for each f; ‘such that Q(f;) = SH(f )S(f ) =ML Furthermore, with
this selection of up,, it follows that S(fi) = S(fo), i=0,...,J-1. We will invoke -
this property in the outline to be presented shortly A_nother consequence of -
"this choice of beamforming matrices is that b(0;f;) = b(0;fo) for all'i such that
‘the 1n1t1al focusing matnx for each frequency may be taken to the 1dent1ty '
matrix, i. e, T; =1, i=0,...,J-1, at" the first iteration. Flnally, the use of the
‘Butler matnx beamformer at the reference frequency, fo, allows us to solve for
} the ‘estimates of uy and Uy at each iteration via the roots of a quadratic B
equation accordnng to the BDML method for nonsymmetric multlpath outhned ,
“in Section 2. 4. ‘An outllne of ‘the ‘coherent signal subspace modified: BDML'
" Method for nonsymmetnc multnpath employing frequency dlvers1ty and a‘
Butler matrix beamformer at each frequency is delmeated below
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Coherent Signal Subspace Modlﬁed BDML for Nonsymmetnc :
Multlpath with Frequency Diversity and Butler Beamformer g

‘ _ Initialization:
(1) With S = [a( )¢ a(0; f): a(~2 5 fo) and
Ry (f;) = ﬁl]— ‘]\}1 (n £,) x"(n ; f;), construct o
| nl_ibb(f) — S*R, (1) S, i=0,.. i-l.
(2.) (a.) k=0. (b.) uf =u(2) =‘-‘O. (c.) Construct Rbb‘— ‘-II-JLI ﬁbg( f;)

. _ 1=0
" and assign Q =1L v
. - ‘ | o Iteration:
© . (3:) k=k+1, compute v = v, V2; ; "v3] as GEVEC of pencll {Re{Rbb} Q)
' assoc. with smallest GEV.
(4.) a= Ei where:

n .

’ RREEYE ive . i
Capm e W dvy —vy M & a =2 vs)eos() — 2acos(p)

—1 +j.\/4|a|2.4s-'1

A _ T S
() =5 =it

_—1—j.\/4|a',|2——1 . 1, 'y

2 = 200 | Uz T n{is} |
(6.) If ok —uk? fulé",_ll.<6,'then 0, =uf and 4y = uk.
. STOP! | | T

,‘f (7) With Bi = [b(ulf ; £) b(ul2‘ ; f-,)], i=0,...,J-1, construct the .focusing
S -1 ,
matrices T; = By [B?Bi] BT.

» . o : - J-1 A
(8) With  To=1I,  construct Rbb - % Y TRpp(f)TF  and
) Y i=0 N

"__2 TTT GOTO(a)
|==0
Note that the construction of Q in (8 ) assumes that the expected power of the
' noise’ 1s the same for all frequencles, i. e, 0,21 0= 0,21 1= —O’n j—1- If this is not

o ‘the case, two modlﬁcatlons to the above algonthm shou]d be. 1ncorporated
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,Flrst the 1n1t1a]1zat10n process should mclude an extra step in'in whlch (Tn s

lestlmated as the sma]lest exgenvalue (EV) of Rbb(f ), i=0 ...,J 1. Q in (8)
J=1 - S L
';should then be computed as Q %E ﬁ,T TT As a side note on this . .
. l O ’ ' .
- matter, we pomt out that Hung and Kaveh have proposed unltary focusmgb'
:‘matrlces in [28]. If we could restrict T,, i=1,...,J, to be unitary here, equality.
~of 0’,“ for all i would not be: requlred for the algorlthm above to work‘,

MI=1 ‘ ’
properly as Q .——L MfTﬁ,T TT —{'J—,\_J ‘Tn,i]l such that @ may be
1=0 ' T . ’ S

‘normalized to be equal to I at each iteration. However, the 2-norm of
b(u; ; f;) varies with f; such that ﬁndmg a unitary matrix T; which satlsﬁes" ‘
Tib(u, ; f;) = b(u; ; fo) is, in general not possible. Recall that the 2-norm of
a vector obtained by pre-multiplying another vector by a umtary matrlx is the
same as that of the onglna] vector.

Summarlzlng at this p01nt we note that the beneﬁts reaped from the ,
utlllzatron of the coherent signal subspace concept in the case of low angle
radar tracking with frequency diversity are two-fold. First, the ‘frequency
diversity facilitates diversity in the phase dlﬁerence occurring at the center of
the array which, when exploited by the coherent 51gnal subspace processmg,
“serves to- lessen' the probabrhty of track breaking. Correspondlng]y, the ‘
" focusing matrlces serve to coherently combme the sxgnal energy contained in

.the various frequencles while, at the same time, the noise energy in the

" different frequency bands is comblned in an mcoherent fashion. The second
" beneficial aspect of coherent signal subspace processing is that it expedites
computational simplicity. The only growth in computation with respect to
‘single fréquenéy operation is the computation and implementation' of the
focusing matrices. This claim is somewhat tempered by the fact that the.
.‘focusing'matrices are not known a-priori which gives rise to an viterative_'
procedure - and, hence, -additional computation. -However,  similar ‘to
‘observations made by Wang and Kaveh in the case of coherent signal subspace
processmg applied to passive MUSIC for wideband sources, we find: that the
estimates converge in just a few iterations. Along the lines of computatlonal
complexity, we should - point out the dramatic advantage of worklng in
beamspace as opposed to worklng in element space. If we were to employ’
‘,frequency dlverSIty and coherent signal subspace processing in element space,
the focusing matrices would be MxM and complex whereas in beamspace they
are real and 3x3, re.gardless of the number of elements. Also, with Butler
‘matrix beamforming, the angle estimates obtained at each'iteration are simply -
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computed via the roots of a quadratic equation as in steps (4) and (5) in the
a]gofithmic summary above. As pointed out previously, a c']os_ed-fc;rm: solution
for the ML estimates in the case of element space processing is not possible
even if the IQML algorithm is employed. ' | .

4.4.2 Beamspace Manifold Invari#nce Technique

At this point, we introduce an intriguing “variation .of the frequency
diversity scheme outlined above in which we choose the‘ auxiliary frequencies
in a judicious fashion so as to effectively force the focusing transformations
necessary for coherently combining‘i‘ the signal information at the reference

- frequency to be exactly equal to a kniown scalar mu]tiple of the identity matrix

for all J-1 auxiliary frequencies, i. e;; T, = w1, i=1,...,J-1, where w; is known.
With the focusing trahsformations known ‘a-priori there is no need to iterate

~ as in the procedure outlined above, i. e, perfect "focusing” is achieved at the

outset such that the computational complexity is the same as that for single

- frequency operation. In addition, if the respective Butler matrix beamformer

is employed at each frequency, the problem of estimating the noise power at
each frequency is avoided as well. This follows from the following argument.
Wwith T, = w;1,.i=1,...,J-1, and Q(f{) = st(f))S(f;) = ML, i=1,...,d-1, then
o 13T oy 2 LA wiMoZ,
Q- 73 TR =7 wiMionir T (4:57)
o Y= =

such that 6 may be normalized to be equal to the identity matrix. Thus, the
new procedure has some very attractive advantages over the frequency
diversity scheme employing coherent signal subspace processing developed
above. However, there is a trade-off for achieving computational simplicity:
the choice of frequencies with the new scheme is limited to those frequencies

which satisfy f; = -If\—;—fo where M, is an integer less than M, the total number
i :

of array elements. For example, with 2 M=15 element array, the auxiliary
frequencies would be limited to 1.0714fo, 1.154f,, 1.25fy, 1.364fg, and 1.5fo,
1.667fy, etc. In the former method, the choice of the values of the auxiliary

frequencies was only limited by the capabilities of the hardware not the
“algorithm itself. The reason for the restriction on the frequency values

imposed with the new scheme is due to the fact that it is based on keeping the

shape of the array patterns associated with each of the three beamforming

weight vectors at each frequency ‘the same for each frequency, to within a
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scalar multiple, in the general vicinity of broadside. Along these lines; we
present the following argument. R

"Consider a beam steered to broadside at the reference frequency with
rectangular weighting. Recall that the reference frequency f; is that frequency
for which the M elements of the array are spaced by a half-wavelength. The

. ‘ : ; 2
nulls of the associated array pattern are located at u = =% m—ﬁ, m=‘l,...,-"—‘2ﬂ-.

If the frequenéy is increased with all other parameters fixed, the arréy pattern

becomes “narrower”. The nulls of the array pattern associated with frequency

f, are located at u ==+ m——, m=1

™ Loy oo However, if we operate at f;
i , . ‘

‘but only employ a subarray of M; contiguous elements, where, of course, M; <

M, ‘the nulls of the aséociated,array pattern are located at u = =+ mf—-l—\-/l—,
. i 1.

m———,i,...,—-g_-. Thus, if we wish to keep the location of the nulls occurring

| with frequency f; the same as those occurring with f; and an M element array, -

we may employ a subarray of length'Mi and choose f; = %—fo. We now
i :

. ‘illustrate the advantage of doing such with regard to coherent signal subspace
- processing.

Let the element space manifold vector associated with frequéncy f, and a
subarray of M; contiguous elements be denoted a(u;fi,M;). a(u;fi) in (4.50),

~ now denoted a(u ; f;,M), is easily generalized for subarrays of” length M; as

follows: | ‘
, o T
. . M'l—l f", . M,—3 fi ) .Mi——3 f; u j~ Mi—___fi.u
aluf M) = | ir—y it e =T
(u3fi,M;) e 2 , e “ ey L e - ‘
if M; is odd
, _ 7 o
- M; R TR CM 5 u '
' —jF—— S —jr— 7= T —
a(u;f;,M;) = | 77" T T T (4.58)
e Yy een , € y ey € _

if M, is even.

Further, let S(f;,M;) denote an M;x3 beamforming matrix to be applied to a
subarray of length M; at frequency f;. With rectangular weighting, the
general form of S(f;,M;) is as follows: S o

S(f;,M;) = [a(ﬁa..';fi,M_i). P a(05f;,M;) | a(“uBﬁfi,Mi)] i=0,...,J—1. (4.59)

RS

The attendant beamspace manifold vector b(u;f;) = S¥(f;,M;)a(u;f;,M;) for
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i“:,_—.O,...,J-l', may be expressed in the following form:- ‘ I l

f. -] - = I :
T 5 . TN R

. ) 3 ~M»,___ - 5. )
M,—2 ——fo u] sm[ LT (11+ uB,).

(4.60)

R I
‘;;T(u+uf7l) [

(]

?—f”—u] _ - sin
where M, is simply M, the number of elements in the entire array. Now, in
the low-angle radar tracking scenario, u and up, are quite small such that we
may invoke the approximation sin(x) = x for x<<1 in the denomlnator of
each the three components of b(u f,) in (4. 60). This approximation is
tantamount to approx1rnat1ng the respectlve array patterns assocxated W1th
- each of the wexght vectors a.(uB f,,M;), a(0;f;,M;), and a(—up, £, M, )as a sinc
function for small values of u, i. e., in the V1c1n1ty of the malnlobe and first
sidelobes. This, b(u,f ), i=0,...,,J-1, in (4 60) may be approxunated in the

following fashion: :
.

fi . : L7 ‘fi e T f} o .
a (u'_u}‘ﬂi)]' _s'in[Mi'—;-r-_v_u] _sin [M"é- —i_;)—i(uet-u}:i‘)'
fi | g ’ - —

?(F-UB;) ;_ ?u —2-(u+u};?)

(4.61)

Note that in making. this approximation we have assumed that -fl is on the
Ip

order of unity as dictated by practlcal considerations. Observing (4.60), we

note that if up, is chosen to be the same angle for each frequency and fiand M;

- satisfy M;fj = Mfg, 1-—1 wyd-1, b{u; f) will be identical for all J frequencies to
‘thhln a known scalar multiple, i. e., b(u;fg) = —b(u f) for 1—1 yd-1.
Hence, the appropnate focusing matnces to achleve coherent comblnlng of the
‘,s1gnal mformat]on at the reference frequency are T = TI i=0,...,J-1, such

0 ,
that - the coherently combined beamspace correlation matrlx is simply

‘computed as

F A L
Rep ——E [ 0] Ry (f)-

|=0
= Tlf i [ ) ] SH(anl) ﬁXX(fl "Mi) S(ann) . (‘4‘.62)

where ﬁxx(f,,M,) is the sample correlation matrix formed from the outputs of
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a subarray of M, contlguous elements. Note that an M element’uniformly- v
spaced array is- inherently composed of M-M;+1 identical subarrays of M;
contiguous elements It would, of course, be nonsensical to utilize just one of
~ these. To remedy this apparent dilemma, we recommend that spatlal‘ |
smoothlng be performed over the M-M;+1 subarrays of length M; and that the
'resultmg spatla]ly smoothed correlatlon matrlx denoted- Rxx(f,,M ) and deﬁned R
by ,

. R L MM - |
; k=1 : o o
o]  (k—1)M;
where: E, = {1 M;zM;

0 '(M—M-—k+1)xM.

'replace Rxx(f,,M) (4 62). Note that Rxx(fl,M) in (4.63) is the the sample
correlation matrix formed from the outputs of all M elements of the array at '
frequency f;.

- Now, one of the st}pulatlons in the above development is that up, be the
same for all frequencies. If we choose up, =—1\2Z, then a Butler matnx

‘beamformer is achieved at the reference frequency such that u; and u; may be
simply determined from the roots of a quadratlc equation. Furthermore, 1n

turns out that with up, = —1\27 substltuted in (4.59) for =0,...,J-1, we find that
a Butler matrix beamformer is achieved at each of the auxiliary frequencles' :
f, = %fo. ’I‘his follows from the fact that a(u ; fj,Mi) as defined by (458)

i

satisfies a(u ; f; , Mj) = a(Tl—u; fo » M;) such that
, B S Mo

(i; , M) =a(+ fo fo,M)—a(i——M—, 0, M) (4.64)
| where in the far rlght side we have used the fact that foM- =f;M;.. For M;

elements uniformly-spaced by a. half-wavelength correspondlng to the
reference frequency fp, it follows from previous arguments that the vectors

(M fo,M) a(O fO,M) and a.(—-—— fo,M) are mutually orthogonal and

' the polynomlals formed from them have M-3 roots in common. As a
consequence, _ (f) —SH(f,,M )S(f,,M) where S(f,,M) is defined by (4 59)
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2

with up, = IV is .identically equal to the 1dent|ty matrix for each of the

aux1hary frequencies. Thus, Q may be taken to be the 1dent1ty matrlx in
accordance with the result in (4.57).

