
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

1-1-1990

3-D Beamspace ML Based Bearing Estimator
Incorporating Frequency Diversity and
Interference Cancellation
Ta-Sung Lee
Purdue University

Michael D. Zoltowski
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Lee, Ta-Sung and Zoltowski, Michael D., "3-D Beamspace ML Based Bearing Estimator Incorporating Frequency Diversity and
Interference Cancellation" (1990). Department of Electrical and Computer Engineering Technical Reports. Paper 698.
https://docs.lib.purdue.edu/ecetr/698

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages


L ■ •  •  • • •  • • • # • •  . . . . . . . . . . . . . . . . . . . . . . . . .

‘ 
■ '-... . -

A 3-D Beamspace ML Based 
Bearing Estimator 
Ineorporatmg Frequency 
Diversity and Interference 
Cancellation

Ta-Sung Lee 
Michael D. Zoltowski

TR-EE 90-6
January, 1990

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

prepared for the National Science Foundation under contract number 
ECS-8707681



A 3-D BEAMSPACE ML BASED BEARING ESTIMATOR 

INCORPORATING FREQUENCY DIVERSITY AND 

INTERFERENCE CANCELLATION

prepared for the National Science Foundation 

under contract number ECS-8707681

Ta-Sung Lee 

and

Michael D. Zoltowski

School of Electrical Engineering 

Purdue University 

West Lafayette, IN 47907

TR-EE-90-6 

January, 1990



ii

Page

LISTOF TABLES.... ................................... ..................I.....:...................... ..............v

LIST OF FIGURES................... ................................ ...............................................Vii

ABSTRACT.,; ................ ........... ............................................................................ix

CHAPTER I - INTRODUCTION...................... ............... .......................................- I

1.1 Motivations for Beamspace Domain Processing.... ..........................................I
1.2 Overview of ML Estimation for Low Angle Radar Tracking............. .............2
1.3 Introduction to BDMLEstimation Scheme.......------ ---------------------- ------..6
1.4 Generalized Butler Beamformers and BDML Estimators................ ................7
1.5 Auxiliary Procedures for BDML Method.........................................................8
1.6 Adaptive Interference Cancellation................. ...............................................10
1.7 Outline of the Thesis............. ................................ ................ ........................11

CHAPTER 2 - BEAMSPACE DOMAIN ML ESTIMATION FOR
SPECULAR MULTIPATH............. ..................................„.................14

2.1 Introduction......... ...................... ....................................................................14
2.2 Array Principles and Conventional Beamforming.........................................16
2.3 BDML Estimator for Symmetric Multipath.... .............................................„20

2.3.1 Composition of Data Snapshot Vectors........ ..........................................20
2.3.2 Development of Beamspace Domain ML Estimator.................... ..........24
2.3.3 Simplifications for Butler Matrix Beamformer.... ..................................32

2.4 BDMLMethodforNonsymmetricMultipath................. ...............................38
2.5 Performance Analysis of BDML in Coherent Multipath Scenario........... „...40
2.6 Cramer-Rao Lower Bounds for Coherent Multipath Scenario...... .................45
2.7 Computer Simulations.......... ....... .............. ...................................................49

TABLE OF CONTENTS



Ill

Page

CHAPTER 3 - GENERALIZED BUTLER MATRIX BEAMFORMERS
AND BDML ESTIMATORS'..... ........... ..............................................59

3.1 Introduction.....................................................................................................59
3.2 Factorization of the Butler Beamfprming Matrix.......... .................................60
3.3 Genefalized Butler Matrix Beamformers ..... ...............................64

3.3.1 ConstractionofBeamformers ................................................................ 65
3.3.2 Alternative BDML Methods........... ...................................................... .67

3.4 Parameterization of Beamspace Manifold Vectors................................. .......72

CHAPTER 4 -REFINEMENTS TO BEAMSPACE DOMAIN ML
ESTIMATOR FOR COHERENT MULTIPATH........... ...............,.....81

4.1 Introduction .......................... ....................................................................... 81
4.2 Estimation of the Reflection Coefficient...... ..................................................81

4.2.1 DeveIopmentof the Algorithm.............. .................................................82
4.2.2 Simplifications for Butler Matrix Beamformer.......................................85

4.3 BisectOrAhgleEstimation for Nonsymmetric Multipath ...............................87
4.3.1 Development of the Algorithm................ ...............................................87
4.3.2 SimplificationsoftheCostFunction........ ..... ........................................93

4.4 Performance Improvement Via the Use of Frequency Diversity................... 98
4.4.1 Coherent Signal Subspace Processing........ ..........................................100
4.4.2 BeamspaceManifoldInvarianceTechnique.........................................105

4.5 Computer Simulations.............................................. ................................ 110
4.5.1 Simulations for p-based BDML Scheme........ ......................................HO
4.5.2 Simulations for Symmetrized BDML Scheme....... ..............................112
4.5.3 SimulationsforMulti-Frequency BDMLScheme............................ ....122

CHAPTER 5 - ADAPTIVE BEAMFORMING FOR INTERFERENCE
CANCELLATION ..............................         125

5.1 Introduction...... ......... ......................... .......................................................125
5.2 ProblemDescription..:...................................................................... ........128
5.3 Modified MVDR Beamformer for BDML Estimator.................... ............. .130

5.3.1 Application of MVDR Criterion to Three Beams Case  ..... ..........132
5.3.2 MNP Based Generalized Butler Bpamformers..... ................................136

••5.3.2.1/ Generalized MTNP Butler Beamformer.......   139
53.2.2 Generalized MINPButlerBeamformer........,............ ................143
5.3.2.3 GeneralizedMO Butler Beamformer.... ....................................146

5.4 Computer Simulations...... ....... ......................... ..........................................149



iv

CHAPTER 6 - CONCLUSIONS, FINAL COMMENTS, AND FUTURE
RESEARCH...................... ....... ........................................................157

6.1 Conclusion................ ........... ........... ........ .................................•.................157
6.2 Final Comments....... ........................................... .........................................160

6.2.1 TargetTracking in Freespace..... . . . . . . . . . . . . . . . . . . . . . ......................  160
6.2.2 Multiple Targets Case................        161
6.2.3 FrequencyDiversityfor General Scenarios............ ........    161
6.2.4 Efficient BDML-Based Interference C a n c e U a t i o n ....... ...... ....162

6.3 FutureResearch.......... ....................... ........... ..............................................162
6.3.1 Analysis of Resolution Capability............. .......................  162
6.3.2 DiffuseMultipath...... .......................      .....163
6.3.3 TwoDimensionalBeamspaceDomainProcessing...............................164

LIST OF REFERENCES........ .............. ................. . .........  .............................-165

APPENDICES

Appendix A Properties of the Eigenvectors of a Real Matrix
Exhibiting Both Symmetry and Per-Symmetry............ .....................173

Appendix B Reduction of a Linear Combination of Three Butler Beam
Based Polynomials to a Second Order Polynomial............................176

Appendix C Simplification of the Cost Function for Bisector
Angle Estimation..................... ................... .......— ......... ..........-.....182

Appendix D Proof of Conjugate Symmetry of the Columns of R0pt...... ••.........184

Page

' -v



LIST OF TABLES

2.1 Comparison of the performance and computational load of the 
BDML method with that of the IQML method in a symmetric 
multipath scenario with target angle 0O=2Q, M=15, N=IO3 
SNR=5 dB for direct path, and p=0.9. The bottom row indicates 
the respective approximate number of floating point operations 
required for each trial run for both methods. 0 and a  represent 
the sample mean and sample standard deviation in degrees 
computed from 100 independent trials. The rightmost column
shows the corresponding CRLB’s for o...............................................................51

2.2 Performance of the BDML estimator in a symmetric multipath 
scenario for five different target angles with M= 15, N=IO3 
SNR=5 dB for direct path, and p=0.9. The 3-dB beamwidtfr 
of the quiescent array pattern is approximately 7.6°. 0 and a  
denote the sample mean and sample standard deviation in
degrees computed from 100 independent trials....... ..... ......................................54

2.3 Performance of the BDML estimator in a symmetric multipath 
scenario for seven different direct path SNR values with target 
angle O=Ip3 M=15, N=IO3 and p=0.9. The 3-dB beamwidth^ 
of the quiescent array pattern is approximately 7.6°. 0 and O 
denote the sample mean and sample standard deviation in
degrees computed from 100 independent trials............. ......................................55

2.4 Performance of the BDML estimator in a nonsymmetric multipath 
scenario for seven different direct path SNR values with target
angle 0i =2°, specular path angle 02=^1° M=LS3 N=IO3 and
p=0,9, The 3-dB beamwidth of the quiescent array pattern is 
approximately 7.6°. 0 and a  denote the sample mean and sample 
standard deviation in degrees computed from 100 independent
trials........... .................................................... ......... ........................................... 57

Table Page



Table Page

4.1 Comparison of the performance of the original and the p-based 
BDML methods for symmetric multipath with M =15, N = 10,
SNR = 5 dB, and 0O-2°. 0 and a  represent the sample mean 
and sample standard deviation in degrees of the estimates from 
100 independent trials. For each trial, five iterations were
executed to get the estimate of b(u).....................................................................111

4.2 Comparison of the performance of the single frequency-based 
BDML method and the multiple ffequencies-based BDML method 
W ithM =Is3N = Io 3SNR = SdB5UndOasgivenbelow.
The four values of Mi used were M0=15, M1=IS, M2=l I, and
M3=9 leading to the frequencies fG, 1.154f0,1.364f0, and l,667f0,
with f0 corresponding to half-wavelength spacings, 0 and a
represent the sample mean and sample standard deviation in
degrees of the estimates from 100 independent trials....................................... 123

5.1 Comparison of the noise suppression performance of the Butler 
beamformer with that of the three adaptive beamformers for the 
case of M= 15 element uniformly-spaced linear array and two 
intefferers present at 17° and 30°. The SNR gain was computed
for u=0 for the center beam, u=-——for the lower beam, and" ■ ■ -M- '2
u=—- for the upper beam, respectively..,  ..... ............. ............. 155

5.2 Comparison of the interference rejection performance of the Butler 
beamformer with that Of the three adaptive beamformers for the 
case of M=IS element uniformly-spaced linear array and two 
interferers present at 17° and 30°. In forming the three adaptive 
beamformers, the interfering directions used were 17.5° and 29.5°.
The SNR gain in dB was computed for 0i=17° and 30°.......................... .........156



Vll

Figure Page

1.1 Polar depiction of the respective array patterns associated with 
the reference, upper, and lower beamforming weight vectors 
superimposed upon an illustration of the corresponding transformation 
from element space to 3x1 beamspace. The relative orientation of
the direct and specular path rays is depicted as well. ............................---- ------- 5

2.1 Geometry of a uniformly-spaced linear array with a single planewave
source arriving from angle 0 with respect to b r o a d s i d e . .... ....................17

2.2 Geometry of symmetric specular multipath. The grazing angle
is equalto ©i -  02-.......................... ........ ......... ............... ..................................21

2.3 Plot of the respective array patterns associated with the three 
columns of a 15x3 Butler matrix beamformer for the case of a 
15 element uniformly-spaced linear array. The array patterns
have 12 nulls in common.............. .......................................................................33

2.4 Cramer-Rao lower bounds for unbiased estimates of the direct 
path angle 0j for the case of Gaussian additive noise when 
0j=2°, 02=-2°, M=15, N=I, p=0.9, and SNR=5 dB. Both the
symmetric and nonsymmetric cases are shown on the same plot..................— 48

2.5 Comparison of the performance of the BDML method and that of 
the IQML method with the theoretical CRLB in a symmetric 
multipath scenario with target angle 0O =2°, M=15, N=IO,
SNR=5 dB for direct path, and p=0.9. Sample mean and sample
standard deviation were computed from 100 independent trials.... .....................52

4.1 Performance of the BDML estimator in a nonsymmetric 
multipath scenario for five different direct path SNR values 
with target angle 0i=2°, specular path angle 02=-l°, M=15,
N=5, and p=0.9. Sample mean and sample standard deviation
were computed from 100 independent trials......................................................113

LIST OF FIGURES



viii

4.2 Performance oftheS-BDMLestimatorinanonsymmetric 
multipath scenario for five different direct path SNR values 
with target angle 01=2°, specular path angle 02=-l°,M=15,
N=5, and p=0.9. Sample mean and sample standard deviation
were computed from 100 independent trials......................................................115

4.3 Performance of the bisector angle estimator in a nonsymmetric 
multipath scenario for five different direct path SNR values 
with target angle 0i=2°, specular path angle 02=-l°, M=15,
N=5, and p=0.9. Sample mean and sample standard deviation
were computed from 100 independent trials....... ................ .............................. 117

4.4 Comparison of the performance of the S-BDML method with that 
of the three aperture method and the IQML algorithm in a 
nonsymmetric multipath scenario with target angle O1-2°, specular 
path angle 02=—I0, M=15, N=1, SNR=20 dB for direct path,
and p=0.9. Sample mean and sample standard deviation were
computed from 100 independent trials...............................................................119

5.1 The respective array patterns associated with the Butler 
beamformer and the three adaptively constructed beamformers 
for the case of M= 15 element uniformly-spaced linear array and 
two interferes present at 17° and 30°. (a) Butler beamformer 
(b) MTNP beamformer (c) MINP beamformer (d) MO beamformer.
In each case, the three adaptive beam patterns have 12
nulls in common, including those corresponding to the two
interferes............................................ ...............................................................150

Appendix
Figure

B. I Location of the respective roots of each of the three 
polynomials formed with a coefficient vector equal to the 
(a) first (b) second, and (c) third column of an Mx3 Butler 
matrix beamformer (M=15). All of the roots lie on the unit 
circle; the polynomials have M-3=12 roots in common........ ...........................177

Figure Page



ABSTRACT

The problem of low-angle radar tracking utilizing an array of antennas is 
considered. In the low-angle environment, echoes return from a low flying target via a 
specular path as well as a direct path. The problem is compounded by the fact that the 
two signals arrive within a beamwidth of each other and are usually fully correlated, 
or coherent. In addition, the SNR at each antenna element is typically low and only a 
small number of data samples, or snapshots, is available for processing due to the 
rapid movement of the target. Theoretical studies indicates that the Maximum 
Likelihood (ML) method is the only reliable estimation procedure in this type of 
scenario. However, the classical ML estimator involves a multi-dimensional search 
over a multi-modal surface and is consequently computationally burdensome. In 
order to facilitate real time processing, we here propose the idea of beamspace domain 
processing in which the element space snapshot vectors are first operated on by a 
reduced Butler matrix composed of three orthogonal beamforming weight vectors 
facilitating a simple, closed-form Beamspace Domain ML (BDML) estimator for the 
direct and specular path angles. The computational simplicity of the method arises 
from the fact that the respective beams associated with the three columns of the 
reduced Butler matrix have all but three nulls in common. The performance of the 
BDML estimator is enhanced by incorporating the estimation of the complex 
reflection coefficient and the bisector angle, respectively, for the symmetric and 
nonsymmetric multipath cases. To minimize the probability of track breaking, the use 
of frequency diversity is incorporated. The concept of coherent signal subspace 
processing is invoked as a means for retaining the computational simplicity of single 
frequency operation. With proper selection of the auxiliary frequencies, it is shown 
that perfect focusing may be achieved without iterating. In order to combat the effects 
of strong interfering sources, a novel scheme is presented for adaptively forming the 
three beams which retains the feature of common nulls.
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CHAPTER I 
INTRODUCTION

1.1 M ativations for Beamspace Domain Processing

The idea of extracting information about a "scene" of targets or radiating 
sources from the data outputted from an array of sensors by operating in the 
beamspace domain as opposed to element space has recently caught the 
interest of a number of researchers in the field of array signal processing 
[BUCK88], [Xi;88], [VAN88], [FORS87], [GABR881. In element space, the 
data is taken to be the "raw" snapshot vectors containing a simultaneous 
sampling of all the array element outputs at a particular instant in time. In 
the case of beamspace domain processing, the "raw" snapshot vectors are first 
operated on by a matrix beamformer producing a beamspace snapshot vector 
typically of lower dimensionality. There are a number of advantages to 
working in the beamspace domain. First, the lower dimensionality of the 
beamspace domain snapshot vector serves to reduce the computational 
burden- Second, as each component of the beamspace domain snapshot vector 
is formed as the weighted sum of a large number of array element outputs, it 
is often adequate to assume Gaussian statistics in the beamspace domain. In 
the case of Maximum Likelihood (ML) based estimation, the Gaussian 
assumption leads to a tractable least squares problem. Third, the process of 
beamforming serves to filter out undesired sources such as clutter and 
jammers. Finally, the "spatial" white noise assumption which is typically 
invoked but not very often the case in practice, may indeed hold to a good 
approximation in beamspace. The pertinent assumption here is that the 
spatial passband associated with the matrix beamformer is narrow enough 
such that the spatial distribution of the noise over the passband is essentially 
flat- These advantages of beamspace domain processing over element space 
processing have lead to the development of beamspace domain versions of the 
Minimum Variance algorithm. For the narrowband case we have the work of 
Byrne and Steele [BYRN87] while for the wideband case we have the work of 
Gabriel [GABR88]. Beamspace domain versions of MUSIC [SCHM79] have also 
been developed. For the narrowband case, We have the work of Forster and



Vezzosi FORS87 . Kdayhan and Niro IKlAYH87J, and; Van Veen ;VAN88j. For 
the wideband case, we have the work of Bnckley and Xu [BUCK88], [XU88] 
who have also developed beamspace domain, wideband versions of other 
spatial spectral estimators such as Minimum Variance, BASS-AXjE, etc. We 
here develop a beamspace domain based Maximum Likelihood estimation 
scheme for the low angle radar tracking problem.

1.2 Overview of ML Estim ation for Low Angle Radar Tracking

The low angle radar tracking problem has been well studied in the 
literature JKESL80], [HAYK83', [HA YK84 j,. !DAVI76],: [GABR84], [CANT81], 
[MAYH87], [BALL87J/ [KEZY88}, [KSIE68], [BART74], [WHIT74], [SKOL80], 
[ZOLT88a , [ZOI.T89b-d . Barton provided a model for the scenario in 
:BART74i. The goal is to track a target flying at a low altitude, in relative 
terms, over a fairly smooth reflecting surface such as a calm sea, for example. 
The problem is complicated by the fact that the angular separation between 
the echoes returning from the target via the specular path and those arriving 
via the direct path is typically a fraction of a beamwidth. The classical 
monopulse bearing estimation technique breaks down under these conditions 
as it assumes a single target within the mainlobe width of the sum beam 
[GABR84 . As a consequence, a number of alternative estimation techniques 
have been proposed, each theoretically capable of resolving two targets 
angularly sepalrated by less than a beamwidth. Note that the low-angle radar 
tracking scenario may be viewed as a two target problem; one of the targets 
is "real" while the other is simply its multipath "reflection". In particular, a 
number of Maximum Likelihood (ML) based estimation schemes have been 
developed and proposed [KESL80 , (HAYK83], (HAYK84], [HAKY85], 
[B AVI7 6]j: [CANT8(1 ]v:.[MAYH87], [BALLS?]. [KEZY88], [KSIE68], [WHIT74]. 
The ML estiinator is particularly attractive in light of its theoretical ability to 
handle the single snapshot case, as the term monopulse implies, and 100% 
correlation between the direct and specular path signals. In these two extreme 
situations, most Direction-of-Arrival (DOA) finding techniques suffer severe 
degradation or may even totally break down [BRES86]. The various ML 
based estimation schemes proposed may be classified under two major 
categories: those which operate in element space and those which operate in 
beamspace. Some early treatment of the element space based ML estimator 
can be found in the pioneering work of Ksienski and McGhee [KSIE68] and 
that of White [WHIT74]. More recent work on the element space: based ML
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estimator can be found in the papers of Haykin [HAYK85] and Ballance and 
Jaffer [BALLS?One of the major drawbacks of the element space based ML 
estimator is the attendant computational complexity. In the case of K targets, 
the element space based likelihood function is a K-dimensional, multi-modal 
surface. A major contribution in this regard was a computationally efficient 
algorithmic formulation of the element space based ML estimator for multiple 
targets proposed by Bresler and Macovski 'BRES86] referred to as the 
Iterative Quadratic Maximum Likelihood (IQML) algorithm. Ziskand and 
Wax 'ZISK88 have also developed a computationally efficient implementation 
of the element space based ML estimator based on alternating projections. 
However, even in the simple case of two targets, neither of these formulations 
leads to a simple, closed-form expression for the ML estimates of the two 
respective target angles, except in the case of a three element array. The 
greatest attribute of the monopulse bearing estimation technique, and the 
reason for its widespread use in radar systems, is that even in the case of a 
large phased array, the angle of the target is found via a simple computation 
involving the ratio of the difference beam to the sum beam [GABR84], 
[SKOL80]. In 'DAVI76], Davis et. al. show that the monopulse bearing 
estimation technique is, in fact, the ML estimator of the target angle given as 
data the sum and difference beams formed from the array element outputs. 
That is, it is a beamspace domain based ML estimator in which M-dimensional 
element space, where M is the number of elements in the array, is transformed 
into a 2-D beamspace. This insight has lead to an investigation of the use of 
three beams, i. e., a beamspace domain based ML estimator in which M-dim. 
element space is transformed into a 3-D beamspace, for the case of two targets 
angularly separated by less than a beamwidth.

One such 3-D beamspace domain based ML estimator is that proposed by 
Cantrell et. al. ['CANT-81].- In this technique, the transformation from element 
space to 3-D beamspace is achieved by applying the same beamforming weight 
vector to each of three identical, non-overlapping subarrays. A benefit of 
working with non-overlapping subarrays is that if the noise is independent at 
the element level, it will also be independent at the beamspace ports. Another 
interesting aspect of Cantrell et, al.’s subarray based prescription for 
converting from element space to beamspace is that the Vandermonde 
structure of the element space manifold, achieved with a uniformly-spaced 
array of identical sensors, is retained by the beamspace manifold vector. It is 
due to this phenomenon that Cantrell, et al. are able to formulate the BDML 
estimates of the direct and specular path arrival angles, given as data the
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three subarray outputs formed from a single snapshot, in terms of the roots of 
a quadratic equation corresponding to a simple, closed-form estimation 
scheme. However, a major shortcoming of their method is that the "spatial 
passband" achieved by such a matrix beamforming scheme is that associated 
with the subarray which is approximately three times as large as that 
achievable by applying three different beamforming weight vectors to all of 
the array element outputs as proposed by Kesler and and Haykin [KESL80], 
[HAYK83], [HAYK84]. The importance of this observation has to do with the 
fact that although we may be only interested in two targets located in the 
general vicinity of broadside, there will undoubtedly be clutter and possibly 
interfering sources in the field of view of the array. In light of this, it is best 
to keep the width of the "spatial passband" about broadside as small as 
possible.

The low-angle radar tracking scheme formulated by Kesler and Haykin is 
referred to as the least squares adaptive antenna (LSAA) algorithm and is only 
applicable in the case of symmetric multipath. The conditions for which it is 
valid to invoke the symmetric multipath model are described in Section 2.3. 
The LSAA algorithm works in the following manner. Three beams are formed 
by processing the entire set of array signals with three different sets of weights 
producing a reference beam pointed to broadside and two auxiliary beams 
symmetrically positioned about broadside. The scenario is depicted in Figure 
1.1. An error criterion is set up as the difference between the reference beam 
output and the Sumbf the two auxiliary beam outputs weighted by a scalar w. 
The optimum weight w which minimizes the mean-square value of this error 
criterion may be computed via a closed-form expression. The corresponding 
estimate of the direct path angle is then subsequently determined via the use 
of a calibration curve [HAYK85]. Although this technique appears to be 
somewhat ad-hoc, in Section 2.3 we show that under certain conditions it very 
nearly corresponds to the beamspace domain ML estimator. However, in 
general, the procedure does not yield the ML estimate primarily due to the 
fact that it does not account for the correlation between the noise at the 
beamspace ports. In general, the noise between the three beamspace ports is 
correlated even if the noise in element space is "spatially white". In addition, 
in Section 2.3 we show that the use of the calibration curve, which essentially 
involves a I-D search, may be avoided if a Butler matrix beamformer is 
employed. In this case, the beamspace domain ML estimate of the direct path 
angle may be computed via a simple, closed-form expression similar to the 
monopulse expression for a single target.



Figure 1.1 Polar depiction of the respective array patterns associated with 
the reference, upper, and lower beamforming weight vectors 
superimposed upon an illustration of the corresponding 
transformation from element space to 3x1 beamspace. The 
relative orientation of the direct and specular path rays is 
depicted as well.
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1.3 Introduction to BPML Estim ation Scheme

We will derive the beamspace domain Maximum Likelihood (BDML) 
estimator of the direct and specular path angles in a multipath scenario when 
the three beams are formed in a symmetrical fashion about broadside in the 
manner suggested by Haykin and Kesler. For the case of symmetric mutipath, 
Three different algorithmic implementations of the BDML estimator are 
presented. The development of one is motivated by the auxiliary beam 
subtraction and calibration curve procedure of Haykin described above. In 
effect, we make the necessary changes to Haykin’s scheme in accordance with 
the above arguments, in order to put it on a Maximum Likelihood foundation. 
The two other procedures developed also follow directly from Maximum 
Likelihood considerations. In the one procedure the symmetry of the 
multipath is explicity exploited while in the other it is implicitly exploited. 
Although the "explicit" procedure is the more computationally simplistic of 
the two, the "implicit" procedure provides great insight into the performance 
of the estimator in the case where the multipath is "coherent" or 100% 
correlated with the direct path signal. Specifically, the development of the 
"implicit" procedure gives rise to the execution of a single forward-backward 
average on the 3x3 beamspace correlation matrix. Note that, in contrast to 
Cantrell’s three subarray method, the beamspace manifold vector achieved by 
processing the entire set of array signals with three different sets of weights 
according to Haykin’s scheme is real-valued and does not exhibit the 
Vandermonde structure. Hence, the applicability of forward-backward 
averaging, as it is applied in element space, is not apparent. Indeed, the effect 
of the forward-backward average in beamspace is quite different from the 
effect of forward-backward averaging in element space, as will be 
demonstrated in Section 2.3, and is only applicable in the case of symmetric 
multipath. With the BDML scheme for symmetric multipath established, we 
consider the special case of a Butler matrix beamformer which facilitates a 
simple, closed-form expression for the estimator.

The development of the BDML method for the nonsymmetric multipath 
case is a simple extension of that for the symmetric case. It is shown that if a 
Butler Matrik beamformer is employed, the BDML angle estimates may be 
simply determined from the roots of a judiciously constructed quadratic 
equation. This is a significant contribution due to the fact that the 3x1 
beamspace manifold vector does not exhibit the Vandermonde structure in 
contrast to the situation with Cantrell’s three subarray method as discussed



previously. The ability to nevertheless formulate the estimates in terms of the 
roots of a quadratic equation arises from the fact that the respective array 
patterns associated with each of three columns of the Butler beamforming 
matrix have M-3 nulls in common (M is the number of elements). The 
appropriate development exploiting this property may be found in Appendix
B

The analysis of the performance of the BDML estimator for both the 
symmetric and nonsymmetric cases under coherent multipath conditions is 
presented. We show that the BDML Method for nonsymmetric case can 
handle coherent multipath so long as the direct and specular path signals are 
not perfectly in-phase or perfectly 180° out-of-phase at the center element of 
the array. This is in contrast to MUSIC which, without pre-processing in the 
form of spatial smoothing or forward-backward averaging [SHAN85aj, 
[WILL88], [EVXN82] breaks down in a coherent multipath scenario for any 
value of the phase difference. For the symmetric multipath case, it is shown 
that the only conditions for which breakdown occurs is the extreme case where 
the direct and specular path signals arrive 180° out-of-phase at the center 
element of the array and the magnitude of the reflection coefficient is exactly 
equal to unity. Under such conditions, the two signals cancel each other out 
entirely at the center element and very nearly cancel each other out at all 
other elements of the array, depending on how large the array is and how 
closely-spaced in angle the two signals are. The correctness of the analysis is 
verified by computing the corresponding Cramcr-Rao Lower Bounds (CRLB) 
for unbiased estimates.

1.4 Generalized Butler Beamformers and BDML Estim ators

The ability to formulate the BDML estimates in terms of the roots of a 
quadratic equation arises from the fact that the respective array patterns 
associated with each of three columns of the Mx3 Butler beamforming matrix 
have M-3 nulls in common (M is the number of elements), the locations of 
which are known regardless of the parameters chosen. The property of M-3 
common nulls thus manifests itself as a-priori knowledge for the BDML 
estimation problem. Motivated by the equivalence between the multiplication 
of polynomials and the convolution of sequences, it is possible to factorize the 
Butler beamforming matrix as a product of an Mx3 banded, Toeplitz matrix 
with another 3x3 matrix. The Mx3 Toeplitz matrix thus obtained corresponds 
to those common nulls and the 3x3 matrix is related to the remaining
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uncommon nulls. One important aspect of the above mentioned factorization 
is that it allows one to generalize the Butler beamformer by simply replacing 
the two matrix factors with other judiciously constructed matrices such that 
the resulting weight vectors have M-3 nulls in common.

The factorization of the Bntler matrix beamformer motivates an 
alternative way of formulating the BDML estimation problem. The Toeplitz 
structure of the Mx3 matrix associated with the common nulls indicates that 
Butler beamforming is accomplished first by forming beams from the outputs 
of three identical, adjacent, overlapping subarray, each one having all but one 
element in common with the adjacent one. The 3x3 matrix associated with 
the uncommon nulls serves to transform the resulting 3x1 output vector into a 
3x1 real beamspace manifold vector. An interesting aspect of the overlapping 
subarray based beamforming is that the Vandermonde structure of the 
element space manifold vector, achieved with a linear uniformly-spaced array 
of identical sensors, is retained by the beamforming output vector. As a 
consequence, the Mx3 banded, Toeplitz "common null" matrix, viewed as a 
beamforming matrix itself, provides an alternative approach to formulating 
the BDML estimator as that associated with the roots of a quadratic equation. 
In this case, the BDML estimates for the symmetric (nonsymmetric) case are 
determined via a 3x3 real (complex) generalized eigenvalue decomposition as 
opposed to the BDML estimator employing the regular reduced Butler 
beamformer which requires only a 3x3 real eigenvalue decomposition.

1.5 Auxiliary Procedures for BDML Mlethod

If the surface of reflection is fairly smooth, i. e., the sea is relatively calm, 
and the target is not moving too fast in relative terms, the specular specular 
multipath signal is merely a time-delayed, amplitude-attenuated replica of the 
direct path signal over multiple looks, i. e., multiple snapshots. This condition 
is referred to as coherent multipath. In this case, the two signals are related 
by a complex scalar multiple, called the reflection coefficient. The fact that the 
reflection coefficient is constant over the observation interval changes the 
complexion of the ML formulation of the problem of estimating the direct 
path angle. Indeed, it represents a-priori information about a coherent 
multipath scenario which needs to be incorporated into the ML estimation 
scheme. Ballance and Jaffer [BALL87] found that at the expense of increased 
computation, exploitation of the coherence gives rise to an element space 
based ML estimator exhibiting increased performance over that achieved with
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the ML estimator in element space which does not account for the reflection 
coefficient. As we shall see, this is the case in beamspace as well. In Section 
4.2, an iterative algorithm is presented for simultaneously estimating the 
direct path angle and the complex reflection coefficient in the case of 
symmetric multipath. I

A contradictory phenomenon observed by many researchers in the field of 
low-angle radar tracking is that for the nonsymmetric coherent multipath 
case, ML based estimators yield almost as bad a result for the O0 in-phase case 
as for the 180° out-of-phase case, where the phase is measured at the center of 
the array. In fact, Cantrell et. al. ICANT81] argue that an estimator which 
exhibits significantly better performance than the ML estimators in the O0 case 
must be biased. In fact, some beamspace domain ML estimation procedures 
will even totally break down under 0° and 180° phase difference conditions. 
However, the problem with the O0 phase difference does not show up for the 
case of symmetric multipath and more interestingly, the O0 case gives rise to 
the best performance. In light of these observations, it is desirable to develop a 
procedure which would convert convert a nonsymmetric problem to a 
symmetric one. In Section 4.3, we propose an ad-hoc scheme to accomplish 
this based on certain distinctive properties of the beamspace correlation 
matrix in the case of symmetric multipath. In particular, we will be concerned 
with the three-beam based BDML method wherein the conversion from 
nonsymmetric to symmetric multipath is simply some secondary steering, or 
fine tuning, of the three beams so that the pointing angle of the center beam is 
the bisector angle of the two paths.

The idea of employing frequency diversity to combat the signal 
cancellation problems occurring in low-angle radar tracking has been proposed 
by several researchers including Skolnik [SKOL80] and Kezys [KEZY88]. The 
idea is to have the radar transmitter emit multiple narrowband signals spaced 
in frequency with the frequency spacings judiciously chosen so that the phase 
difference occurring at the center of the array at each transmission frequency 
is significantly different from frequency bin to frequency bin. In Section 4.4, 
we invoke the coherent signal subspace concept, developed by Wang and 
Kaveh in their extension of the MUSIC algorithm for wideband sources 
[WANG85], [HUNG88] as a means for retaining the computational simplicity 
of the BDML estimation schemes while still incorporating in a coherent 
manner the additional data provided by the use of the auxiliary frequencies. 
In the application of coherent signal subspace processing here, focusing 
matrices serve to coherently combine the signal or target energy at each
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frequency while, at the same time, the noise energy in the different frequency 
bands is combined in an incoherent fashion. By proceeding in this fashion, we 
find that the only growth in computation with respect to single frequency 
operation is the computation and implementation of the focusing matrices. 
This claim is tempered somewhat by the fact that the focusing matrices are 
not known a-priori giving rise to an iterative procedure and, hence, additional 
computation. Along these lines, it is also it is also shown in Section 4.4 that if 
one is able and willing to work a restricted set of "special" frequency values, 
perfect "focusing" may be achieved at the outset, i. e. without iterating, such 
that the computational complexity may be reduced to that associated with 
single frequency operation! The "special" frequencies are those satisfying

h =  - ^ f 0 where Mj is an integer less than M, the total number of array

elements, and f0 is some reference frequency which is typically chosen to be 
that frequency for which the elements are spaced by a half-wavelength, 
although it doesn’t have to be. It turns out that if spatial smoothing is 
performed in a judicious manner at each auxiliary frequency satisfying this 
relationship, the beamspace domain based focusing matrices necessary for 
coherently combining the signal information contained at each frequency are 
each a known scalar multiple of the identity matrix. As a final note, we note 
that the use of coherent signal subspace processing in conjunction with 
frequency diversity in the manner described above once again illustrates the 
dramatic computational advantage' of working in beamspace: in element
space the focusing matrices are MxM and complex whereas in beamspace they 
are 3x3 and real, regardless of the number of elements,

1.6 Adaptive Interference Cancellation

Although we here only concern ourselves with the estimation of the 
angles of two signals arriving in the vicinity of broadside, we are not 
presupposing that these are the only signals impinging upon the array. There 
may, in fact, be echo returns from clutter and other targets as well. What we 
are here assuming is that the sidelobes of the array pattern associated with 
each of the three beamforming weight vectors are low enough such that the 
contributions of those sources not located within a few beamwidths of 
broadside may be regarded as negligible. In the case of strong interferers, it is 
necessary to employ adaptively formed reference, upper, and lower auxiliary in 
much the same way that adaptively formed sum and difference beams may be



employed in monopulse radar tracking in the manner proposed by Davis et. 
al.in [DAVI76] and Gabriel in [GABR84]. Synthesis techniques for 
determining weights which result in a desired pattern response have been 
proposed by Capon [CAP069], Griffiths et. al. [GRIF87], and Frost 
[FROS76]. These methods involved defining a performance criterion such as 
maximum output SINR, minimum mean-square error (MMSE), or minimum 
variance (MV), and then finding the weight vector resulting in an optimization 
of the criterion. The pattern nulls are formed in the direction of strong 
interfering sources and sidelobe patterns are adjusted accordingly to provide 
the best performance against noise in an interference environment. Motivated 
by the relationship between the , three columns of the Butler matrix 
beamformer analyzed within, a novel procedure is desired wherein the upper, 
center, and lower beamforming weight vectors are constructed with adaptively 
steered nulls in the direction of interfering sources in such a fashion so as to 
nevertheless achieve a simple, closed-form expression for the BDML estimates 
of the direct and specular path angles.

In this thesis, we propose several modified performance criteria for 
constructing the optimum beamforming matrix, or three beamforming weight 
vectors, such that prescribed nulls axe formed to cancel the interferences and 
M-3 common nulls are formed for each of the three beams. Our development 
is based on the linearly constrained minimum variance (MV) criterion, the 
least squares (LS) criterion, and the factorization property associated with the 
Butler matrix beamformer. The optimum beamformer obtained with the MV 
criterion minimizes the expected output noise power from the three beam 
ports while producing unit gain in the desired directions of look. The LS-based 
criterion leads to a matrix beamformer whose three columns form a set of 
ijiutually orthogonal vectors. The optimality is defined in terms of a least 
squares fit to the Butler beamforming matrix. In order to retain real-valued 
beamspace manifold vectors for the BDML methods, an additional constraint 
is imposed to ensure complex conjugate symmetry of the three weight vectors.

1.7 Outline of the Thesis

The thesis is organized as follows. Chapter 2 develops the beamspace 
domain maximum likelihood (BDML) estimator for both the symmetric and 
nonsymmetric multipath scenarios when the three beams are formed 
symmetrically about the broadside. A simple close-form expression for the 
BDML estimator is derived for the case of the reduced Butler matrix
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beamformer. A performance analysis as the theoretical CRIjB of the BDML 
estimator for both the symmetric and nonsymmetric cases under coherent 
multipath conditions is discussed. Simulation results illustrating the 
performance of the BDML estimator for various combinations of signal 
parameters are presented.

Chapter 3 deals with the structural analysis and generalization of the 
Butler matrix beamformer. By exploiting the relationship between polynomials 
and sequences, we convert the beamforming problem considered herein into 
that associated with some judiciously constructed matrices and based on that, 
we develop a new class of BDML estimators and derive a parametric 
representation for the beamspace manifold vectors.

In Chapter 4, three auxiliary procedures for improving the BDML 
estimator under coherent multipath scenario are investigated. First, an 
iterative algorithm is presented to simultaneously estimate the beamspace 
manifold vector of the direct path signal and the complex reflection coefficient. 
Performance improvement is achieved as the a-priori information about signal 
coherence is incorporated. It is shown that with Butler beamformer, the 
computational load is simply that associated with the solution of a quartic 
equation. Second, an ad-hoc scheme is developed for converting a 
nonsymmetric problem to a symmetric one. The idea was motivated by the 
fact that the BDML estimator for nonsymmetric case breaks down for O0 and 
180° phase differences while the BDML estimator for symmetric case can 
handle any phase difference with O0 giving rise to the best performance. The 
conversion is a two-stage procedure: the bisector angle of the direct and
specular paths is first estimated, followed by a secondary steering of the three 
beams. Significant simplifications can be achieved again with the use of a 
Butler beamformer. Finally, frequency diversity is incorporated in order to 
alleviate the rank deficiency and signal cancellation problems occurred at O0 
and 180° phase differences. We first invoke the coherent signal subspace 
concept as a means for retaining the simplicity of the BDML schemes. It is 
then shown that significant reduction of computational load is achieved if the 
frequencies used belong to a restricted set of values. Simulation results for 
each of the above three schemes are presented.

Chapter 5 presents three novel adaptive beamforming techniques to 
effectively combat the interference and clutter problem often occurring in 
practice. The optimum weight vectors are determined via the minimum noise 
power and mutual orthogonality criteria. The idea is to adaptively form the 
center, upper, and lower beams in a fashion so as to achieve a simple closed-
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form expression for the BDML estimator. Computer simulations are conducted 
to demonstrate the efficacy of the new beamforming schemes.

Chapter 6 concludes the thesis by commenting on the results of these 
studies and discussing possible future research topics.
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CHAPTER 2
BEAM SPACE DOMAIN ML ESTIMATION  

FOR SPECULAR MULTIPATH

2.1 Introduction

One of the primary motivating factors for the early development of 
phased arrays was the prospect of "beamforming" to achieve very high gains in 
signal-to-noise ratio (SNR) at the beamformer output relative to the, SNR at 
each sensor element. The idea, of course, is to coherently combine, or add up 
in phase, the desired signal at each of the array sensors by judicious weighting 
of the various array signals. A simple calculation shows that if the noise at 
each of the sensors is independent and of equal power, the gain in SNR 
achieved by compensating for the linear phase shift on the desired signal 
across the array, due to the different lengths traveled from the source to each 
sensor, is equal to the number of sensors in the array, a number which can be 
made quit large. It was subsequently found that classical beamforming was 
quite robust in that the SNR gain exhibited a graceful falloff from this optimal 
value when the phase compensation was mismatched for whatever reason. 
However, this robustness of classical beamforming manifests itself in terms of 
poor resolution when two closely-spaced signals impinge upon the array. In 
simple terms, a nearby interfering source, within a fraction of a beamwidth of 
the desired source, will pass through the beamformer with an SNR gain nearly 
equal to that for the desired source. This aspect of classical beamf°rnPng has 
implications with regard to the dual problem of estimating the respective 
bearings of two closely-spaced sources. The poor resolution of classical 
beamforming based direction finding ultimately lead to the development of 
numerous parametric-based estimation algorithms capable of sub-beamwidth 
resolution. Among these algorithms, the ones which stand out in terms of 
versatility and performance are the popular MUSIC algorithm [SCHM79] and 
the statistically based Maximum Likelihood (ML) algorithm [WHIT74]. 
Although both of these algorithms have indeed demonstrated superior 
performance, particularly with respect to classical Fourier-based direction 
finding, they nonetheless have limitations in terms of a significant degradation
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in the sub-beamwidth resolution capability when the SNR of the received 
signal is very low. The primary application of interest herein is the low-angle 
radar tracking problem [BART74] wherein two signals, the direct and specular 
path signals, arrive near broadside to the array within a beamwidth of each 
other. The SNR associated with either signal at any given sensor is typically 
low compared to other scenarios. In addition, the number of snapshots 
available for tracking updating is usually very small, sometimes only one is 
available. To adequately deal with this problem, we propose the idea of 
applying either ML or MUSIC in so-called beamspace for the purpose of 
advantageously exploiting the poor resolution of classical beamforming to 
convert the element space data vectors to beamspace data vectors having a 
higher SNR and a lower dimensionality.

In this thesis, we will be primarily interested in the two-ray multipath 
scenario encountered in low-angle radar tracking and concern ourselves 
specifically with the problem of estimating the arrival angle of the direct path 
signal, the actual bearing of the target, when both the direct and specular 
path signals arrive near broadside to a linear array of antennas within a 
beamwidth of each other. We will here assume that the antenna elements 
comprising the array are identical and uniformly-spaced by a half-wavelength; 
the half-wavelength spacing avoids the infamous grating lobe problem. We 
further assume the number of antennas to be odd such that M =2L+1. A 
slight modification to each of the results developed within is required if M is 
even. For brevity, however, we do hot include the appropriate modifications 
for M even. We will also assume that the target is in the far field of the array 
such that the returning echoes may be modeled as planewaves. Finally, we 
will also invoke the narrowband signal model.

We begin this chapter by briefly introducing fundamental array 
principles and aspects of conventional beamforming in Section 2.2. In 
particular, an analysis of beamforming SNR gain with respect to various 
weighting schemes is presented. With the knowledge of the array signal model 
and the concept of beamforming intact, we proceed to develop the ML 
estimator for the direct path angle. Section 2.3 will be exclusively concerned 
with the symmetric multipath problem wherein the angle of the specular path 
signal, with respect to broadside, is merely the negative of the angle of the 
direct path signal. Specifically, three different algorithmic implementations of 
the beamspace domain ML (BDML) estimator are presented. It is shown that 
if a Butler matrix beamformer is employed, the BDML estimate may be 
simply determined via a quadratic equation, leading to significant reduction in



computational complexity. Section 2.4 develops the BDML estimator for the 
non-symmetric multipath case, which is a straightforward extension of the 
estimation for the symmetric multipath case. In Section 2.5, a rigorous 
performance analysis for both the symmetric and nonsymmetric BDML 
estimators is presented. The results are shown to agree with the behavior of 
the theoretical Cramer-Rao Lower Bound (CRLB) discussed in Section 2.6. 
Finally, simulation results are presented in Section 2.7 to demonstrate the 
performance of the beam space domain ML estimators under various 
combinations of signal parameters.

16

2.2 A rray Principles ahd Conventional Beamforming

In this section, we briefly review the narrowband array signal model 
which underscores the concept of using an array to achieve a gain in SNR. To 
this end, consider a single planewave impinging upon a uniformly-spaced 
linear array of M—2 L -1 identical sensors at an angle O0 with respect to 
broadside. The geometry of this scenario is illustrated in Figure 2.1. Let fc 
denote the center of the frequency band of width B which the signal occupies; 
Xc=c/fc, where c is the speed of light, is the associated wavelength. Further, 
let <£ denote the length of the array. If this collection of array and signal 
parameters satisfies (B/fc)(i?/Xc)sin(tf0)<C I, the narrowband array signal 
model may be invoked. Under these conditions, the element space snapshot 
vector, denoted as x(n), composed of the of the complex envelopes, Xi (n), 
! = ^ , . . . , —1,0,1,...^, sensed sensed at each of the M=2L+1 array elements at
the n-th snapshot may be expressed as

x(n) =  c0(n)a(u0) +  n(n) (2.1)

where Cp(n) is the complex amplitude of the signal obtained at the n-th 
snapshot, the phase of which is that measured at the center of the array (the
element indexed 0) such that

a ( u 0)
-j TrLu0 DLun (2 .2)

accounts for the (uniform) linear phase variation across the array, The 
quantity uo=sin(0o) is the so-called reduced angle [STEI76] associated with 
O0. We will throughout work with the reduced angle u=sin(0). There is a 
one-to-one correspondence between u and 0 over the angular interval 
—90° <0<9O °, corresponding to the so-called visible region [STEI76]. We will 
therefore concentrate on estimating u from which 0 may be recovered via the



Figure 2.1 Geometry of a uniformly-spaced linear array with a single 
planewave source arriving from angle B with respect to 
broadside.
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inverse sine transformation without ambiguity. Finishing the definition of the 
quantities in (2.1), the elements of n(n), denoted /q(n), i—-L,...,-1,0,1,...,L, 
constitute the additive noise present at each sensor at the n-th snapshot.

The most noteworthy aspect of the narrowband array signal model is that 
the complex envelope of the signal is temporally coincident across the array; 
this is signified by the fact that c0(n) in (2.1) is a scalar quantity. This makes 
the job of coherently combining, or adding up in phase, the desired signal at 
each of the antenna elements a simple task of judiciously weighting and 
summing the various array signals. A simple calculation shows that if the 
noise at each of the antennas is independent and of equal power, equal to rr*, 
say, the gain in SNR achieved by compensating for the linear phase shift on 
the desired signal across the array is equal to the number of elements in the 
array. The appropriate argument is as follows. The SNR at the i-th element, 
i—-L....,-1,0,1,...,L, is given by

I e " 1" '  M n )  I 2  I c 0 ( O ) I j  
E l  I •' ( ■ • ;  1 3

(2.3)

which is the same for each antenna element. We are here assuming that the 
additive noise at each of the antenna elements is primarily receiver generated. 
We will discuss practical "noisy" sources such as clutter and interferences at a 
later point. In the case of receiver generated noise, we make the assumption 
that the additive noise at each element is independent and of the same power 
equal CT̂, i. e., the noise is "spatially white". Let us consider forming a beam 
with the weight vector w with elements wx, i=-L,...,-l,0,l,...,L , according to

b(n) =  wHx(n) =  [wHa(u0)]c0(n) +  wHn(n) (2.4)

Note that b(n) is simply a number, i. e., a scalar quantity. Under the same 
definition as that for the element level, we find that the new SNR associated 
with the beamspace element is [STEI76]

SNRb
I [wHa(u0)]c0(n)J 
E{ | wHn(n) | 2}

wHa(u0) I 2 
wHw

SNRi (2.5)

where we have used the fact that E{n(n)n^(n)} — <Ĵ I. Thus, the quantity

SNRG(U0)
I wHa (u o)  I w a (u0)aH(u0)>

I w I HW W
(2 .6)

represents the SNR gain achieved by beamforming. As (2.6) is a ratio of two 
simple quadratic forms, it is easily proven that it is maximized when 
w =  aa(u0)> where a  is arbitrary, which corresponds to classical beamforming
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with Fourierrbased phasing and rectangular weighting. Substitution of this 
weight into (2.6) indicates that the maximum SNR gain is M, the number of 
array elements. The significance of (2.6) for our purposes here is best 
understood by considering U0 =  Sin(^0) to be variable such that (2.6) represents 
the SNR gain achieved by beamforming with the particular set of weights 
comprising w as a function of the signal angle u0. If we drop the subscript o, 
we arrive at the not too surprising result that the gain pattern is proportional 
to the array power factor |w Ha ( u ) |2. However, the constant of 
proportionality, the reciprocal of | w j 2, is critically important when 
comparing the SNR gain performance of various weighting schemes. We 
demonstrate this point in the example to follow.

We illustrate the utility of the preceding development for operating in the 
beamspace domain with an example. Consider forming a beam to broadside 
with rectangular weighting such that w =  a(o) =  I , where I  is an Mxl vector 
comprised of all ones. Substitution into (2.6) leads to the array gain pattern

SNRG(u)
M-

sin(M7ru/2)
sin(7ru/2) (2.7)

which exhibits the maximum gain of M at u = 0  (0=90°, broadside). Of 
course, signals arriving slightly off broadside appear at the beamformer output 
with a significant amount of gain as well. In fact, for |u | <  .88/M, 
corresponding to the 3dB beamwidth, M/2 <  SNRG(u) <  M which can be 
quite large if M is large. This is indeed a manifestation of a well known 
characteristic of classical beamforming: poor resolution. The goal here is to 
exploit this shortcoming of classical beamforming and at the same time reduce 
computation and we will do so shortly. First, we would like to point out the 
significance of the denominator in (2.6). For this purpose, consider forming a 
beam to broadside with a triangular taper defined by wj =  L + l— | i | , i= -
L,...,-1,0,1,...,L. In general, the SNR gain achieved with a real set of weights

L ■ . . L
Wi for a signal arriving at broadside is given by ( V Wi)2 /  ( V w f), which is

i=— i=—L
approximately equal to .75M for triangular weighting when L>2 (M=2L+1). 
The point is that in addition to the classical observation that triangular 
weighting gives rise to a mainbeam of twice the width of that obtained with 
rectangular weighting but with much reduced sidelobes, it is also gives rise to 
a max SNR gain which is only three-fourths that achieved with rectangular 
weighting. A 3dB beamwidth calculation for the case of triangular tapering 
[STEI76] finds that 3M/8 <  SNRG(u) <  3M/4 for |u | <  1.27/M.



2.3 BD M L E stim a to r  for S ym m etric  M u ltip ath

The symmetric two-ray multipath model holds to a good approximation 
if (a) the target is at a great distance from the array site such that the direct 
and specular path rays are approximately parallel, and (b) the array is 
mounted orthogonally to the surface of reflection for the multipath. This 
scenario is depicted in Figure 2.2. VVe point out, however, that in some cases, 
calibration may be necessary in order to compensate for the distortion due to
atmospheric refraction and the curvature of the earth.

2.3.1 Composition of Data Snapshot Vectors

Under the narrowband assumption described in the preceding section, the 
n-th element space snapshot vector, x(n), for the symmetric multipath 
scenario may be written as [HAYK84], [BART/4]

x(n) =  C](n)a(u0) +  c2(n )a(—u 0) + n(n) n — 1,...,N

a(u0) I a ( -u 0)|
ci(n)

U>(n)
+  n(n) =  Ac(n) +  n(n) (2 . 8)

The description of the various terms in (2.8) are as follows. First, U0=sin(0o) 
where 60 is the angle of the direct path signal with respect to broadside. C1 (n) 
is the sample value of the complex envelope of the direct path echo at the n-th 
snapshot. The phase angle of C1 (n) is that measured at the center of the array 
(the antenna element indexed 0) such that

a(u) =  [e-J"Lu, • • • ,e- 2j;ru-e-jru , l ,e ^ u,e2J™, * • • ,eJ"Lu] . (2-9)

with u -  U0 accounts for the (uniform) linear phase variation across the array 
due to the planewave assumption. c2(n) is defined similarly with regard to the 
specular path signal. Again, the elements of n(n), denoted /'j(n), i=-L,...,- 
1,0,1,...,L, constitute the additive noise present at each antenna output at the 
n-th snapshot.

Following the lead of Haykin [HAYK83], [HAYK84], [HAYK85],
[KESL80], we form three beams by operating on all of the array elements with 
three different sets of weights. Figuratively speaking, we form two auxiliary 
beams symmetrically pointed above and below the horizon at u =  uB and 
u _  —uB) respectively, and a "reference beam pointed directly along the 
horizon at u =  0 (broadside). uB then represents a design parameter which
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must be determined a-priori. The approach of forming three beams may be 
simply viewed as an extension of monopulse radar tracking wherein two beams 
are formed in the angular vicinity of a single target to accurately estimate its 
bearing. A natural generalization is to form three beams in the vicinity of two 
closely-spaced targets. Mathematically, the formation of three beams may be 
represented as a transformation from M-dim. element space to a 3-D 
beamspace as described by

xB (n) — SHx(n) where: S s(uB) s (°) • s (- ub) (2 . 10)

The Mx3 matrix S is referred to as the beamforming matrix. The three 
columns of S are referred to as beamforming or steering vectors and are 
described below.

s(un) = Daa(uB) ; s(0) = Dra(0) ; s(—uB) — D aa( uB) (2-11)

where Da =  dlag{aL, ,aj ,ao ,aj, • • • ,aB j- anc^
Dr = diag |rL. • • • .Tl5T0lT1, • • • , rL} are real, diagonal MxM matrices with 
elements symmetric about the central diagonal element. The a;, i =0,1,...,L, 
serve to shape each of the two the auxiliary beams while the Ti, i =0,1,...,L, 
serve to shape the reference beam such that, in contrast to Haykin s LSAA 
method, we do not here require that the tapering for the reference beam be 
the same as that for the two auxiliary beams. Note that a, and rj, i=0,l,...,L , 
represent design parameters which must be determined a-priori.

From its definition in (2.9), we may deduce the following properties of the 
element space manifold vector a(u):

(a) a (u) =  a(-u); (b) IMa(u) =  a ‘ (u); "(c) IMa(u) =  a (-u ) (2.12)

where Ib is an nxn reverse permutation matrix defined as follows

0 0 I
0 0 • 0

I (2.13)
0 I ♦ 0
1 0 0

Note that I satisfies I =  I and I I = I  which indicates that it is is a unitary 
matrix equal to its own transpose. (2.12b) is a mathematical statement that 
a(u) is conjugate centro-symmetric for all u. From the two properties of a(u) 
described in (2.12) and the symmetric nature of the tapering, we deduce the 
following properties of S.
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The properties of the beamforming matrix S 
invoked at various points in our development.

(c) ImSI3 =  S (2.14)

described by (2.14) will be

Invoking the above notation and definitions, we may express the 
composition of the 3x1 beamspace domain snapshot vector, xB(n), in a format 
similar to that in (2.8) for x(n), the element space snapshot vector,

xB(n)= b(u0)':b (-u0)jc(n) +  nB(n)—Bc(n) +  nB(n) (2.15)

where nB(n) =  SHn(n), b(u) — SHa(u), referred to as the beamspace manifold 
vector, and B =  ShA =  [b(u0) i b(—U0)]. As a consequence of the property 
of S described by (2.14b) and that of a(u) described by (2.12b), we have

b(u) =  SHa(u) =  SHI MIMa(u) =  STa ’(u) =  b ’ (u) (2.16)

which indicates that b(u) is a real-valued 3x1 vector for all u. Hence, B in 
(2.15) is real. Note that from (2.15) and (2.16), we may deduce the following 
relationship between b(u0) and b(—u0) which will be highly instrumental in 
our development of the BDML estimator of U0:

b(—u0) =  I 3 b(u0) (2-17)

where I3 is the reverse permutation matrix of order 3 defined by (2.13). This 
property of b(u) mimics that property of a(u) described by (2.12c). However, 
in contrast to a(u), b(u) =  Sha(u) is composed of purely real elements, does 
not exhibit centro-symmetry, and does not possess the Yandermonde 
structure. As an example of a beamspace manifold vector, consider the case of 
rectangular weighting, i. e., no tapering, for all three beams. In this case, i. e., 
Da = D r = I  such that S =  [a(uB) I a(O) I a ( -u B)]. The components of b(u) 
are simply the respective array patterns associated with each of the weight 
vectors, a(uB) ,.a (0 )a n d a (—uB). The array pattern: associated with the 
reference beam, denoted Gr (u), is that produced by the weight vector a(0), a 
vector composed of all ones. Gr(u) is thus simply the following familiar array 
pattern:

. • . ,M  .  ■L sm(—-TTU)
G(u) =  a«(0)a(u) =  £  ^  =  2—  (2*18)

,=_L sin (yu) ^

The array patterns associated with the upper and lower auxiliary beams are 
simply this pattern shifted to the right and left, respectively, by the amount
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uB, i. e., aH(uB)a(u) =  G(u — un) and aH(—uB)a(u) = G(u 4- uB). Thus, the 
beamspace manifold vector with S =  ja(uB) I a(0) i a(—uB)] is of the following
form

M u )
sin (— tt(u—uB)) s in (—-Try) s in (— 7r(u+uB)) 

2 2 £

sm (y (u -u B)) Sin(yu) sin(-̂ -(U-Hib))
(2.19)

Note that the noise terms in the beamspace snapshot vector are, in 
general, correlated even if the noise terms in the element space snapshot 
vector are independent. If we assume spatially white noise at the element 
level such that E{n(n)nH(n)]=<TnI, the covariance matrix of the noise in 
beamspace, denoted Rnni simplifies as follows.

R  nn =E {nB (n) n B (n)}=Sh E (h (n )nH (ri)} S ShS (2.20)

Let Q =  SHS. Invoking the properties of S described by (2.7), we deduce the 
following properties of Q:

7 5:^  v

(b) Q* = S TS* = I sShSI3 = I 3QI3 = Q  (2.21)

where we have used the fact that ImIm =  I- These results indicate that 
Q =  ShS is real, symmetric, and per-symmetric (symmetric about the anti­
diagonal). Finally, we note that Q is diagonal if and only if the three 
beamforming vectors s(uB) , s(0) and s(—uB) are mutually orthogonal. This 
special case will lead to certain simplifications as will be seen shortly.

2.3.2 Development of Beamspace Domain ML Estim ator

With this structural analysis of the beamspace snapshot vector, xB(n), as 
a backdrop, we briefly develop the the Maximum Likelihood (ML) estimator of 
u0 given as data the beamspace snapshot vectors: xB(n), n = l,...,N . It should 
be kept in mind that this ML estimator will yield different estimates than 
those obtained from the ML estimator working with the raw data, i. e., the 
element space snapshot vectors.

If the number of antenna elements, M, is large, each of the three 
components of the 3x1 beamspace noise vector nB(n) is a weighted sum of a 
large number of random noise variates. Assuming the noise to be independent 
from element to element, it is therefore reasonable to invoke the Central Limit
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Theorem and thus approximate the noise in beamspacp as being Gaussian 
distributed. Thus, assuming the beamspace domain hoise to be Gaussian and 
the sequences C1 (n) and c2(n), n =  to be unknown but deterministic, the
Likelihood function is given by:

J I 7T~U I Rnn I _1 exp{-[xB(n)-Bc(n)]HR ^  -1 [xB(n)-Bc(n)]} (2.22)

Proceeding in the typical fashion by taking the natural logarithm of the 
likelihood function and throwing out those terms which do not depend on B, 
we arrive at the following optimization problem

N
Minimize V] ||xB(n) — B c(n)|j q ) (2.23)

u „c(l),...,c(N) n=]

where the norm is defined such that |jy[| q 1 =  yH Q -1 y and Q==S^S as 
defined previously. It is well known [8] that in the estimation of u0, the 
problem is separable such that we may proceed by substituting in for c(n), 
n= l,...,N , the respective least square error solution 
CLs(n)= [BTQ~1B]~1BTQ~1xB(n), n = l,...,N . Substitution of cLS(n) into 
(2.23) yields, after some manipulation, the following objective function to be 
minimized over U0 only:

Minimize xg(n)Q 1/2 P g x(u0) Q 1/2xB(n) (2.24)
n=l

where P g w(U0) =  I — Q~*/2 B(Bt Q -1B)^1Bt Q - 1/2 is a projection Operator 
onto the orthogonal complement of the span of Q -1/2b(u0) and Q - I /2b(— u0), 
the "whitened" columns of B. With the estimator formulated in this fashion, 
the ML estimate is obtained by varying u0, and, hence, P jjw (uQ), in accordance 
with some numerical search technique until the minimum of the objective 
function in (2.24) is reached. For the purpose of developing a much simpler 
means for finding the optimum value of uQ, we here convert the optimization 
problem in (2.24) to an equivalent one motivated by the IQML algorithm 
formulated by Bresler for ML based direction of arrival estimation in element 
space [8]. We briefly sketch the appropriate development.

The orthogonal complement of the span of Q -1/2b(u0) and Q -1/2b(—u0) 
is, of course, a I-D space such that P g u(U0) may be expressed in the form

—̂-ddH where d is orthogonal to both Q -1/2b(u0) and Q -1//2b(—u0).
Il^ll

Alternatively, if we let d =  Q 1' 2 v, P g w(U0) may be expressed in the form
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q !/2 Hq 1/2 _ _
——-n———---- where v is orthogonal to b(uG) and b(—u0). Substitution of

vH Q v
this expression for Pg (u0) into (2.24) yields the following alternative 
expression for the objective function in terms of v:

V xg(n) v vH xB(n)
D =  I

V11 Q v

/H Rv

Q v
(2.25)

I .in; ; #
where Rbb =  —■ V] xB(n) x B(n) is the sample correlation matrix formed in

n = l
beamspace. Now, for the expression in (2.25) to be equivalent to the objective 
function in (2.17), v must be orthogonal to both b(u0) and b(—u0), as pointed 
out previously. We make two relevant observations. First, b(u0) is a real- 
valued 3x1 vector as is b(—u0). Thus, without loss of generality, v may. be 
taken to be real-valued. Second, b(—u0) =  I3 b(u0), as indicated in (2.17), 
giving rise to the following observation:

vT!b(u0) i b (—u0)] =  vT[b(u0) i I3b(u0)]

=  V7 I3 ! I3b(uc) ; b(u0.) ] - 0  (2-26)

From this observation we may deduce that I3v = v, 1. e., that v must be 
centro-symmetric. Taking account these restrictions on v, we formulate the 
following optimization equivalent to that described by (2.24):

Minimize
V

v7 Re(Rbb) v
V7 Q v

(2.27)

subject to: I3v =  v

Recall that Q =ShS is real as proved in (2.21). With the solution v to this 
optimization problem, one may determine the corresponding value of U0 which 
solves the optimization problem in (2:24), the BDML estimate of u0, as the 
solution to vTb(u0) =  0. Since b(u) =  SHa(u), one may also determine U0 as 
the solution to vTSHa(u0) =  0. Note that in light of the centro-symmetry 
constraint, the optimum v has only two distinct elements. Also, note that the 
objective function in (2.27) is invariant to a scale change in v such that we 
may fix one of its elements equal to one, for example. The point is that the 
optimization problem described by (2.27) is, in fact, a single parameter 
optimization problem as is the original Optimization problem described by 
(2 24).
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We now present three methods for determining the optimum v satisfying 
(2.27) arid the corresponding u0 which serves as the Beamspace Domain ML 
(BDML) estimate of the direct path angle. The three methods should, in 
theory, provide the same numerical value for the BDML estimate of u0; the 
difference lies in their computational requirements. As a final observation at 
this point, note that the beamspace correlation matrix, R^b is related to the

element space correlation matrix, R xx _1_
N

N
V x(n) xH(n) according to

N
V  x B(n) xg'(h) 

n=l
Sh R yv S (2.28)

M ethod I: E xplicit E xp lo ita tion  of C en tro -S ym m etry . Since v is 
centro-symmetric, we may express it as v =  Jv1 V0 V1Jt , where V0 and V1 are 
real. To account for the centro-symmetry constraint, define

S' s(0) ; s(uB) +  s ( -u B) and V1]1 (2.29)

such that Sv =  S V . Note that in contrast to S, which is Mx3 as defined in 
(2.10), the Mx2 matrix Sr  is real due to the fact that s(—uB) =  s*(uB). 
Substituting S V  for Sv in (2.27) allows us to express the constrained 
optimization problem in (2.27) as an unconstrained one in the following 
fashion:

Minimize
v'

v 'T S 'TRe{Rxx}S 'V  
v 'T S 'TS' v

(2.30)

where we have exploited the fact that S' is real. The solution to (2.30), of 
course, is such that v ' is that generalized eigenvector (GEVEC) of the 2x2 real, 
symmetric pencil {S'TRe{Rxx}S' , S 'TS '| associated with the smaller of the 
two generalized eigenvalues (GEV’s). Given this v', u0 may be estimated as 
that root of Ge(u) =  eTa(u), where e =  S V , in the vicinity of u = 0 . Note that 
the two columns of Ŝ  are real and centro-symmetric such that e =  S V  is real
and centro-symmetric as well. Hence, e — S V  — eL • • ’ C1 eq ei ' ' ' eLj  
such that

Ge(u) =  eTa(u) =  V es e3 
i= -L

JTfiu L
e0 '4- 2 V) ej cos(7riu) 

. i= l
(2.31)

Note that Ge(u) may be viewed as an array pattern associated with the weight 
vector e =  S V . In any case, Ge(u) is a real and even function of u and 
exhibits a local maximum at u = 0 . The BDML estimate of U0 is then that
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a n g l e  at which the first null of the array pattern Ge(u) occurs, i. e., that null
closest to u =  0. One may employ a Newton-Raphson search, for example, in
order to locate this mill. In the case of tracking, the search should be started
at the most recent estimate of U0 . As a practical note, it is recommended that

I
the search be terminated and a failure be registered if the value u — uB + ^

is exceeded before a null is located. uB + is approximately the location of

the first null on the upper side of the mainlobe of the array pattern associated 
with the upper auxiliary beam. A summary of BPML method I is delineated 
below.

Algorithmic Summary of BDML Method I

' '■ > r -I
(I.) With S' =  s(0) ; s(uB) +  s ( -u B)j and i -  £  x(n) x"(n), 

n=l .
compute v' as "smallest" GEVEC of 2x2 pencil {S'TRe{Rxx}S , S S }.

(2.) With S V [-■ ei e0 ex
I

form

Ge(u) = e0 +  2 V e i cos(rriu)
i=l ,

(3.) u0 is estimated as the first null of Ge(u) occurring within the interval (0,

'J!' "  'NI "
M ethod II: Im plicit E xp lo ita tion  of C en tro -S ym m etry . As an

alternative to the previous means of accounting for the centro-symmetric 
constraint on v, consider that if, in fact, I3v =  v, then (l3v)TRe{Rbb}l3V =  
vTRe{Rbb}v. Likewise, (I3V)tQI3V =  vTQv. Hence, we may express the 
objective function in (2.27) in the following alternative fashion.

1Z2 vT [RejRbb I +  I3Re(Rbb)I3]v vTRe{Rfbb}v ({> ^
Minimize -------------- ------~ J riv  v • /

v y2 vT[Q +  I3QI3Jv ^

subject to: I3V == v

where we have exploited the properties of Q =ShS described by (2.21) and 

where



R fb -  1 Rbb — 2 Rbb +  IgRbbIa (2.33)

may be interpreted as the forward-backward averaged beamspace correlation 
matrix [SHAN85], : jEVAN82], [WILL88]. It is easy to show ^that 
I3Re(Rbb)Ia =  Re(Rbb) which when combined with the fact that Re(Rbb)' is 
symmetric indicates that it is per-symmetric, L e., symmetric about the anti­
diagonal, as well. In Appendix A, we prove that two of the three GEVEC’s of 
the pencil (Re(Rbb) ) Q) exhibit centro-symmetry while the third exhibits 
centro-anti-symmetry. An nxl vector, x, exhibits centro-anti-symmetry if 
Inx =  —x. In the case of n odd, this implies that the center element of x is 
zero. These observations combined with the fact that the centro-anti- 
symmetric GEVEC spans a space orthogonal to the space spanned by the two 
centro-symmetric GEVEC’s produces the final result that the solution to the 
constrained optimization problem described by (2.32) is such that the 
minimizing v is that centro-symmetric (CS-) GEVEC of the 3x3 real pencil 
(Re(Rbb) ) Q } associated with the smaller GEV.

With this particular v , U0 may be determined as in the previous method 
as the solution to eTa(u0)= 0 where e =  Sv. In light of the Vandermonde 
structure of a(u0), as illustrated by substituting X=e^'u in (2.9) yielding

a (u o ) X"L, - • ■ ,X-! ,X-1, I tXiX2, • • • ,Xl we may alternatively find

J 7ru-
M - I

as a root of the polynomial e(z) — e[z', where eM i= l,...,M -l, is

T 0
the i-th element of e =  Svr T e., e =  Sv =  «o , ej , ej , • • ' ■,
may then be extracted from Z0 in the obvious manner. Note that e  is real and 
centro-symmetric as before; the centro-symmetry follows from the following 
argument: IMe =  ImSI3I3V =  Sv =  e. As a consequence, it is easy to show

I Ithat if Zj is a root of e(z), then z ; , — , and— *- are roots as well. A summary
' zi Zi ■

of BDML method II is delineated below.

Algorithmic Summary of BDML Method II

(I.) With S =

Rhh =  ShR vvS

a(uB) ; s(0) • s ( -u B)J Sc R xx 4 -  E  x (n) xH(n), form
N  D = I
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- fb I
(2.) With Rbb Rbb +  I3RbbIaj' compute V as CS-GEVEC of 3x3

pencil (Re(Rtb), ShS} assoc, with smaller GEV.
-IT M- I

e0 , ej , e2 , • • • , eM_j , form e(z) =  V  ej z*(3.) With Sv

(4.) Z0 is estimated as that root of e(z) in the vicinity of z—I;

uo = T - ln { z 0}.
J”

M ethod IQ: A uxiliary Beam  S u b trac tio n  and C alib ra tion  C urve.
We can arrive at an algorithm somewhat similar in form to the LSAA 
algorithm of Haykin [HAYK83], [HAYK84] if we express v as v =  
[--W0 , I , -W0Jt . Here we have normalized v such that its center element is 
equal to one, i. e., V0= I . Such a normalization appears feasible since the 
objective function in (2.27) is invariant to a scale change on v.

As
S'

in the development of Method I we may express Sv as
Js(O) i s(uB) +  s ( -u B)

S'v' where
and v ' =  [ I , —w0]T. Substituting

v' =  [I , —w0JT in (2.23), we find that the resulting objective function to be 
minimized with respect to w0 may be expressed as a ratio of two quadratic 
functions of w0 in the following manner

Minimize
»o •

rH ~  2r2]W0 -f- r22w0 
Sn — 2s21w0 + S22W0

(2.34)

where r,j and Sjj, i,j—1,2, are the i,j-th elements the 2x2 real, symmetric 
matrices SftRe(Rxx)S' and S 'TS', respectively. Differentiating with respect to 
w0 and equating to zero leads us to find that solution of the quadratic 
equation (r22s21 — r21s22) w0 +  (rn s22 — T22S1 j) W0 +  (r21sn  — rn s21) = 0  for 
which the objective function in (2.34) is smaller.

At this point, we remark that in contrast to the above procedure, 
Haykin’s LSAA algorithm finds the optimum weight w0 as that value which

function v 'T Sft Rvv S'v'minimizes the quadratic
(s(d) — w0[s(uB) +  b(—uB)])x R xx(s (0) — w0[s(uB) +  s(—uB)]}. This quadratic 
polynomial is similar to the numerator of the objective function in (2.34) with 
the exception that Re(Rxx) is replaced by R xx. An immediate consequence of 
this observation is that the w0 obtained from Haykin’s procedure is not 
guaranteed to be real as it should be. More importantly, however, the fact
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that only the numerator is involved in Haykin’s method is a manifestation of 
the fact that the method does not account for the correlation between the 
noise at the beamspace ports. Recall that, in general, the noise between 
beamspace ports is correlated even if the noise in element space is "spatially 
white". As a consequence of these observations, the LSAA algorithm only 
corresponds to the beamspace domain based Maximum Likelihood (BDML)

■A* ~ . A ' ' ~ A * ■ .
method if R xx satisfies ImR xxIm =  R x3f and the columns of S are orthogonal.

After the optimum w0 is determined, we may once again invoke the 
relationship vTSHa(u0)= 0 to determine the corresponding u0. As 
Sv =  S V  = s(0) — w0[s(uB) +  s(—uB)], this translates into a statement that 
u0 may be determined from wG as the solution to the equation 
(s(0) — w0[s(uB) +  s(—ub)]}T a(u0) =  0. Motivated by the calibration curve 
of Haykin, consider solving this equation for w0. Denoting the solution as 
wcai, we have:

Weal
St (O) a (uc )

[s(uB) +  8( - ub)]T a(u0)
(2.35)

Consider plotting WcaJ as a function of u0; all the quantities on the right hand 
side of (2.35) are known except for U0. The result may be thought of as a 
calibration curve which may be discretized and stored in memory on a 
computer. With the optimum W0 estimated via the procedure outlined 
previously, the corresponding value of u0 may be simply gleaned from the 
calibration curve. Note that this calibration curve is identical to that 
constructed by Haykin [HAYK84] for the LSAA algorithm. However, in 
contrast to the present procedure, Haykin generated his calibration curve by 
examining the effect of letting the SNR go to infinity in his least squares error 
criterion. This is similar to the case here as the calibration curve was 
generated assuming the ideal value of w0, that value which would be obtained 
if the SNR was infinite corresponding to either no noise or infinite signal 
power. A summary of method III is delineated below.

Algorithmic Summary of BDML Method III

(I.) With S' s(0) • s(uB) +  s ( - u B)
. : I N " H 'and R xx =  — V x(n) xM(n), form

'• • n=l '■■■
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S'TRe{Rxx [S'
r Il r21 
r21 r22

S'TS'
sIJ s2I 
S2] S22

(2.) With the elements of the 2x2 matrices formed in (I.), form the following 
2nd order polynomial and compute its two roots:

( r 22s 21 — **21 s 22) w o +  ( r l l s 22 ~  r 22s l l )  w o +  ( r 2l s l I — r J l s 2I.) =  ®

* select value of. w0 from (2) minimizing
—w.(3.) With V

v 'T S'TRe{Rxx J-S' v'

Z r S 'T S' v
(4.) Locate value of u0 on calibration curve corresponding to minimizing wc 

from (3.).