The development above leads us to the fo]lowmg 51mp11ﬁed versmn of the

prev1ously outlined algonthm emp]oymg coherent 51gna] subspace processmg

in con_]unctlon with frequency dlver51ty when the aux1]1ary frequencies chosen

1

M
satisfy f; = ﬁ—fo where M, is some 1nteger less than M.

(3)

(4)

v'(st.) |

Beam Invariant, Coherent Slgnal Subspace Modified BDML for
Nonsymmetric Multipath with Frequency Diversity

Select iateger M, < M and compute cbri’esponding f; :%—fﬁ,
M

i=1,...,J-1, and construct

S(fi,Mi)v[( £M)' 8(08,M,) (;'fl;M,)]

and Rxx(an) = ) x(n;fi) XHv(ﬁ;fi)

M- M+1

) Ri(fi, M) = o > E{Rxx(f,,M)Ek where

M-M;+1
o (k—Ul‘Mi
E, = |I M;zM, T i=0,...,J—1.
0| (M—M;—k+1)zM;

With Ry (f;) = SP(f,,M;) R (fi,M;) S(f;,M;), 1=0,...,J-1, constructs:

. 2

— 1 J-1 f

Rypp = E ( ] Ry (fi) -
1=0

Compute v=[v,Vs, va)T as EVEC of 3x3 matrix Re{ﬁ‘bb} assoc.
with smallest EV. -

= So where: -
qQ

. T . .
—j=— —

27

i : T '
do = —Vi € M fvg—vze M &q =2(vi + Vs)cos(ﬁ) - 2V2°°S(ﬁ')-j
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- 4.5 Computer Simulations v

Computer simulations were conducted to demonstrate the performance of -
each of the three auxiliary procedures proposed in this section. The array

employed was linear with M=15 identical elements uniformly-spaced by a

~ half-wavelength. Each execution of the BDML algorithm was conducted with

‘N snapshots collected over an interval in which the complex reﬂectron'
coefficient, p., was constant corresponding to a coherent multipath case. In the.

~ simulation model, p = |p.| was assumed to be 0.9. A 15x3 Butler

beamformer of the form (2.36) was used to transform the 15x1 element space |

snapshot vectors to 3x1 beamspace snapshot vectors. Finally, the additive
noise was modeled to be spatially white Gaussian and uncorre]ated with the '
recelved signal echoes. '

4.5.1 Simulations for ﬁ-based BDML Scheme

This simulation demonstrates the 1mprovement in performance attrlbuted
“to the aux111ary process of estimating the reflection coefficient. The target'
~elevation was 2° or 0.26 beamwidths, the SNR was fixed at 5 dB, and N = 10.
VIn each of the 100 independent trials, five iterations were performed to obtaln.
the estimate of the beamspace DOA vector b(ul) ‘The means and standard
deviations of the resulting estimates are listed in Table 4.1 for six different
phase differences. For each of the six cases, we find that both the bias and the
deviation decrease with the p-based estimator relative to the original one. The
disparity is greatest for. AU—180° and is negligible for A1 close to 0°. This
.clarlﬁes our earlier statement that the p-based method is best for Az,u close to
180°. Notice that in addition to the reduction of bias and variance, the
‘number of outliers reduces for AY=157.5° and 180°. An outlier is registered
 whenever the angle estimate is greater than 7.64°. In other words, the |
resolution cap’ability has been improved and the probability of loss of track
has been reduced to a great extent. Note that in this case, the number of
failures does not reduce. This may be attributed to the fact that for u=0, ‘the
p-based BDML estimator . cannot not distinguish between single path and_
"multlpath cases. : < L
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Table 4.1 Comparison of the performance of the original and the j-based
' -~ BDML methods for symmetric multipath with M = 15, N = 10,
SNR = 5 dB, and #,=2°. 6 and & represent the sample mean
and sample standard deviation in degrees of the estimates from
' 100 independent trials. For each trial, five iterations were

executed to get-the estimate of b(u). '

Without p , With p
Ad )
[ o # outliers [ a. # outliers
0° 2.0014 | 0.1748 0 2.0014 | 0.1748 0 .

45° | 1.9942 | 0.1959
90° | 1.9744 | 0.2668
135° | 1.8816 | 0.5858 1.8821 | 0.5833
157.5° | 1.7197 | 1.0355 1.7203 | 1.0216
180° | 3.5874 | 4.6536 | 10 1.8044 | 1.8018

1.9942 | 0.1958
1.9745 | 0.2666

- o o o

ololeo|lole
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4.5.2 Simulations for Symmetrized BDML Scheme

The next set of simulation results demonstrate the performance of the
symmetrized BDML (S-BDML) scheme in a low-angle radar tracking scenario.
The target angle, 6;, was 2° and the specular path angle, #;, was —1° such
that the actual bisector angle, 6., was sin’l(-- Isinf, + sinfly }) = 0.4998°. Note

that the bisector angle is defined in terms of the reduced angle u =sinf. A
subarray size, M = 11, was chosen in order to perform spatial smoothing.

"The first simulation results compare the performance of the original
version of BDML with the symmetrized version for various combinations of
direct path SNR and phase difference AV. For each particular combination of
SNR and AV, sample means and sample standard deviations of the respective
estimates of #, and 6, obtained from either BDML or S-BDML were computed
from the results of 100 independent trials. The results achieved with BDML
and S-BDML are presented in Figures 4.1 and '4.2,‘ respectively. In addition,
the saniple means and sample standard déviations of the corresponding

~estimates of b, computed in the case of the S-BDML method are plotted in
Flgure 4.3. The aforementloned breakdown of the BDML methodln the
respective cases of AY =0° and AV = 180° is apparent in Figure 4.1. The
BDML estimator simply does not provide reliable angle estimates under either
of these two conditions regardless of the SNR. The substantial improvement
in performance achieved with the S-BDML estimator in the case of AV =0°
is exhibited in Figure 4.2. The trade-off for this improvement, of course, is
the extra computation involvedin computing the bisector angle estimate. The -
improvement in performance achieved with S-BDML in the case of AV =90°
" is rather modest as this value of AV is that for which BDML performs best.
Although S-BDML did not perform much better than BDML in the case of
AV =180° for SNR’s below 15 dB, reliable estimates were obtalned with an
SNR of 20 dB.

, As lndlcated previously, Figure 4.3 exhlblts the performance of the
“bisector angle estimator (BAE) employed in the S-BDML procedure.
Interestingly, he sample mean approaches the true bisector angle as AW
‘increases from 0° to 180° with 180° giving rise to the smallest bias for all SNR
‘values except 0 dB. A significant bias, on the order of half a degree, is
observed with AY =0° even at the relatively high SNR of 20 dB. On the
other hand, Figure 4.2 indicates that the sample standard deviation of the
corresponding S-BDML estimates of 6, and 6, were smallest in the case of
AV = 0°. In fact, although the respective Cramer Rao Lower Bound (CRLB)
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Performance of the BDML estimator in a nonsymmetric
multipath scenario for five different direct path SNR values with
target angle 6;=2°, specular path angle f,=—1°, M=15, N=5,

and p=0.9. Sample mean and sample standard d

computed from 100 independent trials.

v

eviation were



114 .

(c) Direct Pith Sampie Standard Deviations
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~ (¢) Direct Path Sample Standard Deviations
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" is not plotted in Figure 4.2(c), the sample standard deviation of the S-BDML ™ -

estimates of 6, for AV'=0" is significantly below the CRLB. The same is -
true with: regard to the S- BDML estimates of f3. (A comparison between the
CRLB and the sample standard deviations obtained from S-BDML estlmates is -
made in the discussion accompanying the simulations presented i in Flgure 4.4.)
This observatlo_n is, of course, not contradictory since the CRLB only holds for
unbi‘ased estimators. Further, this obsefrvation substantiates the conjecture

made by Cantrell et. al. in [CANTS81] that a biased estimator must exist for =
which the performance in the case of AV = 0 is significantly better,than that -

dlctated by the CRLB

" The second set of simulation results compare the performance andi
computatlonal load of the S-BDML method with that of the improved three

" subaperture (3-APE) method of Gordon [GORDS3] and the IQML method of

Bresler and ‘Macovski [BRES86]. The 3-APE method is a variation of an

earlier version of the three subaperture method" of Cantrell, Gordon, and"
Trunk [CANTSl], which incorporates the practical constraint that p, the

magnitude of the reflection coefficient, is less than one. The IQML algorithm
is a computationally’ efﬁcxent implementation of the element. space based ML

‘estimation scheme. All simulation parameters were the same as in the first set

of s1mulatlons discussed above except that the direct path SNR was fixed at 20
dB and each of the algorrthms was executed given. only a single snapshot i e,

" N=1. The performance of the three algorlthms was examined “as the phase

dlﬁerence AV varled between 0° and 180° in increments of 22.5°. In each .
case, sample means and sample standard deviations were computed from the

- execution of a’ 100 independent ‘trials. Sample means computed from
_ estimates of - the drrect -and specular path angles are plotted in Figures 4.4(a) -

and 4.4(b), respectlvely The correspondlng ‘sample standard deviations are
plotted in Figures 4.4(c) and 4.4(d) along with the respective Cramer-Rao
Lower Bounds (CRLB’s). The CRLB’s were computed based on formu]as‘
prov1ded by Stmca and Nehorai in [STOI89]. B ap

"The most: lmportant observatlon gleaned . from ‘Figure 4.4 is that the -
,symmetrlzed -BDML method significantly outperforms both the 3- APE and'

IQML ‘methods in the case of AV =0°, and in the case of AY =22.5°
well. " For example, in*Figure 4.4(d) it is observed that the: sample standard'_
devnatlon (sample standard dev1atron) of ‘the estimates of the specular path

~ signal obtained from S-BDML for AV =0"° is approxrmately two orders of - |

magnltude less'than that obtained with either 3-APE or IQML.. Observing the
corresponding samplé means plotted in Figure 4.4(b) for AV'=0°, it is
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' apparen_t that the 3-APE and IQML methods simply provide unreliable
estimates of the specular path angle for small values of AW. Tt should be
noted, though, that the angle of interest is actually that of the direct path
signal. The performance of the 3-APE method is much better in this regard

the sample standard deviation of the 3-APE estimates of the direct path angle
for AW =0" is below that dictated by the CRLB. The corresponding bias,
however, is rather high approximately equal to ~0.6°. On the other hand, it
is observed that the sample standard deviation of the S-BDML estimates of
the direct path angle for AV =0° is below the CRLB by roughly an order of
magnitude, while the bias is rather small, on the order of a tenth of a degree!

The IQML method provides totally unreliable estimates of both angles in the
case of AV =0°. On the other hand, the IQML method significantly
ontperforms both the S-BDML and3 APE methods in the case of AV = 180

To assess the trade-off between performance and ‘computational load
among the three algorithms,the number of floating point operations (flops) per
execution was examined. This number was determined using the PRO-
MATLAB software package for each of the three algorithms under the
conditions specified above; it did not 1nclude the initial computatxon involved
in setting up the data. The numbers are listed below.

3-APERTURE : 3k.8x103 avg. # flops /execution
S-BDML : 7.4x10° # flops/execution

IQML : 65x105 ave. # ‘flops /execution

As 1nd1cated the number of flops requ1red for both the IQML and. 3- APE »
methods is the respective average obtained over all 900 trial runs (100
independent trials for each of nine different phase differences). In contrast to
S-BDML, each of these two methods is iterative in nature, i. e., not closed-
form. The actual number of flops for a given execution can vary rather
significantly dependlng on the SNR and phase difference AV.Notwithstanding,
we note that the 3-APE method is the least burdensome with an average
computational load approximately one-twentieth that of S-BDML and two
orders of magnitude lower than that of IQML. The increased computational
load of S-BDML relative to 3-APE is a trade-off for the significant
improvement in performance observed at the smaller values of AW. The
algorithms perform similarly. for. phase differences greater than 22.5°

although the sample standard deviation of the S-BDML estimates was a]ways
 ‘lower than the corresponding sample ‘standard deviation of the 3-APE
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'rnethod.' Finally, we point out that the computational load of S-BDML is
roughly an order of magnitudelower than that of IQML. 'Although IQML

- performed quite well for AY = 180°; achxevxng the CRLB it performed quite
‘poOrly for A\lf =0° '

! 4.5.3 Slmulatlons f'or Multl-Frequency BDML Scheme

The final set of s1mu1amon results 1llustrate the power of using frequency

“diversity to overcome the aforementioned problems of signal cancellation and

rank deficiency encountered with the: BDML estimator when the phase
difference between the direct and specular path signals at the center of the
array at the reference frequency is either 180° or 0°. The statistics compiled
in Table 4.2 compare the performance of the BDML estimation scheme
employlng a single frequency with that employing coherent signal subspace
'processmg in conJunctlon w1th spatxal smoothlng for four frequencles
satlsfylng f, = KI\/I/I——TO, i=0, 1 2 3 where M = ‘15. Here, fo was. chosen to be

1

‘that frequency for which the elements are spaced by a half—wavelength The v
four values of M, chosen were My =15, M; =13, My =11, and M3 =

corresponding to the frequenc1es fo, f =1. 154fg, * fy = 1.364fp, d
f3 = 1.667f,. Let AV, i=0,...,3, denote the phase difference occurring at the
center of the array; modulo. 360 , at the respective frequency f;. Further, let
AW, 1 denote the total phase difference between the direct and specular path
signals at the center of the array at the reference frequency counting integer -
‘number of wavelengths delays, i. e., without. the modulo by 360° operation.
 The values of AVY;, i=1,2,3, were determined from AV, 1 according to v

AV, = ffo {A\I/O T — 180 } + 180° , mod(360°) »i=1,2,3 (4.65)
in accordance w1th the model of the - low-angle radar tracklng scenarlo
described by Skolnik [SKOL80]. Note that this formula accounts for a 180°

phase shift occurring at the surface of reflection, a phenomenon discussed by
Skolnik [SKOL80] and Barton [BART74]. - Also, this formula holds regardless
of whether the multlpath is- symmetric. or not. In the symmetric multipath
example, the target elevatlon angle was 6=1°, the direct path-SNR was 5 dB,
and AV, was 540°.  Hence, AV, -{540 mod(360°)} = 180" yielding
maximum signal cancellatlon ‘at the reference frequency. With A\IJO =540°
and - the frequency values chosen, (4. 65) dictates  that .
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Table 4.2 Comparison of the performance of the single frequency-based
BDML method and the multiple frequencies-based BDML
method with M = 15, N = 10, SNR =5 dB, and 6 as given
below. The four values of M; used were M,=15, M; =13, M,y=11,
and M;=9 leading to the frequencies f,, 1.154f,, 1.364f,, and
1.667f,, with f, corresponding to half-wavelength spacings. ¢
and & represent the sample mean and sample standard deviation
in degrees of the estimates from 100 independent trials. = '

AY . Single Fredﬁ‘ency [ Multiple Freqpencics
e ) f 3.2218 - 09754
Symmetric _ — - . —
_ ' 180° | & | - 48142 . 0.1606
: Multipath A - : '
# failures : 42 0.
5, | nass - 1.9891
by 14.2476 , 0.1743
o | 8 . .8.9785 -0.9932
by 16.0743 | 0.2038
. anSymmet’ri’c # failures ,. ; 0 o 0
| Maltipab | | & | ~ s7618 | 2.0010
) o s samo | 02286
180° | ?2' ‘ -4.0492 1 -1.0269
S8y © 6.3873 : 0.2100
# failures : 28 0
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A‘l/l =235° , AV, —-310°, and AV; = 60°, The statistics- listed under the
single frequency column were those obtained with the symmetrlc BDML
~estimator applied to N=10 snapshots of data obtained at the reference
frequency. We note that the estimates are total]y unreliable. A ‘drastic
improvement in performance is obtained when frequency diversity is employed
as indicated by the statistics listed under the multiple frequency column. In
" this case, the coherent signal subspace modified BDML estimator outlined at -
the end of Section 4.4 was executed with N=10 snapshots of data from each

‘of the four frequency blns Here, T; —?—I, 1—-0 .y 3, Were used as the

»approprlate beamspace domaln based focusmg matrices. In this case, the
BDML estimator is rather accurate. An improvement in performance of the
same proportions is obtained'in ‘a nonsymmetric multipath scenario for the
two problem cases of AWy =0° and AV, =180°. For both nonsymmetric
multlpath examples, the target elevation angle was 6,=2°, the specular path
angle was 6, = —1°, and the direct path SNR was 5 dB In the first example,
AWV, T was chosen to ‘be 360° ‘giving A\Po =0°. As expected, the
nonsymmetric BDML estimator performs mxserably when applied to N=10
snapshots of data obtained at the reference frequency. In the case of multiple
frequency operation, note that with AWy, T—360° ‘and" the frequency values
indicated = previously, (4.65) -dictates that AV, = 27° ; AV, =86°, and
AV, =120°. Again using the coherent signal ‘subspace modified BDML

estimator outlined at the end of Sect. V with T; = ?1—1, i=0,...,3, we find that.
. L : . 0 :

fairly accurate estimates are obtained. A similar improvement in performance
is obtained for the case AW, 1=540° corresponding to AV, =180°. Again,
single frequency operation at the reference frequency provides useless results
~ while multiple frequency operation prov1des rather accurate estimates.

‘As a final note, we note that in the s1mu1at10n examples descrlbed above
involving multiple frequency operation, the BDML estimator “effectively
worked with forty snapshots while it had to work with only ten snapshots in
~ the case of single frequency operation. We remark that an:increase in: the
number of snapshots at the reference frequency by a- factor of four in the case
of single frequency operation would not serve to increase the performance of
the nonsymmetrlc BDML estimator by any ‘degree in the case of elther
AV =0° or AV, =180°. As discussed in Section 2.5, for these two- phase
~differences, the nonsymmetrlc BDML estxmator breaks down even in ‘the case
of an 1nﬁn1te number of snapshots |
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o CHAPTER5 )
| ADAPTIVE BEAMFORMING FOR INTERFERENCE .
| b CANCELLATION |

5 1 Introductlon -

----- Adaptxve beamformmg p]ays ‘an 1mportant role in enhanclng “the:

- performance of antenna arrays working in the presence of strong: interferers or

- jammers. Beam patterns are formed by weighting and sumining the array
outputs to pass the desired sxgnals dlstortnonlessly ‘and at the. same time

o suppress the noise. and interfering sources. Many beamforrmng schemes have
" been . proposed for ‘the application: of - Dlrectxon of-Arrival - ‘Estimation

* [MONZ80], [BYRNS?), [BRESSS],-[FORSS7, [FRIES9], [FROS76], [GRIF87],

-, » v[H.AUP84] [MAYHS?] [STEYSG] [VAN891 In general, they can be classified

in: two categories: . the ~open loop beamformers: -and -the" closed loop
beamformers [FRIE89] In the open: loop. schemes, the DOA’s of the desired
- andfor interfering sources need to be estimated first, usually ‘done with some
 element space direction ﬁndlng techmques such as MUSIC and ESPRIT
- [ROYS89]. A procedure then follows to syntheswe the des1red beam. patterns
based on the estimated 1nterference DOA’s. The: procedure usually 1nvolves a

i constralned optlmlzatxon problem which leads to. a solution for the optimum.

beamformlng welght vectors. Several optimization cr1ter1a that are often used
" are’ the Minimum Variance Distortionless Response . (MVDR) criterion
5 [CAPO69] the Maximum Output Signal-to-Interference Ratio criterion
' [MONZ80], and "the Minimum Mean-Square Error (MMSE) criterion
-'-»_[MONZSO] It was shown that these methods differ only by virtue of some
, scalar _processing that follows a common matrix ﬁlter and combmer operator
,[MONZSO] In the close loop techmques, however, ‘the we1ght vectors are

L adjusted a.utomatxcally accordmg to the variation in the output data form the

o comblner An error criterion is usually set up to deterlmne how to update the,
welghts ‘Some examples of the closed loop beamformer can be found in

- [MONZ80], [HUDS81], [STEI76}, [WIDRSS], [APPL76], [RIEG67], [FROS76].
~“Some aspects of both the open and closed loop approaches were addressed in

o \the papel' of Gnﬁ'lths and Buck]ey [GRIF87] and that of Frledlander and




Porat [FRIESQ] The main pomt is that the close loop beamformers are
- 'potentxally more robust than the open loop ones since they are able to adjust
themselves to uncertalntles in the array and outside environment. However,.: '
" in the case where the 1nterferences are fully correlated with the desired 31gnals,'_‘.
it has been shown that. the closed loop schemes farl to work properly,'
: [WIDR85] As a consequence, we shall concern ourselves with the open loop
approach for the low-angle radar trackrng problem In partlcular, ‘we w111‘ |
concentrate on the MVDR type of beamformers ‘ 5 )

Since the pioneer work of Capon [CAP069], the MVDR beamformlng: |

| techmque has received a great deal of attention in the areas of sonar, radar,

- and spectrum estimation. Some tutorial work can be found in the papers of
_ Cox [COX73], Gabriel |GABRS84], Frost [FROS76], and Johnson [JOHNS2],
- the books by Monzingo and Miller lMONZSO] and Hudson [HUDSS1).: Recent

- work on the performance analys1s of the MVDR beamformer applled 1n

" various. 31gnal enwronments includes the papers of Reddy et. al. [REDD87]

o Shan et. al.. [SHAN85] -Zoltowski [ZOLT88b] and Van Veen [VANS9)].: Their . - |

work was based on the’ assumptlon ‘that no a-priori- knowledge about the
- interfering sources is avallable Under such condltlon, it is well known that the
MVDR beamformer suffers severe performance degradatlon if the 1nterfer1ng:
sources are highly correalted ‘with the desired .signals.  Not only “does " the’
_beamformer fail to form ‘deep nulls'in the directions of the 1nterferences, ‘the
~desired srgnals may be cancelled partlally or completely as well. In this regrad .
Reddy .et. al. _[REDD87] 1ncorporated spatial smoothing in -their development
of Optimum beamformers ‘Bresler et. al. [BRES88| recommended the use of .

IQML: algonthm as & means of obtaining - the polynomial ‘whose. roots‘

correspond’ .to” the DOA’s:of the interferences. The coefficients’ of “the
-.pOIYnomial are then used’ to construct the optimum: beamforming weight
vector‘ ‘The advantages to their approach are that the problem associated with -

" signal coherenée can be avoided "and the actual DOA estlmates of theg ’
‘interferences need not be computed '

In conventronal adaptlve beamformmg, beampatterns are synthesrzed by;‘
welghtlng and hnearly comblnlng the outputs from ‘the array elements
Interference cancellatlon is accompllshed by Judlclously choosrng the welght
‘vector so as to- put: nulls in the- 1nterfer1ng directions and pass the des1red :
: ‘sources w1thout distortion. Inherent in thls approach however, is ‘the

rassumptlon that there exists only one' ‘desired source ‘within the malnlobe

" region. Asan example, consider adaptlve monopuise radar tracking [GABR84]
whereln two beams, referred to as the left and nght beams, are formed in the
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vicinity 'of a-detected target to accurately determine its nan'gﬁ'lar Jocation. The
estimation ‘problem of determining the angle of a single ~tar_.get -given' two
beamformer ‘outputs as encountered in monopulse radar -tracking is a "two
element - one source” array signal processing problem. Adaptive monopulse
operation assumes that there is only one target within the field of view of the
two beams and treats other sources as undesired interferences. The two beams
are then designed to produce a null in the direction of each undesired source.
“This is ‘accomplished, however, under the premise that the estimates of the
locations of the interferences are available. In the case where two targets are
Jocated within a beamwidth of each other, as occurring in low-angle radar
tracking, the beamformer, in an attempt to form a null'in the direction of one
of the targets, inevitably loses SNR gain for the other target. As a result,
neither of the targets is accurately located. Motivated by the sub-beamwidth
resolution capability exhibited by the BDML methods, we 'recommend the use
of adaptively formed three beams in combating this problem. In this case, we
‘assume that the two targets are located within the field of view of the three
beams.

- In this chapter, we present several novel MVDR-based beamformmg
techniques. for the three-beam, two-target scenario. We will do so according to
a two-stage algorithm wherein a polynomial whose roots correspond to the
DOA’s of the interferences is first estimated, and then an optimization
problem is solved to obtain the weight vectors of the three beams for the
BDML estimator. Motivated by the simplifications in computation achieved
with ‘the Mx3 Butler matrix beamformer, the three beams are formed in such
a fashion so as to have M-3 nulls in common and that each beamforming
vector has a null in the direction of each interfering source. An extra
constraint is imposed in order to retain complex conjugate symmetry of the
beamforming vectors employed in the BDML schemes. We will also present a
least squares (LS) based technique for designing an orthogonal beamforming
matrix. We accomplish so by finding a set of three mutually orthogonal
beamforming weight vectors, with nulls in prescribed directions, which are
closest to a set of "reference” weight vectors in a least squares sense. The
problem can be formulated as a generallzed Procruste problem and a closed-

" form solution is easily obtained via a 3x3 singular value decomposition. Other

types of beamformers using different optimality criteria are achieved with
- “certain modifications. Simulation results demonstrating the performance of the

B new beamforming techniques will be presented
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5.2 Probler’n Description

In the development of . the BDML estimation schemes for low- angle
tracklng, we have assumed that the interfering sources are not too strong so
that they can be filtered out by the beamformmg operation. However, this is
not. always reliable as in some cases, strong interferers or smart jammers may
be deliberately introduced and cause the track to break. A general result is
that the DOA estimates tend to be ' pushed toward the interfering direction if
the latter dominate the former in power. This is mainly due to the fact that
we have underestlmated the number of sources such that the sources become

"fused". One possible remedy for this is to form D+1 beams, where D is the
total number of sources, to simultaneously estimate the D DOA’s. By doing
so, it is very likely to degrade the performance of the estimator to a great
extent, especially when D is large cOmpered to the number of elements M. In
addition, the computational load involved in this mode of operation will
increase as D becomes large. An a.lternattive approach, however, is to instead
cancell those undesired sources by Jud1c10usly placing nulls in spec1ﬁed
directions.

We considerdthere the low-angle radar tracking scenario in which echoes

_return from u; and up via a direct path and a specular path, respectlvely, and _

K 1nterfer1ng sources from uy, k=1,...,K, arrive outside the mainlobe region
of the three beams. Assuming a umformly-spaced linear array with- half-
wavelength spacings composed of M elements, the n- -th array output snapshot
vector can be expressed as ’
' x = Ag8y +Alsl'+n o o (5.1)
where A4 and A denote the Mx2 and MxK DOA matrices assoclated with the

target echoes and the interferences, respectively. s4 _andv 8; are the
- corresponding complex signal vectors received at the array. The target echoes

may be partially correlated or even coherent with the interferers. When the
three beams method is employed the Mx1 element space snapshot vector
transforms into a 3x1 vector glven by

Xg = wa
= WHA s; + WHAs + Win
- =Bysq +Bis +np . R (5.2)

where W = [wl.li wiwy | is an Mx3 beamforming matrix. If one applies
the BDML estimation procednre developed _p'revi_ously_ to the beamspace
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snapshot vector given by '(5.2), the resulting estimates are usually unreliable
primarily due to the fact that the Gaussian noise assumption is no longer valid
and the least squares solution does not yield the ML estimates. In fact, one
may consider the last two terms on the right hand side of (5.2) as the effective
noise vector and proceed to solve an ML problem. However, doing so requires
the knowledge about the interference correlation matrix, which requires an
infinite number of snapshots. The correlation -between the ‘target echoes and
the interferences further complicateé the problem. In addition, the interferers
could vary their power such that the problem of nonstationarity may arise.
These make a direct ML approach infeasible. Motivated by the adaptive
monopulse tracking technique developed by Davis et. al. [DAVI76], we
" recommend that the three beams should be formed in a fashion so as to filter
out the outputs from the undesired interferences, i. e., the second term on the
RHS of (5.2). Mathematically, this translates into a matrix equation described
by

WHA, =0 ’ (5.3)

In terms of beamformlng, this states that the three beampatterns should have

K common nulls in the directions of the K.interferers, or equlvalently, the
polynomials constructed with the three columns of W accordlng to (5.1) must
have K roots at € "X, k=1,.,K. We assume that the estimates 1y,
k=1,..K, are available, or more specifically, the polynomial, denoted as I(z),
having as roots €™k k=1,.,K, is available. For the latter case, several
element space based direction finding schemes such as IQML [BRES86], FBLP
[TUFT82] and PRO-ESPRIT [ZOLT89a| are applicable as in these algorithms,
~ the DOA estimates are obtained by finding unit roots of a judiciously
 constructed polynomial. For the sake of brevity, we invoke the notation
defined in Section 3.1, i. e., we denote as h the coefﬁclent vector assoc1ated
with an an (N-1)-th order polynomlal h(z) given by

(Z) = hO -+ h,z R hN_llzN_l (5.43.)