2.3.3 Simplifications for Butler Matrix Beamformer

The last step in each of the three BDML methods outlined previously 
may be formulated as finding Z0 =  eJ™" as a root of a polynomial of order M- 
1. In light of the practical consideration that the signals arrive near broadside 
to the array, we may restrict our search to finding that root closest to z—I 
on the unit circle. Although root finding algorithms which allow, one to 
restrict the search for roots to some specified region in the complex plane do 
exist, the root finding problem may be greatly simplified if a Butler 
Beamforming Matrix is employed. In this case, we select unity magnitude 
weighting, i. e., no tapering such that D a =  Dr =  I in (2.11), and uB as the 
location of the first null of the reference beam pattern which, in this case, is 
described by (2.18). The first null of the reference beam is, in fact, located at 
u =  2/M; hence, uB =  2/M. The beamforming matrix in this case is then

S =  [a(2/M ) i a(0) i a (-2 /M )] (2.36)

which when invoking the definition of a(u) in (2.9) may be seen to correspond 
to a Mx3 Butler Matrix Beamformdr [GABR84], [BUCK88], [FORS87], The 
respective three beams for the case of M =  15 are plotted in Figure 2.3. Note 
that the respective peaks of the mainlobes associated with the upper and lower 
auxiliary beams are located at the nulls of the reference beam occurring at 
u =  2/M and U =  -2 /M , respectively. This is a manifestation of the fact that 
the 3 columns of the Butler Matrix Beamformer in (2.36) are orthogonal. This
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— upper beam

— center beam

— low er beam

fc ■

• 3 ,

Spatial A n gle  in D egrees

Figure 2.3 Plot of the respective array patterns associated with the three 
columns of a 15x3 Butler matrix beamformer for the case of a 15 
element uniformly-spaced linear array. The array patterns have 
12 nulls in common.
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also implies that if the noise is uncorrelated in element space, it will be so in 
beamspace as well, i. e., "spatial whiteness" of the noise is preserved with the 
Butler Matrix Beamformer. However, a more important observation is that 
the three beam patterns have M-3 nulls in common. This fact may be 
exploited to reduce the computation involved in the final step of each of the 
three BDML methods as discussed above. The appropriate development is as 
follows.

Define the Vandermonde vector z as follows:

z - I 7 ?" Z3 Zm- 1It (2.37)

The inner product of any Mxl vector with the Vandermonde vector z is then a 
polynomial of order M-1. Recall, that for the sake of simplicity, we have 
assumed throughout that M is odd. The final step in each of the three BDML 
methods outlined previously may be formulated as finding the roots of the 
(M-l)-th order polynomial e(z)—(Sv)Tz, where v  =  Jv1 , Vq , V1] . More 
specifically, we seek a pair of complex conjugate roots of the (M-l)-th order 
polynomial (Sv)Tz in the vicinity of z = l  on the unit circle: the direct and 
specular path signals arrive within a beamwidth of broadside. The full 
development may be found in Appendix B but the fact that the respective 
array patterns associated with each of the beamforming weight vectors 
a(2/M), a(0), and a(-2 /M ) have M-3 nulls in common is a manifestation of 
the fact that the respective polynomials aH(2/M)z, aH(0)z, and aH(—2/M)z

j 27rm
have M-3 roots in common equal to z =  e M", m=2,...,M-2. The importance 
of this observation becomes apparent when we view the (M-l)-th order 
polynomial e.(z.)= (Sv)Hz as a linear combination of these three polynomials as
follows

e(z) =  (Sv)Hz = V1 aH(2/M)z +  v0 aH(0)z +  VjaH(-2 /M )z  (2.38)

Since any root common to all three polynomials is a root of any linear 
combination of the three polynomials, it follows that regardless of the values

i
of V0 and V1, M-3 roots of the polynomial (Sv)Tz occur at z =  e 
m=2,...,M-2. This statement involves no approximation whatsoever. Thus, 
the roots of interest are those of a quadratic equation obtained via the 
following polynomial division:
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q(z) =  qo +  qiZ +  q2*
(Sv)1

M—2 j
I l  (z -  e

m=2

2 Trm
“m ”

(2.39)

The details of this polynomial division may be found in Appendix B where it 
is shown that the coefficients of q(z) are as follows:

qo =  vo -  2viCOs(-^) =  q2 ; qi =  4v1cos(— ) -  2v0cos(— ) (2.40)

Letting q =  [q0 , qi , q2]T, we note that q is real and centro-symmetric, I. e., 
q0 =  q2, such that q(z) =  qjZ +  q0(l +  z2). As a consequence, the two roots 
of the polynomial q(z)=qTz either form a complex conjugate pair with both 
roots lying on the unit circle or are real with one the reciprocal of the other. 
The latter situation may be interpreted as a case where the direct and 
specular path signals are not resolved.

It will be easier for us to work with a normalized version of q(z) obtained 
by dividing the coefficients above by qo =  q2 giving rise to the polynomial 
I +  oz +  z2 where

4VjCOs(-y) -  2v0c o s ( |^ )
M '{Ml)

V0 -  2vlCo s ( ^ )

The two roots of a polynomial of the form I +  a z -I- z2, where a is real, are 
located on the unit circle if and only if |a |< 2  in which case the two roots are 
given by

Zo =  - f + j | V 4 - a 2 z0 =  - y - J y V 4 - a 2 (2.42)

It is easy to show that these two roots do indeed have unity magnitude. As a 
practical matter, the roots should be located in the vicinity of z== I. We thus 
further restrict a  to be strictly non-positive such that -2 <  a  <  0. With a  
given by (2.41) and V normalized such that V0 is non-negative, it is easily 
shown that this constraint is satisfied as long as v0 and V 1 satisfy the

inequality v0 >  2v1cos(— ). From observations gleaned from numerous

simulations, we recommend that this condition be used as a flag for 
determining whether the signals have been resolved or not. That is, it is

recommended that the condition V0 <  2v1c o s (^ )  b e  taken as a flag that the
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algorithm has failed to resolve the two signals.
The value of Z0 given by (2.42) with a  given by (2.41) is the ML estimate 

of z0 =  V ffu". In order to obtain the ML estimate of U0. we must compute the 
argument or phase angle of Z0 . With Z0 given by (2.42), the phase angle is

given by arg(z0) =  tan~M v  ̂ with a  given by (2.34). Trivial
—Q

manipulation yields the following expression for the ML estimate of u0:

—tan 1
TT

V0 -  2vi cos( j^ )

v ° c o s ( § ) -  2 v I c o s * >

\ O II 2

-  I

)

(2.43)

As a check on the correctness of this formula, consider the case 
Uo = u B =  2/M, i. e., the angle of the direct path is exactly equal to the 
location of the peak of the mainlobe associated with the upper auxiliary beam, 
which corresponds to a null in the reference beam. Substituting uB =  2/M 
into (2.19) and evaluating at u =  2/M and u= -2 /M , we find that the 
beamspace manifold vectors for the direct and speculsr path arrivals are 
b(u0) =  [M , 0 , 0]T and b ( -u 0) =  [0 , 0 , M]T, respectively. The vector v of 
unit length orthogonal to both of these vectors is v =  [0 ,1  , 0]T. The reader 
may verify that substitution of vB =  I and Vj = 0  into (2.43) does indeed 
provide the correct value U0 =  2/M. Another test case of interest is that of 
u0 =  0 which corresponds to a single signal arriving directly broadside to the 
array. In this case, the beamspace manifold vector according to (2.19) is 
b(0) =  [0 , M , 0]T. The appropriate centro-symmetric v  vector for this case 
is: v a= [I , 0 , I /V ^ J t . The reader may easily verify that substitution
of the values v0 = 0  and V1 =  l / V J  into (2.43) does indeed produce the 
correct value u0 =  0. Note that BDML Method III outlined previously, based 
on Haykin’s LSAA algorithm, forces V0 to be equal to one and thus breaks 
down in this test case. From this observation, we deduce that as the direct 
path angle U0 becomes smaller and smaller approaching u =  0 corresponding 
to broadside, the middle component of v, V0, becomes smaller and smaller 
approaching zero as well, regardless of how v is normalized. A practical 
implication of this observation, therefore, is that BDML Method III, and hence 
the LSAA algorithm of Haykin, may exhibit numerical difficulties such as high 
sensitivity to round-off errors, for example, when the direct and specular path
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angles are only a couple of tenths of a beamwidth away from broadside. In 
terms of the calibration curve, we note that with uB =  2/M and no tapering, 
the denominator in the expression on the right hand side of (2.35) is zero when 
U0 =  0. This implication is that for Butler matrix beamforming the 
calibration curve defined by (2.35) tends to infinity as u0 approaches zero 
making it difficult to discretize and store the curve for small values of u.

In closing, we present the appropriate version of BDML Method II when 
the Butler Matrix Beamformer in (2.36) is employed which incorporates the 
simplification developed above. The summary is as follows.

(i.) With S=

Algorithmic Summary of BDML Method II 
With Butler Beamformer

l(2/M); a(0)i a(—2/M) & R xx= ^ - ^]x(n)xH(n), form
J 1N n=l

R bb- S H R xxS.

(2.) Compute v =  [vj , v0 , V1Jt as that CS-EVEC of Re(Rbb) =

i  ~  L-RejRbb + I3R bbI3 associated with the smaller EV.

(3.) With v from (2.) normalized such that v0 >  0, if v0 <  2v1cos(— ),

signals not resolved.
(4.) Otherwise: With v0 and V1 determined in (2.), estimate u0 according to:

-tan
V0 -  2v1cos(— )

v°cos( | j )  -  2vi cos(j^-)

\ O I£> 2

-  I

.

Note that inherent in step 2 is the fact that in the case of the Butler Matrix 
Beamformer Q =  ShS =  MI. We also point out that Re(Rbb) in step (2.) is 
both symmetric and per-symmetric. As a consequence, out of its nine 
elements, only three are distinct making its eigenvalue decomposition a fairly 
trivial task. These advantages combined with the avoidance of the task of 
finding a root of a (M-l)-th order polynomial illustrates the dramatic 
reduction in computation achieved by working with the Butler beamforming 
matrix S defined by (2.36).
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2.4 BDML Method for Nonsym m etric M ultipath

In this section, we consider the case where the multipath is not symmetric 
about broadside or u =  0. The composition of the element space snapshot 
vector and the corresponding beamspace snapshot vector are described by 
(2.8) and (2.15), respectively, with U0 replaced by U1 and - U 0 replaced by U2. 
We seek the ML estimator of U1 and that of U2 given as data N snapshot 
vectors in 3-D beamspace. Similar to the development for symmetric 
multipath which lead one from the description of the joint density of the 
beamspace snapshot vectors in (2.22) to the "equivalent" optimization problem 
over v in (2.27), we find that we may formulate the desired BDML estimation 
scheme as finding a 3x1 real-valued vector v, related to U1 and U2 according to

VtL(U1)= Q  vTb(u2) =  0, (2.44)

as the solution to the following optimization problem

Minimize
V

vT Re(Rbb ) v v T Re(ShR xxS) v

Q v vT S0S v
(2.45)

Note that although the centro-symmetric constraint on v is not applicable in 
the nonsymmetric case, the restriction that v is real, which follows from 
(2.44), is applicable. From (2.45), the optimizing v is that GEYEC of the 3x3 
real pencil (Re(Rbb) , SHS) associated with the smallest GEV. With this v, 
the BDML estimates of U1 and u2 are obtained as the two roots to the 
nonlinear equation vTb(u) =  vTSHa(u) =  0 in the general vicinity of u = 0  
(within plus or minus a beamwidth from broadside.) This corresponds to 
locating two nulls of the array pattern eHa(u), where the weight vector e is 
equal to Sv. This "double null tracker" type of estimation procedure has 
arisen in various element space based approaches to both the symmetric and 
nonsymmetric multipath problems proposed in the literature [CANT81], 
[MAYH87], [BALL87], [KSIE68], [WHIT74]. As a consequence of the uniform 
spacing of the antenna elements, the search for U1 and U2 may be formulated 
in terms of finding Z1 =  eJ™' and Z2 =  eJ“u- as the two roots of the (M-l)-th 
order polynomial eHz in the vicinity of z = l .  As in the case of symmetric 
multipath, the root finding problem may be greatly reduced if the Butler 
matrix beamformer in (2.36) is employed. In this case, we divide out of the
(M-l)-th order polynomial
e(z) =  (Sv)h Z =  V1 aH(2^4)z +  v2 aH(0)z +  v3aH(-2/M )z each of the M-3

27rm
roots, z =  eJ M , m=2,...,M-2, common to each of the three polynomials
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aH(2/M)z, aH(0)z, and aH(—2/M)z individually. The appropriate development 
is found in Appendix B where it is shown that the two roots of interest are 
those of a second-order polynomial q(z)=q0 -|-qi z +  q2 Z2 where

-s—  j —
q0 =  -V] e M +  V2 -  V3 e M =  qj

qi = 2(vx +  v3)cos(^-) -  2v2cos(-^ ) (2.46)

Consider the normalized version of q(z), denoted qn(z), obtained by dividing 
each of the coefficients by q j, which is observed to be real:

• *

qn(z) =  —  +  Z +  — z2 = 0  (2-47)
Ti Ti

q0 and qj are given by (2.46). qD(z), of course, has the same roots as q(z). 
The two roots of a quadratic polynomial of the form o +  z +  a  z2, where in

—1 ±  \ 1  — cx It is easilyour case a=  — , are given by ẑ  2
■ qi

shown that both of the roots have unity magnitude, i. e., lie on the unit circle,
J

if J a  I > —. We also note that classical algebra dictates that the product of
2

—r ,  which is observed to have 
To

the two roots of q(z) must be equal to —
Tz

unity magnitude. From this we deduce that the magnitude of one root must 
be equal to the reciprocal of the magnitude of the other root. This condition 
is, of course, satisfied if both of the roots lie on the unit circle as is the case

when I cx | > —. From these observations as well as from observations gleaned 
2

from the simulation results, we recommend that the condition | a  | < — be 

taken as a flag that the algorithm has failed to resolve the two signals.
For the sake of brevity, we here summarize the BDML Method for a 

nonsymmetric multipath scenario only for the case where the Butler Matrix 
beamformer is employed. The steps are delineated below.

(I.) With S

BDML Method for Nonsymmetric Multipath 
with Butler Matrix Beamformer

a(2/M) • a(0) I a(—2/M)l and R xx= = £  x(n)xH(n), form
J N n-l
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R bb= S wR xxS.
(2.) Compute v =  Iv1 , v2 , v3]T as EVEC of 3x3 matrix R ejR bb) assoc, 

with smallest EV.
(3.) With V1, i=  1.2,3, from (2.), form q(z)=q0 + qi z + QoZ2 where:

. 7T j ~ 7T 27T
q. =  -V 1 e ' ' "  +Y2-V3 e M" ; 'i, -  2(v1+v3)cos(.g )-2v2coS(— >

(4.) Let O =  — . If I Ce j < —, multipath signals not resolved. Otherwise:
r\ 2

(5.) Z1

qI
-i +  j V T f

Z2 ;

2a

- I  - 3  V T

2 - 1 - ;  i , x- - - - - - - c r  U 1 —  - I n j z 1 j
J77

2 - I  I
2 a

O  Q2 =  — Injz2 } 
J7r

2.5 Performance Analysis of BDML in 
C oherentM ultipathScenario

If the surface of reflection is fairly smooth, i. e., the sea is relatively calm, 
and the target is not moving too fast in relative terms, the specular multipath 
signal is merely a time-delayed, amplitude-attenuated replica of the direct 
path signal over multiple looks, i. e., over multiple snapshots. Due to the 
sinusoidal nature of the returning signals, the time-delay translates into a 
phase-shift such that c2(n) =  pe> ^ c j jn), n= l,...,N , where C1 (n) is the direct 
path complex signal, C2 (n) is the specular path complex signal, p is the 
magnitude of the surface reflection coefficient, p < l, and is the phase
difference between the two signals occurring at the center of the array. Again 
assuming spatially white noise and that the signal is uncorrelated with the 
noise, the expected value of the element space correlation matrix has the 
following form

R xx =  E{x(n) xH(n)} =  ARssAh +  <r2nl  (2.48)

where A  =  U(uD) i a (—u0)j for symmetric multipath and A  =  ^ u1) : a (u2)j 
for nonsymmetric multipath. The 2x2 matrix R ss in (2.48) is referred to as 
the source covariance matrix and, under the coherent multipath condition
stated, can be expressed in the following manner



cI (n)
C2 (n)

ci.(n)

c 2 ( n )

pZ

^ejiAV _2

-jAV 2

I
/*jA*

[I , > e -jA 'I/; (2.49)

where aj =  E{ | C1 (n) | 2}. Note that R ss is of rank I regardless of the values 
of p and AvK With R xx given by (2.48), the beamspace correlation matrix 
takes on a similar form

*T + ^ QShR sxS B R s9B

where B b ( u G )  i b ( — U 0 ) for symmetric multipath and B

(2.50)

b(m ) i b(u2)

for nonsymmetric multipath; R ss is given by (2.49). Now, consider the form 
of the beamspace correlation matrix in (2.50) employed in both the BDML 
Method II for symmetric multipath and the BDML Method for nonsymmetric 
multipath outlined above as well. We deal with the nonsymmetric case first.

The BDML Method for nonsymmetric multipath dictates that we take v 
as that GEVEC of the 3x3 real pencil (Re(Rbb)5Q) associated with the 
smallest GEV. Since B in (4.3) is real, we have that
Re{Rbb}= BRe(Rss)B1 +  Q where the real part of R ss in (2.49) is given
by - ■

R e(R ss) <A
pcos(A'I')

(2.51)
/ocos(Avk) p l

Invoking observations made in the formulation of the MUSIC algorithm [22], 
it is easy to show that as long as Re(Rss) is of rank two, the "smallest" 
GEVEC of the pencil (Re(Rbb),Q) '1S> m fact, orthogonal to both b(uj) and 
b(u2) indicating that the BDML estimation scheme produces the true values of 
U1 and u2 in the asymptotic case. This property follows from the fact that 
when Re(Rss) is of rank 2, range (BRe)Rss }BT) =  range(B) =  
Span(B)U1 ),b(u2)}. Now, observing (2.51), Re(Rss) Is of full rank equal to 2 
despite the coherent nature of the multipath so long as does not equal to 
either O0 or 180°. In these two cases, Re(Rss) is of rank I such that range 
(BRe(Rss)Bx ) =  Span(B)U1) ±  pb(u2)}, where is for the A 'I' =  O0 case 
and " is for the Aty =  180 ° case. All we can say in these two cases is that 
the "smallest" GEVEC of the pencil (Re(Rbb)5Q )j v > is orthogonal to the
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linear combination b(ui) ±  pb(u2) which does not imply that v is orthogonal 
to b(u]) and b(u2) individually. Thus, the BDML Method can handle 
coherent multipath so long as the direct and specular path signals nre not 
perfectly in-phase or perfectly 180° out-of-phase at the center element of the 
array. This is in contrast to MUSIC which, without pre-processing in the 
form of spatial smoothing or forward-backward averaging [WILL88], breaks 
down in a coherent multipath scenario for any value of the phase difference, 
AvPt This is true even in the case of MUSIC applied in beamspace. Note that, 
without hindsight, beamspace domain based MUSIC (BD-MUSIC) applied here 
would have simply computed v as the "smallest" GEVEC of the pencil 
{Rbb>Q}- It is interesting to note, though, that BDML and BD-MUSIC are 
equivalent, for the nonsymmetric case, if the transformation to beamspace is

performed on the matrix R xx =  —-(Rxx +  ImR xxIm ! as opposed to R xx itself.

This claim is substantiated by the following argument:

SliRvtS SH-t{R> +  ImR i ,iM}s = i s HR„s + - str„ s'

=  Re(SliR xxS )= R e (R bb) (2.52)
 ̂ J p

where we have employed (2.14b). Use of R xx as defined above corresponds to 
first performing a single forward-backward average in element space [WILL88] 
before the transformation to beamspace.

We next consider the execution of BDML Method II for symmetric 
multipath, outlined in Section 2.3, when Rbb is given by (2.50) with R ss, in 
turn, given by (2.49) corresponding to ah ideal coherent multipath scenario. 
BDML Method II dictates that we take v as that GEVEC of the 3x3^real 
pencil (Re(Rbb) > Q ) associated with the smallest GEV, where R bb =

2 R-bb +  I3 Rbbl3 We have proved in Appendix A that the v thus obtained

is centro-symmetric, I2V =  V, a very important property which will be 
illustrated shortly. We first analyze the effect of the backward average in 
beamspace. Recall that the two columns of B in the symmetric case are 
related according to b ( -u 0) =  I3 b(u0) such that I3BI2 = B. Thisproperty of 
B gives rise to the following interesting result:

Rbb +  IsRbbIs '



| ] B R ssB t +  I3BI2I2R ssI2I2B tI3 Q +  I3QI31

=  B — 
2

Rss +  I2RssI2 B t +  Q (2.53)

where have invoked (2.21), I2I2 =  I and the fact that B is real. Thus7 Rbb 
can be expressed in the form B R ^1B t +  Or̂ Q, where R ss is given by

pfb _  1Rss -  J Rss "b I2RssI2

I +  P2 
2

pcosAty

pcosAty

I +  P 2 
2

(2.54)

where “we have substituted (2.49) for R ss. We note that the elements of R ss 
are purely real. Combined with the fact that B and Q are real, this implies 
that Rjjl in (2.53) is real as well. Note, however, that we are only guaranteed 
that Rbb is real in the asymptotic Case, due to the complex additive noise, 
such that v should nevertheless be computed as the GEVEC of the pencil 
(Re(Rbb) > Q)- Returning to the issue at hand, though, we remark that it is 
easily proved R[s in (2.54) is of rank 2 such that range(BRss Bt } =  range(B) 
=  span(b(u0),b(—u0)) even if Aty ^ O 0 or Aty =  1800 so long as p is not at 
the same time equal to unity. That is, the only conditions under which R ss in 
(2.54) will be of rank I is when AvI* equals either O0 or 180° and, at the same 
time, p is equal to one. Under these conditions, range (BRe)Rss }BT ) — 
span(b(u0) ±  b(—u0)}, where, as before, + is for the A1I1 — O0 case and — is 
for the Aty =  180 ° case. This is in contrast to the situation with Re(Rss) 
which is rank I when either A ^  =  O0 or A ^  =  1800 regardless of the value 
of p. As a practical matter, the amplitude of the specular multipath signal 
will always be less than that of the direct path signal, due to losses incurred at 
the surface of reflection, such that p is strictly less than one. Nevertheless, the 
BDML Method can, in fact, handle the ideal scenario in which 
Aty =  0 0 and p= l despite the rank deficiency problem. Its ability to do so is 
directly attributable to the centro-symmetry of v which yields the following 
interesting result:

v T (b(u0) +  Pcb(—u 0)} =  vT(b(u0) +  PcI3 b(u0)}
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This implies that if v is orthogonal to the linear combination 
b(u0) -f peb(—u0), where pc =  ^ej^ ^ , it is also orthogonal to b(u0) itself, so 
long as pc does not equal to —1 corresponding to the case Aty =  ISO0 and 
p =  I. Specifically, we may deduce from (2.55) that for pc — I, corresponding 
to the case Aty = O 0 and p =  I, the condition V^b(U0) +  b( do)} =  ® 
implies vTb(uo) = 0  which, in turn, indicates that the BDML estimation 
scheme will produce the true value of U0 in the asymptotic case under these 
conditions.

Thus, the only conditions for which the BDML Method breaks down in a 
symmetric multipath scenario is the extreme case where Aty =  180 0 and p—1. 
Under such conditions, the two signals cancel each other out entirely at the 
center element and very nearly cancel each other out at all other elements of 
the array, depending on hc>w large the array is and how closely-spaced in angle 
the two signals are. One of the ways to deal with the practical situation 
where the direct and specular path signals arrive at the center element of the 
array very nearly equal in amplitude and perfectly or very nearly 180° out of 
phase is to employ frequency diversity. This is the subject of the next section. 
Note that the use of frequency diversity will also remedy the problem 
occurring with BDML in the nonsymmetric case when the phase difference 
between the two signals at the center of the array is 0 0. We should point out 
that the problem with Aty =  0 0 in the nonsymmetric case is not confined to 
the ML method in beamspace. It is a problem with the element space based 
Maximum Likelihood method as well as observed by White [WHIT74]. 
Cantrell et al [CANT81] also encounter the problem in their three subarray 
based beamspace domain ML method. Cantrell et al, in fact, argue that if an 
estimator exists which significantly outperforms the ML estimator in the 
nonsymmetric case when Aty =  0 0, the estimator must be biased.

As a final note with regard to the effect of the single forward-backward 
average in beamspace illustrated by (2.53), observe that the diagonal elements 
of the effective source covariance matrix achieved by this process, defined 
by (2.54), are equal. The forward-backward averaging process, in effect, 
exploits the inherent symmetry to "redistribute" the combined power equally 
among the two signals. This has implications with regard to the much 
observed phenomenon that the ability to resolve two very closely spaced 
signals (in angle) largely depends on the strength of the weaker source, 
assuming a moderate signal-to-noise ratio. The single forward- backward

=  (I +  / \ ) v T M u0) =  0 (2.55)
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average in beamspace effectively equalizes the strengths of the two signals 
providing the optimum condition for resolution given all the other relevant 
parameters fixed such as phase difference, noise power, etc. We note that the 
forward-backward average in beamspace as defined by (2.53) is only applicable 
in the case of symmetric multipath.

2.6 C ram er-R ao  Lower B ounds for C oheren t M u ltip a th  Scenario

When the statistical model for an estimation problem is well defined, it is 
usually possible to derive an explicit expression for the performance bounds 
associated with the estimator. In particular, we are interested in the 
performance bounds associated with unbiased estimators. It is well known that 
the Cramer-Rao Lower Bound (CRLB) [VAN68] provides a lower bound for 
the covariance matrix of the estimation error of all unbiased estimators. 
Specifically, if S1 is any unbiased estimator of O based on the observation bold 
z, then the covariance of the error in the estimator satisfies the following 
inequality:

E { [6-d) (6-d)T } > J - 1 (2.56)

(2.57)

and p(z I 0) is the conditional density of z given 0. Equality holds in (2.56) if 
and only if

In p(z I 6) =  c(0)!0-$] (2.58)

where c(<?) is a constant depending on 6. The matrix J  is the well known 
Fisher Tnformation Matrix [VAN68] An interesting relationship between the 
CRLB and the ML estimators is that if an estimator satisfies the equality in 
(2.58), it can be formulated as an ML estimator. In other words, if the CRLB 
can be attained, it can always be done with the ML estimator.

Their are two advantages to working with the CRLB: I) analytic 
expressions are usually attainable; 2) it can handle multiple parameters; i. e., 
it provides bounds for multiple parameters simultaneously. The computation 
of the CRLB has been a topic of considerable interest in the area of array

where

ae
In p(z I 6) >  P(» I#)
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signal processing. Schmidt [SCHM79] developed a formula for computing the 
Fisher Information matrix for the problem of MUSIC DOA estimation. Trunk 
et. al. [TRUN79b] derived an explicit expression of the Fisher Information 
matrix for the scenario of low-angle radar tracking and compared it with their 
ML estimates. Wang and Kaveh [WANG85] presented a simplified expression 
for the CRLB for wide-band coherent signal subspace DOA estimation. More 
recent work includes that of Stoica and Nehorai [STOI88], [STOI89] and 
Ottersten et al [OTTE89]. Stoica and Nehorai considered the asymptotical 
behavior of both MUSIC and ML DOA estimators and compared their 
performance with the CRLB they derived. Ottersten et al, on the other hand, 
concerned themselves exclusively with the total least squares [VAN84] based 
ESPRIT algorithm. These CRLB’s can be classified in two major categories: 
the stochastic CRLB and the deterministic CRLB. The latter includes those 
derived by Triihk et al and Stoica and Nehorai. The former includes those of 
Wang and Kaveh, and Ottersten et al In the derivation of the stochastic 
CRLB, the emitter signals are assumed to be random with a given 
distribution, which is usually assumed to be normal. The unknown parameters 
are the DOA’s, the signal covariance matrix, and the noise power. The 
deterministic CRLB, on the other hand, considers all unknown quantities as 
desired parameters that remain to be estimated.

The CRLB developed by Stoica and Nehorai is particularly attractive 
primarily due to its simple, closed-form expression. Under the two-ray 
multipath conditions and the spatially white Gaussian noise assumption, their 
CRLB for U1 and u2 is given by

j - i  =  £  Re[YH(n)A§(IM -  A(AhA )'1 AH)AdY(n)]j (2.59)

where

Y(n)
C1(Ii) O

O c2 (n)

Ad
Sa(U1) _ <9a(u2) 

Chi1 ’ <9u2
(2.60 b)

C1 (n) and C2(n), n =  1,...,N, are the direct and specular path signals received 
at the center element of the array at the n-th snapshot, respectively, as 
defined in Section 2.3, A is the DOA matrix, and o\ is the noise power. Trunk 
et. al. also derived a close-form expression for the Fisher Information matrix,
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but restricted themselves to the single snapshot case. For the stochastic 
CRLB’s, Schmidt proposed an explicit way of computing the components of 
the Fisher Information matrix described as follows

(2 .61)

where R xx =  E{x(n)xH(n)} is the array output correlation matrix. The 
parameters over which Si and 8-} range may differ from case to case, depending 
on the assumptions made. The deterministic CRLB of Stoica and Nehorai can 
be easily modified for the case of symmetric multipath. The point is that in

Mnp(z I 8) cfinp(z | 8) A. D -I r̂ XX D .)  ^R xx
M i M} \ =  t r xx M i xx M i

symmetric case, the DOA matrix A a(u0) i a (-u 0) involves only one

parameter

-ci(n)

u0 such that we may replace A^Y(n) in (2.59) by
i9a(—u0)

Chi0 " 1 V  7 chi0
•c2(n).

Ottersten [OTTE89] argue that the deterministic CRLB is more 
optimistic than the stochastic CRLB, i. e., the former is lower than the latter, 
which is somewhat intuitively contradictory. Stoica and Nehorai [STOI89] 
confirmed this statement by showing that the deterministic CRLB cannot be 
attained asymptotically by the ML estimator with finite number of array 
elements. As a consequence, the stochastic approach appears to be more 
appropriate. For the application of BDML method, the deterministic 
approach is nevertheless recommended since no a-priori information about the 
distribution of the echoes was incorporated. Recall that the first step involved 
in the development of the BDML estimator was to substitute into the cost 
function the least squares solutions for c(n), n =  1,...,N. In addition, in the 
case of very few snapshots, the difference between the stochastic and 
deterministic CRLB’s is insignificant. In the following simulation studies, 
therefore, we will adopt the approach of Stoica and Nehorai for computing the 
CRLB’s.

The CRLB derived by Stoica and Nehorai agrees with the analysis 
presented in the preceding section, as can be seen from the examples 
illustrated in Figure 2.4. First, the CRLB for symmetric case is strictly 
increasing as AvF increases form 0° to 180°. Second, the CRLB for 
nonsymmetric case is symmetric about Aty =  90° and reaches its maxima at 
Aty — O0 and 180°. Similar observations hold with regard to the CRLB 
derived by Trunk et. al. [TRUN79bj. This suggests that an estimator for 
nonsymmetric case that yields low variance at Aty == O0 must be biased. The
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Direct Path CRLB

Symmetric
Nonsymmetric

AH' in Degrees

Figure 2.4 Cramer-Rao lower bounds for unbiased estimates of the direct 
path angle B1 for the case of Gaussitan additive noge when 
$,=2°, #9= —2°, M =  15, N =  I, p=0.9, and SNR= 5 dB. Both 
the symmetric and nonsymmetric cases are shown on the same 
plot.
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problem associated with nonsymmetric multipath at Aty==O0 phase difference 
has remained unsolved for many years. The "improved" three-aperture method 
proposed by Gorden [GORD83] did not yield a definitive solution. In fact, as 
•will be seen in Section 4,3, the improved three-aperture scheme produces large 
bias and variance for the specular path angle in an attempt to increase the 
accuracy for the direct path angle. In light of the good performance of the 
symmetric BDML estimator at Aty =  0°, we recommend that a scheme be 
developed to convert a nonsymmetric problem into a symmetric one. It is 
interesting to investigate the possibility of breaking the CRLB if the above 
mentioned conversion can be Successfully done. However, it should be kept in 
mind that the estimator thus developed must exhibit bias at small phase 
differences and cannot outperform the corresponding BDML estimator for 
symmetric multipath. A detail discussion will be provided in Section 4.3.

2.7 Computer Simulations

Computer simulations were conducted for the purpose of determining 
how well the various beamspace domain based ML estimation schemes 
developed within perform in a simulated low-angle radar tracking scenario. In 
all test cases, the array employed was linear consisting of M =  15 elements 
uniformly-spaced by a half-wavelength. Echoes from a single target angularly 
located near broadside returned to the array via a specular path as well as via 
a direct path. Each execution of the appropriate BDML estimation algorithm 
was conducted with N=IO snapshots collected over an interval in which the 
ratio of the amplitudes, p, and the phase difference between the direct and 
specular path signals, Aty, was constant corresponding to a coherent 
multipath scenario. A practical Value of p =  0.9 [BART74], [STEI76] was 
used as the magnitude of the complex reflection coefficient in the model. The 
transformation to beamspace was accomplished via a Butler Matrix

2
beamformer of the form in (2.36) where uB =  —- =  .133. In terms of degrees,

this corresponds to upper and lower auxiliary beams pointed at =  7.64 0 
and —#B — —7.64 0, respectively. Finally, the additive noise was modeled to 
be spatially white and uncorrelated with the received echoes. Again, these 
parameters and quantities were common to each and every simulation run.

In order to talk about the relative proximity of the direct and specular 
path signals, a measure of the beamwidth associated with the array is needed.

A good approximation to the 3 dB beamwidth is ——rads. =  7.64° which isI r%
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half the separation between the first null on either side of the main lobe of the 
reference beam when rectangular weighting is employed. In the examples to 
follow, angle measurements may be periodically cited in units of beamwidths, 
denoted BW, where one beamwidth is 7.64°.

The first simulation results compare the performance and computational
load of BDML Method II for symmetric multipath outlined in Section 2.3 with 
that of the IQML algorithm of Bresler and Macovski [BRES86], a 
computationally efficient element space based ML estimation scheme. For 
each trial run, the target angle was 2° such that the angular separation 
between the direct and specular path signals was 4/7.64 =  .52 beamwidths. 
The SNR for the direct path signal was 5 dB at each element. Sample means 
and sample standard deviations in degrees for both the BDML estimates and 
the IQML estimates computed from 100 independent trials for seven different 
values of the phase difference measured at the center of the array as well as 
the corresponding CRLB’s are shown in Table 2.1 and Figure 2.5. For each 
trial run, the polynomial coefficients gleaned from the IQML algorithm were 
those obtained after the execution of five iterations. Recall that the IQML 
algorithm is not a closed form procedure as discussed previously. Comparing 
results, we note the performance of the two algorithms to be quite 
comparable. Interestingly enough, for all cases the sample standard deviation 
of the IQML estimates is smaller than those of the BDML estimates while the 
difference between the sample mean and the true target angle is smaller for 
the BDML estimates. In both cases, the sample standard deviation increases 
as the phase difference A'k increases from O 0 to 1800. This phenomenon is 
characteristic of all ML based estimators developed for symmetric multipath 
[HAYK85], [CANT81], [KSIE68], [WHIT74]. Note that a failure was
registered whenever the estimate obtained from either algorithm was equal to 
O0 corresponding to a situation in which the direct and specular signals are 
not resolved. In the case of A ^ =  180 0, 35 failures occurred with the BDML 
estimator, giving rise to a large bias and standard deviation, while no failures 
were incurred with the IQML estimator. The fact that the IQML algorithm 
outperforms the BDML algorithm in the case of A ^  =  180° may be 
attributed, in part, to the fact that it inherently incorporates some spatial 
smoothing of the array data. The BDML estimator could be modified to 
incorporate spatial smoothing prior to the transformation to beamspace but 
this was not done so here. We also note that the IQML estimator is 
nevertheless heavily biased in the case of AvI* =  1800 such that neither 
algorithm provides reliable estimates under this condition. As argued
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Table 2.1 Comparison of the performance and computational load of the 
BDML method with that of the IQML method in a symmetric 
multipath scenario with target angle 0O=2°, M—15, N=IOj 
SNR=5 dB for direct path, and Ps=0.9. The bottom row 
indicates the respective approximate number of floating point 
operations required for each trial run for both methods. 6 and <7 
represent the sample mean and sample standard deviation in 
degrees computed from 100 independent trials. Thq rightmost 
column shows the corresponding CRLB’s for a.

BDML IQML CRLB

0 a #  failures 6 a #  failures
O0 2.0014 0.1748 0 2.0694 0.1651 0 0.1689

22.5” 1.9986 0.1816 0 2.0712 0.1693 0 0.1722
45° 1.9942 0.1959 0 2.0789 0.1792 \  o '■ 0.1825

67.5 ” 1.9869 0.2213 o 2.0922 0.1995 o . 0.2022
00” 1.9744 0.2668 0 2.1237 0.2322 0 0.2365

112.5” 1.9500 0.3573 0 2.1881 0.2883 0
■ ■ ■ '•

0.2973
135° 1.8816 0.5858 3 2.3511 0.3806 0 0.4171

157.5” 1.7197 1.0355 17 2.8282 0.5176 0 0.7022
180” 3.5874 4.6536 35 3.5909 0.5120 0 1.1774

5.3 x IO4 flops/run 1.2 x IO7 flops/run
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Figure 2,5

Direct Path Sample Standard Deviations

BDML ’ 
IQML
CRLB Ji

180

AvF in Degrees

Comparison of the performance of the BDML method and that 
of the IQML method with the theoretical CRLB in a symmetric 
multipath scenario with target angle B0 -  2Q, M = 15, N=IO, 
SNR=5 dB for direct path, and p=0.9. Sample mean and 
sample standard deviation were computed from 100 independent 
trials.
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previously, this is due to severe signal cancellation occurring across the array. 
The BDML estimator does, however, provide reliable estimates as long as AvF 
is not too close to 180°, as does the IQML estimator. Comparing the sample 
standard deviations associated with both methods with the corresponding 
CRLB, we find that the BDML estimator approaches the CRLB for small 
phase differences while the IQML estimator produces standard deviations 
smaller than the CRLB for all phase differences. The behavior of the IQML 
estimator here is of no contradiction since it exhibits bias for all phase 
differences as can be seen from Table 2.1. The drastic reduction in the 
amount of computation incurred with BDML with respect to that of IQML is 
indicated by the average number of floating point operations per algorithm 
execution which is listed in the bottom row of Table 2.1. This number was 
determined using the PRO-MATLAB software package and did not include 
the initial computation involved in setting up the data. W e  n o t e  t h a t  th e  

c o m p u t a t i o n a l  l o a d  o f  B D M L  is  th r e e  o r d e r s  o f  m a g n i t u d e  l e s s  t h a n  t h a t  o f  

I Q M L H  We should point out that the disparity between the computational 
loads of the two algorithms becomes even greater as the number of array 
elements increases. Except for the initial transformation from element space 
to beamspace, which effectively involves the computation of 3 values of an M- 
point DFT, the computational burden of BDML remains essentially the same: 
a 3x3 eigenvalue decomposition (EVD) and subsequent evaluation of the 
formula in (2.43). As a final point, we note that if M is large, the required 3 
values of the M point DFT may be computed in an efficient manner via the 
Goertzel algorithm.