"h=[hb - by T (54b)

A polynomial representation for each of the three columns of W is then given
by

wi(z) = I(z) n(z) (5.5a)
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=G e

- wy(e) =Iz)r(e) o (85e)
" where rl(z) rc(z), and ry(z), are (M-K-1)- th order polynomlals In addition to
the constralnts on. the null Jocations, it is often necessary to spec1fy the,‘
: beamformlng SNR gam in the dlrectlons of ‘the desired signals such that they
can be passed with mmlmum distortion while reJectlng the contribution of the
_noise.- One commonly used crlterlon for this purpose is the MVDR crlterlon
,proposed by Capon In the MVDR method, the beamforrmng weight vector is
‘chosen so as to minimize to array output expected power while at the same k
-time- mamtamlng unit gain in the desired direction, i. e., the direction of look, ‘
and is computed as the solutlon to the followmg constralned optimization - )
problem ' ' ’ '

Minimize E { lvs'v}.]ﬁcvl2 b= wiR, W - : (56) .

subject to w“a(ud) =1

v where w is ‘the beamformlng welght vector and ud denotes the dlrectlon of .
look,’ usually chosen to be the desired source ‘angle. The linear constralnt 1s
set up to ensure that the desired signal is passed without distortion. It is well
~ known that if the 1nterferences are not fully correlated with the de51red sngnal
the MVDR beamformer obtalned via (5. 6) is capable of cancelllng the
vlnterferences by forming nulls i in ‘the mterfermg directions. However, in low- :
angle radar tracklng, coherent 1nterferences may be present, ‘either generated,.
by multlpath propagatlon or by smart Jammers In this case, the MVDR-

'beamformer may not only fail to form nulls in the mterferlng dlrectlons, but o

‘may “also tend' to cancel the desired 51gnal Due to this phenomenon, it is -
necessary to modlfy the conventlonal MVDR method for the low-angle radar
' tracklng scenario. ’ ' '

5.3 Modlﬁed MVDR Beamformer for BDML Estlma.tor

One way to remedy the s1gnal cancellatlon problem occurring’ w1th the _—

~conventional MVDR. beamformer when interfering sources - completely
l‘jcorrelated w1th the des1red 51gnal exist is to incorporate a-prlorl knowledgev
about the 1nterfer1ng dxrectlons, if available. In - addltlon, "when the
~beamformer operates in the presence of spatlally whlte n01se, it is usually
'j‘de51rous to mlnlmlze the expected output noise power, ‘which - ylelds the so-v. :
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called quiescent beam patterns, instead of the expected output signal variance.
This is mainly due to the following facts. First, in low-angle radar tracking,
the number of snapshots available for each tracking update is typically small
such that using the sample correlation matrix Rxx in (5.6), in general, does not
yield a weight vector with satisfactory performance. Second, in the case of
coherent multipath, the conventional MVDR beamformer may totally break
down as the specular path signal appears as a coherent interfering source to
the beamformer. Third, the quiescent beamformer is cdmpletel}} determined
by the constraint equations, which makes the characterization of its SNR gain
performance an easy task. ' ‘
In order to remove the contribution of the interferences, we need to set
up multiple constraints which ensure cancellation in the interfering directions.
Letting uy, k=1,...,K, denote the DOA’s of the K interfering sources and uq
the desired direction of lock, the minimum noise power (MNP) beamforming
weight vector is determined via the following constrained optimization

problem

Minimize E { |w"n|? L =wiR W ’ (6.7)

subject to Clw=f

where n is the noise vector present at the array output as defined in (2.1) and
R,, = E{nn"} is its associated correaltion matrix. In the case of spatially
white noise, Ry, is simply a scalar multiple of the MxM identity matrix. The
constraints are defined as follows: C is an Mx(K+1) matrix constructed
according to

C= [a(ud) Cafug)i o a(um)] (5.8)
and f is a (K+1)x1 unit vector defined by
T
f=[1,0,...,0} | (5.9)

The multiple constraints ensure that the beamformer produces unit gain in
the desired look direction ug and zero gain in the interfering directions. The
solution to (5.7) is

wop = REIC(C"RZIC) ' (5.10)

which simplifies to C(CHC)'f for the case of spatially white noise. In some
applications, it is also necessary to control the beamwidth of the optimum
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bearnformer in order to improve resolution performance In this case, we need

two extra constraints to specify the location of the first null on either side of
the mainlobe associated with the beamformer. This is easily incorporated into
(5.7) by redefining C and f according to '

0 = [ a(u)  a(uf) a(ud) o)t - talu) | (5118)

| | . .
f'=[1,'o,...,.o] (5.11b)

where u} denotes the location of the first null on the lower side of the
mainlobe and u? is defined likewise for the upper side null. Note that C' and
f' are Mx(K+3) and (K+3)x1, respectively.

Before closing this section, we would like to investigate the behavior of
the optimum beamformer in a benign environment, i. e., in the presence of

spatially white noise only. Upon substitution of R, Iy, C = a(uy) and

= 1 into (5.10), we get ‘v
WOpt = —I\T .a'(ud) ~ (5'12)

Not surprisingly, we end up with a Fourier beamformer steered to the desired

-angle uy. This agrees": ‘with our earlier observation in Section 2.2 that the

Fourier beamformer provides optimum SNR gain under the spatlally whlte.
noise assumption. co

5.3.1 Application of MVDR Criterion to Three Beams Case

Now consider the case of the BDML estimation in which three beams are
formed in different look directions and each beam has K nulls in K prescrlbed
interfering directions. This ]eads to three separate MNP beamformlng

‘problems described by

Minimize wj Rnnw, (5.13a)

Wi

_ subject to Clw, =f '

w

Minimize WHR,,w, ' (5.13b)

¢
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subject to CHlw. =T

Minimize WiRy W, (5.13¢)
W, ’

subject to Clw,=f

~ where w;, w., and w, denote the optimum weight vector for the lowe.r-,

center, and upper beams, respectively. The matrices involved in the constraint
equations are defined as follows

C = [a(—uB) : 'a,(uu) Poeeed é(uIK)] | (5.14a)
C. = [a(0) ¢ afun)t <+ ¢ alone)] )
C, =[8-(11B)3 a(uy)i * - Ea(uxx)] |  (5.14¢)

R )

where up is the look direétion of the upper beam as defined in Section 2.2, and
f is (K+1)x1. From (5.10), the solution to each of the individual constrained
problems in (5.13) is given by ‘

w, =R, C(CI'Rn C))'f (5.152)
we =Ry Cc(C{R; Co) 7' f (5.15b)
w, =Rl C,(CYR;C,) 7' f (5.15¢)

The three beamforming weight vectors thus obtained have look directions at
u = —ugp, 0, and up, respectively. In some applications, it might be necessary
»vtois..pec,ify the beamwidth associated with the three beams. To accomplish so,
we need to impose two extra constraints in each of the three optimization
problems in (5.13). For example, we may form extra nulls at u = —up =+ ¢ for
the lower beam, +6 for the center beam, and up = § for the upper beam such

" that each one has a 3-dB beamwidth approximately equal to 4. ug and 0 thus

represent design parameters which need to be determined a-priori. A

reasonable choice for 0 is —%—, which corresponds to the case of uniform

weighting.
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The optimum weight vectors computed via (5.13) do not necessary
exhibit conjugate centro-symmetry (CCS) as is essential in our development of
the BDML method. To ensure that, we need to impose one more constraint, i.
e., Iyw =w , for each of the three optimization problem in (5.11). The
optimization problems, defined in accordance with these auxiliary constraints, :
are given by | |

Minimize w]HRnnwl _ ' (5-153)””

wy

subject to Clw, =f ; iMwl = wf

Minimize w?Rxch v (5.16Db)

w.

subject to. CHw, = f 5 ich = w;

Minimize wiR w,  (5.16¢)
W, .

subject to CHw, =f; Iyw, =w,

’Invoking ‘the technique for solving (2.32), we rewrite (5.16) in the following

fashion:

Minimize WFRI}!’]WI (5.17a) :

W)

subject to Clw; =1 ; Iyw, = w*

Minimize WERg;wc v (5.17b)

w.

, subject't,o C}ciwc =f; .ich =w.*

Minimize wHiRDw, ' ' (5.17'c)

* subject to CHw, =1 ; Iyw, = wo*

where
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R, = ;[RMHMRMIMJ . (5:18)

The linear constraints in (5.15) remain unchanged since all the columns of Cj,
C., and C, are conjugate centro-symmetric as can be seen according to (2.1).
If we ignore the second constraint in each of the optlmlzatlon problems in
(5.17) (we will show that this does not affect the problem later), the optlmum
weight vectors are simply given by (5.15) with Ry, replaced by Rnn, which

leads to
| =RrET'C(CIRR IO (5.19a)
w, =R IC (CHRIL'C.)!f . (5.19b)
w, =REIC (CHRE'C,)7!f O (5.19¢)

Incorporatlng lt,he facts that IMRL}%IM =R™" and that Iya(u) = a (u), we
can easﬂy verify the following relatlon '

i,w, =IyRE I, C (CPIyIWRY 1iMiMcl)-,1f

= RE) Ci(CTRE ) ) =w (5.20)
It can be shown that w, and w, exhibit conjugate centro-symmetry as well.
'TherefOre, the optimum weight vectors obtained in (5.19) are indeed the
solutions to the corresponding problems described in (5.16). With these
werght vectors constructed, we may then proceed to obtain the BDML
estimates of u; and u, using the procedures developed in Chapter two. It is
worth noting that, in general the beamforming matrix consisting of the three
vectors obtained in (5 19) does not produce beamspace manifold  vectors
 satisfying (2.17), i. e. , I;b(u;) = b(uy) when the multipath is symmetric such
that u, = —u,. This results in loss of a-priori information in the development
of the symmetric BDML method. As can be seen from the analysis presented
in Section 2.4, the BDML estimator with the modified MNP beamforming
matrix can no longer handle 0° phase difference for the symmetric multipath
e. A remedy for this is to employ the alternaﬁve BDML procedure for
generahzed Butler matrix beamformers developed in Section 3.3.2. In the
presence of interferences, however, some modifications are necessary. In short,
the three beamforming weight vectors must have M-3 nulls in common in

order to facilitate a simple closed-form solution for the BDML estimator.
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5.3.2 MNP Based Generalized Butler Beamformérs

Before beginning this section, we review some of the relevant work on the
generalized Butler matrix beamformers presented in Chapter 3. As defined in
Section 3.3.1, an Mx3 generalized Butler matrix beamformer W is a matrix
having the fol]oWing factorization ' ‘

w=[w1 aw,?awg,]:cu o (5.21)
where C is an Mx3 banded, Toeplitz matrix given by
c 00
=10¢ 0 B ' (5.22)
0 0c '
and U = | u; i up i ug ] is 3x3. By using the following relations
| o q 0 0] roo
p(z) =q(z2)r(z) & p=|0 q Ojr=|0r O|q (5.23)
- 00gq 00r |
we may express (5.21) in terms of po]ynOmialsbin a fé_Lshion given below
| () = (2w (2)  (5.240)
Cwy(z) = c(z‘)uzv(z)' , (5.24b)
w3(z) = c(z)u3(z) (5.24¢)

which accounts for the M-3 common nulls associated with the three beams.

'The above equivalence between matrix and polynomial representations will be

exploited shortly in the development of the MNP-based generalized Butler
beamformers.

For the application of BDML estimation, three different types of criteria
are considered: 1) minimum total noise power criterion; 2) minimum
1nd1v1dual noise power crlterlon, 3) mutual orthogonality criterion. It is worth
notmg that in the ideal case of no interferences and spatlally white noise, they
should a]l correspond to the Mx3 Butler beamformer defined in (2.36).

( ) Minimum Total Noise Power (MTNP)
The minimum total noise power beamformer minimizes the total noise output
power from the three beamspace ports and is determined as the solut:on to the

- following optlmlzatlon problem
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memxze E |win|2 + |wln |2?+  g Il:_wﬂn |2} - (5.25)
W, W W, ) ] L i :
‘subject to wla(—up) = wha(0) = wha(up) =1

b-sub'jfect to wla(uy) =wha(upy) = fw»{,*a(ulk)' =0 k=1,..,K

g *

) . ~ S > »
subject to Iywy=w,; ; Iyw, =w, ; Iyw, =wy

'- ‘subj’éc't to wy(z), wc(z), and wy(z) have M-3 roots in common -

where up, ulk, k=1,...,K, and n are as defined previously. The minimum total
noise power beamformer ‘minimizes  the total noise power at the three -
beamspace ports when the respective nulls associated  with the three
beamformlng welght vectors are formed in such a fashion so as to maintain

M-3 nulls in common. The remaining degrees of freedom in (5 25) can be used

to determine the uncommon nulls as well as control the beamwidth of ‘the

three beams

(2) Minimum Ind1v1dual Noise Power (MINP)
A suboptlmal but efficient alternative to the MTNP scheme is to minimize the
noise power individually rather than totally. This leads to a set of three

coupled optimization problems defined as follows

‘Minimize E{ |wln|?} e (5v.26a)

. W
subject to  wia(—up) =1
subject to wfla(uik) =0 k=1,..,K

subject to iMwl = w;

Minimize E{ |w¥n|? } ~ (5.26b)

. w"
" subject to wha (0) =1
subject to - wha (u,k) =0 k —1 Ko

_subject to -Ich = w:
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. Minimize E{ lwllnl 2l (5.26¢)

o suhject to wha(up) =1
subject o whia(uy) =0 k= ll.v.,.,K
subject to iMwu =w; |
sub_]ect to wl( ), wc(z)" »,' and wu( i)'have M-3 roots in common

It turns out that the three problems are coupled. This is solely due to the of
M-3 common ‘roots constraint. To facilitate a simple closed-form solution for
—each problem, it is desirous to develop a procedure Wthh circumvents thls'
: constralnt ' '

(3) Mutual Orthogonallty (MO): :

There are two advantages to working with mutual orthogonal beamformlng
welght vectors. First, if the noise in element space is uncorrelated from
element to element, the noise in ‘bemspace will also be mutually uncorrelated.
Second, if the noise in element space is saptially white, the weight vectors may
_ be normalized such that the beamspace noise correlation matrix is‘simply‘ a
scalar multiple of the 3x3._identity matrix leading to simplifications for the
BDML scheme. The mutually “orthogonal beamformer is constructed in
accordance with T i T R e "

Minimize |lW1 ——w]ll2 + ch f—wcll2 + ||wu ——wull2 " (527)