The second set of simulation results presented in Tables 2.2 and 2.3 
provide an indication as to the performance of the BDML estimator in a 
coherent symmetric multipath scenario for various combinations of target 
elevation angle, phase difference, and direct path SNR. For each particular 
set of parameters, sample means and sample standard deviations were 
computed from the results of 100 independent trials. Table 2.2 illustrates the 
trend in estimator performance as the angular separation between the direct 
and specular path signals increases while the phase difference between the two 
at the center of the array and the direct path SNR remain constant. In each 
case, the direct path SNR was 5 dB at each element. The five target elevation 
angle test cases were I0 , 2° , 3° , 4°, and 5° corresponding to angular 
separations between the direct and specular path signals of .26 BW, .52 BW, 
.78 BW, 1.04 BW, and 1.96 BW, respectively. Again, the unit BW is the 3 dB 
beamwidth equal to 7.64° . As before, a failure was registered whenever the
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Table 2.2 Performance of the BDML estimator in a symmetric multipath 
scenario for five different target angles with M=T5, N==IO, 
SNR= 5 dB for direct path, and p=0.9. The 3-dB beamwidth of 
the quiescent array pattern is approximately 7.6°. B and a 
denote the sample mean and sample standard deviation in 
degrees computed from 100 independent trials.

Avh
:

Il OC
SIl Il CO Il O e = 5°

O0

•.""t —
X e 0.9420 2,0014 3.0037 4.0032 5.0028

a 0.4120 0.1748 0.1134 0.0884 0.0847

#  failures 9 o o 0 0

45 °

6 0.9151 1.9942 2.9993 3.9998 4.9997

a 0.4609 0.1959 0.1280 0.0992 0.0925

#  failures 13 0 0 0 0

90°

? 0.8907 1.9744 2.9892 3.9926 4.9936

a 0.5274 0.2668 0.1727 0.1336 0.1226

#  failures 15 0 0 0 o

135°

. 6 0.8570 1.8816 2.9598 3.9768 4.9848

a 0.7411 0.5858 0.3350 0.2561 0.2344

#  failures 33 3 0 v,; 0 . • o

1800

6 3.2218 3.5874 4.2664 4.2603 4.4583

<7 4.8142 4.6536 5.0073 3.8272 3.6688

#  failures 42 35 28 26 25
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Table 2.3 Performance of the BDML estimator in a symmetric multipath 
scenario for seven different direct path SNR values with target 
angle ^=1°, M =  15, N=IO, and p=0.9. The 3-dB beamwidth of 
th e  quiescent array pattern is approximately 7 .6 ° . ,6  and a 
denote the sample mean and sample standard d ev ia tio n  in 
degrees computed from 100 independent trials.

AVh I SNR—f 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB

0°

J 0.9210 0.9420 0.9882 1.0007 1.0021 1.0017 1.0011

C J 0.5959 0.4120 0.2185 0.1126 0.0625 0.0351 0.0197

#  failures 21 9 0 0 0 0 0

45 0

0 . 0.9021 0.9151 0.9776 0.9959 0.9999 1.0006 1.0005

a 0.6337 0.4609 0.2379 0.1261 0.0703 0.0396 0.0223

#  failures 24 13 0 0 0 0 0

90°

0 0.8765
I

0.8907
S

0.9341 0.9818 0.9940 0.9978 0.9991

Cr 0.7274 0.5274 0.3491 0.1734 0.0945 0.0528 0.0297

#  failures 28 15 4 0 0 0 0

135°

d 0.9358 0.8570 0.8627 0.9177 0.9718 0.9893 0.9953

a 0.9676 0.7411 0.5533 0.3684 0.1876 0.1000 0.0555

^failures 42 33 20 6 0 0 O' ■

180°
0 4.3657 3.2218 1.2696 1.0037 0.8885 0.8593 0.9035

a 4.5328 4.8142 1.5713 1.0433 0.7979 0.6050 0.4160

#  failures 32 42 53 43 38 24 9
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algorithm produced an estimate equal to 0°. Similar to the trend observed in 
Table 2.1, we note that the performance of the BDML estimator decreases as 
the phase difference, A ^  increases from O0 to 180°. Observe that a large 
number of failures occurred for each target elevation angle test case when the 
phase difference was 180°, although the bias and standard deviation of the 
estimates did decrease somewhat as the angular separation between the two 
signals increased. However, it may be inferred from these results that under 
the condition A'J' -  180 ° and p=.9, the symmetric BDML estimator does not 
provide reliable estimates when the angular separation between the direct and 
Specular patb signals is less than a beamwidth and the SNR is less than 20 dB, 
thus necessitating the use of frequency diversity. This will be discussed in 
Section 4,4. Note that the smaller the magnitude of the reflection coefficient, 
p ,  the lesser the amount of signal cancellation across the array and, hence, 
degradation in performance.

In contrast to Table 2.2, Table 2.3 illustrates the trend in estimator 
performance as the direct path SNR is increased while the phase difference 
and angular separation between the direct and specular path signals remain 
constant. In each case, the target elevation angle was 0 =  I 0 corresponding to 
an angular separation between the direct and specular path signals of .26 BW. 
We observe that a significant number of failures were incurred in the case of 
direct path SNR — 0 dB for each value of the phase difference, although the 
sample mean was not too far off from the true value in all cases except 
A ^  =  180°. For a fixed phase difference, though, the bias and standard 
deviation of the estimates did decrease as the direct path SNR was increased 
as would be expected. Once again, though, the results in Table 2.3 indicate 
that without spatial, smoothing pre-processing or frequency diversity, the 
symmetric BDML estimator does not provide reliable estimates in the case 
AvP—ISO0 unless the direct path SNR is well over 25 dB.

Table 2.4 is similar to Table 2.3 except that the multipath scenario 
simulated was a nonsymmetric one as opposed to a symmetric one 
necessitating the use of the BDML estimation scheme outlined in Sect. III. 
Specifically, Table 2.4 illustrates the trend in the performance of the BDML 
estimator for the nonsymmetric multipath case as the direct path SNR is 
increased while the angles of the direct and specular path signals remain fixed 
at 0 i —2 ° and O2 = —1°, respectively. Note that these test angles 
correspond to an angular separation of approximately .4 BW. For each 
particular combination of direct path SNR and phase difference, sample means 
and sample standard deviations Were computed from the results of 100
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Table 2.4 Performance of the BDML estimator in a nonsymmetric 
multipath scenario for seven different direct path SNR values 
with target angle =2°, specular path angle O2= - 10 M =15, 
N=IO, and p=0.9. The 3-dB beamwidth of the quiescent array 
pattern is approximately 7.6°. 6 and cr denote the sample mean 
and sample standard deviation in degrees computed from 100 
independent trials.

A'P I SNR OdB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB

7.2339 7.1861 6.3242 6.3116 7.1098 7.0075 6.9677

A 14.2508 14.2476 11.9758 11.9671 14.0673 13.5727 13.3977

0 ” \ -8.8693 -8.9785 -9.9942 -10.1247 -9.4200 -9.4229 -9.4253

^2 15.9760 16.0743 18.1285 18.4851 17.5121 17.5264 17.5382
#  failures I 0 0 0 0 0 0

V 5.1689 2.2779 2.0472 2.0095 2.0015 1.9997 1.9995

A 11.6015 1.1751 0.4196 0.2137 0.1165 0.0648 0.0363

45° 0 2 -2.5086 -1.2232 -1.0608 -1.0240 -1.0110 -1.0055 -1.0029

CT2 5.2645 1.1485 0.5002 0.2576 0.1403 0.0778 0.0435

#  failures o 0 0 0 0 0 0

A 2.1785 1.9945 1.9907 1.9936 1.9962 1.9979 1.9988

A 1.2995 0.5147 0.2579 0.1416 0.0791 0.0444 0.0249

90' O2 -1.1134 -1.0065 -1.0080 -1.0061 -1.0040 -1.0025 -1.0014

$2 1.3309 0.6200 0.3255 0.1802 0.1008 0.0566 0.0318
#  failures . 7 I 0 0 0 0 0

A 1.8910 1.8483 1.9163 1.9721 1.9881 1.9944 1.9972

a , 1.1330 0.7311 0.4524 0.2213 0.1212 0.0677 0.0380

135' O2 -0.8360 -0.8537 -0.9280 -0.9809 -0.9937 -0.9977 -0.9991
. O2 1.3153 0.8315 0.4940 0.2491 0.1374 0.0769 0.0432

#  failures 29 14 3 0 o" 0 0

/ A 5.7741 5.7616 5.2044 5.1602 5.1425 5.1413 5.1406
■

A 6.2038 8.1700 4.2438 4.1145 4.0694 4.0449 4.0351

180' O2 -4.0581 -4.0492 -5.0131 -4.9927 -4.9969
■

-5.0102 -5.0184

A 6.6271 6.3873 7.1030 6.7137 6.5854 6.5304 6.5069
#  failures 27 28 27 28 28 27 28
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independent trials. For the case of direct path SNR =  0 dB, we note that the 
algorithm performed quite miserably, although the sample means were not too 
far off from the true values in the cases AV = 90° and AV =  135°. A failure 
was registered whenever the algorithm supplied the same angular value for 
both estimates. For the cases AV =  45°, AV=OOp and AV =  135°, we 
observe that the bias and standard deviation of the estimates decreases as the 
direct path SNR increases with AV =  90° giving rise to the best performance. 
In the cases AV = O0 and AV =  180°, however, we observe that the 
nonsymmetric BDML estimator provides totally unreliable estimates regardless 
of the value of the direct path SNR. This shortcoming of the nonsymmetric 
BDML estimator is due to a rank deficiency phenomenon occurring with these 
two phase differences as discussed in Section 2.5. Again, we could remedy the 
problem somewhat by spatial smoothing prior to the transformation from 
element space to beamspace. However, in chapter 4, we will present several 
novel procedures for overcoming this problem.



C H A P T E R  3
G E N E R A L IZ E D  B U T L E R  M A T R IX  B E A M F O R M ER S  

A N D  B D M L  E ST IM A T O R S

3.1 Introduction

At the end of Chapter 2, we showed that significant simplifications in 
computation for the BDML estimation procedure may be achieved with the 
use of an Mx3 Butler matrix beamformer. Jn fact, the BDML angle estimates 
may be simply determined from the roots of a judiciously constructed 
quadratic equation. This is a significant contribution due to the fact tha t the 
3x1 beamspace manifold vector does not exhibit the Vandermonde structure in 
contrast to the situation with Cantrell’s three subarray method as discussed 
previously. The ability to nevertheless formulate the estimates in terms of the 
roots of a quadratic equation arises from the fact that the respective array 
beam patterns associated with each of three columns of the Mx3 Butler 
beamforming matrix have M-3 nulls in common (M is the number of 
elements), the locations of which are known regardless of the signal and noise 
parameters. The property of M-3 common nulls may be viewed as a-priori 
knowledge for the underlying estimation problem.

Due to the Vandermonde structure of the element space manifold vector, 
it is appropriate to interprete the common nulls associated with the three 
columns of the Butler beamformer as those common "roots” associated with 
the three polynomials correspondingly constructed. Motivated by the 
equivalence between the multiplication of polynomials and the convolution of 
sequences, it is possible to factorize the Butler beamforming matrix as a 
product of an Mx3 banded, toeplitz matrix and a 3x3 matrix. The Mx3 
toeplitz matrix thus obtained corresponds to the M-3 common nulls while the 
3x3 matrix corresponds to the remaining uncommon nulls. An important 
aspect of this factorization is that it allows one to generalize the Butler 
beamformer by simply replacing the two matrix factors with other judiciously 
constructed matrices such that the resulting weight vectors have M-3 nulls in 
common. Further extensions can be made to the generalized Butler 
beamformers if we adopt the concept of polynomials and roots. Under such a
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premise, the polynomials associated with the three columns of a generalized 
Butler beamformer need not have all of their roots lie exactly on the unit 
circle. Consequently, the common and uncommon roots represent two groups 
of design parameters that must be carefully determined a-priori.

Although the idea of generalized Butler matrix beamforming facilitates 
substantial reduction in computational complexity, applying it directly to the 
BDML estimation scheme does not necessarily lead to reliable estimates. As 
was discussed in the preceding chapter, the performance of the BDML 
estimators relies heavily on the beamformer employed, especially for the 
symmetric multipath case. In order to nevertheless exploit the advantages of 
processing in the beamspace domain, some modifications should be made for 
the generalized Butler beamformers. First, the beamforming weight vectors 
should exhibit conjugate centro-symmetry so as to produce a purely real 
beamspace manifold vector. Second, the lower and upper auxiliary weight 
vectors should be constructed in such a fashion that they produce mutually 
reverse beamspace domain manifold vectors when the multipath is symmetric. 
These two design considerations are crucial in our development of the BDML 
methods as evidenced by the performance analysis presented in Section 2.5. 
Combined with the SNR gain consideration, they constitute a new area of 
beamforming problems. A primary objective of this chapter is to provide a 
structural description of the common roots property, and develop BDML 
estimators based on the new generalized Butler beamformers.

The chapter is organized as follows. Section 3.2 describes the structure of 
the Butler matrix beamformer and its associated factorization property. 
Section 3.3 develops alternative BDML estimators for both symmetric and 
nonsymmetric multipath cases based on the generalized Butler beamformers. 
Specifically, a new processing technique is developed to exploit the 
Vandermonde structure in beamspace domain obtained with a generalized 
Butler beamformer. Finally, Section 3.4 develops a parametric representation 
for the beamspace domain vector and discusses its applications to BDML 
estimation.

3.2 Factorization of the Butler Beamforming Matrix

In the preceding chapter, we found out that the property possessed by 
the Mx3 Butler matrix beamformer, i. e., the three beamforming weight 
vectors have M-3 nulls in common, leads to significant simplifications in 
computation for the BDML estimation procedure. The main point is that we
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were able to convert the original (M-l)-th order polynomial equation necessary 
for finding the angle estimates into a quadratic equation without loss of 
information. The procedure involved was in fact a polynomial division in 
Which the (M-3)-th order "common" polynomial was factored out of the (M- 
i)-th order polynomial mentioned above. The problem is best understood with 
the aid of polynomial notation. We first introduce the following notation

P = TPo > Pi > ' ■ ■ > Pn-I J (3.1a)

{p } =  {Po > Pi ) ■ ’ ' > Pn-I } (3.1b)

) =  Po +  Pi z +  ' ‘ ‘ +  Pn- i zN 1
(3.1c)

That is, if p is an Nxl vector given by (3.1a), then its associated sequence and 
polynomial representations are given by (3.1b) and (3.1c), respectively. 
Motivated by the equivalence between the multiplication of polynomials and 
convolution of sequences, three expressions in accordance with the above 
notation are as follows

p(z) =  q(z)r(z) (3.2a)

{p } =  {q}*M

q 0 
0 q

0 0 
0 0

0 0 
0 0

q 0 
0 q

T 0
0 r

0 0 
0 0

0 0 
0 0

r 0 
0 r

(3.2b)

(3.2c)

where "*" denotes sequence linear convolution. To further simplify notations, 
we denote as X  the banded, toeplitz matrix constructed with the
C o r r e s p o n d i n g  vector x i n  the f o l l o w i n g  f a s h i o n

x 0 0 0
0 x 0 0

0 0 x 0
0 0 0 x

(3.3)

The dimension of X  depends upon the order of the polynomial multiplied with 
x(z), the polynomial representation of x. In general, if the product is an N-th
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order polynomial, then X must have N +l rows. With this notation 
established, the structure of the Mx3 Butler beamforming matrix can be easily 
analyzed in a few steps.

Let S1, s c, and s u denote the lower, center, and upper beamforming 
weight vectors corresponding to the three columns of the Butler beamforming 
matrix S. The common nulls property of S suggests the following expressions 
for the these three weight vectors.

h 0 O’
0 h 0 
0 0 h

si (3.4a)

h 0 0 
0 h 0 
0 0 h

(3.4b)

H eu (3.4c)
h 0 0 

su =  0 h 0 
0 O h

where h denote the vector representation of the (M-3)-th order "common 
polynomial given by

27rm .

(3.5)h(z)
M - 2

a  TJ (z
m=2

)

and e(, ec, and eu correspond to the remaining uncommon nulls associated 
with the lower, center, and upper beams, respectively, in the following fashion

y
Q)INrHI(Si

■ 
5"IIba«T (3.6a)

- j—  j —

ec =  (z -  e M ) (z -  e M ) (3.6b)

j  —

eu =  a u (z -  I) ( z - e  M ) (3.6c)

Note that a, au a c, and «u are complex scalars ensuring that each of the 
above four polynomials has a set of conjugate centro-symmetric coefficients. 
Combining (3.4a), (3.4b), and (3.4c) and putting in matrix form, the Mx3
Butlerbeam form ingm atrixhasthefollowingfactO rization



S = H E

h O O' 
O h O  
0 0 h

eI ®c (3.7)

Note that S is Mx3, H is Mx3, and E  is 3x3.
An indication inherent in the above factorization is that the beamforming 

achieved with the Butler matrix can be considered as a two-stage procedure: 
I j transform form M-dimensional element space to 3-dimensional beamspace 
using H matrix; 2) shape the three beams obtained in I) by the transformation 
E. This operation may be mathematically described by

(1) c(u) =  HHa(u) (3.8a)

(2) b(u) =  E Hc(u) (3.8b)

We here concern ourselves solely with nonsingular E  matrix, which can be 
guaranteed by judiciously choosing the uncommon nulls. The advantage to 
working with nonsingular E  will become clear in the next section. It is 
interesting to note that stage I produces three beams pointing at the same 
direction but with a different phase center. A close look at the Toeplitz 
structure of H reveals that they differ by a constant phase displacement 
corresponding to that occurring between two adjacent array elements. This 
indicates that the components of c(u) exhibit Vandermonde structure as 
described in the following fashion

where

&m-2(u) -j Tr­
ig

M—3
2 U

J

fe-j7TU
T

Cj7ru
G(u) (3.9)

G(u) =  hHaM_2(u) (3.10a)

. M -3j TT------U
- 2j-u -j'u I J lu p2jru e 2

(3.10b)

Therefore the beamspace manifold vector constructed with H has the same 
compositional form as the element'space manifold vector except for the gain 
factor G(u) and the reduced dimensionality. This phenomenon that the 
Vandermonde structure of the element space manifold is retained by the 
beamspace manifold vector with a banded, Toeplitz beamforming matrix is 
the basis for why the Mx3 Butler beamformer facilitates simple BDML
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computation. Indeed, if we substitute into the orthogonality condition 
v Tb(u) =  0 as described in Section 2.3 the alternative expression for b(u) 
given by (3.8b) and (3.9), we obtain

v Tb(u) = v t E h c(u ) =  (Ev)»c(u)

=  (6 1 ^ ™  + g 2 + 8 3 ^ ’”) G(U) - O (3-11)

where gj is the i-th component of E v. Assuming G(u) t̂ 0 , or u 
to one of the M-3 common nulls, (3.1.1) can be formulated 
equation as described by

does not belong 
as a quadratic

g(z) =  gl + g l z + g 2 ^ 2 = ° (3.12)

The estimates of U 1 and u2 can then be determined as two unit roots of g(z). 
A direct computation verifies that the coefficients of g(z), given according to

j ;l j
g, =  - V 1 e J M +  v 2 -  v3 e M (3.13a)

g2 =  2 (vj +  v 3 ) c o s (^ )  -  2 v2 cos( ^ ) (3.13b)

j— - j  —
g 3  =  -V 1 e M +  V2 - V 3 C M (3.13c)

are exactly identical to those given in (2.46).
Of course, the Mx3 Butler matrix beamformer is not the only one 

possessing the M-3 common nulls property. In fact, any beamforming matrix 
that can be factorized in a form similar to that described by (3.7) will also 
lead to simplifications in computation. However, both H and E  matrices 
should be judiciously chosen so as to retain high SNR gain in the desired 
directions and provide sufficient supression for noise and interferences outside 
the main lobe region. This is the topic of Chapter 5.

3.3 G eneralized B u tle r M atrix  B eam form ers

This section discusses a class of generalized Butler matrix beamformers 
and their associated BDML estimators. In particular, a new approach to the 
BDML estimation scheme will be developed.
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3.3.1 C onstruc tion  of B eam form ers

To begin with, we introduce the following definition:

D efinition An Mx3 generalized Butler matrix beamformer W b is a matrix 
exhibiting the following factorization

W b = W1 : W2 : W3 CU (3.14)

where C is an Mx3 banded, toeplitz matrix given by

C
c O O 
O c O  
O O c

(3.15)

and U =  j U1 : u 2 iu 3 ] is 3x3. This indicates that the three columns of W b
are related through c in terms of polynomials as:

W 1 (Z) = c(z) U 1 (Z)

w2(z) =  c(z) u2(z)

w3(z) =  c(z) u3(z) (3.16)

which implies that the three polynomials W1(Z), w2(z), and w3(z) have M-3 
roots in common determined by c(z) =  0. The generalized Butler matrix 
beamformers retain the Vandermonde structure in beamspace domain, up to a 
nonsingular transformation, in exactly the same way the Mx3 Butler 
beamformer does. In order to apply the generalized Butler beamformers in 
BDML estimation, it is necessary to account for the following two factors: I) 
the weight vectors must produce a purely real beamspace domain manifold 
vector ; 2) for symmetric multipath, the beamspace domain manifold vectors 
must satisfy b (-u ) =  I3b(u). We now investigate the sufficient conditions for 
I) and 2) individually.

The first constraint is easily accounted for if we make each of the three 
columns of W b conjugate centro-symmetric, i. e.,

Imw I = w I ?  I mw 2 = w 2 > Imw 3 =  w 3 (3-17)

which also implies ImW b = W ^ .  Due to the conjugate centro-symmetry 
property of the element space manifold vectors as described by (2.2), it is 
straightforward to show
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b(u)=Wga(u)=WjiMiMa*(u) = wSa'(u) = b*(u) (3-18)
Therefore, b(u) is real for all u. The second constraint states that

I3W g a(-u ) =  Wga(U) (3.19)

Incorporating the fact that a (—u) =  IMa(u) and that Im W b =  W B, (3.19) can 
be written as

t > W g y Ma (-u ) = l 3W g jMa(u) -  W ga(u) (3.20)

which is guaranteed by taking I3W gIw = W 3. These two constraints on W 6 
combined together suggest that the three columns of W b should be chosen in 
the following manner

* CD

Il J * O (—I
 <

J

w ith: ImWj = W j ; IMw0 =  w0 = w 0 (3.21)

The center beamforming weight vector is thus restricted to 
Substitution of (3.21) into (3.14) yields

be purely real.

ImC u1 =  ImCI3I3U1 = C u 1 (3.22a)
■ if %

ImC u2 = I mCI3I3U2 =  C u2 =  C u 2 (3.22b)

ImC u3 =  ImCI3I3U3 =  C u 1 (3.22 c)

Sufficient conditions for satisfying (3.22) are easily found to be

ImCI3 = C = C * (3.23a)

H
H

I
CO B Il C

* H C CO (3.23b)

I3U2 =  U2 =  U2 (3.23c)

with (3.23a) in turn guaranteed by

Im-2c = C = C (3.24)

Note that the real quantities involved in the above relations are c, C, U2, and 
w0. (3.21)-(3.23) provide a guideline for constructing generalized Butler matrix 
beamformers for the BDML estimation schemes developed in Chapter 2. 
However, we mention that some auxiliary procedures should be performed to 
account for the SNR gain and sidelobe problems occurred in low-angle radar 
tracking. For example, we might want to maximize the response of the
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beamformer at desired look directions while at the same time rejecting 
undesired returns from clutter and noise as well. In the case of strong 
interferences, it is necessary to form adaptive lpwer, center, and upper beams 
such that each beam has a null in each interfering direction and the three 
beams have M-3 nulls in common- The generalized Butler beamformer so 
constructed may not exhibit the properties described by (3.21)-(3.23). As a 
result, the BDML estimators may fail to handle O0 phase difference in the case 
of symmetric multipath. To remedy this difficulty, we propose, in the next 
subsection, an alternative approach to formulating the BDML problems, 
utilizing the fact that the Vandermonde structure is r e t a i n e d  in beamspace 
domain via the use of C.

3.3.2 A lte rn a tiv e  BDML M ethods

A structural means for interpreting the C matrix given by (3.15) is that it 
can be considered as a beamforming matrix itself with three beams formed 
from the outputs of three identical, adjacent, overlapping subarrays of size 
M-2, each subarray having all but one sensor in common with the adjacent 
one. The weight vector c, corresponding to the common roots, is applied to 
each subarray. This represents a class of element space to beamspace 
transformations alternative to that proposed by Cantrell et. al. [CANT81]. 
The main difference between these two methods lies in that Cantrell et. al. 
developed their ML estimators based on "nonoverlapping" subarrays. We here 
develop new BDML estimators with the overlapping subarrays approach.

Let a N(u) denote the Nxl array manifold vector associated with angle u
as given by 

aN(u)
. N - I

a J7r 2 “ . . .  g —2jiru - j ™  j  2j>ni5 > ?e e , I, , c 5

. N - I
(3.25)

The transformation from an Mxl element space manifold vector to a 3x1 
beamspace manifold vector achieved with the Mx3 generalized Butler matrix 
beamformer Wg is described by

'' '• ' • W gaM.(u) - UHC % .(u )- U% (ii)G(uj (3.26)

w here
G(u) =  cHaM_2(u)

which leads to the asymptotic beamspace correlation matrix given by

(3.27)
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Rbb =  W h- A R ssA h +  (J2I3
V i - J

UhChA R ssAhCU +  (T2UhChCU 

= UhA3 R sgsA h U +  (T2 Uh ChCU

where

R sgs

+  (T2 Ch C Ju =  UhR ccU (3.28)

a3(u i ) : a 3(u2) j (3.29a)

=  G R ssG h (3.29b)

'G (U 1) 0
0 G (u 2 )

(3.29 c)

and G (u ) is defined by (3.27). This states that the beamspace correlation 
matrix thus constructed has exactly the same compositional structure as the 
element space correlation matrix except for the multiplicative matrix factor U, 
which is usually chosen to be nonsingular. Under such a condition, R cc is 
simply obtained from R bb via the following relation

R c c = (U u) - 1RbbU-1 (3.30)

With R cc constructed, we proceed to develop the corresponding BDML 
estimators. We first consider the more general nonsymmetric multipath case.

Following the development in Section 2.3 and 2.4, we obtain an 
optimization problem described by

Minimize
V ,.

VH R cc Vc 

VH P  Vc
(3.31)

where R cc= (U 11)-1R bbU-1 , P = C hC, and vc satisfies 
Vc a3(U1) =  v Ha3(u2) =  0. If vc — [vcl Vc2 Vc3] is the solution to (3.31), then 
e1™1 and e1TU‘ can be estimated as the two roots of the following polynomial 
equation:

Vc(z) = v cl + V c2Z -I- Vc3Z2 = 0  (3.32)

To account for the fact that the roots must lie on the unit circle, we impose
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t t l  Cdnstfaint I3Vc =V* "in (3.31), knowing that it is only a necessary 
condition for vc(z) to have unit roots. Utilizing the technique described in 
MctiSh 2.3 for solving the symmetric BbML problem, (3.31) combined with
the conjugate centro-symmetry constraint can be written as

v “ R cc v c +  v T I3R ccI3 vj
Minimize -------- :-----------—— ;— :—

Vct P Vc +V^I3PI3Vc
(3.33)

~ * 
subject to I3Vc =  v c

Note that Vc R ccVc and v ” P  vG are real such that (3,33) simplifies to

Minimize
V..

v c { R cc  +  I 3 RCCI3 } v C v c R c c  v C

v? ( P + i 3P*I3} v c V« Pfb
(3.34)

~ * 
subject to I3Vc = v c

A proof similar to that given in Appendix A shows that each of the three 
generalized eigenvectors (GEVEC) of the matrix pencil (R cc j P } exhibits 
conjugate centro-symmetry such that the minimizing vc for (3.34) is simply 
taken to be the one associated with the smallest generalized eigenvalue. 
Denoting as [/y , I , /i ]T the optimum vc thus found, with the middle 
component normalized to be unity, the two roots of vc(z) =  // +  z +  At ^  are

—\ ± \ I  1 —4 j n 12 
2 Ii

given by 

and u2:

-, leading to the following ML estimates of U1

I ,J -I+Vl - 4  I m I 2
J7r

J - i  J  - ! - V i -  * I " 11

(3.35 a)

(3.35b)
JTT [ 2 H

Consequently, the two signals are not resolved if 1—4 | /i | 2>1, or j / / 1 < —• 

We here summarize the new BDML method for nonsymmetric multipath
case.
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Algorithmic Summary of Non-Symmetric BDML Method 
with Generalized Butler Beamformer

(I.) With W b Wj : w2 : w3 CU given by (3.14) and

R 1f V) x(n)xH(n), form Rbb =  W bR xxW b.
^  n=l

(2.) Form R cc =  (Uh)"1 R bbU-1 and P  =  CHC.

(3.) With R fCc

Vc =  [fJ , I , / / ] T 
smallest GEV.

R c c -I-I3R ccI3J and P fb = P  + I 3P I a .  compute 

as GEVEC of 3x3 pencil {R cc , P fb} associated with

(4.) If 

(5.) U1

/y I < —, multipath signals not resolved. Otherwise: 
2

! - V l  -  4 I y i l i t - U2
J" I 2/J

I J - I - V l -  4 I ;J I *
J7T.

The above development can be easily extended to the symmetric 
multipath case with slight modification. To begin with, consider the quadratic

• lil j JTU0polynomial vc(z) with two unit roots occurring at z =  e

vc(z) =  (z -  ejru 0 (z -  e_j™") (3.36)

The two roots of vc(z) form complex conjugate pair, implying that each of the 
coefficients of vc(z) must be real, and together they must exhibit centro- 
symmetry property. Combining this observation with the fact that 
Xt R x =  XxRejR  }x if x is real and R  is hermitian, we arrive at the following 
optimization problem leading to the ML angle estimates for symmetric
multipath

Minimize
V , .

v? Re(Rcc) vc 
v» Re(Pfb) vc

(3.37)

subject to I3Vc =  vc 

where R ejR cc} and R ejPfb } satisfy

R e { R ^ } -R e { R ^ } T : I3R o j R J i 3 =  R o{R «} (3.38a)

R cjPfb: = R f-SP"-11 '• -R e IP fl': (3.38b)

Therefore, (3.37) manifests itself as a problem identical in form to that



described by (2.32). The minimizing vc, then, is that centro-symmetric 
generalized eigenvector (CS-GEVEC) of the 3x3 matrix pencil 
{Re{Rcc} , R e(Pfb)J associated with the smaller generalized eigenvalue. 
Letting [I , 7 , l] be the optimum real, centro-symmetric vector, the two roots 
of the polynomial I +  7z +■ Z2 T o r m  complex conjugate pair and are located on 
the unit circle if and only if | | <2, in which case they are given by

- 2 .  +  1— ^ / 4  -  7 2 . The ML estimate o f  the direct path angle U0 is  then
2 2

determined by

(3.39)

with I 7 I >2 serves as a flag that the algorithm failed to resolve the two 
signals.

We conclude this section by presenting the algorithmic summary for the 
symmetric BDML method when a generalized Butler beamformer is employed

Algorithmic Summary of Symmetric BDML Method 
with Generalized Butler Beamformer

(I.) With W1 : W2 : W3 CU as given by (3.14) and

x(n)xH(n), form Rbb = W hR xxW .
n=l

(2.) Form R cc =  (Uh) 1RbfeU 1 and P  — CHC.

(3.) With R fcc =  \ Rcc -Hi3R cJ3I and P fb -  \ P +  I3P I3 , compute

Vc =  [I , 7 , 1]T as CS-EVEC of 3x3 real pencil 

assoc, with smaller EV.

RelRec } , Re(Pfb)

(4.) If I 7 I >2, multipath signals not resolved. Otherwise:

■Yk  ̂ i"i =  —  In!~  +  j 4 7
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3.4 P a ram e te riz a tio n  of B eam space M anifold V ectors

As was discussed in the previous section, the generalized Butler 
beam-formers facilitate simple, efficient BDML estimation primarily due to the 
fact that the Vandermonde structure of the element space manifold vector 
achieved with a linear uniformly-spaced array is achieved in beamspace as 
well. The transformation from an Mxl element space. Vandermonde manifold 
vector a(u) to a 3x1 real beamspace manifold vector b(u) using a beamforming 
matrix given in (3.14) is accomplished by a two-stage procedure. First, an 
Mx3 beamforming matrix C corresponding to three overlapping subarrays 
transforms a(u) into a 3x1 Vandermonde vector c(u) having the same 
compositional form as a(u). Second, e(u) is transformed into another 3x1 real 
vector b(u) by a 3x3 nonsingular matrix Uh . Since the second stage involves 
only a nonsingular transformation, it is possible to recover the element space 
manifold vector from the beamspace manifold vector perfectly without loss of 
information by the following steps

®(v) 3-J'U I i e jl (Uh)-1 b(u) G-1 (u) (3.40a)

a (u)
. M - i-I TT--—- U

e 2 - 2 j - u ' - jffu  I JffU p 2jffuI “ 5 ̂  j r
M - I—---u

2

T
(3.40b)

where G(u) is given by (3.27). It is then clear that a(u) is fully recoverable 
from b(u) as long as G(u) ^  0, which is true when u is not equal to any of the 
M-3 common nulls. Since two Vandermonde array manifold vectors are linear 
independent if and only if they correspond to different angles, the above 
observation may be alternatively interpreted as that there exists a one-to-one 
mapping between the element space manifold vectors and the beamspace 
manifold vectors except for those associated with the common nulls. This 
indicates that a simple parameterization of b(u) is possible with a generalized 
Butler matrix beamformer.

Consider again the equation relating c(u) and b(u) as given by (3.40a). 
Since we choose U to be such that I 3U =  U* and b(u) is real, we have

I3(Uh) - 1Mu) -  (UhI3) - 1Mu) =  (U1T 1Wu) =  [(U11) 1MulJ (3.41)

This verifies that (Uh)-1 b(u) exhibits the desired conjugate centro-symmetry 
property as indicated by (3.40a) and is real-valued as well. Assuming 
G(u) ^  0, (3.40a) implies that the first and second components of (UĤ -1b(u) 
must have the same nonzero magnitude. Thus, | U1 b(u) | =  | u 2b(u) | ,
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where U1 and U2 denote the first and second columns of U 1, respectively. 
This leads to

b T(u)Re{Vd }b(u) =  0 (3.42)

where

U1 : U2 : U1 T - I

_  ____ T
V d =  U1U1 — U2U2

(3.43 a) 

(3.43b)

where we have used the fact that b(u) and U2 are real. Denoting as bj the i-th 
component of b(u), and Vy the (i,j)-th component of Re(Vd ), we obtain from 
(3.42) the following parametric equation for b(u)

Viib1 +  v22b |  +  v33b| +  2v12b1b2 + 2 v 13b1b3 +  2v23b2b3 = 0  (3.44)

knowing that Re(Vd) is real and symmetric. (3.44) represents a quadratic 
surface in a three dimensional space indexed by (bj,b2',b3). It is rather 
interesting to note that the shape of this parametric surface is completely 
determined by Vd, which is in turn determined by U. In other words, the 
parameterization of the beamspace manifold vectors is completely 
characterized by the uncommon nulls associated with the generalized Butler 
beamformer. It should be kept in mind, however, that the generalized Butler 
matrix beamformer itself is characterized not only by the uncommon nulls, 
but also by the common nulls.

The parametric expression described in (3.44) simplifies greatly if we 
substitute in the respective quantities associated with the Mx3 Butler matrix 
beamformer as given by (2.36). From (3.6) and (3.7), it is easily derived that 
the U matrix associated with the Mx3 Butler beamformer can be expressed as

j—eJ M I
- j—e J M

„ . 7T2cos—— 
M

„ 2tr-2COS-—
' M - 2c0sNi

- j— 
e M I

j~  
e M

with its inverse given by

(3.45)



.

C ej -M C

. 2 tt

Ce J M

V rI V

- J  A rI  
Ce M C

J - -  
Ce M

(3.46)

where

c 3" TT
-i

 ̂  ̂ 2tt2cos-—* — 2cos—  
M M ; V = 2 — 2COS-— 

M /

- i
(3.47)

Substitution of (3.46) and (3.47) into (3.43) accompanied by some algebraic 
manipulation yields the following expression for Re(Vd) for the case of an 
Mx3 Butler beamformer:

Re(Ved) =  (

r,(c0S!r " 1: ĈOS m "

t 2~, (cos_  _  i) r/( cos

^ cos _  r̂ c o s “  x)

M

0

I)

I) (3.48)

It is noteworthy that Re(VBd) has only three distinct components, 0,

C2 ( c o s — I), and C>?(cos-^- — I). Since (3.42) is invariant under scaling,

we may normalize Re(VBd} by its (l,2)-th component and substitute the 
resulting normalized quantities into (3.44). Not surprisingly, the parametric 
equation in this case simplies greatly to the following form

(bj +  b3)b2 +  Bh i b3 — 0 (3.49)

where

Vi c o s -  -  I)

a ~ i r ' _  lf

(3.50)

As should be noted, (3.49) defines the relationship between the three 
components of b(u) only in relative terms. That is, we can multiply b(u) by an 
arbitrary scalar and still satisfy (3.49). However, since we have already shown 
that two beamspace manifold vectors associated with two distinct angles 
(except for those associated with the common nulls) are linearly independent, 
multiplying b(u) by a nonzero scalar does not cause ambiguities at all. As a
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check, we consider several cases that appear to be interesting.