CWWoW,
subject to ivl{wc =wlw, =wlw, =0
- subject to . .wl’a(ul-k)_= wha(uy) = wha(u,) = 0 k=1,...,K
. ' . : .~ oo ‘* PR *_.,‘.;v - : L
, subJect to Iyw; =w ; Ich =__W' s _IMWu 'T—"Wu‘
subJect to wl( ) wc(z) , and wy(z) have M-3 roots in common

‘ -where w| ; W and wd are the three columns of a reference beamformlng

'rnatrlx For the appllcatlon of BDML estimation in a spatlally whlte noise

| envrronment we recommend the use of the Mx3 Butler beamformer as the

, reference beamformer since it exhibits optimum SNR gain performance, and
: rnore 1mportantly, lts three columns are mutually orthonormal '
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With the above problem forrhulatioh and the relations given in (523), we
riow proceed to describe the procedures for constructing the optimum weight

* yectors for each of the three types of beamformers. For simplicity, we here .

assume spatially white noise, i. e., Ry & Iy. Motivated by ‘the "“good”
performance achieved with the Mx3 Butler beamformer for the BDML

estimators, we choose ug = Kz/l- such that the the directions of look associated

With the lower, centef, and upper beams are —%, 0, and -%,'respective]y. In
addition, we select the uncommon knulls"ass‘iociated with the three beams for
the MTNP beamformer in accordance with: Lo

2 '
upper beam: u=——and u =0
PP M -

2
M

center beam : u = —— and u =
M '

—]%'andu=0

lower beam : u =

5.3.2.1 Generalized MTNP Butler Beamformer

The three beams have M-3 nulls in common, K of which are known as
they correspond to the K interfering directions. Each beam has two
uncommon nulls, which are prescribed a-priori as above. Employing
polynomial notation, we obtain the following expressions for the three beams

wi(z) = c(z)u(z) - (5289
we(2) = e(2)uc(z)  (5.28b)
wy(z) = c(z)uy(z) (5.28c) |

where ¢(z) denotes the polynomial associated with the unknown common nulls
~and uy(z), uc(z), and uy(z) are the polynomials associated with the known
niills, including common and uncommon ones, for the lower, center, and upper
‘beams, respectively. With the above selection of uncommon nulls, we have
the following polynomial factorizations ‘
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e K - .
uy(z)=rz—e M)(z-1) k|_| (z — eJ"'u“) (5.29a)
. Jﬂ»_z_ ~ —-jr=_ K y— . | .
Cug(z) =kf(z—e M)(z—e M) k[_] (z — e ”) (5.29b)_ :
=k a0 - e

where K1, kc, and K, are complex scalars ensuring that each polynomial has a
set of conjugate centro-symmetric coefficients with the leading coefficient
having unity magnitude. Note that the coefficients for each of the
polynomials u)(z), u(z), and u,(z) form a conjugate centro-symmetric vector
due to the following lemma. = o , _
Lemma: If all the roots of a polynomial p(z) lie on the unit circle, then
the vector p composed of its coefficients may be normalized to
exhibit conjugate centro-symmetry.

The leading coefficient of each polynomial is set to have unity magnitude so
that under no interference condition, the optimum MTNP beamformer is just
the Mx3 Butler beamformer. Substitution of the matrix rep'resentations of
(5.28) into (5.25) yields, after some mampulatlon, the following matnx
optlrmzatlon problem

Mlmmlze cHU]HU,c + cHUHU c + HUuliue - (5.30)
sﬁbject to cfUla(——) =1

. subject to cHUga(O) =1
s e
subject to ¢ Uua(-—lq) =1

subject to IM_K 3c = c

where we haved 1nvoked the assumptlon that E {nn“} x-Iy-and the fact: that
conJugate centro—symmetry of ¢, uj, u., and u, implies conjugate centro-

symmetry of w), w., and:-w,. The Mx(M-K-3) matrices U;, U,, and U, are o

banded, toeplitz as given by
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[u, o
0 u ,
U= ol  (5.312)
0 u 0
0 vy
-uc 0 0 1
1o u,
U =i & ¢ 1 ~ (5.31b)
10 O u. 0 ‘
0 u,
u, 0
0 vuu . .
Uy=|: ¢ ¢ & (5.31c)

to 0o wu o
LOO'OUU

Note that u), u., and u, are conjugate cen'tro-symmetric such that

iMU]iM—K—3 = Ur _ . ' (5.32&)
iMUciM—K—E = U: (532b)
1, Uy ks = Us (5.32¢)

Rewriting (5.28) and letting m = M-K-3, we have

Minimize ¢"Uc (5.33)

[ 4

> *

subject to THe=1; ; Ine=c

where

U = Uly, + Ulu, + UL, (5.342)

T R Y |
T = -U{"a(—-M-) : UBa(0): UEa(—M-) (5.34b)

and 1, is a 3x1 all-one vector given by
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T * )
13=[1,1,1] » s (5.35)

Employmg the techmque for solving (2.32), we formulate the problem in (5.30)
in the following alternative form :

- Minimize cH—;—{U + imU*im]c =clUpe ~ (5.36)

H
subject to —;—[T + imT*] c=The =1,

Inc=c
where we have incorporated the fact that both ¢Ujc and THc are real. From

(5.32), it is easily deduced that Up, = U and Ty, = T such that aside from
the con_)ugate centro-symmetry constraint, the solution to (5.36) is given by

Copt = U~ IT(T“U‘IT) 1, (5.37)

Observmg that IMUI =U" and I T=T , we can readily vei'i'fy that
I mCopt = copt such that c,py described by (5.37) is indeed the solution to
(5.36).  With Copt available, the optunum weight vectors are constructed -
according to ’

=Cuy (5.382)
w. = Cu, » : , (5.38b)
« = Cu, | ., (5.38¢)

where C is the Toeplitz re’presentafion- of eqpt defined by -
copt_’ 0 0 .
C=|0 cop 0. | (5.39)
0 0 copt . ‘
and uy, u,, and du, are as given by (5.‘29); | N
The three weight  vectors wj, w¢, and w,, obtained in (5.38) are
conjugate centro-symmetric as proved below :

Lyw =TyClipleam =C'ul =wj  (5.400)



Tywe '-—-iMCiK;tgix+auc=‘",C”ufZ =w. . (540b)
IMwu _IMCIK+3IK+3UU = C Uu =W:] - :‘ ’ (5 406)

'.Flnally, the Mx3 MTNP matrlx beamformer consrstmg of these three welght
-~ vectors is sunply given by "

Wat = [w' ey ] = C[m_i u, u‘ux]» o (541)

'5 3.2.2 Generaliied MINP Butler :Beamforrner
In order to remove the last constramt in (5. 26) a polynomlal whose roots
correspond: to the M-3 common nulls of the three beams is first determlned 3
~ There are many ways to accompllsh so, and for simplicity. For the sake of
simplicity, we here take a suboptlmal approach in which the center beam is
: constructed first in accordance with the minimum noise power criterion. The
~ common polynomial may be obtained by taking out the first null on either

side of the ‘mainlobe associated with the resultlng ‘weight vector. However,
domg so requires rootlng an (M 1) th order polynomial, which mlght be

" extremely computationally expensive for large M. In order to facilitate a ".'

simple procedure for constructmg the lower and upper beams, we form two

‘ hard nulls" for the center beam at u = _I?/I— and u = ——1\27 correspondlng to

"~ the first lower and upper nul]s, respectively, for the case of Fourier

beamforming steered to u =0. Denote as d(z) and k(z) the polynomial .
' assoc1ated with the unknown nulls and known nulls of the center beam , and
d and k their corresponding vector representations, respectively. In this case,
~ k(z) is simply identical to u.(z) descrlbed by (5: 29b) .

e ~jr . o .
k(z) =r(z—e M)(z—e M) l] ( ™) (5.42)

k=1

. ‘ Employlng the MNP crlterlon, we have the fo]]owmg mlmmlzatlon problem ‘
Mln:imlze dHKHKd IR (5.43)

jod *

.. sub_]ect to: & ( JKd=1; Izd=4d

where
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mathematlcally below
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K= (5.44a)

S o =
o x o
* S o

is’ the Toeplitz representatlon for k and m = M-K-3. Comparmg (5 4'3) wrthb
(5. 33) and usmg the result grven by (5 37) the solution to (5.43) is easily seen
- to be - : T

_. 1 _K*a S S
d= S(OKK a0 )K_ (0) o (5f45),

, where K = (KHK) TKH is the pseudo-lnverse of K. which can be readily
: '.verlfied ‘to exhibit conjugate centro—symmetry The Mx1 vector w = 'Kd then a
‘ represents the desired beamforming weight vector. In order to obtam an (M-

3)-th order polynomlal with roots correspondmg to. the M-3 common nulls, we
simply divide out the two roots at e—‘z"/M from w( ) descnbed

red(z)(z ~ e M__)(z-e ’_“)11( ).

v k=l S e

" where ¢ is a normalizing complex scalar ensuring that the coefficients of p(z)

are con_]ugate centro-symmetric. With the (M-3)-th order common polynomlal
p(z), or p, ‘the (M-2)xl vector representatlon for p(z ),' ava.llable, ~the
beamformlng weight vectors w), W, and wy assoclated with the three beams
may be determined. by ‘multiplying p(z) with three quadratic po]ynomlals, 3
ri(z), re(2), ‘andru(z)_,» respectively. In terms of matrix notations, this translates

‘into

w=Pr, . (5472)

we=Pr.  (sam)
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wy, =Pr, _ | (5.47¢)
where - : v
p 0 O} A
P=}{0p 0 (5.48)
0 0p

and rj, r., and r, are the vector representations for r|(z), rc(z), and ry(z),
respectively and are determined individually in accordance with the MNP
criterion as described by the following three optimization problems.

. r ‘ .

Minimize rfP"Pr - | -~ (5.49a)

_2

subject to a"( ™ Pr =1 ; Lr =r

Minimize rEPHPr, , (5.49Db)
Pe . . . .

subject to  aP?(0)Pr. =1 ; Lir, = r.

Fy

Minimize riPRPr, (5.49¢)

subject to B}LI(—I\-Z/IF—)Pru =1 Lir. =r,

Following the (5.43)-(5.45), we have

1 L2
r = 2 . 2 P &(—-M) .‘ » (5.503)
i-Lyppra-2) N
= 1 Ta | .
e a(O)}fPP+a(0) P7a(0) (5 50b)
1 2
r, = Pta(=) (5.50¢)
(2 )ppra)

where P = (P¥P)"!PH is the pseudo-inverse of P. With P and r|, r., and
r, obtained from (5.50), the MINP beamforming matrix can then be
constructed in accordance with (5.47) as follows
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Wmi=[w,Ewé%wu‘]=P[r|ErcEru] _ (5.51)

Note that each of the three columns of W, is conjugate centro—symmetnc‘
since r}, r¢, Ty, and p are all conjugate centro-symmetric.

The MINP beamformer exhibits more flexibility than the MTNP

- beamformer as no restrictions on the locatlons of the uncommon nulls are

made.

5.3.2.3 Generalized MO Butler Beamformer

The problem described by (5.27) is too ‘complicated to admit closed-form
solutions for w;, w., and w,. A simpler alternative is to again first remove the
common roots constraint by obtaining a (M-3)-th order polynomial associated
with the M-3 common roots. Following the procedure delineated in the
preceding subsection, we find the “"common" polynomial p(z) and its associated
Toeplitz representation P as given by (5.48). Substituting the expressions for
the weight vectors given in (5.47) into (5.27) and ‘rewritting the constraint

_ equatlons, we end up w1th the followmg optxmlzatlon problem

Minimize || wf —Pr] 12 + |I w —Prc ||2 + || wu — Pr; ||2 (552)

Py PPy
sub_]ect to r PHPrC =rc PHPru = ruPHPrl =0

131'] =Ty ;3 I3rc ='r.c > ISru =ru .

whereb r|, re, and r, are all 3x1. To further siniplify the problem, we can,
without loss of generahty, assume that the three weight vectors are mutually

"orthonormal”, i. e., they are mutually orthogonal unlt length vectors.
.Rearrangmg (5 52) in matrix form, we have

Mlnﬁmlze | We—PRIJ|Z 1‘(5.53)
subject to R'PHPR =1, ; LR =R’
where ' : ' .

wo = ,[wf F w :_fw'g], o (5.54a)
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R = [r] S E”ru'] ’ ' o (5.54b)
‘We here choose the reference beamformer to be the Mx3 Butler beamformer
scaled by — such that
' Q M

o 1 2 1 s 1 /2

Wy = Wﬂ(—m’) ; we = V'M-ﬂ(o) P W = W&(M—)‘ (5.55a)

1 .

W = ——S (5.55b)
;M o

Note that the scalmg factor —{71—- insures that the three columns of W° are

mutually orthonormal With G = GH = (PHP)}/2, (5.53) can be rewritten as

Minimize ||—m—8 —PG!Tl} = = (5.56)
R 'VM : , o -

subject to THT =1, ; ,G™'T *(G_lT)“' _
where T = GR. Leaving out the second constramt in (5. 56) we ﬁnd that the
resultmg optxmlzatlon problem as given by '

Mlnlrmze HV_S - PG~ ITHF - (5.57)

subject to T T = I3

is simply a generalized version of the Procruste rotation problem {GOLU84]
Geometncally speaking, we rotate the subspace spanned by the three columns
of PG via'a unitary transformation T until it is best approx1mated by the
subspace spanned by the three columns of S in a minimum Frobemus norm
sense. It is a well known result that T is obtained by taking the singular value
decomposmon (SVD) of G~ 1pHS, and forcing all the singular values to be
unity. Mathematically, if G~ 1pHg — UL VY is the SVD, then T = UVH is
the unitary matrix that minimizes the cost function in (5. 57). Leaving out the
constraint on conjugate centro-symmetry for the moment, we have from
T UVH the optlmum R matrix for (5.53) given by

R, = G'UVH ' ' 5.58
p

In Appendix D, we prove that the Rgp matrix thus obtained satisfies
igRépt = R;pt. Therefore, Ropy is indeed the optimum solution to (5.53) and
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the Mx3 matrix constructed according to

Wmo = l):R'opt - . . (5'59) ! R

is the correspondmg optlmum mutual]y orthonormal matrix beamfofme_i'.

Note;that the optimum MO matrix beamformer does not necessarily produced 7

maximum SNR gain at the look d1rectlons u=——,u=0,and u= —l\g/l— since

M

no constramts were imposed to guarantee that. However, as long as - the
~ interfering dlrectlons are not close to the broadside of the array, we should -

expect the maximum SNR gain to occur at angles close to u = .——1\—_24—, 0, and
—-, respectively, for the three beams.