(I) b2 =  0: This implies Tjb3 =  0. Three possible cases are:

b, = O f e b 3 O j u =  ~1 M

2bj ^  0 & b3 =  0 CF u =  —  

b] =  0 & b3 =  0 - O ' u =  any common null

(2) b2 #  0: In this case, we can set b2 to be unity and relate b! and b3 by

- b ,
I +  bj S

(3.51)

Some interesting cases are:

bj =  0 & b3 =  0 CF u = 0

1 + b j / ? —► 0 CF u

2 2
It is easily verified that within the interval both b2 and l+ b j3  are

nonzero such that b(u) can be expressed in terms of a single parameter as 
given by

b(u) s  b(t) (3.52)

I-F  I/?

With this parametric expression for b(u), we may proceed to obtain u as a 
function of t. From (3.40a) and (3.43), Cj7ru can be written in terms of b(u) in 
the following fashion

u 3b(u)
“ H " ~ 
u 2 b(u)

(3.53)

which in turn leads to
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u
u 3b(u)
_ Jbi .
u 2 b(u)

(3.54)

Upon substitution of (3.46) and (3.52) into (3.54), we end up with the 
following equation relating u and t for the Mx3 Butler matrix beamformer

U (Ce M~t +  r j ) { l ' + V i )  ~  Ce J M t 
(£t H- f/)(l +  $ i )  — (t

(3.55)

The above described parameterization for b(u) provides an alternative 
approach to obtaining the BDML estimates from the optimum v vector 
orthogonal to both b(uj) and b(u2). First, substituting into v b(u) — 0 the 
parametric expression given in (3.55) yields a quadratic equation in t in the 
following form

v2 +  (V1- V 3 H-V2 ^ t  + V 1 $t2 = 0  (3.56)

which has two solutions for t given by

h,2
- (V 1-V 3 +V2.3) ±  V C yr-V3+V23 f  - 4 v i V2

2vv6
(3.57)

Since t must be real, we have the following constraint on the components of v

(v i —'v3+V2/?)2 — 4v jV2 >  0 (3.58)

which is easily shown to be equivalent to that described in Section 2.4. 
Therefore, a failure should be registered if v fails to satisfy (3.58). Second, 
with ti and t2 available, the angle estimates U1 and u2 are simply determined

by

— In

' ^7r — j —- ^
(Ce M tj +  v){l +  + ) ~ C e  M h (3.59a)

(Ct1 +  7])(1 +  Zft1) -  Ct1
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U 2 = - iIn 
J"

i—-
(CeM t2 +  v ia  +  c y  -  &  M v

(62. +  »/)(! +  A?) -  Ct2

(3.59b)

For the special case of symmetric multipath, —V3 such that (3.57) simplies 
to

{ 3 M )
M 2V1C

with (v2C)2 -  4vjv2< 0  indicating failure. By direct calculation we can show 
that tj and t2 are related according to

- t i

I +  Ct1

—12

(3.61a)

(3.61b)
I +  Ct2

which implies that the two associated beamspace manifold vectors satisfy

Tjb(I1) = b ( t 2) (3-62)

From (3.59), the BDML estimate of the direct path angle is given by

U 1 = ^ - I m

_ j i l A
(Ce M tj +  r/)(l +  Ct1) -  Ce M kj-g

(Ctl +  7?)(1 +  Ctl) — CtI

(3.63)

Suhstithting (3.61b) into (3.63), we get, after a little manipulation, the 
following Telation

U 1 == In' 
J"

-j
(fe ' M t, +  »)(1 +  .-it,) -  M t;

(Ĉ 2 +'^)(l +  Ct2) ~ ~

— In
J7T

-j — -
(Ce M t2 +  r/)(l +  Ct2) -  Ce M

. J  X X  *

(Ct2 +  v){i +  Ct2) ^t2

(3.64)

Since the argument of the log function in (3.64) has unity magnitude, it is
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easily deduced that ux =  —U2 as was expected.
The BDML estimation procedures for both symmetric and nonsymmetric 

cases employing an Mx3 Butler matrix beamformer and the parameterization 
described above are summarized below. To be consistent with the notations 
used previously in Chapter 2, we denote as U0 and t0 the direct path angle 
and its associated parameter for the symmetric case.

Algorithmic Summary of Symmetric BDML Method 
With Butler Beamformer and Parameterization

(o.) e 2cos-|^- — 2cos-^- 
M M

-I
2 TT

; V = 2 — 2cos—-  
M

-i
P

rftcosIjr  -  h

etcosI jr  ~ !)

E  x (n)xH(n)> form
■ n= l

(I.) With S= a(2/M )!a(0)ia(-2/M ) & R

Rbb= ® ^xx?-
(2.) Compute V =  Jv1 , V2 , V 1 Jt  as that CS-EVEC of Re{Rbb} —

- R e iR bb +  I3R bbI3 associated with the smaller EV.

(3.) If (v2,#)2 — 4Vi v2 <  0, signals not resolved.
(4.) Otherwise: With V2 and vx. determined in (2.), compute t0 according to:

-V 2/? +  V ( v2.^)2 -  4VJ V2
2vj fi

(5.) Estimate u0 according to:

K  = v - h r  
J7r

M t0 +  r/)(l +  M o )  -  & J M t

(C t0 +  /? )( !  +  p i 0 ) -  M o

Algorithmic Summary of Nonsymmetric BDML Method 
With Butler Beamformer and Parameterization

■- 377 77
- i 2tt

(o.) f  = 2cos4 t- ~  2cos—  M M ; V = 2 -  2cos—— 
M ̂ /

tftcosM- _  i)

«cosH -  D
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(I.) With S=[a(2/M )ia(0):a(-2/M ) & V x(n)xH(n),
D =  I

f o r m

Rbb= SHR xxS.

(2.) Compute v =  [v] , V2 , v3]T as EVEC of 3x3 matrix Re{Rbb} a-ssoc- 
with smallest EV.

(3.) I f  ( v 1 —v 3 + v 2 /? )2 — 4 v j  v 2 ^  0 ,  s i g n a l  n o t  r e s o l v e d .

(4.) Otherwise: With V1 , v2, and v3 determined in (2.), compute tj and t2
according to: _____  .

—( v i - V 3 + V 2 5 )  ±  ' \ / ( v 1 —'V3 + V 2 /?)2 — 4V ! V2 

l l '2 =  : . . 2v 1 3 '■ .. • ;

(5.) Estimate U1 and u2 according to:

=  - i-h r

. 2- j 2“
+ r ,) ( l  + 3 t , ) - &  M t,

JTT ■ .
(£ti +  ?/)(i +  ) —

=  - L  In
i—- „ - j — -

(Ce M t2 +  r/)(l +  3 t 2) -  Ce M h
JTT (Ct2 +  Tj)( I +  /3t2) — Ĉ 2

As a final remark, we note that the above described parameterization for 
the beamspace manifold vectors depends only upon the uncommon nulls and 
Can be readily extended to other generalized Butler beamformers. For the 
special class of beamformers whose uncommon nulls are formed in a fashion 
identical to that associated with the Mx3 Butler beamformer, we have exactly 
the same parametric equation as that described by (3.49). However, this does 
not mean that all Mx3 generalized Butlpr matrix beamfornier with the same 
set of uncommon nulls will produce the same BDML estimates since the 
estimation of the optimum v vector in (3.56) depends upon selection of the 
common nulls as well. To achieve good performance, one needs to assure that 
selection of both the common and uncommon nulls leads to high SNR gain in 
the vicinity of the two targets. It should also be noted that the two alternative 
BDML estimation procedures summarized above are not computationally more 
efficient than the original ones developed in Chapter 2. Rather, the major 
motivation of working with the parametric expression is that it provides a 
simpler way of illustrating the behavior of the beamspace manifold vectors,
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simpler way of illustrating the behavior of the beamspace manifold vectors, 
which may not have closed-form expression in terms of u in general.
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CHAPTER 4
REFINEM ENTS TO BEAM SPACE DOMAIN ML ESTIMATOR  

FOR COHERENT MULTIPATH

4.1 Introduction

We noted in Section 2.4 that the performance of the BDML estimator for 
both the symmetric and nonsymmetric multipath cases degrades severely in a 
coherent environment when the direct and specular path signals arrive at the 
center element of the array very nearly equal in amplitude and perfectly or 
very nearly 180 0 out of phase. In addition, the BDML Method for 
nonsymmetric multipath breaks down when the direct and specular path 
signals arrive perfectly 0° in-phase at the center element of the array as well. 
To overcome these problems, we propose three auxiliary algorithms for the 
BDML estimator. The first algorithm presented in Section 4.2 deals solely with 
the symmetric multipath scenario. The a-priori information about the 
constant complex reflection coefficient in the case of coherent multipath is 
incorporated in order to reduce the track breaking probability. In Section 4.3, 
an ad-hoc procedure is developed for converting a nonsymmetric problem into 
a symmetric one. Estimation of the bisector angle between the two paths is 
first done, followed by a secondary steering of the three beams. A novel 
efficient frequency diversity scheme, which is equally applicable to both the 
symmetric and nonsymmetric cases, is then presented in Section 4.4.

4.2 Estim ation of the Reflection Coefficient

Tf the surface of reflection is relatively smooth, and the target is not 
moving too fast in relative terms, the specular multipath signal is merely a 
time-delayed, amplitude-attenuated replica of the direct path signal oyer 
multiple snapshots. This condition is referred to as coherent multipath. Due 
to the sinusoidal nature of the returning signals, the time-delay translates into 
a phase-shift such that c2(n) =  Pej- ^ c 1 (n), where p is the magnitude of the 
surface reflection coefficient and A V  is the phase difference between the two 
signals measured at the center of the array.
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4.2.1 Development of the Algorithm

Let pc == denote the complex reflection coefficient. The beamspace
snapshot vector in the case of coherent symmetric multipath may be expressed 
in the following manner:

xB(n) =  [b(u0) +  pcb ( -u 0)]ci(n) + nB(n) n= l,...,N  (4.1)

The fact that pc is constant over the observation interval changes the 
complexion of the ML formulation of the problem of estimating the direct 
path angle. Indeed, it represents a-priori information about a coherent 
multipath scenario which needs to be incorporated into the ML estimation 
scheme. Of course, we are assuming that N, possibly one corresponding to a 
single snapshot, is small or the assumption of coherence may be invalidated.

We proceed motivated by the work of Ballance and Jaffer [BALL87] who 
incorporate multipath coherence into the ML estimator for low angle radar 
tracking based in element space. Ballance and Jaffer found that at the expense 
of increased computation, exploitation of the coherence gives rise to an 
element space based ML estimator exhibiting increased performance over that 
achieved with the ML estimator in element space which does not account for 
pc constant. As we shall see, this is the case in beamspace as well. Of course., 
similar to the situation throughout, the beamspace domain based ML 
estimator for coherent multipath is dramatically less computationally 
burdensome than the counterpart procedure in element space proposed by 
Ballance and Jaffer. We will deal solely with the case of symmetric multipath 
which admits a simple iterative implementation.

As before, the practical assumption that the noise in beamspace is 
Gaussian distributed leads to a generalized least squares problem which with 
xB(n) given by (2.10) is as follows:

N  ■' „

Minimize £  Il xB(n)— [b(u0) +  pcb (—u^c^n)!! q i  (4.2)
( .̂.j c j (l), tc ) (N)) n=i

subject: | pc j <  I

where Q =  ShS. Note that the constraint on | pc | arises from the fact that 
the amplitude of the specular path signal is no larger than that of the direct 
path. Let b(u0,pc) =  b(u0) +  pcb(—u0). Substituting the least square error 
solution for C1 (n), i. e., the LS solution to the equation b(u0,PcJc1 (n) =  xB(n), 
into (4.2) leads to the following optimization problem:



N :
Maximize V

I ' 1 ' / ' - )  D =  I

Xg(n) Q 1 b(u0,pc)bH(u0,pc)Q 1 xB(D) 
bH (u0, pc )Q"1 b(u0, pc)

bH(u0, Pc )Q~ 1RbbQ-1 (̂UorPc) 
bH(u0,pc)Q 1MuojPc)
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(4.3)

subject: I Pc I <  I

where Rbb is as defined previously in Chapter 2. The optimization problem 
described by (4.3) cannot be manipulated into a closed-form expression for u0. 
To svoid having to search over two variables one of which is complex, we take 
a suboptimal approach by decomposing the problem into two single variable 
optimization problems which may be solved iteratively. The algorithm is as 
follows. Assume an initial estimate of U0 is available. Let 
B(u0) =  [b(u0) : b ( -u 0)] and p =  [l,pc]T such that b(u0,pc) =  B(u0)p. An 
alternative expression for (3.3) is then

Maximize
P r

PhBt (U0)Q "1 RbbQ lB (uo)P
PhBt (U0)Q -1B(U0)P

(4-4)

Subject: | pc | <  I

where we have assumed that U0 is fixed at the initial estimate resulting in an 
optimization problem with respect to the single complex variable pc. Since 
(4.4) is quadratic, the optimal pc is either a solution to the corresponding 
unconstrained problem, or it must satisfy | Pc I =L  As a consequence, we
shall first solve the following unconstrained problem.

Maximize
P r

PhBt (U0)Q" 1 Rbb Q- 1B(U0)P 
PhBt (U0)Q -1B(U0)P

(4.5)

We note that the objective function in (4.5) is invariant under scaling for p 
such that the solution is to take p as a scalar multiple of the generalized 
eigenvector of the 2x2 matrix pencil
{ Bt ( u 0 )Q“ 1 R bb QT1 B(u0) , Bt (u0 )Q-1 B(u0) } associated with the larger of 
the two generalized eigenvalues. The optimal value of pc is then the ratio of 
the second component of the optimal p to the first component.

If the optimal pc thus found fail to satisfy | pc | <1, we instead solve the 
equality constrained problem given by
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Maximize
Pe B t  (U0) Q - 1R bbQ - 1B (U 0)/* 

Ph B t (U0) Q - 1B (U 0)P
(4.6)

subject: | pc | =  I

Again, since the cost function is invariant under complex scaling, the problem 
can be equivalently stated as

Maximize
. P r

p"BT(u0)Q -1RbbQ -1B K )A
/ B t (U0) Q - 1B (U 0 )P

(4.7)

subject: 12 P = p*

without loss of generality. Following a similar argument as that made in 
Section 2.3 regarding Method II for symmetric BDML estimation, we easily 
find that the maximizing p is a scalar multiple of the generalized eigenvector 
of the pencil { Bt (u0)Q_1 {Rbb +  I3RbbI3 }Q 1B(uO) > BT(u0)Q 1B (U 0) } 
corresponding the the smaller generalized eigenvalue. The optimal pc is again 
the ratio of the second component of the optimal p to the first component.

Next, consider the value of pc thus found to be substituted into (4.3) and 
the ensuing problem of finding that value of u0 which maximizes (4.3) given 
this pc. To manipulate (4.3) into a form amenable to a closed-form solution, 
we invoke the relationship b(—u0) =  i3b(u0) noted previously in (2.10). 
Substituting b(u0,Pc) =  (I3 +  pcI3)b(u0) into (4.3) yields the following 
alternative expression for the objective function in (4.3):

Maximize
b{u„)

bT(u0) Re{(I3 +  PcI3 )HQ~" 1Rbb Q 1 (I3 +  Pels)} K uQ) 

bT(u0) {(I3 +  pcI3)HQ X(I3 +  PcI3)) b(u0)
(4.8)

where we have invoked the fact that b(u0) is a real-valued vector and that 
(I3 +  Pels)11 Q -1 RbbQ-1 (I3 +  /9Cl3) is a Hermitian matrix. Note that we have 
expressed the resulting optimization problem as a search over b(u0) as 
opposed to a search over u0 itself. We do this primarily so that we may 
approximate the solution for U0 by taking b(uQ) to be the generalized 
eigenvector of the 3x3 real matrix pencil
{ Re{(I3 +  pcI3)HQ _1RbbQ_1(I3 +  PcI3)) . Re ((I3 +  P c h f Q T ' i h  +  PcI3)) } 
associated with the largest generalized eigenvalue. At this point, the optimal 
b(u0) thus found may be substituted back into (4.4) to obtain a new value of 
pc corresponding to the second iteration. Likewise, the new value of pc may
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be subsequently substituted into (4.5) to obtain the estimate of b(uD) at the 
second iteration. The procedure may be iterated in this fashion, alternating 
between the computation of the largest GEVEC of a 2x2 pencil in determining 
the optimum p at the k-th iteration, denoted pk, and the computation of the 
largest GEVEC of a 3x3 pencil in determining the optimum vector b(u0) at 
the k-th iteration, denoted bk(u0). Gf course, bk(u0) is determined only to 
within an unknown scalar multiple. The procedure may be terminated when 
the 2-norm of the difference between b(u0) and b k+] (u0), both normalized to 
have a 2-norm equal to one, is less than some pre-determined threshold e. The 
specific steps will be delineated in algorithmic form shortly.

At the end of the iterative procedure outlined above, we have an estimate 
of the vector b(u0) from which we desire to recover U0 . There a rea  number of 
ways we may proceed to do this. An efficient approach is compute the 
projection operator onto the orthogonal complement of the I-D space spanned 
by b(u0) as P t  = I - b ( u 0)ib(u0)Tb(u0) r 1b T(u0) and search for that value 
of u such that b(u) =  SHa(u) is orthogonal to the range of Pb . Note that due 
to additive noise, Pb b(u) is nonzero for all u and we shall instead compute u 
via the following optimization problem:

Minimize i';Pb b(u)*|2 =  !'Pb SHa(u)l|2 =  a(u)HSHPb SSa(u) (4.9)
U

The search may be accomplished via any of the numerical techniques such as 
Newton descent, Golden Section search, etc, and should be started at the most 
recent estimate of u0.

4.2.2 Simplifications for Butler Matrix Beamformer

The use of the Mx3 Butler beamformer in this case leads to substantial 
simplifications. First, the noise covariance matrix Q is simply a scalar 
multiple of the 3x3 identify matrix. Second, the numerical search required in 
the final estimation of U0 can be avoided by employing the "common nulls" 
property described in Section 2.3.

Upon substitution of ( 3 . 7 ) - ( 3 . 1 0 ) ,  t h e  p r o b l e m  i n  ( 4 .9 )  s i m p l i f i e s  t o

Minimize !|P£ E Ha3(u)|i2 =  a 3(u)EP£ E Ha3(u) (4.10)
M

where B  is given by (3.7) and a3(u) is defined according to (3.25). Note that 
we have a s s u m e d  that u is small such that G(u) in (3.10) does not vary much
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within the angular region of interests. Let = e . Due to the 
Vandermonde structure of a3(u), (4.10) can be formulated as a quartic 
equation given by

—2q2*  ̂ —qj*-^ 1 +  q] ^ ' +  2q2 = 0 (4.11)

where qi =  P |(1 ,2 ) +  P eb(2,3), q2 =  P£(l,3), and P^(i,j) is the (ij)-th 
component of P b =  E P b E ^ a 3(u). Xhe quartic equation in (4.11) has at least 
two roots on the unit circle and the optimum solution is the one minimizing 
the cost function given in (4.10).

The Beamspace Domain ML algorithm utilizing the MxS Butler matrix 
beamformer modified for the case of coherent symmetric multipath is 
summarized in algorithmic form below.

p-Based BDML Method for Coherent Symmetric 
Multipath with Butler Matrix Beamformer

(L) With S
W

& R■xx £  x(n) xH(n),
iN n=l

a(2 /M); a(0): a(—2/M)
M

form R bb =  ShR xxS.
(2.) With initial estimate of u0J form bj (u0). ( k = l :  first iteration.)

(3.) With b k(u0), form Bk =  bk(u0) ! l 3bk(u0)J

(4.) Compute pk =  Jp1 J P2It as "largest GEVEC of 2x2 pencil (BkRbbBk)
B kBk).

(5.) If I p2 I <  I Pi I , go to (6.). Otherwise:
Compute Pk ~  [Pi \  P2]T aS largest GEVEC of 2x2 pencil 
(B kRbbBk +  I2B kRbbBkI2 , B kBk +  I2B kBkI2)

(6.) With pCjk =  P2ZpljTorm J k =  I3 +  Pc kI3,

(7.) Compute b k+1(u0) as largest GEVEC of 3x3 pencil

(R e(JkRbbJk) ) J k J k }•
b k+ i ( u o) b I c K )

(8.) If ilbk+i(n0) ||2 IIbk(U0)II2 

(9.) With b k+1(u0), construct: P b =  E

>  € go to (3).

T _  kk+lb k+l 
b k+lb k+l
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(10.)Solve —2q2 — qi -■? d  2q2--'4 =  0
where qj =  Pf,(l,2) + Pf,(2,3) and q2 =  P |( l ,3 ) .

(11.) U0 =  -"—In'.
J~ ' j.

where .1 ' is the unit root found in (1 0 .) which minimizes the cost
function in (4.10).

Simulations illustrating the improvement in performance achieved with this 
estimation scheme in a coherent multipath scenario over that obtained with 
the Butler matrix beamformer based BDML method outlined at the end of 
Section 2.3 will be presented in Section 4.5. In closing, we point out in the 
case of a single snapshot, i.e.., N =  I, the two methods are the same, as one 
would expect. This may be easily shown but is not done so here for sake of 
brevity.

4.3 Bisector Angle Esltirhation for Nonsymhrietric M ultipath

We noted in Section 2.5 that the BDML method for nonsymmetric 
multipath breaks down when the direct and specular path signals arrive 
perfectly in-phase or 180° out-of-phase. On the other hand, the BDML method 
for symmetric multipath theoretically performs best for =  0°. One may 
thus expect to achieve significant improvement in performance at A'k =  0° 
provided that a procedure is available to convert a nonsymmetric problem to 
a symmetric one. In this section, we will develop a scheme to estimate the 
bisector angle between the direct and specular paths based on a characteristic 
property of the beamspace correlation matrix for symmetric multipath. The 
conversion from nonsymmetric to symmetric multipath is done with a second 
steering of the three beams such that the pointing angle of the center beam is 
the estimate of the bisector angle. For the sake of simplicity, we here restrict 
the beamforming matrix S to be. the Mx3 Butler matrix beamformer.

4.3.1 Development of the Algorithm

(2.50) describes the asymptotic form of the beamspace correlation matrix 
under both symmetric and nonsymmetric multipath conditions. The only 
difference between the two is that in the case of symmetric multipath B 
satisfies the property I3BI2 =  B. It is this property which gives meaning to 
the forward-backward beamspace correlation matrix, Rbb, as anaIyze^ m
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(2.53) and (2.54). Indeed, the bisector angle estimator (BAE) to be developed 
in this section is based on the fact that the forward-backward average in 
beamspace described by (2.33) is meaningless in the case of nonsymmetric 
multipath. Denote the noiseless component of Rbb as C[V More specifically, 
the BAE is based on the fact that under symmetric multipath conditions Cbb 
is of rank two, while under nonsymmetric multipath conditions Cbb ds °f full., 
rank provided Aty is not equal to either 0° or 180°. Thus, in the former case 
the determinant of Cbb 1S zero, while in the latter case the determinant of 
Cbb is nonzero. The peculiarity occurring with either A ty - O 0 and 
Aty =  180° is averted by employing the well known technique of spatial 
smoothing [SHAN85a], [WILL88].

Consider the signal-only component of the forward-backward averaged 
beamspace correlation matrix, denoted Cbb, under symmetric multipath 
conditions. Invocationofthe propertyI3BI2 = B yie lds

C'bbb -  I  B R isBt + I 3BRsjB tI3

B —Ir ss +  I2R ssI2 B1 B R ssBt (4.12)

where Rgg is defined by (2.54). It was observed previously that Rgs is real- 
valued and of full rank equal two in the practical case where the magnitude of 
the reflection coefficient is less than unity. Thus, under symmetric multipath 
conditions Cbb is a real-valued, symmetric 3x3 matrix of rank two. Hence,
detjCbb j =  det|Re {Cbbjj =  0 under symmetric multipath conditions 
regardless of the phase difference Aty. For the nonsymmetric multipath case, 
consider the real part of the signal-only component of the forward-backward 
averaged beamspace correlation matrix

Re(Cbb) BRe(Rss)B7 +  I3BRe (R ss)Bt I3 (4.13)

Under nonsymmetric multipath conditions, the relationship I3BI2 = B  does 
not hold such that we cannot simplify (4.13) any further. We noted 
previously that Re(Rss), defined by (2.51), is of full rank equal to two so long 
as Aty is not equal to either 0° or 180°. In the case of Re(Rss) of full rank
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range|.Re}Cbb}: rangejBRe{Rss }BT + I3BRe-JRssJBr Is

span B(U1)', b(u2) , I3b(u i) , Iab(U2) I

span- b (u 1) , b (u2) , b (—U1) , b (—u 2)

From the definition of b(u) in (3.8-9), it is easily proved that any three 
members of the set of four vectors Jb(U1) , b(u2) , b(—U1) , b(—u2)} are

linearly independent provided both U 1 and U2 lie in the range ( ^  ) and

u2 /. -U 1. This, indicates that Re{Cfbbb} is of full rank equal to 3 and, as a 
consequence, det|Re{Cbb }J >  0 under nonsymmetric multipath conditions as

long as AvIy is not equal to either O0 or 180°. In these two cases, R ejR ss} is of 
rank one such that rangejReJC|b}} =  span
Jb(U1) ±  Pb(U2) , I3Jb(U1) ±  pb(u2)}}, where the V '  is for the case 

= O 0 and is for the case A ^ =  180 ° . Thus, when A ^ is equal to

either Q 0 or 180 c , the rank of R ejC jbb } is two and det[ReJCfbbb}j =  0 whether 

the multipath is symmetric or nonsymmetric. Since we wish to use 

det|R e{C bb}j as a discriminator between the symmetric and nonsymmetric

multipath cases, we employ spatial averaging [SHAN85a], [WILL88] as a 
means for averting the peculiarity occurring with Avk equal to either 0 or
180°.

Spatial smoothing is employed to insure that RejRs8) is of full rank equal 
to two regardless of the phase difference, In this mode of operation, the 
beamspace correlation matrix is spatially averaged over a number of identical, 
overlapping subarrays extracted from the overall array. The procedure 
exploits the fact that the phase difference between the direct and specular 
signals at the center of each subarray is different. We emphatically point out 
that spatial smoothing is only recommended for the purposes of estimating the 
bisector angle, denoted uc, between the direct and specular paths, i- e.,

Uc =  JLju1 u2}. Once, the bisector angle is estimated, it is recommended 
2

tbat the BDML method for symmetric multipath outlined in Section 2.3 be 

employed with the modification that Sm= aM(—Tf) ‘ aN!̂  ' a ^  M
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replaced by S‘ a -.i(uc -  4-) ; a -i^c) 1 a Mfiic +  4-) where uc is the

bisector angle estimate. A pejorative side effect of spatial smoothing is that 
the effective aperture is that of the subarray. Although the reduction in 
effective array aperture is not critical in the estimation of the bisector angle, 
the corresponding loss in resolution may prove critical in the subsequent 
estimation of the angles of the direct and specular paths. We will outline the 
overall procedure at the end of this section.

The subarrays employed in spatial smoothing are each composed of a 
number of contiguous elements, say L. Adjacent subarrays have all but one 
element in common. An M element array is composed M-L+1 such subarrays.

2A typical number for L is — M [WILL88]. The extraction of the snapshot
3

vector for the k-th subarray, denoted xs(n;k), k= l,...,M -L +l, from x(n), 
which contains the outputs of all array elements at the n-th snapshot, may be 
expressed mathematically as

xs(n;k) =  E jx (n ) where: Ejc
0
I
0

(k—l)xL 
LxL

(M—L—k+l)xL
(4.15)

With these subarray snapshot vectors, the spatially smoothed element space 
correlation matrix, denoted R xx, is constructed as

I
N(M-L-W)

N M -L + l tl .
E  E  xs(n;k)x“ (n;k) 

n=l k=l
(4.16)

Finally, the spatially smoothed beamspace sample correlation matrix, denoted 
Rbb > is constructed as

R bb = S l i R lx S1. (4.17)

where

SL » , . ( - £ ) !  M O ); ■«,.(+) (4.18)

Assume without loss of generality that L is odd, a. (u) is described by (3.25) 
with N =  L. Note that the three columns of S1 are mutually orthogonal such 
that Sj1S1 =  LI3. It can be shown [SHAN85a], [WILL88] that the signal-only 
(Uonoise)ComponentofRbbjdenotedCbbj TOaybeexpressedas

Cbb =  BsR ssBs (4.19)

where
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B s =  j s % .( u , )  SHaL(u2)j -  Jbs(U1) I b s(u2)| (4,20)

and, more importantly,

I
M -L + l

M-L~i I
V

. k  =  l

4>k 1R ss(<l>k *)* where: 4>
-  j TT U ,e

0

R ss is the effective sampled source covariance matrix achieved with spatial 
smoothing. From the theory espoused in [SHAN85a], it is readily deduced 
that R ss of full rank equal to two as long as U2A i1 and M-L+l ^  2. In the
case under consideration, however, where the difference between U 1 and U2 is 
quite small, R ss may be ill-conditioned making Re(Rss) ill-conditioned in the

case of =  Q 0 and A4/ =  180°. The choice of L =  j M  corresponds to

averaging over approximately M/3 subarrays. Simulations have indicated 
that this is adequate to insure that Re(Rss) is of full rank equal to two even 
for angular separations between the direct and specular paths as small as a 
tenth of a beamwidth.

Under practical conditions, it is easily argued that that R bb has the 
following asymptotic form

E (R bb) =  BsR ssB" +  O2hnI3 (4.22)

Since Cbb is p o s i t i v e  semi-definite of rank_2, it follows that the smallest 
eigenvalue of E (R bb), denoted Xffin, is <4- C bb may thus be estimated as

C bb =  R bb -  C n I 3 (4.23)

where is the smallest eigenvalue of R bb. With this estimate of the
signal-only component of the spatially smoothed beamspace sample correlation 
matrix R bb, C bb is constructed according to

C bb =  | ( C b b + I3CbbI3) (4-24)

From the arguments made previouslyit follows that in the asymptotic or no 
noise cases, the 3x3 real matrix Re(Cbb) will have full rank in the case of 
nonsymmetric multipath, regardless of A*, and rank two in the case of 
symmetric multipath. This implies that in the asymptotic or no noise cases, 

det|Re{Cb̂ ,)j = 0  under symmetric multipath conditions, while under

nonsymmetric multipath conditions det[Re(Cbb)j >  0. Alternatively, we can
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~ fb ■
say that ReJCbbI 1S positive semi-definite under symmetric multipath
conditions, while under nonSymmetric multipath conditions, ReJCbbJ is
strictly positive definite. These observations prompt the following scheme for
estimating the bisector angle uc. First, in the formation of Rbb according to

by(4.16-1.18), replace

a , K '  ~  { - )  a ; ( u c)  I  a, (uc +  {-) 

from Rbb (uc) to

M - f ) )  M O ) : M f )
to form Rbb(uc). Second, subtract

form? Cbb(uc). Third, form•̂ rain̂ 3
Cbb(uc) =  -^-{Cbb(uc) +  ^C bb^c)^}- Finally, estimate the bisector angle as

2
that value of uc in the interval •(—— ^ j-)  for w h ich  d e t |R e { C bb(uc)}J
achieves its minimum value. We state this procedure in a more 
mathematically explicit manner below.

First, the two matrix beamformers S1

M ” c -  f ) 1 M M  > M M +  f )
M - f )  i M 0 ) :  M f ) and

transformation as
SI

may be related through a diagonal 

D(Uc)Sl where: D(uc) =  diagja, (uc)} (4.25)

The notation diagja, (uc)} indicates that D(uc) is a LxL diagonal matrix the ii 
component of which is the i-th component of the Lxl vector a L(uc) described 
by (3.25) with M =L. The spatially smoothed beamspace sample correlation 
matrix obtained with the translated beamformer Sf may thus be expressed as

RbbK) =  SD "R „SJ-  S(1D^Uc)R11D(Uc)Sl (4.26)

Note that D(uc) defined above satisfies D (uc)D(uc) —13 such that 
S f liSf = L I l . From this property it may be proved that the noise-only 
component of E jR bb(uc)} does not vary wit.h uc. Hence, the signal-only 
component of Rbb (uc) is estimated as

C bb(uc) =  S lD*(Uc)R xxD(Uc)S,. -  C nI3 (4.27)
a bb ^

where Xmin is the smallest eigenvalue of R bb. Hence, the estimate of the 
bisector angle, uc, is the solution to the following optimization problem.

Minimize det
U.- ■

-ReJ 
2

S»D* (Uc)RxxD(Uc)S1̂ I 3SliD t (uc)RxxD(uc)S, I3 C bb _ 
“̂ min^3



93

subject to uc € , ^j-) (4.28)

where we have used the fact that I3I3  =13. The interval constraint on Uc 

reflects the condition that the direct and specular path signals arrive within a 
beamwidth of broadside to the array. Ostensibly, the objective function in 
(4.28) is too complicated to allow a simple closed-form solution for uc, the 
bisector angle estimate. Thus, it appears that a I-D search procedure is 
required such as Golden Section Search, for example. However, a simple 
closed-form estimation procedure may in fact be achieved by exploiting the 
result in (3.7). Exploitation of this result allows us to formulate the search for 
uc in terms of finding Xc == c* f as the root of a quartic equation. The 
appropriate development is provided below.

4 .3 .2  Simplifications of the Cost Function

Sl may be factored in a manner similar to that in (3.7) for S:

S1. =  H lE l

where H l is the Lx3 Toeplitz matrix

X  O 0 
O hL O 
O O h,

(4.29)

(4.30)

h L =  [h0 , E 1 , • ' • , hL_3]T is the coefficient vector for the polynomial of 
order L-3 whose roots are the roots common to each of the three polynomials 
formed with a particular column of S^ as the coefficient vector.

_ . . 27rm
h(z) =  h0 +  hx z +  h2z2 +  * ‘ * +  X ^3Z1

L—2
-L~3 -  Ql 11 

m=2 (. - ) (4.31)

where a L is defined similar to a  in (3.5). E l in (4.29) is 3x3 described by 
(3.45) with M replaced by L:

(4.32)

i fI -«

E l = 2c°s(^-) -2cos(-^) 2cos(- -̂)

> T
TT

-H

Note that E l exhibits the following properties
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(a) I3E 1 = E ;. ; (b) E i I3 =  E i*. ; (c) I3E 113 =  E 1 (4.33)

The spatially smoothed beamspace sample correlation matrix Rbb rnay be 
expressed in terms of H 1 and E. as

H; s = S ilR xkS = E " n “R „ H  E = E 1R lbE  (4.34)

where is the 3x3 matrix

R hh =  HjiR xxH 1 =  (E ^ )-1R bbE -1 (4.35)

Invoking the result in (3.8-9), it is easily shown that the signal-only (no noise) 
component of R hh, denoted C hh, may be expressed as

C lh = A 3G RssG 1A? (4.36)

where A3 is the 3x2 matrix

j I e
I ' I

eJ”U| i;ru., e '

(4.37)

and G is the 2x2 diagonal matrix

h !.V(U1)
(4.38)

0 h La,(u2)

Note that (4.34) implies that C bb and C hh are related according to

C bb =  E fC hhE i (4.39)

Exploitation of the properties of E l described by (4.33) yields the result

Re(Cbb) EKChhE L +  EirC hhE,. E ” ChhE l +  EKlaChhI3E l

Ej1- C hh+I3C hhI3 E 1. - E j 1C hhEK

. ~ iu
where C hh is defined as

Cbh "h ^C hh  ̂ 3

(4.40)

(4.41)

Note that the definition of the forward-backward average of Chh in (4.41) is 
different from that of R bb in (2.33) due to the conjugate on C hb in the second
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term within the brackets on the right hand side of (4.41). Invoking the
property that A 3 in (4.37) satisfies I3A3 =  A 3, yields the following expression 

-  Tb
for Cj1J),

fb
Chh J  A3G R ssG tA? + I 3A l (G R ssG* }* A j I3

— A3 Re(GRssG*} A 3 (4.42)

Let’s consider the case of symmetric multipath wherein U2 =  —h i -  With 
u 2 =  - U 1 in (4.37), we find that A3 satisfies AI2 = A *. This property only 
holds for the symmetric multipath case. Invoking this property yields the 
following expression for Re(Chh) for the case of symmetric multipath:

Re{Cu} = i c'hbh + c ,hbh‘

_1_
2

A3 Re (G R ssG* }A3 +  A3I2Re(GRssG 4)I2A ? 1

< '
Re(GRssG*} +  I2Re(G R ssG* }I2: A3 ~  

2
(4.43)

We observe that Re(Chh), a 3x3 matrix, is of rank 2 in the asymptotic and no 
noise cases under symmetric multipath conditions. It is easily shown that
under nonsymmetric multipath conditions, Re(Chh) *s ran^ eQua^
Similar to the preceding, we can emulate symmetric multipath conditions by 
operating on A3 in (4.37) by the matrix

W(uc)

-jffUf 0 0
0 I 0

0 0 e1”

(4.44)

with uc =  -^-{uj + u 2).

From these observations, it follows that the bisector angle estimation 
procedure in (4.28) may be equivalently formulated in terms of Re(Chh) as

Minimize det^R eJW  (uc)C hh W (u c))j (4.45)
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subject to uc €  ( - ^  , -J-)

where Chh is determined from Re(Cbb) as

c Z , - E h M M C n ! E 1 (4.46)

This relationship is deduced from (4.40). Note that E 1 is constructed 
according to (4.32) and is easily inverted. More importantly, note that 
whereas D(uc) in (4.28) is LxL, where L is the number of elements in each 
subarray employed in the process of spatial smoothing, W (uc) in (4.45) is only 
3x3. As a consequence, the optimization problem posed in (4.45) is much 
easier to solve than the equivalent one posed in (4.28). In fact, it is shown in 
Appendix A that the solution procedure is tantamount to solving for the roots

of a quartic equation, Let Xc =  Ci2rru' . It is shown in Appendix A that Xc is a 
root of the polynomial

p(X) =  —2p0 — PiX +  PiX3 +  2p0X4 — 0 (4.47)
-ID

where the coefficients p0 and pj are a function of the components of Cj1J1,

denoted Î Cbhj. viJ =  I >2,3.

pH^UcriIii (4.48)

P1 = 2  (c Lh)i. (c I l ) 13 -  2I c ^ L  (C “ ) k . (4.49)

It is easily shown that at least two of the roots of p(X) in (4.47) lie on the unit 
circle. Thus, Xc = ei2nUr is that root lying on the unit circle which minimizes 
the objective function in (4.45).

Once, the bisector angle is estimated, it is recommended that the BDML 
method for symmetric multipath outlined in Section II be employed with the

modification that Sm =  : M O) M ^ f )  be replaced ; by

S csi =  [aM(uc -  -i-) I a M(uc) : a M(uc +  |- ) ] -  A summary of the symmetrized

BDML method is delineated below.
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Algorithmic Summary of Symmetrized BDML Method

(I.) With L = - M , S i
O

a , ( — | - )  : a ,  (0) i a ,  (~ ) |,  and N snapshots x(n),

n= l,...,N , form

x B(n;k) = S f  E k x(n) where: E k 

k=l,...,M -L +l ; n = l,...,N

(k—l)xL 
LxL

(M—L—k+l)xL

(2.) Construct Rbb
I N M -L + l N

^ r r i - , ,T E  1] xB(n;k)xB(n;k) 
N(M—L+l) D=1 k=1

(3.) compute Xmjn as the smallest eigenvalue of Rbb anc  ̂ form

Rbb +  ^Rbb I3
- fb I
c » - 2

_ \ 6b T

(4.) form C fhbh =  E f  ^ R e lc lb lE ;;1 where E 1. is given by (4.32).
(5.) Compute roots of p(X) = -2pJ —p,*X +  Pi X3 +  2p0X4 =  0 where

-  i « u 4 '

(*:>].. ’(fiS),r’(4“U41Pi — 2

Ig \ iic =  ——In(Xc), where Xc equal to that root of p(X) having unity 
v ' c j27Ti27T ( fb t

magnitude for which det[Re{W* (Xc)C hh W(Xc)}j is minimum where

W(Xc)
Xe 0 0
0 1 0  
0 0 Xc

(7.) With S =  =  [ a M( u c -  - ~ )  : »N.(flc) a M^c +  4")]’ f o r m

I I!5 ]xB(n)xB(n) where: xB(n) =  S f  x(n)
n=l

( 8 . )  Compute v  =  [V1 . , -V 2 , V 1 Jt  as ^that centro-symmetric eigenvector of

associated with the smaller eigenvalue.RefR'bb} =  } r «- Rbb +  l3®-bbl3



(9.) estim ate u0 according to

U0 =  ^-tan 1
/ I

V 0  -  2 v i C . o s ( ^ - )

v0cos(|^-) -  2ViCOs(^r)

(lO.)finally: Uj =  U0 +  uc ;■ u2 = - u 0 + u c

4.4 Performance Improvement Via the Use of Frequency Diversity

We noted in the previous section that the performance of the BDML 
estimator for both the symmetric and nonsymmetric multipath cases degrades 
severely in a coherent environment when the direct and specular path signals 
arrive at the center element of the array very nearly equal in amplitude and 
perfectly or very nearly 180° out of phase. In addition, the BDML Method 
for nonsymmetric multipath breaks down when the direct and specular path 
signals arrive perfectly in-phase at the center element of the array as well. 
Provided the appropriate hardware is available, one of the obvious ways to 
avoid having the track broken under either of these conditions is to employ 
frequency diversity [KEZY88], [SKOL80]. In this case, the radar transmitter 
emits multiple narrowband signals spaced in frequency with the frequency 
spacings judiciously chosen so that the phase difference occurring at the center 
of the array at* each transmission frequency is significantly different from 
frequency bin to frequency bin. Depending on the system hardware, the 
pulses at the various frequencies may be transmitted simultaneously and/or in 
rapid succession corresponding to frequency hopping. An example of a real 
radar system where frequency diversity is employed is the Multi-parameter 
Adaptive Radar System (MARS) described by V. Kezys and S. Haykrn 
[KEZY88]. This experimental bistatic radar array consists of a 32-element, 
horizontally polarized linear array operating coherently over the band 8.05 to 
12.34 GHz. Each antenna element is followed by two receiver channels 
allowing for simultaneous reception on two separate frequencies: one fixed at
10.2 GHz and the other agile over the band 8.05 to 12.34 GHz in 30 MHz 
steps. Many defense radar systems employ frequency diversity in some 
manner as well.



Let T0 denote the frequency for which the M elements of the array are 
spaced by a half-wavelength; f0 will be referred to as the reference frequency. 
Consider J-I additional frequencies denoted f„ i= l,...,J -l, employed such that 
for a given observation interval a total of J distinct frequencies are 
transmitted. We are here assuming that the same M element array described 
in Sect. II is employed for all frequencies. This, of course, has practical 
implications with regard to the range over which the frequencies may vary. 
We simply note here as an example the parameters of the MARS system cited 
above. We will assume that during the observation interval, Ni snapshot 
vectors for the transmission frequency fj, denoted x(n ; A), are collected. 
Again, Ni, i= 0 ,..,J-l, may be as small as one in some practical situations. 
Now, for’ the sake of generality, consider the nonsymmetric multipath 
scenario. Similar to before, our goal is to compute the ML estimates Ofu1 and 
U2 given as data the beamspace snapshot vectors xB(n ; A) =  S (A M n ; A)> 

i= 0 ,...,J-l, n =  I,..,,Ni, where S(A) is an Mx3 beamforming matrix which, as 
implied, may be different for each frequency. To this end, let a(u ; T1) denote 
the element space manifold vector associated with the frequency A, i= 0 ,...,J-l. 
The element space manifold vector for the reference frequency, f0, is described 
by (2.2). a(u) in (2.2), now denoted a(u ; f0), may be easily generalized for 
frequency values other than f0. The result for fj, i=0 ,...,J-l, is as follows:

- j24 "  - ' 4 ” i '- r "  j2ir̂ ru iT  <4-50>• ,e ,e .l ,e  “ ,e , ' /  Ja(u;fi)=
T f i

- jlT u

Note that the difference between a(u ; f,) and a(u ; f0) is simply a scaling of

the argument which is illustrated by observing that a (— u ; f;) =  a(u;f0).

Now given S(f,) the beamspace manifold vector associated with frequency fj is 
simply b(u ; fj) -  SH(fi)a(u ; f{) with a(u ;Ti) given by (4.50). A development 
similar to that which lead from (2.22) to (2.24) leads to the result that the 
BDML estimates of U1 and U2 may be found as the solution to the following
optimization problem:

Minimize *<£ £ x i(n ;f i)  Q -1Z2(fI)PBw(UijuZifi)Q 1/2(fi)xB M )  (4-51)
U 1 , U i  j = 0  n = 1

where Q(fi) =  Sh(A)S(A) and P i ( u 1,u2 ; A) is the projection operator onto 

the orthogonal complement of the span of Q  ̂ (A)^(U1T1) and 
Q - ^ 2(A)b(u2 ; A)- Due to the dependence of P b„(ui >u2 5 fi) on index i, i. 
e on the value of A, we cannot formulate a closed-form procedure for the



100

BDML estimates of U1 and U2, the solution to (4.51), similar to the BDML 
Method outlined in Section III. The best we can do is to convert the objective 
function in (4.51) to a sum of ratios of two quadratic forms of the type in 
(2.45) giving rise to a set of coupled optimization problems. It is our goal here 
to retain the computational simplicity of the BDML estimation schemes 
outlined previously while still incorporating in a coherent manner the 
additional data provided by the use of the auxiliary frequencies. In particular, 
we would like to achieve simple, closed-form expressions similar to those 
obtained previously in the case where the beamforming matrix is of the Butler 
type in (2.36). To do so, we invoke the coherent signal subspace concept 
developed by Wang and Kaveh in their extension of the MUSIC algorithm for 
wideband sources [WANG85], [HUNG88’.

4.4.1 G ohefent Signal Subspace Processing

In a nutshell, the basic idea behind coherent signal subspace processing 
applied here is to apply a matrix transformation Tj to xB(n ; fj) such that if 
xB(n ;Ti) =  ii(n  ; fi)b(u! ; Ii) +' c2(n ; fj)b(u2 ; fj) +  ^ n  ; fj) then
TjXB(n ; fj) =  C1 (n ; fj)b(uj ; f0) +  c2(n ; fj)b(u2 ; f0) +  T i^ n  ; fj). That is, 
we attempt to translate the signal information at each of the auxiliary 
frequencies fj, i= l , . . .J - l ,  to the reference frequency f0 where it may be 
coherently combined. It is apparent that the matrix T; must satisfy the 
following relationships.

Tjb(U1Jfi) =  b(uj;f0) and T jb(u2;fj) =  b(u2;fo) i= l,...,J—I (4.52)

A matrix satisfying (4.52)
B i Mu1 ; fi)
focusing matrix is

M « 2  I f i ) ] ,

is referred to as a focusing matrix. With 
i= 0 ,...,J-l, one possible choice for for the

1
Bjr i—I , ..., J —I (4.53)

Note that Tj in (4.53) is a real 3x3 matrix. Now, the cumulative effect of the 
coherent signal subspace transformations applied to each of the beamspace 
snapshot vectors may be equivalently implemented as a transformation on the 
beamspace correlation matrices. The end result is that the BDML Method for 
non symmetric multipath outlined in Sect. Ill is executed with the coherently

combined beamspace correlation matrix R bb ' > T ,R bb(f )TT, where 
J 1=0

R bb(fj) — SH(fj) R xx(fj) S(fj), i= 0 ,...,J-l, as opposed to being executed with
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the beamspace correlation matrix at a single frequency. Note that in this 
formulation T q =  L

To briefly illustrate the efficacy of the coherent signal subspace approach, 
consider the asymptotic form of Rbb(A) which, based on (2.50), may be 
expressed as

Rbb Cfi) =  B (fi)Rss(fi)BT(fi) +  ^ , iS H(fi)S(fi) (4.54)

where B(fj) b(ui ;fj) : b(u2;fi) i= 0 ,...,J-l. Employing the ideal focusing

matrices in (4.53), we find that Rbb has the following asymptotic form:

^bb V s  T iR bb(fi)T ^
J i=0

i  ĵ )1 Tj B (^)R ss (fj )BT(fj.)T f  +  y Jv ^ iiT iS H(fi)S(fi)T 1:r
i=0

BT(fo) +  V s ^ i T i Q f W T y
J i=0

= B(f0)RssBT(f0) +  Q (4.55)

where, as implied, R ss is the algebraic average of the source covariance 
matrices R ss(fJ  associated with each of the frequencies fj, i= 0 ,...,J-l. (4.55) 
implies that R ss is the effective source covariance matrix achieved with 
coherent signal subspace processing. For a single frequency R ss(fj) is of the 
form in (2.49) with A ^ replaced by Avhi , the phase difference occurring at the 
center of the array at frequency I1, i= 0 ,...,J-l. The success of this frequency 
diversity scheme in combating the rank deficiency problems occurring with the 
BDML estimator for nonsymmetric, coherent multipath hinges on Afy being 
different for each transmitted frequency. If this is the case, R ss will be of full 
rank equal to 2, as will it’s real part, as long as at least one additional 
frequency is employed. With R ss of full rank, the aforementioned problems 
are avoided in accordance with arguments provided in Section 2.5. 
Furthermore, an argument may be provided similar to that for spatial 
smoothing in [SHAN85], [EVAN82] that as the number of frequencies J 
increases, R ss approaches the highly desirable diagonal form, provided the 
frequencies are chosen judiciously. As far as combating signal cancellation is 
concerned, it is, of course, highly desirable that the frequencies be chosen such 
the probability of Afy being approximately equal to 180° at more than one
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frequency is quite low.
A point glossed over earlier is that construction of T i according to (4.53)

requires knowledge of the angles which we are trying to estimate. This
suggests an iterative procedure wherein we begin by constructing an initial set 
of focusing matrices based on some coarse estimates of the angles. Proceeding 
With the initial set of focusing matrices yields estimates of the angles 
corresponding to the first iteration. The new pair of angles are used to 
construct an updated set of focusing matrices which, in turn, yield the 
estimates of the angles at the second iteration. The procedure is then iterated 
until the absolute value of the difference between respective angle estimates 
obtained at the (k-fl)-th and k-th iterations is less than some threshold for 
both the direct and specular paths. As the angles of interest in the low-angle 
tracking problem are within a beamwidth of broadside, the initial estimates of 
U 1 and u2, denoted U 1 and u 2, respectively, may be taken to be zero. With
U 1 =  u2 = 0, the initial set of focusing matrices must satisfy
T,b(0;fj) =  b(0;f0), i= l,. . . ,J - l .  At this point, let us specialize and consider 
only the case where the Butler matrix beamformer is applied at each 
frequency. To this end, let uB. denote the angle of the upper auxiliary beam 
formed at frequency f, such that

a(uB; ; fi) v a ( ° ; ^ i): a (—uBi ; fi) |  , i=o,...,J—i (4.56)

Invoking the previously cited property that a(u ; fj) in (4.50) satisfies 

a (-^ u  ; fj) 4= a(u ; f0),a it follows that a Butler matrix is achieved for each

frequency if uB — — — , i= 0 ,...,J-l. In this case, the columns of S(f;) are 
f; M

orthogonal for each f; such that Q(fj) — S^(f|)S(fj) — MI. Furthermore, with 
this selection of uB , it follows that S ft)  =  S(f0), i=0 ,...,J-l. We will invoke 
this property in the outline to be presented shortly. Another consequence of 
this choice of beamforming matrices is that b(0;fj) =  b(0;f0) for all i such that 
the initial focusing matrix for each frequency may be taken to the identity 
matrix, 5. e., T i =  I, i= 0 ,...,J-l, at the first iteration. Finally, the use of the 
Butler matrix beamformer at the reference frequency, f0, allows us to solve for
the estimates of U 1 and U2 at each iteration via the roots of a quadratic 
equation according to the BDML method for nonsymmetric multipath outlined 
in Section 2.4. An outline of the coherent signal subspace modified BDML 
Method for nonsymmetric multipath employing frequency diversity and a 
Butler matrix beamformer at each frequency is delineated below.
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Coherent Signal Subspace Modified BDML for Nonsymmetric 
Multipath with Frequency Diversity and Butler Beamformer

Initialization:

(I.) With S =  [a(JL ; f0) i a(0 ; f0) : * (--£  ; f0)[ and 
, N

Rxx(A) =  -±- .D  x(n ; A) xH(n ; A), construct:
n=l
R bb(f,) =  ShR xx(A)S, i= 0 ,...,J - l .

J - i
(2.) (a.) k = 0 . (b.) u° =  u§ =  0. (c.) Construct R bb =  y  E  Rbb(A)

and assign Q = I .

Iteration:

(3.) k = k + l,  compute v =  [V1 , v2 , v3]T as GEVEC of pencil (Re(Rbbj)Q) 
assoc, with smallest GEV.

(4.) o =  —  where:
■■ ’ qi

• TT 27T
= - V 1 e_) «  +  V2 -  V3 e M & q, =  2(v, +  v3)coS( ^ )  -  2v2cos(— )

(5.) Z1

h

-I + j V 4  I Q I 2 ~  I
2 cx

CF U1 =  -T-In(Z1) ;

—1 — j V 4 a. —  CF u2 =  -S-ln(z2} 
J7r

(6.) If IuJ' -  u i" 11 <  e and Iu^ -  u |  1 <  e, then U1 =  u i and u2 -  uj.i f
STO P!

(7.) With B i =  [b(ui ; A) -: b(u2 ; A)]) 1=0,...,j- l, construct the focusing

matrices Tj =  BoIBbBjj B f.

(8.) With T 0

- is
Note that the construction of Q in (8.) assumes that the expected power of the 
noise is the same for all frequencies, i. e., <tnio ^n1I ••• ^n1J-I ' ^  this is no 
the case, two modifications to the above algorithm should be incorporated.

Xn = I ,  construct Rbb — ~r S  TiRbb(A)Ti and
J L=O

Q  =  I g 1 T iT r .  G O  T O  (S.).
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First, the initialization process should include an extra step in in which rrj; j is
estimated as the smallest eigenvalue (EV) of Rbb(A)) i= 0 ,...,J-l. Q in (8.)

J-i . ■ ,
V  rr^jT jT jr . As a side note on this 

'1=0

matter, we point out that Hung and Kaveh have proposed unitary focusing 
matrices in [28]. If we could restrict Tj, i= l,...,J , to be unitary here, equality 
of (T̂  i for all i would not be required for the algorithm above to work

I such that Q may be

normalized to be equal to I at each iteration. However, the 2-norm of 
b(uj ; fj) varies with f, such that finding a unitary matrix T i which satisfies 
T jb ^ !  ; fj) =  b(uj ; f0) is, in general, not possible. Recall that the 2-norm of 
a vector obtained by pre-multiplying another vector by a unitary matrix is the 
same as that of the original vector.

Summarizing at this point, we note that the benefits reaped from the 
utilization of the coherent signal subspace concept in the case of low angle 
radar tracking with frequency diversity are two-fold. First, the frequency 
diversity facilitates diversity in the phase difference occurring at the center of 
the array which, when exploited by the coherent signal subspace processing, 
serves to lessen the probability of track breaking. Correspondingly, the 
focusing matrices serve to coherently combine the signal energy contained in 
the various frequencies while, at the same time, the noise energy in the 
different frequency bands is combined in an incoherent fashion. The second 
beneficial aspect of coherent signal subspace processing is that it expedites 
computational simplicity. The only growth in computation with respect to 
single frequency operation is the computation and implementation of the 
focusing matrices. This claim is somewhat tempered by the fact that the 
focusing matrices are not known a-priori which gives rise to an iterative 
procedure and, hence, additional computation. However, similar to 
observations made by Wang and Kaveh in the case of coherent signal subspace 
processing applied to passive MUSIC for wideband sources, we find that the 
estimates converge in just a few iterations. Along the lines of computational 
complexity, we should point out the dramatic advantage of working in 
beamspace as opposed to working in element space. If we were to employ 
frequency diversity and coherent signal subspace processing in element space, 
the focusing matrices would be MxM and complex whereas in beamspace they 
are real and 3x3, regardless of the number of elements. Also, with Butler 
matrix beamforming, the angle estimates obtained at each iteration are simply

properly as Q-  ] J 1 
J  ^J i=0

M --LT1T 1

should then be computed as
q - 7
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computed via the roots of a quadratic equation as in steps (4) and (r>) in the 
algorithmic summary above. As pointed out previously, a closed-form solution 
for the ML estimates in the case of element space processing is not possible 
even if the IQML algorithm is employed.

4.4.2 Beamspace Manifold Invariance Technique

At this point, we introduce an intriguing variation of the frequency 
diversity scheme outlined above in which we choose the auxiliary frequencies 
in a judicious fashion so as to effectively force the focusing transformations 
necessary for coherently combining the signal information at the reference 
frequency to be exactly equal to a known scalar multiple of the identity matrix 
for all J-I auxiliary frequencies, i. e.j Tj =  W j I ,  i= l,...,J - l , where W j is known. 
With the focusing transformations known a-priori there is no need to iterate 
as in the procedure outlined above, i. e., perfect "focusing" is achieved at the 
outset such that the computational complexity is the same as that for single 
frequency operation. In addition, if the respective Butler matrix beamformer 
is employed at each frequency, the problem of estimating the noise power at 
each frequency is avoided as well. This follows from the following argument. 
With T i =  W i I ,  i= l,. . . ,J - l ,  and Q(fj) =  SH(fj)S(fj) =  MiI, i= l,...,J - l , then

Q =  4  S  ' I  T iQ iO T- Vs [ I
J i-0

(4.57)

such that Q may be normalized to be equal to the identity matrix. Thus, the 
new procedure has some very attractive advantages over the frequency 
diversity scheme employing coherent signal subspace processing developed 
above. However, there is a trade-off for achieving computational simplicity: 
the choice of frequencies with the new scheme is limited to those frequencies

which satisfy L =  —  f0 where Mi is an integer less than M, the total number 
Mi

of array elements. For example, with a M =  15 element array, the auxiliary 
frequencies would be limited to l.O714f0, 1.154f0, L25fp, 1.364f0, and 1.5f0, 
1.667f0, etc. In the former method, the choice of the values of the auxiliary 
frequencies was only limited by the capabilities of the hardware not the 
algorithm itself. The reason for the restriction on the frequency values 
imposed with the new scheme is due to the fact that it is based on keeping the 
shape of the array patterns associated with each of the three beamforming 
weight vectors at each frequency the same for each frequency, to within a



1 0 6

±  111TT» m==l,...,-—-L M 2

scalar multiple, in the general vicinity of broadside. Along these lines, we 
present the following argument.

Gonsider a beam steered to broadside at the reference frequency with 
rectangular weighting. Recall that the reference frequency f0 is that frequency 
for which the M elements of the array are spaced by a half-wavelength. The

nulls of the associated array pattern are located at u

If the frequency is increased with all other parameters fixed, the array pattern 
becomes "narrower". The nulls of the array pattern associated with frequency

f0 2
fj are located at u =  ±  m — — , m =  I,...,JL±. However, if we operate at f

fj M 2
but only employ a subarray of Mj contiguous elements, where, of course, Mj <

f0 2
M, the nulls of the associated array pattern are located at u =  ±  m-----—,

fi M1
m—I , . . - . Thus, if we wish to keep the location of the nulls occurring
with frequency fj the same as those occurring with f0 and an M element array,

we may employ a subarray of length M1 and choose f; =  — f0. We now
M1 ..

illustrate the advantage of doing such with regard to coherent signal subspace 
processing.

Let the element space manifold vector associated with frequency f, and a 
subarray of M1 contiguous elements be denoted a(u;fj,M1). a(u;fj) in (4.50), 
now denoted a(u ; fj,M), is easily generalized for subarrays of length M1 as 
follows:

a (u;fi,Mi) =

if M1 is odd

a(u;fj,Mj)

M -,-1 f“, M;—3 f;
-j*—r—T~u

M 1- 3 f; M 1- 1 fj
j -  - u  j - - —~ T-u

, M i f;
- jT r

I j . . . ,  6 "• » e

f; M 1 f,

J  2f<>e , eJ « (4.58)

if M1 is even.
Further, let S(fj,M1) denote an M1 x3 beamforming matrix to be applied to a 
subarray of length M1 at frequency fj. With rectangular weighting, the 
general form of S(fj,M1) is as follows:

S(fj,Mj) =  ja(uBi;fj,Mj) i a(0;fj,Mj) • a (-u Bi;fj,Mj)j i= 0 ,...,J -l. (4.59)

The attendant beamspace manifold vector b(u;fj) =  SH(fj,Mj)a(u;fj,Mj) for
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i—0,...,J-1, may be expressed in the following form: 

b(u;fi)
sin .

* 1O
I  sin

. . IT fi
wiTfo" sin Mi 7 “  (u +UBi): 

I  1() (4.60)

sin
T , x

y

sin
T|Tfo"J

j

sin
■ f r (u+",!i)

where Mq is simply M, the number of elements in the entire array. Now, in 
the low-angle radar tracking scenario, u and ug. are quite small such that we 
may invoke the approximation sin(x) -  x for x « l  in the denominator of 
each the three components of b(u;f,) in (4.60). This approximation is 
tantamount to approximating the respective array patterns associated with 
each of the weight vectors afuB^fj,Mi), a(0;fi,Mj), and a(—UB1Sfi ,Mi )as a sine 
function for small values of u, i. e., in the vicinity of the mainlobe and first 
sidelobes. Thus, b(u;f,), i= 0 ,...,J-l, in (4.60) may be approximated in the 
following fashion:

V
b(u;fj)— -j-

M;Y T 7^_UBi)
\A % sin

' _  £
M| ~  —(u + uHi)

y ( u-®Bi)

(4.61)

fi
Note that in making this approximation we have assumed that —  is on the

order of unity as dictated by practical considerations. Observing (4.60), we 
note that if Ubi is chosen to be the same angle for each frequency and fiand Mj 
satisfy Mjfj =  Mf0, i = l .....J-l, Mmfi) will be identical for all J frequencies to

within a known scalar multiple, i. e., b(u;fo) =  — b(u;fj) for i= l,.. . ,J - l .
1O

Hence, the appropriate focusing matrices to achieve coherent combining of the
. £

signal information at the reference frequency are T i -  —  I, i= 0 ,...,J-l, such

that the coherently combined beainspace correlation matrix is simply 
computed as

2

Rbb f t )
I j - l  

R bb — T  E
■ i=0

L
fo

i j - r
y E
J  i=0

fi
fo

SH(fi,Mi) R**(fi>Mi) S (^ M i) (4.62)

where R xx(fi, Mi) is the sample correlation matrix formed from the outputs of
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a subarray of M1 contiguous elements. Note that an M element uniformly- 
spaced array is inherently composed of M-Mj+1 identical subarrays of Mj 
contiguous elements. It would, of course, be nonsensical to utilize just one of 
these. To remedy this apparent dilemma, we recommend that spatial 
smoothing be performed over the M-Mj + 1 subarrays of length Mj and that the 
resulting spatially smoothed correlation matrix denoted R xx(fj,Mi) and defined

by
M -M 1-I-I

R „ :f .V  '•  N. X E l I W f - M iE i (4.63)
1 k=l

where: Ejc
0
I
0

( k —l  )xM t 

M 1XM1

( M - M i - k + l ) x M t

replace R xx(fj,Mi) in (4.62). Note that R xx(fj,M) in (4.63) is the the sample, 
correlation matrix formed from the outputs of all M elements of the array at 
frequency fj.

Now, one of the stipulations in the above development is that uB be the
• . ' 2

same for all frequencies. If we choose ug =  — , then a Butler matrix

beamformer is achieved at the reference frequency such that Uj and U2 may be 
simply determined from the roots of a quadratic equation. Furthermore, in

turns out that with uB =  substituted in (4.59) for i= 0 ,...,J-l, we find that

a Butler matrix beamformer is achieved at each of the auxiliary frequencies

f. =  — f0. This follows from the fact that a(u ; fj,Mj) as defined by (4.58) 
Mj

fisatisfies a(u ; fj , M;) =  a (— u ; fo , Mj) such that
1O

fia ( ± ^ ; f 1 , M 1) - a ( ± ^ ^ ; f „ , M 1) =  » ( ± - i ; f o , M i) (4.64)

where in the far right side we have used the fact that f0M =  fjMj. For Mj 
elements uniformly-spaced by a half-wavelength corresponding to the 
reference frequency fo, it follows from previous arguments that the vectors 
a(_2_ ; f0,Mj), a(0 ; f0,Mj) and a ( ~  ; f0,Mj) are mutually orthogonal and

the polynomials formed from them have Mj*3 roots in common. As a 
consequence, Q(fj) =  SH(fj,Mj)S(fj,Mi), where S(fj,Mj) is defined by (4.59)



with uB =  — , is identically equal to the identity matrix for each of the 
M , ^  ; 1 ;■ .

auxiliary frequencies. Thus, Q may be taken to be the identity matrix in
accordance with the result in (4.57).

The development above leads us to the following simplified version of the 
previously outlined algorithm employing coherent signal subspace processing 
in conjunction with frequency diversity when the auxiliary frequencies chosen

satisfy f; =  — f0 where Mi is some integer less than M.Mi

Beam Invariant, Coherent Signal Subspace Modified BDML for 
Nonsymmetric Multipath with Frequency Diversity

(I.) Select integer Mi <  M and compute corresponding Ti = -^-fo, 

i= l,. . . ,J - l ,  and construct:

Sff11M1) : a(0;fi,M,)J a ( ^ i f 11Mi)]

/.■ .. T N .
and R xx(A5M) =  —  V) x(n;A) xH(n;A)

jnI n=l

(2 .)
M-Mj-Hl

1 V; E jR xx(A5M)Ek where
M-M:-1 k=l

( k - l ) x M i

M{xMi , i=0,...,J—I.
( M - M i - k + l ) x M i

(3.) With Rbb(A) =  SH(f„Mi) R xx(A.Mi) S(fj,Mi), i= 0 ,...,J - I , constructs:

fi "2i  J-i
Rbb =  t E

J i=0 fo
Rbb(A)

(4 .) Compute v =  Jv1 , V2 , v3]T as EVEC of 3x3 matrix Re(Rbb) assoc, 
with smallest EV.

(5.) a — —  where: 
Ti

i— /I
+  V2 — V3 e M A q, =  2(v, +  v3)cos(^-) -  2v2cos(^-)To =  —vi e
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(6.) Zl,2
± jV4

2a
O ' Uj 2

JTTIn {21,2}

4.5 Computer Simulations

Computer simulations were conducted to demonstrate the performance of 
each of the three auxiliary procedures proposed in this section. The array 
employed was linear with M =  15 identical elements uniformly-spaced by a 
half-wavelength. Each execution of the BDML algorithm was conducted with 
N snapshots collected over an interval in which the complex reflection 
coefficient, pc, was constant corresponding to a coherent multipath case. In the 
simulation model, p =  | pc | was assumed to be 0.9. A 15x3 Butler 
beamformer of the form (2.36) was used to transform the 15x1 element space 
snapshot vectors to 3x1 beamspace snapshot vectors. Finally, the additive 
noise was modeled to be spatially white Gaussian and uncorrelated with the 
received signal echoes.

4.5.1 Simulations for p-based BDML Scheme

This simulation demonstrates the improvement in performance attributed 
to the auxiliary process of estimating the reflection coefficient. The target 
elevation was 2° or 0.26 beamwidths, the SNR was fixed at 5 dB, and N =. 10. 
In each of the 100 independent trials, five iterations were performed to obtain 
the estimate of the beamspace DOA vector Ia(U1). The means and standard 
deviations of the resulting estimates are listed in Table 4.1 for six different 
phase differences. For each of the six cases, we find that both the bias and the 
deviation decrease with the p-based estimator relative to the original one. The 
disparity is greatest for Ai^=I 80° and is negligible for At/r close to 0°. This 
clarifies our earlier statement that the p-based method is best for At/; close to 
180°. Notice that in addition to the reduction of bias and variance, the 
number of outliers reduces for A0=157.5° and 180°. An outlier is registered 
whenever the angle estimate is greater than 7.64°. In other words, the 
resolution capability has been improved and the probability of loss of track 
has been reduced to a great extent. Note that in this case, the number of 
failures does not reduce. This may be attributed to the fact that for u=0, the 
p-based BDML estimator cannot not distinguish between single path and 
multipath cases.
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Table 4.1 Comparison of the performance of the original and the -p~based 
BDML methods for symmetric multipath with M =  15, N =  10, 
SNR =  5 dB, and #0=2°. 6 and a represent the sample mean 
and sample standard deviation in degrees of the estimates from 
100 independent trials. For each trial, five iterations were 
executed to get The estimate of b(u).

A t'
Without p With p

6 CT #  outliers 6. #  outliers

O0 2.0014 0.1748 0 2.0014 0.1748 0

45° 1.9942 0.1959 o 1.9942 0.1958 o

90° 1.9744 0.2668 0 1.9745 0.2666 0

135 0 1.8816 0.5858 0 1.8821 0.5833 0

157.5° 1.7197 1.0355 I 1.7203 1.0216 0

180° 3.5874 4.6536 10 1.8044 1.8018 0



4.5.2 Sirnulations for Symmetrized BDML Scheme

The next set of simulation results demonstrate the performance of the 
symmetrized BDML (S-BDML) scheme in a low-angle radar tracking scenario. 
The target angle, B1, was 2° and the specular path angle, B2, was —1° such 
that the actual bisector angle, Bc, was sin-1 (-L {sintj +  sin ̂ 2 !) =  0.4998°. Note
that the bisector angle is defined in terms of the reduced angle u =  sin#. A 
subarray size, Ms =11, was chosen in order to perform spatial smoothing.

The first simulation results compare the performance of the original 
version of BDML with the symmetrized version for various combinations of 
direct path SNR and phase difference AvIt For each particular combination of 
SNR and Aty, sample means and sample standard deviations of the respective 
estimates of B1 and B2 obtained from either BDML or S-BDML were computed 
from the results of 100 independent trials. The results achieved with BDML 
and S-BDML are presented in Figures 4.1 and 4.2, respectively. In addition, 
the sample means and sample standard deviations of the corresponding 
estimates of Bc computed in the case of the S-BDML method are plotted in 
Figure 4,3. The aforementioned breakdown of the BDML methodin the 
respective cases of AvP =  O0 and AvP =  180° is apparent in Figure 4.1. The 
BDML estimator simply does not provide reliable angle estimates under either 
of these two conditions regardless of the SNR. The substantial improvement 
in performance achieved with the S-BDML estimator in the case of AvJjf =  0° 
is exhibited in Figure 4.2. The trade-off for this improvement, of course, is 
the extra: computation involvedin computing the bisector angle estimate. The 
improvement in performance achieved with S-BDML in the case of AvP =  90 ° 
is rather modest as this value of AvF is that for which BDML performs best. 
Although S-BDML did not perform much better than BDML in the case of 
AvJ* =  180 ° for SNR’s below 15 dB, reliable estimates were obtained with an 
SNR of 20 dB.

As indicated previously, Figure 4.3 exhibits the performance of the 
bisector angle estimator (BAE) employed in the S-BDML procedure. 
Interestingly, he sample mean approaches the true bisector angle as Aty 
increases from 0° to 180° with 180° giving rise to the smallest bias for all SNR 
values except 0 dB. A significant bias, on the order of half a degree, is 
observed with A vJ* =  0 0 even at the relatively high SNR of 20 dB. On the 
other hand, Figure 4.2 indicates that the sample standard deviation of the 
corresponding S-BDML estimates of B1 and B2 were smallest in the case of 
Aty =  0 °. In fact, although the respective Cramer Rao Lower Bound (CRLB)
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(a) Direct Path Sample Means

20dB

A1F in Degrees

(b) Specular Path Sample Means

/ i

—  - B

10dB

AxP in Degrees

Figure 4.1 Performance of the BDML estimator in a nonsymmetric 
multipath scenario for five different direct path SNR values with 
target angle ^ = 2 ° , specular path angle 0%— I0, M== 15, N = 5, 
and p =0.9. Sample mean and sample standard deviation were 
computed from 100 independent trials.



(c) Direct Path Sample Standard Deviations

AvF in Degrees

(d) Specular Path Sample Standard Deviations

A Y  in Degrees

Figure 4.1, continued.
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(a) Direct Path SampIe Means

- -o - -*  15dB
■a —  20dB

4 -

: /  A
2

1809045

(b) Specular Path Sample Means

OdB

180135

A T  in Degrees

Figure 4.2 Performance of the S-BDML estimator in a nonsymmetrie 
multipath scenario for five different direct path SNR. values with 
target angle 0X=2°, specular path angle ^2= - I 0, M =  15, N =  5, 
and p=0.9. Sample mean and sample standard deviation were 
computed from 100 independent trials.



(c) Direct Path Sample Standard Deviations

B-- QdB

- i "  20dB

- f  ■

AvP in Degrees

(d) Specular Path Sample Standard Deviations

OdB
5dB
IOdB
15dB
20dB

1 35 180

A'P in Degrees

Figure 4.2, continued
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$
a
FD
.E

I

I<5
CO

(a) Sample Means

l5dB

AxF in Degrees

(b) Sample Standard Deviations

OdB
5dB

135

A4F in Degrees

Figure 4.3 Performance of the bisector angle estimator in a nonsymnietric
multipath scenario for five different direct path SNR values with
target angle ^ = 2 ° , specular path angle Oi = - I 0, M =  15, N =  5, 
and p =0.9. Sample mean and sample standard deviation were 
computed from 100 independent trials.
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is not plotted in Figure 4.2(c), the sample standard deviation of the S-BDML 
estimates of O1 for Aty =  0 ° is significantly below the CRLB. The same is 
true with regard to the S-BDML estimates of #2. (A comparison between the 
CRLB and the sample standard deviations obtained from S-BDML estimates is 
made in the discussion accompanying the simulations presented in Figure 4.4.) 
This observation is, of course, not contradictory since the CRLB only holds for 
unbiased estimators. Further, this observation substantiates the conjecture 
made by Cantrell et. al. in [CANT81] that a biased estimator must exist for 
which the performance in the case of AvF =  0 ° is significantly better than that 
dictated by the CRLB.

The second set of simulation results compare the performance and 
computational load of the S-BDML method with that of the improved three 
subaperture (3-APE) method of Gordon [GORD83] and the IQML method of 
Bresler and Macovski [BRES86]. The 3-APE method is a variation of an 
earlier version of the three subaperture method of Cantrell, Gordon, and 
Trunk [CANT81j, which incorporates the practical constraint that p, the 
magnitude of the reflection coefficient, is less than one. The IQML algorithm 
is a computationally efficient implementation of the element space based ML 
estimation scheme. All simulation parameters were the same as in the first set 
of simulations discussed above except that the direct path SNR was fixed at 20 
dB and each of the algorithms was executed given only a single snapshot, i. e., 
N = l .  The performance of the three algorithms was examined as the phase 
difference Aty varied between 0 0 and 1800 in increments of 22.5°. In each 
case, sample means and sample standard deviations were computed from the 
execution of a 100 independent trials. Sample means computed from 
estimates of the direct and specular path angles are plotted in Figures 4.4(a) 
and 4.4(b), respectively. The corresponding sample standard deviations are 
plotted in Figures 4.4(c) and 4.4(d) along with the respective Gramer-Rao 
Lower Bounds (CRLB’s). The CRLB’s were computed based on formulas 
provided by Stoica and Nehorai in [STOI89].