In conclusion, we present the algorlthmlc summary of the BDML method
for nonsymmetric multlpath using an adaptlve]y formed beamforming matrix.

B‘DML Mefhod for NonsymmetricMultipath
with Adaptive Matrix Beamformer

(1.) With W constructed according to (5.41), (5.51), or - (5;‘59‘) “and
. A N ) ~ A‘ 2 N .‘ :
R,,= —%I— 3 x(n)x"(n), form Rpp= WHRXXW.’ Also, let p denotes the
n=1 o .
(M-2)x1 vector assoc1ated with the M-3 common nulls.”

(2.) With Ry and w from (1.), compute v=|[v, Vg, v3] | as GEVEC of
. 3x3 real matrix pencil {_Re{Rbb} , WHW } assoc. with smallest GEV.
(3.) With v;, i=1,2,3, from (2.), form e = Wv and q(z) =qo +qz + q07?
- where: ' . .
€- - € —QqP; . ey

Q= ; @ =—m ; Q@ = _
Po : Po _ PMm-3

‘where p; and ei are the (i+1)-th component of p and e, respectively.

(4.) Let o = Doy |l <%, multipath signals not resolved. Otherwise:
(5) 3 e —1xjV 4|O‘|2._'1 [I?ﬁ =-—1—ln{z }
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‘;5.4C6i'mputer Simulations

~ In this section, we present computer simulation results_to illustrate the
behavior of the three adaptive generalized Butler beamformers developed in
the precedi-’ng"section. The array employed was linear consisting of M=15
sensor elements equally spaced by a half-wavelength. The interference
environment- involved two interferers located at 17° and 30°, respectively.
Spatially white noise was assumed as well. For the sake of brevity, we
assumed exact knowledge about the interfering directions ‘and hence did not
concern  ourselves with any particular. estimation problem. The optimum
beamforming weight vectors were computed using -the formulae given in
(5.41), (5.51), and (5.59), respectively. Figure 5.1 depicts the respective beam
patterns associated with the MTNP, MINP, and MO matrix beamformers, as
well as that’as’socia;t;ed with the Mx3 Butler beamformer. Each pattern was
normalized such that the maximum ‘response was one. It is interesting to
observe that in ofder to form nulls in the interfering directions and retain M-3
nulls in common, all three adaptive beamformers inevitably produce higher
sidelobe level than that associated with the Mx3 Butler beamformer in certain
angular regions.. The MTNP array pattei'n exhibits relatively high first

 sidelobe in the lower beam but fairly low sidelobes near-the two interferers
 while the MINP and MO beamformers produce smoother sidelobe patterns.

The beam pattern associated with the MO beamformer appears to be very

" gimilar to that associated with the MINP beamformer as can be expected since

they share the same set of common nulls. All three adaptive beamformers

. behave quite similarly to the Mx3 Butler beamformer within: the mainlobe

region.

To compare their noise suppression capability, the SNR gain produced at
the three directions of look, i. e., u =0 and i-}%—, respecti‘{rély, by the lowei-,

ceriter, and upper beams of each of the above four beamformers are shown in
Table 5.1. Undoubtfully, the Butler beamformer produces the highest SNR
gain for all three beams as it should be. The SNR gain achieved with the
MINP beamforming is nearly identical to that that achieved with the MO
beamforming, both being close to the ideal case of Butler beamforming.
Surprisingly, the MTNP beamformer produced the lowest SNR gain among

" the four for all cases. This may be attributed to the restriction imposed upon
‘the locations of the uncommon nulls in the design of the MTNP beamformer.

For the other two beamformers, however, no such restriction was made.
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A (a) Butler Beamformer = . .
]6 g T "I’ uvl — T v. T ,l : 0 1
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Figure 5.1 - The respective array patterns associated with- the Butler
.+ _beamformer and.the three adaptively constructed beamformers
for the case of M=15 element uniformly-spaced linear array and - -
‘two. interferers present at 17° and 30°. (a) Butler beamformer
{(b) MTNP beamformer (c MINP beamformer (d) MO
" beamformer. In each case, the three adaptive beam patterns. '
" have 12.nulls in common, including those correspondmg to the .
two 1nterferers : S ’
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(d) MO Beamformer
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" In the final simulation, interference rejection performance was evaluated

- by lntroducmg a 0.5° error in both the estimates of the mterfermg directions

such that while constructing the polynomials uj(z), uc(z), and uy(z) in (5.29)
and k(z) in (5.42), 6;,=17.5° and 6,,=29.5°. The optimum beamforming
~ weight vectors were computed and the resulting SNR gain in the two true
~ interfering directions produced by the three beams are listed in Table 5.2. It is
~shown that the MTNP beamformer performs. falrly well with SNR gain 16 dB ,
and 12 dB lower than that achxeved with the Butler beamformer at H=17° and ‘
30°, respectwely The MINP and MO beamformers again yield comparable

results due to their 51rn11ar1ty in beam pattern. The MTNP beamformer -

~ performs better for the interference at 17° than that at 30° while the MINP
and MO beamformers; on the contrary, produce lower SNR gain at 30° than
at 17°. Huristically speakmg, the interference at 17° is more detrimental than
the one at 30° in the case of low angle radar tracking and therefore should be
,suppressed to the greatest extent The Butler ‘beamformer. performs ratherk
: poorly in thls case as it does not account for any 1nterference cancellatlon
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' Table 5.1 = Comparison of the noise suppression performance of the Butler
R beamformer with that of the three adaptive beamformers for the
case of M=15 element uniformly-spaced linear array and "two
interferers present at 17° and 30°. The SNR ‘gain was computed

for u=0 for the center beam,_u=¥-él\,-/1— for‘tbhe lower b’e{am,f and

=—I;2/I— for the 'u.pper'beam, rvespé:ctively.b :

Type of .éamf(_)rmer — "B‘utiéi- MTNP MINP |- MO

Lower Beam | 15.0000 | 14.8129 | 14.9121 | 14.9156 |

' Center Beam '+ | 15.0000 | 14.7700 | 14.8522 | 14.8511

Upper Beam | 15.0000 | 14.5017 | 14.5939 | 14.5925 |
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‘Table 5.2 =~ Comparison of the interference rejection performance of the
- Butler beamformer with that of the three adaptive beamformers
- for the case of M=15 element uniformly-spaced linear array and
two interferers present at 17° and 30°. In forming the three
adaptive beamformers, the interfering directions used were 17.5°
and 29.5°. The SNR gain in dB was computed for 6;=17° and
30%. . o o

i 15 N T
# B

6 | Type of Beamformer — | Butler | MTNP | MINP | MO

Lower Beam | -12.5013 | -28.3071 | -25.8181 | -25.5633

17° Center Beam -9.5876 | -25.4089 | -22.7055 | -22.4931

Upper Beam | -4.5159 | -20.4451 | -17.8982 | -17.8055 |

 Lower Beam | -13.2430 | -25.0188 | -28.8069 | -28.7267 |

30° | ‘CenterBeam | -11.7609 | -23.5522 | -27.2056 | -27.1275 |

Upper Beam | -9.4934 | -21.3026 | -25.4676 | -25.3303
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CHAPTER 6
CONCLUSIONS, FINAL COMMENTS
-~ ~AND FUTURE RESEARCH

6.1 Conclus‘ion o

We have deve]oped a system of estimation schemes for ]ow ang]e radar
tracking. The goals of the research pursued herein were to 1) document and
model the classical low-angle radar: tracking problem from a statistical
perspective; ) develop an efficient estimator for.a sub- beamwidth multipath
scenario; ) develop auxrlrary procedures capab]e of overcoming difficulties
occurring in coherent multipath propagatlon 4) extend the results to a more
general mterferences environment. :

Chapter 1 described some related work in- the area of low-angle radar
tracking. An overview of. the Maximum Likelihood (ML) method was
presented. It was argued that beamspace processing in contrast to element
'space processing becomes attractive in light of its low computatlonal load. The
ML method was recommended due to its ability to handle the srngle snapshot
case and fully correlated (coherent) sources. Although some efficient
beamspace domain ML estimators have been proposed, they nevertheless lack
the ability to handle coherent multipath under some extreme condltlons such
as 180° phase difference. The contradictory phenomenon occurring at 0° phase
difference for nonsymmetric multipath is well documented in the literature.
However, an effective solution to that problem has not been proposed before.

Chapter 2 developed simple, close-form ML estimators for both the
symmetric and nonsymmetric multipath cases. They were derived based on
‘the 3-beam scheme of Haykin and the IQML algorithm of Bresler. It was
shown that under certain conditions, Haykin’s method corresponds nearly to
the beamspace domain ML (BDML) estimator. Performance analysis for
coherent multipath revealed that the BDML method for symmetric case is
theoretically capab]e of handllng any phase differences so long as the
magmtude of the reflection coefficient is not exactly equal to one. For
nonsymmetrlc case, the only condrtrons for which breakdown occurs are those
extreme cases where the direct and specular path signals are perfectly in-phase
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or 180° out-of-phase at the center of the array. This analysis provided insight
into the behavior of the Cramer-Rao Lower Bound (CRLB) for two arbitrary
closely-spaced ~coherent sources. In particular, it accounted for the poor
performance associated with 0° phase difference for nonsymmetric multipath. |
“Simulation results showed that the: BDML method performed comparably to
‘the element space based IQML method under moderate conditions while the
computational load for BDML was mbuch lower than that for IQML. The
major advantage to employing the But]er matrix beamformer is that the angle
estimates may be 51rnply determined from-the roots of a quadratlc equation. In
- addition, the computational complexity of BDML remains essentially the same
- as the number of array elements increases. In contrast, the computational
complexity of IQML increases greatly as the number of elements increases.
Other simulation studies involving various' combinations of ‘angles, SNR
values, and phase differences demonstrated the agreement between theoretical
analysis and pratical results. ' :

Chapter 3 investigated the structure of the Butler matrix beamformer
‘and »devel'oped several generalized versions of it. In particular, we eonsidered
an alternative interpfetation for beamforming in terms of polynomials and
sequences. It was shown that the Butler beamformer can be decomposed as a
product of two matrices, with one corresponding to the common nulls, and the
other corresponding to the uncommon' nulls.. The matrix associated with the
common nulls exhibits a banded, Toeplitz structure such that we may consider
it as assoclated with three overlapping subarrays, each one having all but one
sensor in common with an adjacent subarray. The matrix associated with the
uncommon nulls was chosen to be nonsingular so as to facilitate a one-to—one
mapping between the element space and beamspace manifold vectors. A class
of generalized Butler beamformers was constructed by appropriately choosmg
the common and uncommon nulls in accordance with a set of constralnts An
alternative BDML ) estimation scheme appllcabte to both symmetric and
nonsymmetric cases ‘was. .developed based on the generalized - Butler ‘
beamformers. It appeared to be more flexible than the BDML methods
described in Chapter 2, especially when the uncommon nulls were formed in a
nonsymmetric fashion. A simple parametenzatlon of the beamspace manlfold '
vectors ‘was made possible with the use of a Butler beamformer. For angles
near broadside, a beamspace manlfold vector may be expressed in terms of a
smgle parameter -t accountlng for the relationship ~between: its three
components An equatlon relatlng t and u was derived subsequently, allowing
one to obtain an ang]e estimate G directly from an estlmate of t. Although the
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':fnew method does not help to ease computatronal burden, it does provxde .
E 1nsrght into the behavior of the beamspace rnanlfold vectors, which may be
“difficult to deal with in the u domaln The correctness of this parameterlzatnon;

was verlﬁed by cons:derlng several special cases.

Chapter 4 presented three aux111ary procedures for the. refinement to the

.BDML method under coherent multipath conditions.- The p—based BDML

estimation scheme was shown to provide a simple, iterative procedure for
simultaneously estimating the dlrect path angle and the complex reflection
coefficient for symmetric multipath. Each execution of the algorithm only
involved. e1ther a 2x2 complex generalized eigenvalue decomposition or a 3x3

real generallzed " eigenvalue - decomposition. Simulations showed that

substantlal improvement in performance was achieved when . the phase'

différence was close to 180°. The conversion of 2 nonsymmetrlc problem into a

symmetrlc one was accomplished based on the distinctive rank property
associated with the beamspace forward- backward averaged correlation matrix.

in the symmetric case. The blsector angle between the two paths was first

estimated, -then followed by a second steering of the three beams. ~The
bisector angle ‘estimate was computed via the solution of a judiciously

' constructed quartic equation. Slgmﬁcant improvement in accuracy with the
- symmetrized BDML method over the original BDML method was observed
~ when the two signals ‘were mearly in-phase. Frequency - -diversity was

mcorporated mainly as a remedy for severe fading otcurring in the 180° out-
of-phase case. The coherent signal subspace concept of Wang and Kaveh was
invoked. for retaining the computational simplicity of the BDML. method

' developed for single frequency operation. It was shown that 1f the frequencies

f were chosen such that f, =

f,, and spatial smoothing was conducted in a
1

- judicious fashron, perfect focusing may be achleved w1thout 1terat1ng The

only condition required was that both the direct and specular path angles are

‘small enough such that the approximation sinf = 6 is valid. Slmulatlons

1nd1cated that the multi-frequency BDML scheme is so far the most reliable
estimation procedure for low-angle radar tracking involving coherent

- multipath. It becomes partlcularly advantageous as the size of the array or the

number of snapshots increases. Provided that the approprlate hardware is
avallable, it is strongly recommended -

. Chapter 5 developed a novel adaptive beaml‘ormlng techmque for
interference cancellation when the BDML scheme is employed in low-angle

‘radar tracklng The algorlthm described was a null synthe51s scheme rather
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» than a closed loop ada‘ptive algor'ithm The a-priori information about the
lnterferences was mcorporated in the form of a polynomlal whose roots

, correspond to the mterferlng dlrectlons The 1dea of common nulls assoclated
with the Mx3 Butler beamformer was mcorporated into the -synthesis
procedure so as to formulate the BDML estlmatxon problem as that associated -
~with a 3x3 generalized eigenvalue decomposition and a quadratic equatlon
Three different beamformers were developed based on different .optimality
criteria. The MTNP beamformer minimizes the total output noise power from

-~ the three beam ports and usually exhibits patterns similar to that assoclated

with the qulescent beamformer. The MINP "beamformer minimizes - output
, noise power from the three beams 1nd1vndually and therefore manifests. 1tself as

more ﬁex1ble than  the MTNP beamformer. For most cases, these two

» ‘beamformers performed fairly well in terms of SNR galn and sidelobe levels.
- The MO beamformer was constructed based on the least squares criterion and ‘
“mutual orthonormallty constramt The optlmum LS fit was defined in terms =

of a reference beamformlng ‘matrix havmg certain desired - properties. The

three mutually orthonormal beamforming' werght vectors produce a beamspace

- noise correlatlon ‘matrix proportional to the identity - matrlx and, as. a result,
s1mpllﬁes the computation involved in the BDML estlmatlon procedures
Although the beam patterns were not guaranteed to exhibit maxima exactly at
" the - desired -directions of look, simulation = results showed. that - the - ‘MO
beamformer did 1ndeed ‘produce maximum- SNR gain at angles close to the ‘
look directions determlned by the reference beamformer PR

6.2 Final‘ cbmmeﬁts;"','
Some final comments are in order They are made pnmarlly to extend the
-areas of appllcatlons for the BDML estlmatlon schemes developed so far.:
6 2 1 Target Trackmg in Freespa.ce o

: Flrst the BDML estxmatlon schemes presented here were developed for
" the. cases of two targets located 1n the general vxcmlty of broad51de For more

- general phased array radar scenarios, one would s1mply steer the three beams, a

keepmg thelr relatlve angular posmons fixed, to other dlrectlons of look. From

‘the outputs of the three beams, one would have to determlne whether there -

- were one of two targets in the dlrectlon of look usrng such crlterra as Akaike
Information Crxte_rxa (AIC) |[AKAI74] or ‘Minimum Description Length (MDL)
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[SCHW?78], for example. In the event that two targets are detected, the
- BDML estimation scheme may be employed to estimate the angular positions
of the two targets relative to the pointing angle of the center or reference
~beam. In this mode, the nonsymmetric BDML estimator is more generally
- applicable than the symmetric one. In light of the problem- of the
nonsymmetric BDML estlmator in the 0° phase difference case, however, it is
des1rable to convert a nonsymmetric problem to a symmetnc one using the
ad-hoc procedure developed in Section 4. 3. In this case, the entire array is
"electronically” steered to the desired direction of look and the correlation
matrix =-td be worked with is the one formed with the steered array.