The most important observation gleaned from Figure 4.4 is that the 
symmetrized BDML method significantly outperforms both the 3-APE and 
IQML methods in the case of Aty =  0 ° , and in the case of Aty =  22.5 ° as 
well. For example, in Figure 4.4(d) it is observed that the sample standard 
deviation (sample standard deviation) of the estimates of the specular path 
signal Obtained from S-BDML for Aty =  O0 is approximately two orders of 
magnitude less than that obtained with either 3-APE or IQML. Observing the 
corresponding sample means plotted in Figure 4.4(b) for Aty =  0 ° , it is
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(a) Direct Path Sample Means

(b) Specular Path Sample Means

Ui<DO
U iOQ

I
Iw

AvF in Degrees

igure 4.4 Comparison of the performance of the method with
that of the three aperture method and the IQML algorithm m a

direct path, and /9=0.9. Sample mean and sample standard
d e v ia tio n  were computed from 100 independent trials.



(c) Direct Path Sample Standard Deviations

3-APE
S-BDML
IQML
CRLB

45 135

AyV in Degrees

(d) Specular Path Sample Standard Deviations

O--- 3-APE 
x —  S-BDML 
o - -  IQML 
------  CRLB

A yV  in Degrees

Figure 4.4, continued.



apparent that the 3-APE and IQML methods simply provide unreliable 
estimates of the specular path angle for small values of AvIy. It should be 
noted, though, that the angle of interest is actually that of the direct path 
signal. Theperformance of the 3-APE method is much better in this regard; 
the sample standard deviation of the 3-APE estimates of the direct path angle 
for A ^  =  O0 is below that dictated by the CRLB. The corresponding bias, 
however, is rather high approximately equal to —0.6 0. On the other hand, it 
is observed that the sample standard deviation of the S-BDML estimates of 
the direct path angle for A 'I' =  O0 is below the CRLB by roughly an order of 
magnitude, while the bias is rather small, on the order of a tenth of a degree! 
The IQML method provides totally unreliable estimates of both angles in the 
case of A ^  = O0. On the other hand, the IQML method significantly 
outperforms both the S-BDML and3-APE methods in the case of A'I' =  180 ° .

To assess the trade-off between performance and computational load 
among the three algorithms,the number of floating point operations (flops) per 
execution was examined. This number was determined using the PRO- 
MATLAB software package for each of the three algorithms under the 
conditions specified above; it did not include the initial computation involved 
in setting up the data. The numbers are listed below.

3-APERTURE : 3.8x103 avg. #  flops/execution 

S-BDML : 7.4xl04 #  flops/execution

IQML : 6.oxlO5 avg. #  flops/execution

As indicated, the number of flops required for both the IQML and 3-APE 
methods is the respective average obtained over all 900 trial runs (100 
independent trials for each of nine different phase differences). In contrast to 
S-BDML, each of these two methods is iterative in nature, i. e., not closed- 
form. The actual number of flops for a given execution can vary rather 
significantly depending on the SNR and phase difference A'I'. Notwithstanding, 
we note that the 3-APE method is the least burdensome with an average 
computational load approximately one-twentieth that of S-BDML and two 
orders of magnitude lower than that of IQML. The increased computational 
load of S-BDML relative to 3-APE is a trade-off for the significant 
improvement in performance observed at the smaller values of AvIL The 
algorithms perform similarly for phase differences greater than 22.50, 
although the sample standard deviation of the S-BDML estimates was always 
lower than the corresponding sample standard deviation of the 3-APE



method. Finally, we point out that the computational load of S-BDML is 
roughly an order of magnitude lower than that of IQML. Although IQML 
performed quite well for A vF =  180 ' ,  achieving the CRLB, it performed quite 
poorly for A vF =  Oc .

4.5.3 Sim ulations for M ulti-Frequency BDML Scheme

The final set of simulation results illustrate the power of using frequency 
diversity to overcome the aforementioned problems of signal cancellation and 
rank deficiency encountered with the BDML estimator when the phase 
difference between the direct and specular path signals at the center of the 
array at the reference frequency is either 180 ° or 0 0. The statistics compiled 
in Table 4.2 compare the performance of the BDML estimation scheme 
employing a single frequency with that employing coherent signal subspace 
processing in conjunction with spatial smoothing for four frequencies

satisfying fj =  —- f 0, 1= 0 ,1,2,3, where M =  15. Here, f0 was chosen to be 
Mj

that frequency for which the elements are spaced by a half-wavelength. The 
four values of Mj chosen were M0 =15 , M1 =  13, M2 =  11, and M3 =  9 
corresponding to the frequencies f0, f 1 =  1.154f0, f2 =  1.364f0, and 
f3 =  1.667f0. Let AvF , i= 0 ,...,3, denote the phase difference occurring at the 
center of the array, modulo 360 ° , at the respective frequency fj. Further, let 
AxF0 T denote the total phase difference between the direct and specular path 
signals at the center of the array at the reference frequency counting integer 
number of wavelengths delays, i. e., without the modulo by 360 0 operation. 
The values of AvFi , i = 1,2,3, were determined from AvF0iT according to

AvFi =  I - ^ A vFo t -  180 ° } +  1800 , mod(3600) 
fo

i= l, 2,3 (4.65)

in accordance with the model of the low-angle radar tracking scenario 
described by Skolnik [SKOL80]. Note that this formula accounts for a 180° 
phase shift occurring at the surface of reflection, a phenomenon discussed by 
Skolnik [SKOL80] and Barton [BART74]. Also, this formula holds regardless 
of whether the multipath is symmetric or not. In the symmetric multipath 
example, the target elevation angle was 0=1°, the direct path SNR was 5 dB, 
and A vF0iT was 540 *. Hence, A vF0 =  (540 , mod(3600)} =  1800 yielding 
maximum signal cancellation at the reference frequency. With A vF0 7 =540° 
and the frequency values chosen, (4.65) dictates that
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Table 4.2 Comparison of the performance of the single frequency-based 
BDML method and the multiple frequencies-based BDML 
method with M — 15, N =  10, SNR =  5 dB, and $ as given 
below. The four values of Mi used were M0 =15, M1=IS, M2==H, 
and M3 =9 leading to the frequencies f0, 1.154f0, 1.364f0, and 
1.667f0, with f0 corresponding to half-wavelength spacings. 0 
and a represent the sample mean and sample standard deviation 
in degrees of the estimates from 100 independent trials.

A 0 , Single Frequency Multiple Frequencies

: V :; : — v 0 3.2218 0.9754

Symmetric
180° 4.8142 0.1606

Multipath
i' #  failures 42 0 '

. . 7.1861 1.9891

' .. ■■■ • 14.2476 0.1743

0 ° rO2 -8.9785 -0.9932

. O2 16.0743 0.2038

Nonsymmetric

Multipath

#  failures 0 0

5.7616 2.0010

O 1 84 700 0.2286

180° h -4.0492 -1.0269
' . . ' ■ ; O2 6.3873 0.2100

, • ; #  failures 28 0



A vIyj =235° , AvIy2 — 310°, and AvIy3 =  60°. The statistics listed under the 
single frequency column were those obtained with the symmetric BDML 
estimator applied to N==IO snapshots of data obtained at the reference 
frequency. We note that the estimates are totally unreliable. A drastic 
improvement in performance is obtained when frequency diversity is employed 
as indicated by the statistics listed under the multiple frequency column. In 
this case, the coherent signal subspace modified BDML estimator outlined at 
the end of Section 4.4 was executed with N==IO snapshots of data from each

f.
of the four frequency bins. Here, T i =  -^-1, i=0,...,3, were used as the

*0
appropriate beamspace domain based focusing matrices. In this case, the 
BDML estimator is rather accurate. An improvement in performance of the 
same proportions is obtained in a nonsymmetric multipath scenario for the 
two problem cases of A vP0 =  0 ' and A vIy0 =  1800. For both nonsymmetric 
multipath examples, the target elevation angle was B1 =2°, the specular path 
angle was B2 =  - I 1, and the direct path SNR was 5 dB. In the first example, 
A vIy0 T was chosen to be 3600 giving AvIy0 =  0 0. As expected, the 
nonsymmetric BDML estimator performs miserably when applied to N=IO 
snapshots of data obtained at the reference frequency. In the case of multiple 
frequency operation, note that with A ^ 0)T=360° and the frequency values 
indicated previously, (4.65) dictates that AvIyJ =  27° , AvIy2 =  66°, and 
AvIy3 =120°. Again using the coherent signal subspace modified BDML

fj. / ■
estimator outlined at the end of Sect. V with T i =  -r—I, I—0,...,3, we find that

;  io
fairly accurate estimates are obtained. A similar improvement in performance 
is obtained for the case AvIy0 T =540° corresponding to A^y0 =  180 ° . Again, 
single frequency operation at the reference frequency provides useless results 
while multiple frequency operation provides rather accurate estimates.

As a final note, we note that in the simulation examples described above 
involving multiple frequency operation, the BDML estimator effectively 
worked with forty snapshots while it had to work with only ten snapshots in 
the case of single frequency operation. We remark that an increase in the 
number of snapshots at the reference frequency by a factor of four in the case 
of single frequency operation would not serve to increase the performance of 
the nonsymmetric BDML estimator by any degree in the case of either 
AvIy0 = O 0 or AvIy0 =180 °. As discussed in Section 2.5, for these two phase 
differences, the nonsymmetric BDML estimator breaks down even in the case 
of an infinite number of snapshots.
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CHAPTER 5
ADAPTIVE BEAMFORMING FOR IN T E R FE R E N eE

CANCELLATION

'Vy'

5*1 In tro d u ctio n

Adaptive beamforming plays an important role in enhancing the 
performance of antenna arrays working in the presence of strong interferers or 
jammers. Be§p patterns are formed by weighting and summing the array 
outputs to pass the desired signals distortionlessly and at the same time 
suppress the noise and interfering sources. Many beamforming schemes have 
been proposed for the application of Direction-of-Arrival Estimation 
[MONZ80], [BYRN87], [BRES88], [FORS87], [FRIE89], [FROS76], [GRIF87], 
[HAUP84], [MAYH87], [STEY86], [VANSQ]. In general, they can be classified 
in two categories: the open loop beamformers and the closed loop
beamformers [FRIE89]. In the open loop schemes, the DOA’s of the desired 
and/or interfering sources need to be estimated first, usually done with some 
element space direction finding techniques such as MUSIC and ESPRIT 
[ROY89]. A procedure then follows to synthesize the desired beam patterns 
based on the estimated interference DOA’s. The procedure usually involves a 
constrained optimization problem which leads to a solution for the optimum 
beamforming weight vectors. Several optimization criteria that are often used 
are the Minimum Variance Distortionless Response (MVDR) criterion 
[CAP069], the Maximum Output Signal-to-Interference Ratio criterion 
[MONZ80], and the Minimum Mean-Square Error (MMSE) criterion 
[MONZ80]. It was shown that these methods differ only by virtue of some 
scalar processing that follows a common matrix filter and combiner operator 
[MONZ80]. In the close loop techniques, however, the weight vectors are 
adjusted automatically according to the variation in the output data form the 
combiner. An error criterion is usually set up to determine how to update the 
weights. Some examples of the closed loop beamformer can be found in 
[MONZ80], [HUDS81], [STEI76], [WIDR85], [APPL76], [RIEG67], [FROS76]. 
Some aspects of both the open and closed loop approaches were addressed in 
the paper of Griffiths and Buckley [GRIF87], and that of Friedlander and



Porat (FRIE89-. The main point is that the dose loop beamformers are 
potentially more robust than the open loop ones since they are able to adjust 
themselves to uncertainties in the array and outside environment. However, 
in the case where the interferences are fully correlated with the desired signals, 
it has been shown that the closed loop schemes fail to work properly 
[WIDR85]. As a consequence, we shall concern ourselves with the open loop 
approach for the low-angle radar tracking problem. In particular, We will 
concentrate on the MVDR type of beamformers.

Since the pioneer work of Capon [CAP069], the MVBR beamforming 
technique has received a great deal of attention in the areas of sonar, radar, 
and spectrum estimation. Some tutorial work can be found in the papers of 
Cox [COX73], Gabriel [GABR84], Frost [FROS76], and Johnson [JOHN82}, 
the books by Monzingo and Miller [MONZ80] and Hudson [HUDS81]. Recent 
work on the performance analysis of the MVDR beamformer applied in 
various signal environments includes the papers of Reddy et. al. [REDD87], 
Shan et. al. [SHAN85], Zoltowski [ZOLT88b], and Van Veen [VAN89]. Their 
work Was based on the assumption that no a-priori knowledge about the 
interfering sources is available. Under such condition, it is well known that the 
MVDR beamformer suffers severe performance degradation if the interfering 
sources are highly COrrealted with the desired. signals. Not only does the 
beamformer fail to form deep nulls in the directions of the interferences, the 
desired signals may be cancelled partially or completely as well. In this regrad, 
Reddy et. al. [REDD87] incorporated spatial smoothing in their development 
of optimum beamformers. Bresler et. al. [BRES88] recommended the use of 
IQML algorithm as a means of obtaining the polynomial whose roots 
correspond to the DOA’s of the interferences. The coefficients of the 
polynomial are then used to construct the optimum beamforming weight 
vector. The advantages to their approach are that the problem associated with 
signal coherence can be avoided arid the actual DOA estimates of the 
interferences need not be computed.

In conventional adaptive beamforming, beampatterns are synthesized by 
weighting and linearly combining the outputs from the array elements. 
Interference cancellation is accomplished by judiciously choosing the weight 
vector so as to put nulls in the interfering directions and pass the desired 
sources without distortion Inherent in this approach, however, is the 
assumption that there exists only one desired source within the mainlobe 
region. As an example, consider adaptive monopulse radar tracking [GABR84] 
wherein two beams, referred to as the left and right beams, are formed in the



127

vicinity of a detected target to accurately determine its angular location. The 
estimation problem of determining the angle of a single target given two 
beamformer outputs as encountered in monopulse radar tracking is a 'two 
element - one source" array signal processing problem. Adaptive monopulse 
operation assumes that there is only one target within the field of view of the 
two beams and treats other sources as undesired interferences. The two beams 
are then designed to produce a null in the direction of each undesired source. 
This is accomplished, however, under the premise that the estimates of the 
locations of the interferences are available. In the case where two targets are 
located within a beamwidth of each other, as occurring in low-angle radar 
tracking, the beamformer, in an attempt to form a null in the direction of one 
of the targets, inevitably loses SMt gain for the other target. As a result, 
neither of the targets is accurately located. Motivated by the sub-beamwidth 
resolution capability exhibited by the BDML methods, we recommend the use 
of adaptively formed three beams in combating this problem. In this case, we 
assume that the two targets are located within the field of view of the three 
beams.

In this chapter, we present several novel MVDR-based beamforming 
techniques for the three-beam, two-target scenario. We will do so according to 
a two-stage algorithm wherein a polynomial whose roots correspond to the 
DOA’s of the interferences is first estimated, and then an optimization 
problem is solved to obtain the weight vectors of the three beams for the 
BDML estimator. Motivated by the simplifications in computation achieved 
with the Mx3 Butler matrix beamformer, the three beams are formed in such 
a fashion so as to have M-3 nulls in common and that each beamforming 
vector has a null in the direction of each interfering source. An extra 
constraint is imposed in order to retain complex conjugate symmetry of the 
beamforming vectors employed in the BDML schemes. We will also present a 
least squares (LS) based technique for designing an orthogonal beamforming 
matrix. We accomplish so by finding a set of three mutually orthogonal 
beamforming weight vectors, with nulls in prescribed directions, which are 
closest to a set of "reference" weight vectors in a least squares sense. The 
problem can be formulated as a generalized Procruste problem and a closed- 
form solution is easily obtained via a 3x3 singular value decomposition. Other 
types of beamformers using different optimality criteria are achieved with 
certain modifications. Simulation results demonstrating the performance of the 
new beamforming techniques will be presented.
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5.2 Problem Description

In the development of the BDML estimation schemes for low-angle 
tracking, we have assumed that the interfering sources are not too strong so 
that they can be filtered out by the beamforming operation. However, this is 
not always reliable as in some cases, strong interferers or smart jammers may 
be deliberately introduced and cause the track to break. A general result is 
that the DOA estimates tend to be "pushed" toward the interfering direction if
the latter dominate the former in power. This is mainly due to the fact that

. . .  .

we have underestimated the number of sources such that the sources become«
"fused". One possible remedy for this is tp form D+1 beams, where D is the 
total number Of sources, to simultaneously estimate the D DOA’s. By doing 
so, it is very likely to degrade the performance of the estimator to a great 
extent, especially when D is large compared to the number of elements M. In 
addition, the computational load involved in this mode of operation will 
increase as D becomes large. An alternative approach, however, is to instead 
cancell those undesired sources by judiciously placing nulls in specified 
directions.

We consider here the low-angle radar tracking scenario in which echoes 
return from Uj and u2 via a direct path and a specular path, respectively, and 
K interfering sources from Uut, k= l,...,K , arrive outside the mainlobe region 
of the three beams. Assuming a uniformly-spaced linear array with half­
wavelength spacings composed of M elements, the n-th array output snapshot 
vector can be expressed as

x =  AdSd +  A1B1 +  n (5.1)

where Ad and A1 denote the Mx2 and MxK DOA matrices associated with the 
target echoes and the interferences, respectively. Sd and S1 are the 
corresponding complex Signal vectors received at the array. The target echoes 
may be partially correlated or even coherent with the interferers. When the 
three beams method is employed, the Mxl element space snapshot vector 
transforms into a 3x1 vector given by

xB = W Hx .

=  W liAdSd +  W hA1S1 +  W h n

=  BdSd +  BjSj +  nB (5.2)

where W =  [ W1 : Wc i wu ] is an Mx3 beamforming matrix. If one applies 
the BDML estimation procedure developed previously to the beamspace
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snapshot vector given by (5.2), the resulting estimates are usually unreliable 
primarily due to the fact that the Gaussian noise assumption is no longer valid 
and the least squares solution does not yield the ML estimates. In fact, one 
may consider the last two terms on the right hand side of (5.2) as the effective 
noise vector and proceed to solve an ML problem. However, doing so requires 
the knowledge about the interference correlation matrix, which requires an 
infinite number of snapshots. The correlation between the target echoes and 
the interferences further complicates the problem. In addition, the interferers 
could vary their power such that the problem of nonstationarity may arise. 
These make a direct ML approach infeasible. Motivated by the adaptive 
monopulse tracking technique developed by Davis et. al. [DAYI76], we 
recommend that the three beams should be formed in a fashion so as to filter 
out the outputs from the undesired interferences, L e., the second term on the 
RHS of (5.2). Mathematically, this translates into a matrix equation described 
by

W hAj =  0 (5.3)

In terms of beamforming, this states that the three beampatterns should have 
K common nulls in the directions of the K interferers, or equivalently, the 
polynomials constructed with the three columns of W  according to (5.1) must 
have K roots at ej™Ik, k = l,...,K . We assume that the estimates uIk, 
k = l,...K , are available, or more specifically, the polynomial, denoted as I(z),

having as roots ê  , k—1,...,K, is available. For the latter case, several 
element space based direction finding schemes such as IQML [BRES86], FBLP 
[TUFT82] and PRO-ESPRIT [ZOLT89a] are applicable as in these algorithms, 
the DOA estimates are obtained by finding unit roots of a judiciously 
constructed polynomial. For the sake of brevity, we invoke the notation 
defined in Section 3.1, i. e., we denote as h the coefficient vector associated 
with an an (N-l)-th order polynomial h(z) given by

h(z) =  h0 +  hj z +  •••  +  hN_jZN 1 (5.4a)

H =  I h o h 1 • • •  hN_! ]T (5.4b)

A polynomial representation for each of the three columns of .W is then given
by

W, (z) =  I(z) T1 (z) (5.5a)



wu(z) =  I(z) ru(z) (5-5c)

where ri(z), rc(z), and ru(z), are (M-K-l)-th order polynomials. In addition to 
the constraints on the mill locations, it is often necessary to specify the 
beamforming SNR gain in the directions of the desired signals such that they 
can be passed with minimum distortion while rejecting the contribution of the 
noise. One commonly used criterion for this purpose is the MVDR criterion 
proposed by Capon. In the MVDR method, the beamforming weight vector is 
chosen so as to minimize to array output expected power while at the same 
time maintaining unit gain in the desired direction, i. e., the direction of look, 
and is computed as the solution to the following constrained optimization 
problem

Minimize E { | wHx | 2 } =  wHR xxw (5.6)
W

subject to wHa(u,j) =  I

where w is the beamforming weight vector and UcJ denotes the direction of 
look, usually chosen to be the desired source angle. The linear constraint is 
set up to ensure that the desired signal is passed without distortion. It is well 
known that if the interferences are not fully correlated with the desired signal, 
the MVDR beamformer obtained via (5.6) is capable of cancelling the 
interferences by forming nulls in the interfering directions. However, in low- 
angle radar tracking, coherent interferences may be present, either generated 
by multipath propagation or by smart jammers. In this case, the MVDR 
beamformer may not only fail to form nulls in the interfering directions, but 
may also tend to cancel the desired signal. Due to this phenomenon, it is 
necessary to modify the conventional MVDR method for the low-angle radar 
tracking scenario.

w c(z) =  J(z) rc(z) ; (5.5b)

6.3 Modified MVDR Beamformer for BDML Estim ator

One way to remedy the signal cancellation problem occurring with the 
conventional MVDR beamformer when interfering sources completely 
correlated with the desired signal exist is to incorporate a-priori knowledge
about the interfering directions, if available. In addition, when the 
beamformer operates in the presence of spatially white noise, it is usually 
desirous to minimize the expected output noise power, which yields the so-
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called quiescent beam patterns, instead of the expected output signal variance. 
This is mainly due to the following facts. First, in low-angle radar tracking, 
the number of snapshots available for each tracking update is typically small 
such that using the sample correlation matrix R xx in (5.6), in general, does not 
yield a weight vector with satisfactory performance. Second, in the case of 
coherent multipath, the conventional MVDR beamformer may totally break 
down as the specular path signal appears as a coherent interfering source to 
the beamformer. Third, the quiescent beamformer is completely determined 
by the constraint equations, which makes the characterization of its SNR gain 
performance an easy task.

In order to remove the contribution of the interferences, we need to set 
up multiple constraints which ensure cancellation in the interfering directions. 
Letting uIk, k ==!,...,K, denote the DOA’s of the K interfering sources and ud 
the desired direction of look, the minimum noise power (MNP) beamforming 
weight vector is determined via the following constrained optimization
problem

Minimize E { J wHn | 2 } =  wHR nn w (5.7)
/■: V

W

subject to CHw =  f

where n  is the noise vector present at the array output as defined in (2.1) and  

R nn = E  j n n l i ) is its associated correaltion matrix. In the case o f  sp a tia lly  

white noise, R nn is simply a scalar multiple of the MxM identity m a tr ix . T h e  

constraints are defined as follows: C is an Mx(K-I-I) matrix co n stru cted

according to

C  =  j a ( u d) : a(un ) : • ’ • i a(u,K)j (5.8)

and f  is a (K +l)xl unit vector defined by

f  =  [ i , o , . . . ,  o ] T (5.9)

The multiple constraints ensure that the beamformer produces unit gain  in  

the desired look direction ud and zero gain in the interfering directions. T h e

solution to (5.7) is
wopt= R nn1C(CHR nn1C )-1f  (5-10)

which simplifies to C (C hC)"1 f  for the case of spatially white noise. In som e  

applications, it is also necessary to control the beamwidth of the o p tim u m
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beamformer in order to improve resolution performance. In this case, we need 
two extra constraints to specify the location of the first null on either side of 
the mainlobe associated with the beamformer. This is easily incorporated into 
(5.7) by redefining C and f according to

a(ud) • a(uf) i a(u°) a(un) a (unc) (5.11a)

f I , Q-, (5.11b)

where uf denotes the location of the first null on the lower side of the 
mainlobe and u° is defined likewise for the upper side null. Note that C' and 
f  are Mx(K-FS) and (K+3)xl, respectively.

Before closing this section, we would like to investigate the behavior of 
the optimum beamformer in a benign environment, i. e., in the presence of 
spatially white noise only. Upon substitution of Rnn qc IM, C =  a(ud) and 
f  =  I into (5.10), we get

w Opt = Jj- a (ud) (5-12)

Not surprisingly, we end up with a Fourier beamformer steered to the desired 
angle ud. This agrees with our earlier observation in Section 2.2 that the 
Fourier beamformer provides optimum SNR gain under the spatially white 
noise assumption.

5.3.1 Application o f MVDR Criterion to Three Beams Case

Now consider the case of the BDML estimation in which three beams are 
formed in different look directions and each beam has K nulls in K prescribed 
interfering directions. This leads to three separate MNP beamforming 
problems described by

Minimize WiiR nnWi (5.13a)
W|

subject to CjiWi =  f

Minimize WdR nnWc (5.13b)
w,. :
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subject to G^wc = f

Minimize WuRnnWu (5.13c)
W u

subject to C u wu =  f

where W1, wc, and wu denote the optimum weight vector for the lower, 
center, and upper beams, respectively. The matrices involved in the constraint 
equations are defined as follows

C1 =  [a(—uB) : »(un) : • • • S-(uIk)J (5 .14a)

Cc =  [a(0) : »(uu) • S-(uIk)J (5.14b)

Cu =  [a(uB)': a(un) i  • • • • a(uIK)J (5.14c)

f  == 1 , 0 , . . . ,  ,C>r (5.14d)

■where ub is the look direction of the upper beam as defined in Section 2.2, and 
f  is (K+l)xl. From (5.10), the solution to each of the individual constrained
problems in (5.13) is given by

W1 = R niJ C1 (Cf R nn1 CO" 1 f  (6-15a)

wc = R nn1C c(C »R nn1Cc)"1f (5 .15b )

Wu =Rnn1Cu(C«Rnn1Cu) - 1f (5 .15c)

The three beamforming weight vectors thus obtained have look directions at 
u — — Ub , 0, and ub, respectively. In some applications, it might be necessary 
to specify the beamwidth associated with the three beams. To accomplish so, 
we need to impose two extra constraints in each of the three optimization 
problems in (5.13). For example, we may form extra nulls at u =  —uB ± .8  for 

the lower beam, ±<$ for the center beam, and uB ±  8 for the upper beam such 
that each one has a 3-dB beamwidth approximately equal to 8. uB and <5 thus 
represent design parameters which need to be determined a-priori. A

reasonable choice for 8 is — , which corresponds to the case of uniform
M

weighting.
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The optimum weight vectors computed via (5.13) do not necessary 
exhibit conjugate centro-symmetry (CCS) as is essential in our development of 
the BDML method. To ensure that, we need to impose one more constraint, i. 
e,, i Mw = w * , for each of the three optimization problem in (5.11). The 
optimization problems, defined in accordance with these auxiliary constraints, 
are given by

Minimize Wf1RnnW1 (5.16a)

subject to Cf1W1 =  f  ; Imw I =

Minimize WcRxxwC (5.16b)
W ,

subject to C cwc =  f ; ImwC =  wc

Minimize WnRnnWu (5.16c)
W11

subject to C uWu =  f  ; IMw u =  w*

Invoking the technique for solving (2.32), we rewrite (5.16) in the following 
fashion:

Minimize w JiRnnw I
W| ■■■

(5.17a)

subject to Cf1W1 =  f  ; ImW1 =W 1*

Minimize WnR nn wc
W , .

(5.17b)

subject to Cc w C =  f  5 Imwc =  w c*

Minimize WuR nn wu (5.17c)
Wu

subject to C uWu =  f  ; IMwu =  w u*

where
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+  I mR ddIm (5.18)

rIfee linear constraintsin (5.15) remain unchanged since all the columns of C j, 
Cc, and C u are conjugate centro-symmetric as can be seen according to (2.1). 
If we ignore the second constraint in each of the optimization problems in 
(5.17) (we will show that this does not affect the problem later), the optimum 
weight vectors are simply given by (5.15) with R un replaced by R nn, which 
leads to

w, =  R L r 1 G1 (Cl1RLbn " 1C 1 f 1! ,  (5.19a)

wc = R fnbn“ 1C c(C » R L rl Cc) -1f (5.19b)

wu = R ^ ~ 1C u(C»RLbn_1C u) - 1f  , (5.19c)

Incorporating the facts that ImR ddIm — R dd anc  ̂ that IMa(u) =  a (u), we 
can easily verify the following relation:

ImW1 =  IMRLbD_1lMlMC i(CiiIMIMRLb 1ImImGi) 1T

=  (RfDbD-1)*C1*(C;r(Rfnbn“1)tC 1‘r 1f =  w 1’ (5.20)

It can be shown that wc and wu exhibit conjugate centro-symmetry as well. 
Therefore, the optimum weight vectors obtained in (5.19) are indeed the 
solutions to the corresponding problems described in (5.16). With these 
weight vectors constructed, we may then proceed to obtain the BDML 
estimates of U1 and u2 using the procedures developed in Chapter two. It is 
worth noting that, in general, the beamforming matrix consisting of the three 
vectors obtained in (5.19) does not produce beamspace manifold vectors 
satisfying (2.17), i. e., I 3 L ( U 1 ) =  b(u2) when the multipath is symmetric such 
that u2 =  - U 1. This results in loss of a-priori information in the development 
of the symmetric BDML method. As can be seen from the analysis presented 
in Section 2.4, the BDML estimator with the modified MNP beamforming 
matrix can no longer handle O0 phase difference for the symmetric multipath 
case. A remedy for this is to employ the alternative BDML procedure for 
generalized Butler matrix beamformers developed in Section 3.3.2. In the 
presence of interferences, however, some modifications are necessary. In short, 
the three beamforming weight vectors must have M-3 nulls in common in 
order to facilitate a simple closed-dorm solution for the BDML estimator.
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5,3.2 M N P Based G eneralized B u tle r B eam form ers

Before beginning this section, we review some of the relevant work on the 
generalized Butler matrix beamformers presented in Chapter 3. As defined in 
Section 3.3.1, an Mx3 generalized Butler matrix beamformer W  is a matrix 
having the following factorization

W W1 : W2 : W3 CU (5.21)

where C is an Mx3 banded, Toeplitz matrix given by

C
c O O 
O c O  
p 0 c

(5.22)

and U = [ U1 • U2 : U3 ] is 3x3. By using the following relations

p(z) =  q(z)r(z) O ’ p
q OO r O O
O q O r =  O r O  q (5.23)
0 0 q [0 0 r

we may express (5.21) in terms of polynomials in a fashion given below

Wj(z) =  c(z)uj(z) (5.24a)

w2(z) =  c(z)u2(z) (5.24b)

w3(z) =  c(z)u3 (z) (5.24c)

which accounts for the M-3 common nulls associated with the three beams. 
The above equivalence between matrix and polynomial representations will be 
exploited shortly in the development of the MNP-based generalized Butler 
beamformers.

For the application of BDML estimation, three different types of criteria 
are considered: I) minimum total noise power criterion; 2) minimum
individual noise power criterion; 3) mutual orthogonality criterion. It is worth 
noting that in the ideal case of no interferences and spatially white noise, they 
should all correspond to the Mx3 Butler beamformer defined in (2.36).

(I)M inim um TotalN oisePower(M TN P):
The minimum total noise power beamformer minimizes the total noise output 
power from the three beamspace ports and is determined as the solution to the 
following optimization problem



Minimize E ( | w ] ‘n | 2 4  I w ? n  | 2 4  | w j n  | 2 j (5.25)

beamspace ports when the respective nulls associated with the three 
beamforming height vectors are formed in such a fashion so as to maintain 
M-3 nulls in common. The remaining degrees of freedom in (5.25) can be used 
to determine the uncommon nulls as well as control the beamwidth of the 
three beams.

(2) Minimum Individual Noise Power (MINP):
A suboptimal but efficient alternative to the MTNP scheme is to minimise the 
noise power individually rather than totally. This leads to a set of three 
coupled optimization problems defined as follows

Minimize E{ | w fn  | 2 } (5.26a)
W|

subject to w f a(—Ub ) — I

subject to Wfa(Ujk) =  0 k =  I , ...,K
~ * 

Subjectto ImWj — w j

,

Minimize E{ | w fn  | 2 } (5.26b)
Wr

subject to wfa(O) =  1 

subject to w fa(u Ik) =  O k =  I , ...,K

subject to Imwc
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Minimize E{ | w u n j 2 )• (5.26c)
W 11

subject to Wua(Uu) =  I 

subject to Wu'a(u]k) =  0 k — I , ...,K 

subject to IMwu = w u

subject to W1(Z) , wc(z) , and wu(z) have M-3 roots in common

It turns out that the three problems are coupled. This is solely due to the of 
M-3 common roots constraint. To facilitate a simple closed-form solution for 
each problem, it is desirous to develop a procedure which circumvents this 
constraint.

(3) Mutual Orthogonality (MO):
There are two advantages to working with mutual orthogonal beamforming 
weight vectors. First, if the noise in element space is uncorrelated from 
element to element, the noise in bemspace will also be mutually uncorrelated. 
Second, if the noise in element space is saptially white, the weight vectors may 
be normalized such that the beamspace noise correlation matrix is simply a 
scalar multiple of the 3x3 identity matrix leading to simplifications for the 
BDML scheme. The mutually orthogonal beamformer is constructed in 
accordance with

. Minimize ||w° —w j||2 -HIw° - 1 wc| |2 + j |w °  -WuII2 (5-27)
W |  W , . . W U '

Subject to W11Wg =  WcWu =  WuW1 =  0

subject to W^a(Ulk) =  w c a(uIk) =  w ua(ulk) =  0 k= l,...,K

subject to ImW) =  W1* ; Imwc =  w c ; IMwu =  w* 

subject to wj(z) , wc(z) , and wu(z) have M-3 roots in common

where w f, w c, and w u are the three columns of a "reference" beamforming 
matrix. For the application of BDML estimation in a spatially white noise
environment, we recommend the use of the Mx3 Butler beamformer as the 
reference beamformer since it exhibits optimum SNR gain performance, and 
more importantly, its three columns are mutually orthonormal.



With the above problem formulation and the relations given in (5.23), we 
now proceed to describe the procedures for constructing the optimum weight 
vectors for each of the three types of beamformers. For simplicity, we-.here 
assume spatially white noise, i. e., R n n ocIM- Motivated by the good 
performance achieved with the Mx3 Butler beamformer for the BDML

estimators, we choose Ub =  -rr such that the the directions of look associated

with the lower, center, and upper beams are — -y-, 0, and — , respectively. In

addition, we select the uncommon n u l l s  associated with the three beams for 
the MTNP beamformer in accordance with:

2
upper beam : u — ——  and u =  Q

center beam : u =  and u =  —M M

2
lower beam : U =  —- and u =  0 

M

M .2 .1  Generalized M TNP Butler Beamformer

The three beams have M-3 nulls in common, K of which are known as 
they correspond to the K interfering directions, Each beam has two 
uncommon nulls, which are prescribed a-priori as above. Employing 
polynomial notation, we obtain the following expressions for the three beams

Wi(z) =  c ( z ) U ] ( z ) , (5.28a)

w c (z) =  c ( z ) u c (z) (5.28b)

w u (z) =  c ( z ) u u (z) (5.28c)

•where c(z) denotes the polynomial associated with the unknown common nulls 
and U1(Z), uc(z), and uu(z) are the polynomials associated with the known 
nulls, including common and uncommon ones, for the lower, center, and upper 
beams, respectively. With the above selection of uncommon nulls, we have 
the following polynomial factorizations
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u,(z) =  « i ( z - e " M ) ( z - l )  f| ( z - e JTU;‘) (5.29a)
k=1

2 2
Ii,* (7) : u  -  .. « , f |  ( z - e i ’"") (5.29b)

■' /  k= l

• 2 ■■ K
u u(2) =  f c „ ( 7 - e "  M ) ( z - 1 )  11 ( 7 - e J*"») (5.29c)

k - l  . . .

•where Ki , K c , and Ku are complex scalars ensuring that each polynomial has a 
set of conjugate centro-symmetric coefficients with the leading coefficient 
having unity magnitude. Note that the coefficients for each of the 
polynomials U)(z), uc(z), and uu(z) form a conjugate centro-symmetric vector 
due to the following lemma.
Lem m a: If all the roots of a polynomial p(z) lie on the unit circle, then

the vector p composed of its coefficients may be normalized to 
exhibit conjugate centro-symmetry.

The leading coefficient of each polynomial is set to have unity magnitude so 
that under no interference condition, the optimum MTNP beamformer is just 
the Mx3 Butler beamformer. Substitution of the matrix representations of 
(5.28) into (5.25) yields, after some manipulation, the following matrix 
optimization problem

Minimize ChU ^U 1C +  cHU»Ucc + c HU»Uuc (5.30)

subject to cHU fa (—̂ - )  =  I 

subject to cHUj a(0) =  I

2 "
subject to cHU ua(— ) =  I 

subject to IM_K_3c =  c*

where we haved invoked the assumption that E {nnH|  a  and the fact that 
conjugate centro-symmetry of c, uj, u c, and u u implies conjugate centro- 
symmetry of W1, w c, and w u. The Mx(M-K-3) matrices U1, Uc, and Uu are 
banded, toeplitz as given by
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U| O 
O u ]

b o 
o o

uc o
O Ug

O O 
O O

O O 
O O

Uj O 
O Ui

0 0 
O O

uc 0 
0 u r

(5.31a)

(5.31b)

uu 0 0 0
0 u u 0 0

0 0 Uu 0

0 0 0 Uu

Notfe that Uj, u c, and Uu are conjugate centro-symmetric such that

(5.31c)

ImU ,IM- k- 3 — Ui (5.32a)

ImU cIm-K-S=s U c (5.32b)

ImU uIm-K-S =  Uu (5.32c)

m =  M-K-3, we have

Minimize cHUc (5.33)

where

subject to T  c — X3 1 Im^ ^

U = U f 1U1 +  U»UC + U « U U

U" a (_ M >1 U?a(0) : U !a( M :1

(5.34a)

(5.34b)

and I 3 is a 3x1 all-one vector given by
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I , I , I (5.35)

Employing the technique for solving (2.32), we formulate the problem in (5.30) 
in the following alternative form

Minimize cH-^-|U +  IffiUiIm
C 2

c =  C11UfbC

subject to T  + ImT c =  T f1bC =  I 3

(5.36)

Im c c

where we have incorporated the fact that both ChU1C and T hc are real. From 
(5.32), it is easily deduced that Ufb =  U  and T fb = T  such that aside from 
the conjugate centro-symmetry constraint, the solution to (5.36) is given by

Copt= U - 1T (T 11U -1T ) -1I 3 (5.37)

Observing that IwUIm =  U and ImT =  T  , we can readily verify that 
ImcOpt =  c opt such that Copt described by (5 .37 ) is indeed the solution to 
(5 .36). With Copt available, the optimum weight vectors are constructed 
according to

W1 =  C u1 (5.38a)

* n Il O Oc
 .