8.2.2 Multiple Targets Case

' Third, the BDML estimation schemes developed are .not restricted. to
two-target cases. It can theoretically handle D targets with D+1 beams
provided that D+1<M. The premise, however,. is that one needs to know
where to form the beams, i. e., one needs to determine the directions of look
so as to produce high SNR gain in the target directions. In the case of
tracking, the look directions can be taken as the most recent estimates of the
target angles Motivated by the computational simplicity attained with the
Butler matrxx beamformer, it is desirable to employ a set of beamformmg
vectors - havmg M-D-1 nulls in common. In this case, the BDML angle
estimates can be 51mply determined from the roots of a D-th order polynomial
equation.

6.2.3 Frequency Diversity fqr General Sc_enarios .

" To incorporate frequency diversity for more general scenarios, it is
~ necessary to judiciously design the beam patterns so as to retain the perfect
focusmg achieved with uniform weighting. For example, when two sources are
separated by more than two beamwidths, the small angle approx1mat10n
invoked in Section 3. 4 is no longer valid. In this case, the Kaiser weighting
[HARR78] is more appropriate since its spectrum ‘depends on u thru the
product Mu only (u =sinf and M is the number of elements). Other possible
candidates are those whose spectra are invariant under scaling operation, i. e.,

P(ku) o< P(u), where P(u) denotes a spatial spectrum. The frequency diversity
scheme is equally applicable to the wideband case. The idea is to partition the
entire frequency band into J subbands centered at f,, x—— .;J-1, in such a
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fashion so as to retain the relationship Mf, =M, iy, ‘i——ll J-1, as described in
Section 4.4. Note that thls scheme works best for large M. as the number of
’ frequencles satlsfylng Mf =M is proportlona] to M.

8. 2 4 Efﬁclent BDML-Based Interference Cancellatlon .

In Chapter 5, the beamformlng technlques were developed based on the

"assumptlon that a polynomial -associated with the mterfermg directions is =

available via certain direction finding algorithms such as IQML and ESPRIT.
We point out, however, that it is possible to achieve so relying sole]y upon the
" BDML methods. The idea is to alternately estimate the target and interference

"directions in an adaptive fashion. The algorithm is a two-step procedure: I)
- form K+1 beams in the K (estimated) interfering directions and a reference
“direction, each beam having a null in each of the (estimated) target directions,

~ and apply the BDML;m'ethod" to the resulting K+1 dimensional beamspace -

Asnapshot data. In the end we obtain ‘a K-th order po]ynomlal whose roots
correspond ‘to the K interfering dlrectlons )y with the k- th order polynomlal
obtalned in 1), we proceed to estimate the target angles using one of the
- matrix beamformers constructed in Section 5.3. The algorithm is performed
‘adaptlvely in the sense. ‘that the estimates of both the target and interference
~directions obtained most" recently - are 1ncorporated in phase I to form- the,
‘desired: K+1 beams Of course, we may form the K+1 beams accordmg to one,:h
of the three crlterla descrlbed in'5. 3 s S i

. 6.'3 F"u'ture. FR"esearch A

The fol]owmg suggestlons are made to lnsplre further 1nterests in the area" '

o of low-angle radar tracklng

6 3 1 Analysxs of Resolutlon Capablhty

Analysxs of resolutlon capablllty has attracted the lnterests of many
fresearchers in the area of spectrum estimation and array signal processmg
[COX73] [OWSL84] [KAVE86] [WANG86] [J'EFF85] [PORA88] [OTTE89] _
'j_‘Recently the resolution - threshold for - some e1gen-assnsted methods (e. g

‘MUSIC ‘and Mmlmum-Norm) has been quantltatlvely ‘analyzed in several '
‘papers [KAVESS), [WANGS6], [JEFF85], [PORASS] for_both: element space -
‘and beamspace domam apphcatlons Thelr approach was to compute the ﬁrst ‘
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' ;and second moments of the null spectrum and then determlne the probablhty_ o

of resolutlon via, certain ad- hoc_criterion. These ana]ysls procedures can be
readily apphed to the BDML estlmators as the latter is in fact an. eigen-
assxsted method resembling MUSIC. One ‘major drawback of the above
:_mentloned methods is that exact expressmns for the moments of the null
spectrum 'is dlfﬁcult to obtain’ and barely manageable In addition, the
criterion for dlscrlmlnatlng reso]ved and unresolved cases is ambiguous in
nature. The: BDML method, on the other hand, prov1des a quantitative
description of the condition of resolution, as can be seen in Sectlon 2.3. The
'cnterlon was. sxmply an mequallty mvolvmg three real components of v.and
~ the probablllty of resolution is exactly the probablhty of that the 1nequa11ty
holds. This suggests that a closed-form expression for v, the "smallest"
' elgenvector of Ry should be derlved and a statlstlcal perturbatlon analy31s for.
- that be conducted. The - ‘procedure should: be ;simple due .- to the low
-~ dimensionality- assoclated with beamspace domam processmg :

' 8.3.2 Diffuse M'ultipat-h‘

, " The classxcal specular-reﬂectlon model for surface reflections has been
: modlﬁed to account for surface roughness [BART74] [BART?79], [SMIT79].
These modifications describe several effects: 1) the reduction in magnitude of
the specular component with increased roughness, 2) the spreadlng of angle of
arrival of reflected components surroundmg the specular image. This
phenomenon is referred to as diffuse multipath propagation. The problem of
low-angle radar tracking involving diffuse multipath is complicated by the fact
~ that prediction of spatial distributions of diffuse multipath is a complex
- . process for which no rigorous theory exists. Actual sea and ground surfaces are
difficult to characterize analytically. A popular model for diffuse multipath is
the "glistening surface” model proposed by Beckmann and Spizzichino
 [BECKB63] and Barton [BART74]. The model states that most of the diffuse
power from a normally distributed surface will reach the radar from the
~ region within the glistening surface. Namely, the diffuse power will
concentrate over certain region surrounding the specular image in the spatlal
- spectrum. Therefore, it can be treated as a noise-like interference
' supenmposed upon the specular return. To employ ML method in this case,

e one needs to characterize the correlation matrix of the diffuse return, which
- often involves a complex estimation procedure. Under this _circumstance,

beamspace domain processing is more advantageous as the spatial passband
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© associated w1th the beamformer is usually narrow such that it is adequate to
model the diffuse return as spatlal white noise in beamspace ThlS facllltates a

s_lmpler way of estimating the beamspace noise (mcludlng diffuse return) -

correlation matrix. In - addition, the small dlmensronallty mvolved in-
~ beamspace domain processing makes some iterative correlation matrix -
- estimation schemes [LECA89) realizable. - o L

6.3.3 Two Dimensional Beamspace Domain Process‘ing ‘

Although the BDML estimation schemes presented here were developed
for the case of multlple snapshots, they are applicable in the case of a single
snapshot as,well ‘as would be the case ‘with monopulse radar tracking.
‘Judgivngfrom the performance obtained with N=0 snapshots in the case of a
M=15 element array, a much larger number of elements would be requlred’

~for adequate performance in the s1ngle snapshot case. We remark that each

radar ‘system comprising ‘the PAVE PAWS phased array network has two
- janus faces composed of 1,792 transmlt-recelve antenna elements each ‘the
COBRA ‘DANE phased array radar system is composed of 15 360 such

. elements Along ‘these hnes, we note that actual phased array such as those -

comprising the AEGIS and PAVE-PAWS series, as well as the mammoth
- COBRA DANE phased array, are planar with the elements un1formly~spaced
. ona rectangular grid. For the sake of 31mp11c1ty, we here considered only the
case of a linear array. The BDML estlmatlon schemes developed w1th1n may
vbe easily extended for the case of a 2-D grid array with uniform spaclng along
both axes. In this case, the array may be viewed as a collectlon of unlformly-
~ spaced, linear arrays in parallel If we apply the same welght vector to each
linear array in parallel, to. look at a specific azimuthal angle, for example, we

obtain a collectlon of what are referred to as super-element outputs. Wecould

~_then apply three different beamforming vectors, pointed to three closely-
spaced elevation .angles, - for - example, to. ‘the collection of - super-element

o j‘joutputs The final beamspace outputs may. then be supphed to the BDML

‘ estimator- to produce estimates of ‘the elevation angles of two closely—spaced .
'v;.targets Aznmuthal angles may be estrmated ina 31mllar fashlon TR
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: Appendix A
Properties of the Eigenvectors of a Real Matrix
‘Exhibiting Both Symmetry and Per-Symmetry

In this Appendix, we prove a theorem describing some propertiés of the
eigenvéctors of a real matrix, A, of dimension mxm, say, which ‘is both
symmetric, AT = A, and per-éymmetric (symmetric about the _éross-diagonal)v,
imAi‘m = AT, such that the matrix satisfies the following two properties.
| (a) AT=A (b) imAjm =A (A

where I, is a reverse permutation matrix of dimension m as defined in Sect. II

by (2.8).

Theorem: ‘ ‘ ,

Each eigenvector, e, i=1,...,m, of a real ‘matrix A which is both symmetri'c
and per-symmetric (satisfies (A.1) above) and has m distinct eigenvalues
satisfies the relationship imei = te;, 1. e, exhibits either centro-symmetry,
im@i = e;, or centro-anti-symmetry, imei = —e;. Moreover, if m is such that
m=2k, k or half of the eigenvectors exhibit centro-symmetry while the
remaining k exhibit centro-anti-symmetry. If m is odd such that m=2k+1,
k+1 of the eigenvectors exhibit centro-symmetry while the remaining k exhibit
centro-anti-symmetry.

Proof: ‘
Let )\, be the eigenvalue of A associated with the i-th eigenvector e; such that
| Aei = >\iei (A.2) |

Since imAim = A, {),e} is also an eigenvalue-eigenvector pair of imAim as
well: ‘

imAimei = >\iei - (A.3)
Pre-multiplying both sides of (A.3) by im gives ‘
Ajmei = >‘iimei (A.4)

where we have exploited the fact fbhat imim =1,. (A.4) implies that imei is '

‘also an eigenvector of A associated with the eigenvalue ). Since we have
assumed that the eigenvalues of A are distinct, it follows that the eigenvector
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assoc1ated with each elgenvalue is unique to w1th1n a scalar mu]tlp]e such. ‘that

1 m€; must be a real scalar multlple of ¢, i.e.,

_ . v Ine -.—%e, , ' o }(A~5')‘
Pre—rnultiplyingvboth“sides of (A.5) by I, gives N

e =ilne o | (A.8)
Note that the e; are real since A is real and symmetric. Finally, substituting
(A.5) into (A.6) gives ¢ ="’ ¢ whlch indicates that ~; is either +1 or -1
which when substituted in (A.5) gives the desired result I e; = +e. This
proves the first part of the theorem that the eigenvectors under scrutiny
exhibit either centro-symmetry or centro-anti-symmetry.

To.complete the proof, consider the case of m even such that m=2k,
where k is a positive integer.- Further, consider the span of a set of k+1 ~
centro-symmetric vectors, e;, i=1,...,k+1, of dimension 2kx1 Such a set of
vectors may be expressed in the followxng form o

St

fy 1, | : ‘ fi+1
ey =| | ; e=|~1 35 cou;ieu=] - | (A7)

If S 'ka2‘: S Lifyor

where the k+1 vectors fj, i=1,..., k+1, lie in .JJZk k-dimensional real ‘space,
and, as a consequence, are llnear]y dependent. Thus, we can always find a set
of coefficients, ¢;, i=1, k+1b satisfying

lel + Cgfg + - + ck;#lfk+1 =0 . Lo (AS)

The same set of coefﬁclents may be applied to the vectors kal, 1—1 . k+1, to
obtain the zero vector as well ‘as a consequence of the fol]ow1ng observation'

.Clik,fl +eolify + 0+ cpar D
'f=i_k{°‘1f1 +egfy + o +Ck+‘1fk+1 ,=0'  - (A9)

which follows from (A8) (A 9) comblned with (A.8) further implies that the -
same set of coefficients, ¢;, i=1,...,k+1, may be applxed to the vectors e,
i=1,.. k+1 defined in (A.7) to obtam the zero. vector, i e,

- ce) +crep 0 +ck+1ek+1 =0 (A10) B

’ Thec_oncluysion is that the lsfgest dimension of space spanned by a set of 2kx1
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centro-symmetric vectors is k. A similar argument can be made to prove that
the largest dimension of space spanned by a set of 2kx1 centro-anti-symmetric
vectors is k as well. Now, since A is symmetric, its eigenvectors are mutually
orthogonal and, hence, linearly independent. The cumulative result of all
these observations is that for A a real, symmetric, and per-symmetric matrix.
of dimension mxm where m is even, m/2 or half of its eigenvectors exhibit
centro-symmetry and the remaining m/2 eigenvectors’ exhibit centro-anti-
symmetry. Similar arguments hold for the case of m odd such that m=2k+1.
The primary difference between the two cases lies in the fact the center or k-

“th element of a (2k+1)x1 centro-anti-symmetric vector is 0. As a consequence,

the largest dimension of space spanned by a set of (2k-+1)x1 centro-anti-
symmetric vectors is k. "It is also easy to argue the largest dimension of space '
spanned by a set of (2k+1)x1 centro-symmetric vectors. is k+1. Thus, if A is
of dimension (2k+1)x(2k+1), k+1 of the eigenvectors exhibit centro-symmetry
while the remaining k exhibit centro-anti-symmetry. - This completes the
proof.

Note that the theorem also holds if A has repeated elgenva]ues yet

satisfies (A.1). For sake of brevity, we do not supply the appropriate proof
here. ‘ '
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_ Appendlx B -
Reduction of a Llnear Combination of Three Butler Beam
Base_d_ Polynomials to a Second Order.PolyanlaI

In this appendix, we consider an m-th order polynomial known to have i
m-2 roots equally-spaced on the unit circle at known locations. We develop
simple expressions for the coefficients of the residual second order polynomlal
obtained by dividing each. of the m-2 known roots out of t,he ongmal m- th'
order polynomial.

Consider the Mx3 Butler matrix beamformer, S‘, defined és _ _
= la(Q/M) i a(0): a.(—2/M)] | . | (B.1)
where a(u) is defined as follows. ' .

.a(u) = [e—jﬁ‘Lu, e —j2m1 —J mu 1, e,u-u e|2~ru e .,_ejer.u]T (BQ.Q)

Here M=2L+1 such that L=(M-1)/2. Let z be a Vandermonde vector defined
as ' ' :

2=z 2% B ... MT ' (B.3)

such that the inner product of any Mx1 vector with z is a polynomial‘of order

- M-1. Now, consider the roots of each of the three polynomials formed,

respectively, with each of the three columns of S defined in (B.1). The middle
column, a(0), is simply a vector composed of all ones -corresponding to
rectangular weighting with a beam steered to broadside, i. e., u=0. When
viewed as a weight vector, a(0) sets up an array pattern

.M
o sin(—mu) . g
aH(O)a(u) = ————— which exhibits M-1 nulls at u= =* mr m=1,...,L.
sin(—u |
(Zu)
This translates into a statement that the polynomial a®(0)z has M- 1 roots on

27m

i
the unit circle at the va]ues Z =‘ebM , m=1,..,M-1. The situation is
depicted in Figure B(b). The vector a (2/M), which produces the upper
auxiliary beam, sets up an array pattern which i is merely the pattern produced

by the weight vector a(0) shifted to the right by the ,amount -1\2—4-; its peak |

- occurs at the first null on the upper side of the reference beam. The net effect

with regard to the roots is a counter-clockwise, circular shift by the amount
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Upper Auxiliary Beam Reference Beam. Lower Auxiliary Beam -

Figure B.l

~Location of the respective roots of ‘each of the three polynomlals

~ formed with a coefficient vector equal to the (a) first (b) second,

~and (¢) third column of an Mx3 Butler matrix beamformer

(M=15). All of.the roots lie on the umt clrcle, the polynomla.ls

have M-3 12 roots m common
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' —21;4— as deplcted in Flgure B( ). That s, gl\/ll—l is added to the argument of each
root of the "reference” polynomlal a"(0)z. Thus, ‘the M-1 roots of the‘

. 27m’

polynomlal al 2/M )z occur at z =e M , m=2,.. M"Arguing along si'milar
" lines, we find that the roots. of the polynomlal —2/M)z are those of the

Peed

reference polynomlal c1rcu1arly shrfted clockwxse by the amount —I\_//IL as

2rm

j .
deplcted in Figure B(c). That is, the roots of a" —2/M)z occur atz=e M y

m—O L M-2. Superlmposmg the respectlve ‘M-1 roots of each of’ these three

2rm

J
,polynomlals we find M-3 roots in common; the common roots arez =¢ M

m=2,...M-2. We will make use of this observation shortly Note that ‘this
observatlon implies that the respective beam patterns set up by the weight
vectors a(2/M), a(0), and a(—2/M) have M-3 nulls in common

Now, consider the coefficient vector e = Sv, where v = [vi , v2 , v3]T and
the v;, i=1,2,3, are real-valued. The (M- 1) th order polynomial e(z)= (Sv)Hz
may be expressed as a linear combmatxon of the reference and two aux111ary'
' -polynomlals defined above as follows

o oefz) = (Sv)“z =v, a¥ 2/M z +v2 a ( ) -+'v3aH —2/M)z : '(B4)
It follows trivially that any root common to all three polynomlals will be a.

root of any linear combination of the three polynomials. As a consequence of

the above observatlons, therefore, 1t is apparent that regardless of the values’
. 27m
i
of v, 1—-123 M-3 roots of the polynomlal (Sv)'z occur at z=e M y

-~ m=2,...,M-2. Note that this statement involves no approximation whatsoever.

,Thus, the roots of interest are those of a quadratlc equatlon obtained via the
~ following polynomlal d1v1sxon

| . »
q(z) =qo + @z + 2’ = — (Sv) .z%m - (B.5)
N (z—e M )

m=2

‘This  polynomial division indicated above may be: accompllshed via a
deconvolution of the respectlve coefficients of the numerator and denominator
polynomlals We proceed along these llnes in accordance with the following
development. ‘

‘ Let d(z) denote the (M-3)-th order polynomxal in the denominator of (B.5)
vw1th coefficients ‘denoted d;, i=0,...,M-3, as follows
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| M-2 . j_zfﬂ . . E v ' .
d(z) = Il (z—e M )=d, +d,z+ +dM_3zM-3 | (B 6),
S ‘m=2 . ’

: As mdlcated above, the (M 1) th order polynomlal in. the numerator is denoted»

e(z); the coefficients of e( ) are denoted e;, i=0,..,M-1, as follows
. () ( )z——eo+e1z+ '+eMle‘l, ~(B.7)
. (B 5) tnvlal]y implies that d(z) q(z) = e(z ) which when expanded as follows B
| (do +dyz+ “l‘ dM-3vz =) (qp +qpz +q7%)
| =ey +ez+ "+leM MU B 8) |

»allows us to determme qo » ql , and- qy in terms of dy , dl , and dy-3 and
eo , €1, and eMm— 1 in accordance wnth the followmg recursxve re]atlonshxps '

€0

dogo =y = gqo = 1 o o (B.9a)
. T d . , |
doqy + qod; =y - IF q =T et (B.9'b)
dM—st =em-1 ¥ g = i - o (B 9c)
. M-3 -

At th1s pomt we need to determine d , dl , and dy-3 and € 5 €] , and eM 1
in terms of known parameters and the elements of the vector v: v;, i=1,2,3.

~Let us concern ourselves with dp, d; , and dM 3 first. From (B.6), we

1mmed1ately note that the coefficient assocnated with the hlghest order power
M2 s umty, i e, dM 3 =1. To determine do and d;, we note that with the
coefficient of the highest order power equal to umty, loe, dy3=1, dy is -
‘equal to the product of the roots of d(z) while d; is equal to the negatlve of

the sum of the roots of d( ). Slnce the roots of d(z) oceur in complex conjugate

: , —2mm- 27r(M—m)

(2om | iy N Va

'palrs, as s1gn1ﬁed by the relatlonshxp J M [ = €& T =e y

m=2,...,.M- 2 ‘it 1rnrned1ately follows 'd;, is "equal to vone, i e, -

M 2 2rrm S : ' o .
- dy=1II e M= In determmlng dl as the negatlve of the sum of the'

mag . , ,1"_ o |

M. 1s a root of the

i'oots-‘of. d( ) we rnake the observatlon that smce z=e
: polynomlal a (0)z = L z , as dlscussed above, we have that 2 e M =0
|  m=0 S mse

L 2rm -
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such that
. 2mm .
M=2 - o T '
dy=—>Xe M =1+ 2008(%) ~(B.10)
m=2 . i N

Next, we turn our attention to the numerator polynomial e(z) defined by
(B.4) and (B.7). Returning to the definition of a(u) in (B.2), we find that

. 27L . 27L
I B g
eg-=V; € + V9 — V3 €
e . .
M M o
= —Vj € + vy + vz e T =€eM-1 . (Blla)
27(L-1) . 2rn(L—1)
e ™
e =Vy e + vy + V3 e
_ji"'_ jf_"'_
==V e M v, —vse M o (B.11b)

where we haye used the fact that L=(M-1)/2 and the fact that Sv, is

hermitian centro-symmetric, i. e., iMSv = (Sv)*. (v must be real-valued for
this to hold:) We now have all the quantities necessary for substitution in
(B.9a), (B.9b), and (B.9¢) to determine 9, 4 , and gz in terms of
do; d; ; dm-3, € > €15 €M-1» V15 V2 and v3 After some trivial algebraic
manipulation, we arrive at the following expressions for the coefficients of q(z):

. T .
~i5r i "
qo = —V; € M + Vg — V3 € M - qg . (B.12a)
q =2(v; + v3)cos(—I\—7;I'—) - 2v2c05(-2ﬁ7:) . (B.12b)

Thus, q(z) = qp + quz + qoz° where the center coefficient, q;, is real. (B.12a)
and (B.12b) constitute the main result of this Appendix invoked in Section IIL
| Consideration of the symmetric multipath problem as done in Section II
leads to a consideration of the special case where v is centro-symmetric,
Iv =v. In this case, we express v as v = [vi s Vo, v1]T, where we have
“chosen to put a subscript 0 on the center element in keeping with the notation
in Section II. This, of course, leads to certain simplifications with regard to
the coefficients of v which are indicated below: '
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_ i ' Ty 27
qo = Vo — 2v1cos(—lq) =q ; q = 4v1cos(-1<7) - ZVOCOS(-—M——) (B.13)

In this case, all the coefficients of q(z) are real implying that its roots are
either real or form a complex conjugate pair. '
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Appendix C

Simplification of the Cost Funection for ‘
Bisector Angle Estimation

In this Abppendix, we  show that the cost function in (4.45) can be
expressed in the form of a fourth order polynomial and the minimizing i, can
be determined by rooting a quartic equatlon We begin the derivation by
substituting (4.44) into the matrlx W (u )Cth( u.) in (4.45). Letting ¢

denotes the ij-th component of Chh, i. e, ¢ = {Cpp|. ,» We have
, ij
700 i1 €2 3| le ™ 0 0
~ b N :
W (u )Cth( ) =1 0 1 0 Ci12~ Cgo Cyg 0 1 O
—jmu, * * )
0 0 e’} lcs” ¢z i 0 0 ™
: . jmu, 2j7.'uj
€11 Cig¢€ Ci3€
— —jmu. — , jmu. ”
= |eppe Coo C19€ (C.1)
—2)mu, —j7u.
* )Ty, *, )Y,
Ciz € Ci2 € €y}

Note that we have invoked the property I3Chhl3 = Chh . The real part of .
(C.1)is :

Re{W (u.)' Gy W(uc))
. , o
2¢y; cme +c12 oimu: Clae?un'"+C13*e_2J"u"
— _3_ c1.2ej7-u-‘+C12*e—j7r\l(. v 2022 c12e +(312 e—_]fru,. (C2)
{01362”“{""'013*,9—2)‘“" » +c _j m, - ,

With some algebraic manipulation, we have

det[Re{W(uc)*éLZW(uc)}]
= %- [po*e_“j"u‘" + P1’°‘e—2j7|rur + p2 +'P192jm1" + Poe“ﬂur} (_C,3)V

C o ol 2L 2. o o2
where : po = clyeis — coreds 5 p1 =2 c1a |ers — 2enicty
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R *¥2. 2 4 2 : 2
Py =4ck cap + ¢ eys +edreyz® —depy lepg |2 — 2650 ] 13|

- Differentiating (C.3) with respect to u and set to zero, we get

—4j7u.
—2po*e

—2jru. 4jru.

— p; e + plezj'—'u" + 2p,e =0  (C4)
- This suggests that the solution for u, can be obtained by solving the following

quartic equation

—2p,* N2 —p N7 4 pr ) 4 2p N =0 - (C)

. ; 2)7u,
for a unit root A\, where A\, = e~ ",
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: Appendlx D
Proof of Con_]ugate Centro-Symmetry of the Columns of Ropt

In this ippendix we prbve that the ,‘3"3 matrix R,y obtained in (5.58)
: satlsﬁed IgRopt'— Ropt We do so by first investigating some properties
associated with the. SVD of GT'PHW?®, From (5.48), it is easdy deduced that
: P satisfies » , : ,
IMP13 = P , _ (D.la)

_ aha so does G™! - as shown below

vizG_lis = (iaGis)‘l = (is_PHP,is)v_» 2

1

o =(F"P) ? =(G7)
W° is the Mx3 Butler beamformmg matrlx such that. v
: . , v IMW (W°) : o : _ ’(D.‘z),
Comblmng (D 1) and (D.2), we have | | |
LG 'PHWP° =1,G- ILI,P 1313W°v

R

(D.1b)

‘ (G 1pHwe) o Dy

whlch gives rise to the followmg results | S : o

i,G-IPPWOW ' P(G ), = (G PHWOWO'P(GT ) (D.4a)
we'P(G™! )“G’lvP3W° = WeP(G LI, G T PIW?

— (WRP(GT PGP W) (D.4b)

(D.4) states that G™'PPWoW?° P(G"l)H is both hermitian and per-hermitian

while W'P(G-I)HG™!PHW® s real. It is well known that if
G™'PEW° = UZV" is the SVD, then

G- 1P“W°W° P(G'l)“ Urvivy UH —UL2UH (D.52)
and _
| worP(G-1HGIPHWC = VEUHUZVH = VE VH (D.5b)

are the EVD's for G'PHWoW"P(G™')f and W P(GT'JIGT'PIW?,
respectively. These indicate that U consists of the eigenvectors associated
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with a hermitian- per-hérmitian matrix while V consists of the ‘eigenvectors of
a real symmetric matrix. Exploiting the fact that eigenvectors of a hermitian-
per-hermitian matrix are conjugate centro—symmetnc and that elgenvectors of
a real symmetnc matrix are real, we have

Lu=U | . (D.6a)

v=v' L (D.6b)
whlch yields 1mmed1ately v |
ISRopt = ISGi IUYH = igG_li;;i;;UVH‘. »

= (G U VT =Ry — (D.7)
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