.

(5.38b)

Wu =  C uu (5.38c)

where G is the Toeplitz representation of Copt defined by

Copt 0 0

0 copt 0
0 0 Copt

(5.39)

and U], uc, and uu, are as given by (5.29),

The three weight vectors W1, w c, and w u, obtained in (5.38) are 
conjugate centro-symmetric as proved below

Im-W1 = I mCIk+3Ik+3Ui =  C*uj* = W 1* (5.40a)
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I m w c — I m C I r +3 I k +3
V. (5.40b)

Imwu =  Im^ I k+3Ik+3uu — ^  Uu — w u (5.40c)

Finally, the Mx3 MTNP matrix beamformer consisting of these three weight 
vectors is simply given by

W mt wI : wc : wu C U1 (5.41)

5.3.2.2 G eneralized M IN P B u tle r B eam form er

In order to remove the last constraint in (5.26), a polynomial whose roots 
correspond to the M-3 common nulls of the three beams is first determined. 
There are many ways to accomplish so, and for simplicity. For the sake of 
simplicity, we here take a suboptimal approach in which the center beam is 
constructed first in accordance with the minimum noise power criterion. The 
common polynomial may be obtained by taking out the first null on either 
side of the main lobe associated with the resulting weight vector. However, 
doing so requires rooting an (M-l)-th order polynomial, which might be 
extremely computationally expensive for large M. In order to facilitate a 
simple procedure for constructing the lower and upper beams, we form two

"hard nulls" for the center beam at u =  —  and u =  corresponding to
M M

the first lower and upper nulls, respectively, for the case of Fourier 
beamforming steered to u =  0. Denote as d(z) and k(z) the polynomial 
associated with the unknown nulls and known nulls of the center beam , and 
d and k their corresponding vector representations, respectively. In this case, 
k(z) is simply identical to uc(z) described by (5.29b):

2 2
k(z) =  kc( Z -  e * “ ) (z -  e“J^ ) j j  (z -  ej7ru*) (5.42)

k=l

Ejnploying the MNP criterion, we have the following minimization problem

Minimize dHKHKd (5.43)
d

subject to a^(0)Kd =  I ; Imd =  d

where
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K
k O O 
O k O 
O O  k

(5.44a)

is the Toeplitz representation for k and m =  M-K-3. Comparing (5.43) with 
(5.33) and using the result given by (5.37), the solution to (5.43) is easily seen 

• to be

a(0)H KK+ a(0)
K + a(0) (5.45)

where K+ =  (KhK)-1Kh is the pseudo-inverse of K. which can be readily 
verified to exhibit conjugate centro-symmetry. The Mxl vector w =  Kd then 
represents the desired beamforming weight vector. In order to obtain an (M- 
3)-th order polynomial with roots corresponding to the M-3 common nulls, we 
simply divide out the two roots at e- j2,r/M from w(z) as described 
mathematically below:

p(z) =  d(z)—  k(Z) —

/Ccd(z)(z
J7r

<(z
2

1 0

. 2 2ITT-- : —1 TC--
Bj e M )

. r  M i H I*
k=l

j™ ik>

. 2 J7rTf
f(Z - e  M )( _

d(z) J j (z-e- 
k=l

e " .)

I7ruIkV (5.46)

where f is a normalizing complex scalar ensuring that the coefficients of p(z) 
are conjugate centro-symmetric. With the (M-3)-th order common polynomial 
p(z), or p, the (M-2)xl vector representation for p(z), available, the 
beamforming weight vectors W], wc, and wu associated with the three beams 
may be determined by multiplying p(z) with three quadratic polynomials, 
T1 (z), rc(z), and ru(z), respectively. In terms of matrix notations, this translates 

’into. .

W] =  Pr] r  (5.47a)

wc =  P r c (5.47b)
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wu = P r u (5*4 7 c)

where
p O O

P =  O P O (5.48)
O O p

and r1; r c, and r u are the vector representations for r](z), rc(z), and ru(z), 
respectively and are determined individually in accordance with the MNP 
criterion as described by the following three optimization problems.

Minimize rj1 P h P rf
- P1

(5.49 a)

subject to aH(—— )Prj = 1  ; l3r l — rj

Minimize r HP HP r c
, .T r -.

(5.49b)

subject to aH(0)Prc =  I ; l3rc — Tc

Minimize r hP h P r u 
r„

(5.49c)

2 ~ * subject to aH(— )P ru =  I ; I3r c =  r u

Following the (5.43)-(5.45), we have

(5.50a)

I
a(0)HP P +a(0)

P + a(0)

*Ĥ>PP+̂ 2 ,  ^

(5.50b)

(5.50c)

where P + =  (PhP )-1P h is the pseudo-inverse of P. With P and rj, rc, and 
Pu obtained from (5.50), the MINP beamforming matrix can then be 
constructed in accordance with (5.47) as follows
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mi W| : Wc : Wu I*) : r c (5.51)

Note that each of the three columns of W mj is conjugate centro-symmetric 
since rj, rc, r u, and p are all conjugate centro-symmetric.

The MINP bearnformer exhibits more flexibility than the MTNP 
beamformer as no restrictions on the locations of the uncommon nulls are 
made.

5.3.2.3 G eneralized M O B utle r B eam form er

The problem described by (5.27) is too complicated to admit closed-form 
solutions for wj, wc, and wu. A simpler alternative is to again first remove the 
common roots constraint by obtaining a (M-3)-th order polynomial associated 
with the M-3 common roots. Following the procedure delineated in the 
preceding subsection, we find the "common" polynomial p(z) and its associated 
Toeplitz representation P  as given by (5.48). Substituting the expressions for 
the weight vectors given in (5.47) into (5.27) and rewritting the constraint 
equations, we end up with the following optimization problem

Minimize || wf -  Pri ;|2 +  || w° —P r c If2 -F || w° - P r u Ij2 (5.52)
**1 u '

subject to r FPliP r c =  r c P liP r u =  T^PliP r 1 =  O 

I3ri =  T| ; l 3r c =  r c ; l3r u =  r u

where T|, r c, and Tu are all 3x1. To further simplify the problem, we can, 
without loss of generality, assume that the three weight vectors are mutually 
"orthonormal", i. e., they are mutually orthogonal unit length vectors. 
Rearranging (5.52) in matrix form, we have

Minimize || W 0 -  P R  ||£ (5.53)

subject to RhP hPR =  I3 ; I3R =  R*

where

W 0 w f : w f i w f (5.54a)



147

Tl • r c • r u (5.54b)

We here choose the reference beamformer to be the Mx3 Butler beamformer 

scaled by ——T *- such that
'■ V M

■—7 ~ ‘a (—t t ) ; w c
V M  M V m

i

a(0) ; w° 1 ra(— ) (5.55a)
V m  M

W 0 = —— -SVm
(5.55b)

Note that the scaling factor ]—  insures that the three columns of W 0 are
V m

mutually orthonormal. With G

Minimize

Gh (PhP)V2, (5.53) can be rewritten as

Vm
S — P G -1T l r (5.56)

subject to T hT  =  I3 ; I3G 1T  =  (G 1T) 

where T  =  GR- Leavihg out the s e c o n d  constraint in (5.56), we find that the
Tesultingoptimizationproblemasgivenby

Minimize | |— -S — P G -1T ||p  (5-57)
R Y M

subject to T hT —13

is simply a generalized version of the Procruste rotation problem [GOLU84]. 
Geometrically speaking, we rotate the subspace spanned by the three columns 
of P G -1 via a unitary transformation T  until it is best approximated by the 
subspace spanned by the three columns of S in a minimum Frobenius norm 
sense. It is a well known result that T  is obtained by taking the singular value 
decomposition (SVD) of G-1P hS, and forcing all the singular values to be 
unity. Mathematically, if G 1P hS =UXTVh is the SVD, then T  UV is 
the unitary matrix that minimizes the cost function in (5.57). Leaving out the 
constraint on conjugate centro-symmetry for the moment, we have from 
T  =  UVh the optimum R matrix for (5.53) given by

R opt = G -1UVh (5-58)

In Appendix D, we prove that the R opt matrix thus obtained satisfies 
I3R opt =  R opt. Therefore, R opt is indeed the optimum solution to (5.53) and
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the Mx3 matrix constructed according to
W mo =  P R opt ' ; . ' (5.59)

is the corresponding optimum mutually "orthonormal" matrix beamformer.
Note that the optimum MO matrix beamformer does not necessarily produced

■ 2 2 .maximum SNR gain at the look directions u •=. — — , u =  0, and u =  —  since
M ' M ■

no constraints were imposed to guarantee that. However, as long as the 
interfering directions are not close to the broadside of the array, we should

' 2
expect the maximum SNR gain to occur at angles close to u =  ——- ,  0, and

M
2

— , respectively, for the three beams.
M

In conclusion, we present the algorithmic summary of the BDML method 
for nonsymmetric multipath using an adaptively formed beamforming matrix.

BDML Method for Nonsymmetric Multipath 
with Adaptive Matrix Beamformer

(I.) With W  constructed according to (5.41), (5.51), or (5.59) and 
A \ i N A . A

R xx=  N] x(n)xH(n), form Rbb=  W hR xxW . Also, let p denotes the

(M-2)xl vector associated with the M-3 common nulls.

(2.) With Rbb and W  from (I.), compute v =  [vt , V2 , v3]T as GEVEC of 
3x3 real matrix pencil (Re(Rbb) > W hW  } assoc, with smallest GEV.

(3.) With Vi, i=  1,2,3, from (2.), form e =  W v and q(z) =  q0 +  qjz +  qoz2 
where:

q0
eo ei — qoPi eM-i
—  ; qi — — — -  ; q 2 -----
Po Po Pm—3

where pj and ej are the (i-i-l)-th component of p and e, respectively.
qo i

(4.) Let a  =  ——. If | a | < —, multipath signals not resolved. Otherwise: 
■ qi - 2

(5.) Zi
- I  ±  j \ / 4 I a  12 -  I _  . I , /  ,=  — ln(zj 2|

2 a J7T



149

6.4 C om puter S im ulations

In this section, we present computer simulation results to illustrate the 
behavior of the three adaptive generalized Butler beamformers developed in 
the preceding section. The array employed was linear consisting of M =  15 
sensor elements equally spaced by a half-wavelength. The interference 
environment involved two interferes located at 17° and 30°, respectively. 
Spatially white noise was assumed as well. For the sake of brevity, we 
assumed exact knowledge about the interfering directions and hence did not 
concern ourselves with any particular estimation problem. The optimum 
beamforming weight vectors were computed using the formulae given in 
(5.41), (5.51), and (5.59), respectively. Figure 5.1 depicts the respective beam 
patterns associated with the MTNP, MINP, and MO matrix beamformers, as 
well as that associated with the Mx3 Butler beamformer. Each pattern was 
normalized such that the maximum response was one. It is interesting to
observe that in order to form nulls in the interfering directions and retain M-3 
nulls in common, all three adaptive beamformers inevitably produce higher 
sidelobe level than that associated with the Mx3 Butler beamformer in certain 
angular regions. The MTNP array pattern exhibits relatively high first 
sidelobe in the lower beam but fairly low sidelobes near the two interferers 
while the MINP and MO beamformers produce smoother sidelobe patterns. 
The beam pattern associated with the MO beamformer appears to be very 
similar to that associated with the MINP beamformer as can be expected since 
they share the same set of common nulls. All three adaptive beamformers 
behave quite similarly to the Mx3 Butler beamformer within -the mainlobe

region.
To compare their noise suppression capability, the SNR gam produced at 

the three directions of look, I. e., u = 0  and ± ~ ,  respectively, by the lower,

center, and upper beams of each of the above four beamformers are shown in 
Table 5.1. Undoubtfully, the Butler beamformer produces the highest SNR 
gain for all three beams as it should be. The SNR gain achieved with the 
MINP beamforming is nearly identical to that that achieved with the MO 
beamforming, both being close to the ideal case of Butler beamforming. 
Surprisingly, the MTNP beamformer produced the lowest SNR gain among 

' the four for all cases. This may be attributed "to the restriction imposed upon 
the locations of the uncommon nulls in the design of the MTNP beamformer. 
For the other two beamformers, however, no such restriction was made.
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(a) Butler Beamformer

upper beam 

center beam 

lower beam

• %

V . A A I

Spatial Angle in Degrees

Figure 5.1 The respective array patterns associated with the Butler 
beamformer and the three adaptively constructed beamformers 
for the case of M = IS  element uniformly-spaced linear array and 
two interferes present at 17° and 30°. (a) Butler beamformer 
•(b) MTNP beamformer (c) MINP beamformer (d) MO 
beamformer. In each case, toe three adaptive beam patterns 
have 12 nulls in commonj including those corresponding to the 
two interferes.



(b) M TNP Beamformer

upper beam 
center beam 
lower beam

I V- V

Spatial Angle in Degrees

Figure 5.1, continued.
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(c) MINP Beamformer

upper beam 
center beam 
lower beam

Spatial Angle in Degrees

Figure 5.1, continued.
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continued.
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In the final simulation, interference rejection performance was evaluated 
by introducing a 0.5° error in both the estimates of the interfering directions 
such that while constructing the polynomials U](z), uc(z), and uu(z) in (5.29) 
and k(z) in (5.42), 1̂1 =17.5° and ^12 =29.5°. The optimum beamforming 
weight vectors were computed and the resulting SIVR gain in the two true 
interfering directions produced by the three beams are listed in Table 5.2. It is 
shown that the MTNP beamformer performs fairly well with SNR gain 16 dB 
and 12 dB lower than that achieved with the Butler beamformer at #=17° and 
30°, respectively. The MINP and MO beamformers again yield comparable 
results due to their similarity in beam pattern. The MTNP beamformer 
performs better for the interference at 17° than that at 30° while the MINP 
and MO beamformers, on the contrary, produce lower SNR gain at 30° than 
at 17°. Huristically speaking, the interference at 17° is more detrimental than 
the one at 30° in the case of low angle radar tracking and therefore should be 
suppressed to the greatest extent. The Butler beamformer performs rather 
poorly in this case as it does not account for any interference cancellation.
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Table 5 I Comparison of the noise suppression performance of the Butler 
beamformer with that of the three adaptive beamformers for the 
case of M =15 element uniformly-spaced linesir array and two 
interferes present at 17° and 30°. The SNR gain was computed
for u = 0  for the center beam, u=——  for the lower beam, a,nd

M
u = —  for the upper beam, respectively.

Type of Beamformer —*> Butler MTNP MINP MO

Lower Beam 15.0000 14.8129 14.9121 14.9156

Center Beam 15.0000 14.7700 14.8522 14.8511

Upper Beam 15.0000 14.5017 14.5939 14.5925
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Table 5.2 Comparison of the interference rejection performance of the 
B utlerbeam form erw ith thatofthethreeadaptivebeam form ers 
for the case of M = Io  element uniformly-spaced linear array and 
two interferers present at 17° and 30°. In forming the three 
adaptive beamformers, the interfering directions used were 17.5° 
and 29.5°. The SNR gain in dB was computed for 0j=17° and 

. ■ . 30°. .
Y.-. ' v  ’ . ; ' ! ; Y  . ' ■ ■ ■ ■■ ij: i

Type of Beamformer —► Butler MTNP MINP MO

Lower Beam -12.5013 -28.3071 -25.8181 -25.5633

17° Center Beam -9.5876 -25.4089 -22.7055 -22.4931

Upper Beam —4.51 o9 -20.4451 -17.8982 -17.8055

' Lower Beam -13.2430 -25.0188 -28.8969 -28.7267

30° Center Beam -11.7609 -23.5522 -27.2956 -27.1275

Upper Beam -9.4934 -21.3926 -25.4676 -25.3303

?,
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C H A PT ER  6
CO N CLU SIO N S, FINAL COM M EN TS, 

AND FU T U R E  RESEA RCH

6.1 Conclusion

We have developed a system of estimation schemes for low-angle radar 
tracking. The goals of the research pursued herein were to I) document and 
model the classical low-angle radar tracking problem from a statistical 
perspective; 2) develop an efficient estimator for a sub-beamwidth multipath 
scenario; 3) develop auxiliary procedures capable of overcoming difficulties 
occurring in coherent multipath propagation; 4) extend the results to a more
general interferences environment.

Chapter I described some related work in the area of low-angle radar 
tracking. An overview of the Maximum Likelihood (ML) method was 
presented. It was argued that beamspace processing in contrast to element 
space processing becomes attractive in light of its low computational load. The 
ML method was recommended due to its ability to handle the single snapshot 
case and fully correlated (coherent) sources. Although some efficient 
beamspace domain ML estimators have been proposed, they nevertheless lack 
the ability to handle coherent multipath under some extreme conditions such 
as 180° phase difference. The contradictory phenomenon occurring at O0 phase 
difference for nonsymmetric multipath is well documented in the literature. 
However, an effective solution to that problem has not been proposed before.

Chapter 2 developed simple, close-form ML estimators for both the 
symmetric and nonsymmetric multipath cases. They were derived based on 
the 3-beam scheme of Haykin arid the IQML algorithm of Bresler. It was 
shown that under certain conditions, Haykin’s method corresponds nearly to 
the beamspace domain ML (BDML) estimator. Performance analysis for 
Obherent multipath revealed that the BDML method for symmetric case is 
theoretically capable of handling any phase differences so long as the 
magnitude of the reflection coefficient is not exactly equal to one. For 
nonsymmetric case, the only conditions for which breakdown occurs are those 
extreme cases where the direct and specular path signals are perfectly in-phase
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or 180° out-of-phase at the center of the array. This analysis provided insight 
into the behavior of the Cramer-Rao Lower Bound (CRLB) for two arbitrary 
closely-spaced coherent sources. In particular, it accounted for the poor 
performance associated with O0 phase difference for nonsymmetric multipath. 
Simulation results showed that the BDML method performed comparably to 

! the element space based IQML method under moderate conditions while the 
computational load for BDML was much lower than that for IQML. The 
major advantage to employing the Butler matrix beamformer is that the angle 
estimates may be simply determined from the roots of a quadratic equation. In 
addition, the computational complexity of BDML remains essentially the same 
as the number of array elements increases. In contrast, the computational 
complexity of IQML increases greatly as the number of elements increases. 
Other simulation studies involving various combinations of angles, SNR 
values, and phase differences demonstrated the agreement between theoretical 
analysis and pratical results.

Chapter 3 investigated the structure of the Butler matrix beamformer 
and developed several generalized versions of it. In particular, we considered 
an alternative interpretation for beamforming in terms of polynomials and 
sequences. It was shown that the Butler beamformer can be decomposed as a 
product of two matrices, with one corresponding to the common nulls, and the 
other corresponding to the uncommon nulls. The matrix associated with the 
cbmmon nulls exhibits a banded, Toeplitz structure such that we may consider 
it as associated with three overlapping subarrays, each one having all but one 
sensor in common with an adjacent subarray. The matrix associated with the 
uncommon nulls was chosen to be nonsingular so as to facilitate a one-to-one 
mapping between the element space and beamspace manifold vectors. A class 
of generalized Butler beamformers was constructed by appropriately choosing 
the common and uncommon nulls in accordance with a set of constraints. An 
alternative BDML estimation scheme applicable to both symmetric and 
nonsymmetric cases was developed based on the generalized Butler 
beamformers. It appeared to be more flexible than the BDML methods 
described in Chapter 2, especially when the uncommon nulls were formed in a 
nonsymmetric fashion. A simple parameterization of the beamspace manifold 
vectors was made possible with the use of a Butler beamformer. For angles 
near broadside, a beamspace manifold vector may be expressed in terms of a 
single parameter t accounting for the relationship between its three 
components. An equation relating t and u was derived subsequently, allowing 
one to obtain an angle estimate u directly from an estimate of t. Although the



new method does not help to ease computational, burden, it does provide 
insight into the behavior of the beamspace manifold vectors, which may be 
difficult to deal with in the u domain. The correctness of this parameterization
was verified by considering several special cases.

Chapter 4 presented three auxiliary procedures for the refinement to the 
BDML method under coherent multipath conditions. The p-based BDML 
estimation scheme was shown to provide a simple, iterative procedure for 
simultaneously estimating the direct path angle and the complex reflection 
coefficient for symmetric multipath. Each execution of the algorithm only 
involved either a 2x2 complex generalized eigenvalue decomposition or a 3x3 
real generalized eigenvalue decomposition. Simulations showed that 
substantial improvement in performance was achieved when the phase 
difference was close to 180°. The conversion of a nonsymmetric problem into a 
symmetric one was accomplished based on the distinctive rank property 
associated with the beamspace forward-backward averaged correlation matrix 
in the symmetric case. The bisector angle between the two paths was first 
estimated, then followed by a second steering of the three beams. The 
bisector angle estimate was computed via the solution of a judiciously 
constructed quartic equation. Significant improvement in accuracy with the 
symmetrized BDML method over the original BDML method was observed 
when the two signals were nearly in-phase. Frequency diversity was 
incorporated mainly as a remedy for severe fading occurring in the 180° out- 
of-phase case. The coherent signal subspace concept of Wang and Kaveh was 
invoked for retaining the computational simplicity of the BDML method 
developed for single frequency operation. It was shown that if the frequencies

fi were chosen such that I1 =  ~ f 0, and spatial smoothing was conducted in a
Mi

judicious fashion, perfect focusing may be achieved without iterating. The 
only condition required was that both the direct and specular path angles are 
small enough such that the approximation sin# — 6 is valid. Simulations
indicated that the multi-frequency BDML scheme is so far the most reliable 
estimation procedure for low-angle radar tracking involving coherent 
multipath. It becomes particularly advantageous as the size of the array or the 
number of snapshots increases. Provided that the appropriate hardware is 
available, it is strongly recommended.

C h a p t e r  5 developed a Tiovel adaptive beamforming technique for 
interference cancellation when the BDML scheme is employed in low-angle 
radar tracking. The algorithm described was a  null synthesis scheme rather



than a closed loop adaptive algorithm. The a-priori information about the 
interferences was incorporated in the form of a polynomial whose roots 
correspond to the interfering directions. The idea of common nulls associated 
with the Mx3 Butler beamformer was incorporated into the synthesis 
procedure so as to formulate the BDML estimation problem as that associated 
with a 3x3 generalized eigenvalue decomposition and a quadratic equation. 
Three different beamformers were developed based on different optimality 
criteria. The MTNP beamformer minimizes the total output noise power from 
the three beam ports and usually exhibits patterns similar to that associated 
with the quiescent beamformer. The MINP beamformer minimizes output 
noise power from the three beams individually and therefore manifests itself as 
more flexible than the MTNP beamformer. For most cases, these two 
beamformers performed fairly well in terms of SISfR gain and sidelobe levels. 
The MO beamformer was constructed based on the least squares criterion and 
mutual orthonormality constraint. The optimum LS fit was defined in terms 
of" a reference beamforming matrix having certain desired properties. The 
three mutually orthonormal beamforming weight vectors produce a  beamspace 
noise correlation matrix proportional to the identity matrix and, as a result, 
simplifies the computation involved in the BDML estimation procedures. 
Although the beam patterns were not guaranteed to exhibit maxima exactly at 
the desired directions of look, simulation results showed that the MO 
beamformer did indeed produce maximum SNR gain at angles close to the 
look directions determined by the reference beamformer.

6.2 Final Comments

Some final comments are in order. They are made primarily to extend the 
areas of applications for the BDML estimation schemes developed so far.

6.2 .1 T arget T rack i n g i n F rees p ace

First, the BDML estimation schemes presented here were developed for 
the cases of two targets located in the general vicinity of broadside. For more 
general phased array radar scenarios, one would simply steer the three beams, 
keeping their relative angular positions fixed, to other directions of look. From 
the outputs of the three beams, one would have to determine whether there 
were one of two targets in the direction of look using such criteria as Akaike 
Information Criteria (AIC) [AKAI74] or Minimum Description Length (MDL)



1.61

[SCHW78], for example. In the event that two targets are detected, the 
B D M L  estimation scheme may be employed to estimate the angular positions 
of the two targets relative to the pointing angle of the center or reference 
b eam . In this mode, the nonsymmetric BDML estimator is more generally 
applicable than the symmetric one. In light of the problem of the 
nonsymmetric BDML estimator in the O0 phase difference case, however, it is 
desirable to convert a nonsymmetric problem to a symmetric one using the 
ad-hoc procedure developed in Section 4.3. In this case, the entire array is 
"electronically" steered to the desired direction of look and the correlation 
matrix to be worked with is the one formed with the steered array.

8.2.2 M ultiple Targets Case

Third, the BDML estimation schemes developed are not restricted to 
two-target cases. It can theoretically handle D targets with D-Hl beams 
provided that D-fl<M . The premise, however, is that one needs to know 
where to form the beams, i. e., one needs to determine the directions of look 
so as to produce high SNR gain in the target directions. In the case of 
tracking, the look directions can be taken as the most recent estimates of the 
target angles. Motivated by the computational simplicity attained with the 
Butler matrix beamformer, it is desirable to employ a set of beamforming 
vectors haying M-D-I nulls in common. In this case, the BDML angle 
estimates can be simply determined from the roots of a D-th order polynomial 
equation.

6.2.3 Frequency Diversity for General Scenarios

To incorporate frequency diversity for more general scenarios, it is 
necessary to judiciously design the beam patterns so as to retain the perfect 
focusing achieved with uniform weighting. For example, when two sources are 
separated by more than two beamwidths, the small angle approximation 
invoked in Section 3.4 is no longer valid. In this case, the Kaiser weighting 
[HARR78] is more appropriate since its spectrum depends on u thru the 
product Mu only (u — sin  ̂ a.nd M is the number of elements). Other possible 
candidates are those whose spectra are invariant under scaling operation, i. e., 
p(ku) oc P(u), where P(u) denotes a spatial spectrum. The frequency diversity 
scheme is equally applicable to the wideband case. The idea is to partition the 
entire frequency band into J subbands centered at f;, i= 0 ,...,J-l, in such a
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fashion so as to retain the relationship Mf0 =  Mjfj, i= l , . . .J - l ,  as described in 
Section 4.4. Note that this scheme works best for large M as the number of 
frequencies satisfying Mf0 =  Mjfj is proportional to M.

6.2.4 Efficient BDML-Based Interference Cancellation

In Chapter 5, the beamforming techniques were developed based on the 
assumption that a polynomial associated with the interfering directions is 
available via certain direction finding algorithms such as IQML and ESPRIT. 
We point out, however, that it is possible to achieve so relying solely upon the 
BDML methods. The idea is to alternately estimate the target and interference 
directions in an adaptive fashion. The algorithm is a two-step procedure: I) 
form K +1 beams in the K (estimated) interfering directions and a reference 
direction, each beam having a null in each of the (estimated) target directions, 
and apply the BDML method to the resulting K +l dimensional beamspace 
snapshot data. In the end, we obtain a K-th order polynomial whose roots 
correspond to the K interfering directions.; II) with the k-th order polynomial 
obtained in I), we proceed to estimate the target angles using one of the 
matrix beamformers constructed in Section 5.3. The algorithm is performed 
adaptively in the sense that the estimates of both the target and interference 
directions obtained most recently are incorporated in phase I to form the 
desired K +l beams. Of course, we may form the K + l beams according to one 
of the three criteria described in 5.3.

8.3 Future Research

The following suggestions are made to inspire further interests in the area 
of low-angle radar tracking.

6.3.1 Analysis of Resolution Capability

Analysis of resolution Capability has attracted the interests of many 
researchers in the area of spectrum estimation and array signal processing 
[COX73], [OWSL84], [KAVE86], [WANG86], [JEFF85], [PORA88], [OTTE89]. 
Recently the resolution threshold for some eigen-assisted methods (e. g. 
MUSIC and Minimum-Norm) has been quantitatively analyzed in several 
papers [KAVE86], [WANG86], [JEFF85], [PORA88] for both element space 
and beamspace domain applications. Their approach was to compute the first



163

and second moments of the null spectrum and then determine the probability 
of resolution via certain ad-hoc criterion. These analysis procedures can be 
readily applied to the BDML estimators as the latter is in fact an eigen- 
assisted method resembling MUSIC. One major drawback of the above 
mentioned methods is that exact expressions for the moments of the null 
spectrum is difficult to obtain and barely manageable. In addition, the 
criterion for discriminating resolved and unresolved cases is ambiguous in 
nature. The BDML method, on the other hand, provides a quantitative 
description of the condition of resolution, as can be seen in Section 2.3. The 
criterion was simply an inequality involving three real components of v and 
the probability of resolution is exactly the probability of that the inequality 
holds. This suggests that a closed-form expression for v, the "smallest" 
eigenvector of should be derived and a statistical perturbation analysis for 
that be conducted. The procedure should be simple due to the low 
dimensionality associated with beamspace domain processing.

6.3.2 Diffuse M ultipath

The classical specular-reflection model for surface reflections has been 
modified to account for surface roughness [BART74], [BART79], [SMIT79]. 
These modifications describe several effects: I) the reduction in magnitude of 
the specular component with increased roughness; 2) the spreading of angle of 
arrival of reflected components surrounding the specular image. This 
phenomenon is referred to as diffuse multipath propagation. The problem of 
low-angle radar tracking involving diffuse multipath is complicated by the fact 
that prediction of spatial distributions of diffuse multipath is a complex 
process for which no rigorous theory exists. Actual sea and ground surfaces are 
difficult to characterize analytically. A popular model for diffuse multipath is 
the "glistening surface" model proposed by Beckmann and Spizzichino 
[BECK63] and Barton [BART74]. The model states that most of the diffuse 
power from a normally distributed surface will reach the radar from the 
region within the glistening surface. Namely, the diffuse power will 
concentrate over certain region surrounding the specular image in the spatial 
spectrum. Therefore, it Can be treated as a noise-like interference 
superimposed upon the specular return. To employ ML method in this case, 
one needs to characterize the correlation matrix of the diffuse return, which 
often involves a complex estimation procedure. Under this circumstance, 
beamspace domain processing is more advantageous as the spatial passband
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associated with the beamformer is usually narrow such that it is adequate to 
model the diffuse return as spatial white noise in beamspace. This facilitates a 
simpler way of estimating the beamspace noise (including diffuse return) 
correlation matrix. In addition, the small dimensionality involved in 
beamspace domain processing makes some iterative correlation matrix 
estimation schemes [LECA89] realizable.

6.3.3 Two Dimensional Beamspace Domain Processing

Although the BDML estimation schemes presented here were developed 
for the case of multiple snapshots, they are applicable in the case of a single 
snapshot as well, as would be the case with monopulse radar tracking. 
Judging from the performance obtained with N=O snapshots in the case of a 
M =  15 element array, a much larger number of elements would be required 
for adequate performance in the single snapshot case. We remark that each 
radar system comprising the PAVE-PAWS phased array network has two 
janus faces composed of 1,792 transmit-receive antenna elements each; the 
COBRA DANE phased array radar system is composed of 15,360 such 
elements. Along these lines, we note that actual phased array such as those 
comprising the AEGIS and PAVE-PAWS series, as well as the mammoth 
COBRA DANE phased array, are planar with the elements uniformly-spaced 
on a rectangular grid. For the sake of simplicity, we here considered only the 
case of a linear array. The BDML estimation schemes developed within may 
be easily extended for the case of a 2-D grid array with uniform spacing along 
both axes. In this case, the array may be viewed as a collection of uniformly- 
spaced, linear arrays in parallel. If we apply the same weight vector to each 
linear array in parallel, to look at a specific azimuthal angle, for example, we 
obtain a collection of what are referred to as super-element outputs. We could 
then apply three different beamforming vectors, pointed to three closely- 
spaced elevation angles, for example, to the collection of super-element 
outputs. The final beamspace outputs may then be supplied to the BDML 
estimator to produce estimates of the elevation angles of two closely-spaced 
targets. Azimuthal angles may be estimated in a similar fashion.
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A ppendixA
P ro p ertie s  of th e  E igenvectors of a Real M atrix  
E xh ib iting  B oth S ym m etry  and P er-S ym m etry

In this Appendix, w e  prove a theorem describing some properties of the 
eigenvectors of a real matrix, A, of dimension mxm, say, which is both 
symmetric, A t — A, and per-symmetric (symmetric about the cross-diagonal), 
ImA lin =  A t , such that the matrix satisfies the following two properties.

(a) A t = A  ' (b) I mAIm = A  /  (AA)

W h e r e i m is  a r e v e r s e  p e r m u t a t i o n  m a t r i x  o f  d i m e n s i o n  m  as d e f i n e d  i n  Sect. II

by (2.6).

T heorem :
Each eigenvector, ei? i= l,...,m , of a real matrix A which is both symmetric 
and per-symmetric (satisfies (A.I) above) and has m distinct eigenvalues 
satisfies the relationship Ime, = + e , , i .  e., exhibits either centro-symmetry, 
imei =  eir or centro-anti-symmetry, ImCi =  -  Moreover, if m is such that 
m =2k, k or half of the eigenvectors exhibit centro-symmetry while the 
remaining k exhibit centro-anti-symmetry. If m is odd such that m = 2 k + l, 
k+1 of the eigenvectors exhibit centro-symmetry while the remaining k exhibit 
centro-anti-symmetry.

Proof:
Let Xi be the eigenvalue of A associated with the i-th eigenvector e; such that

Aej =  X; e; (A.2)

Since ImAIm = A , (XilCi) is also an eigenvalue-eigenvector pair of ImAIm as 
well:

ImA ImCi =  Xiei (A.3)

P re-multiplying both sides of (A.3) by Ij11 gives

AImCi =  XiImCi (A-4)

where we have exploited the fact that ImIm = I m- (A.4) implies that ImCi is 
also an eigenvector of A associated with the eigenvalue Xi. Since we have 
assumed that the eigenvalues of A are distinct, it follows that the eigenvector
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associated with each eigenvalue is unique to within a scalar multiple such that 
Imej must be a real scalar multiple of ej, i. e.,

L e i =  7,ei \ (A.5)

P re-multiplying both sides of (A.5) by Im gives

«i =  7ilm ei (A.6)

Note that the ej are real since A is real and symmetric. Finally, substituting 
(A.5) into (A.6) gives e; =  '/f ej which indicates that '>j is either + I or -I 
which when substituted in (A.5) gives the desired result Im ej =  -F Cj. This 
proves the first part of the theorem that the eigenvectors under scrutiny 
exhibit either centro-symmetry or centro-anti-symmetry.

To complete the proof, consider the case of m even such that m =2k, 
where k is a positive integer. Further, consider the span of a set of k+1 
centro-symmetric vectors, e,, i= l,. . . ,k ~ l, of dimension 2kxl. Such a set of 
vectors may be expressed in the following form

e I -

’ f l '

£ Il

’ f 2 '

• • • 5 ...... ; ek+i

fk+l

Ik f l ■■Ik f2 Ik fk+l

where the k+1 vectors fj, 1= I,..., k+1, lie in £%k, k-dimensional real space, 
and, as a consequence, are linearly dependent. Thus, we can always find a set 
of coefficients, c,, i= l,. . . ,k + l, satisfying

Cjfj +  c2f2 +  • ’ ‘ +C k4Ifk, j = 0  (A.8)

The same set of coefficients may be applied to the vectors Ikfj, i= l,. . . ,  k+1, to 
obtain the zero vector as well as a consequence of the following observation

cI I JcfI . +  C2 Ik f2, +  '"' • • +  ck4.! Ik fk+1

Clfl +  C2 f2 + +  Ck4-I fk + l 0 (A.9)

which follows from (A.8). (A.9) combined with (A.8) further implies that the 
same set of coefficients, Cj, i= l,...,k + l, may be applied to the vectors ej, 
i= l , . . . ,  k+1, defined in (A.7) to obtain the zero vector, i. e.,

Cie1 +  c2e2 +  ; • * +  ck+1ek+1 =  0 (A. 10)

The conclusion is that the largest dimension of space spanned by a set of 2kxl
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centro-symmetric vectors is k. A similar argument can be made to prove that 
the largest dimension of space spanned by a set of 2kxl eentro-anti-symmetric 
vectors is k as well. Now, since A is symmetric, its eigenvectors are mutually 
orthogonal and, hence, linearly independent. The cumulative result of all 
these observations is that for A a real, symmetric, and pef-symmetric matrix 
of dimension mxm where m is even, m/2 or half of its eigenvectors exhibit 
centro-symmetry and the remaining m/2 eigenvectors exhibit centro-anti- 
symmetry. Similar arguments hold for the case of m odd such that m = 2 k + l. 
The primary difference between the two cases lies in the fact the center or k- 
th element of a (2k+l)xl centro-anti-symmetric vector is 0. As a consequence, 
the largest dimension of space spanned by a set of (2k+l)xl centro-anti- 
symmetric vectors is k. It is also easy to argue the largest dimension of space 
spanned by a set of (2k+l)xl centro-symmetric vectors is k+1. Thus, if A is 
of dimension (2k+l)x(2k+l), k+1 of the eigenvectors exhibit centro-symmetry 
while the remaining k exhibit centro-anti-symmetry. This completes the 
proof.

Note that the theorem also holds if A has repeated eigenvalues yet 
satisfies (A.l). For sake of brevity, we do not supply the appropriate proof 
here.



176

A ppendixB
Reduction of a Linear Combination of Three Butler Beam  

Based Polynom ials to a Second Order Polynom ial

In this appendix, we consider an m-th order polynomial known to have 
m-2 roots equally-spaced on the unit circle at known locations. We develop 
simple expressions for the coefficients of the residual second order polynomial 
obtained by dividing each of the m-2 known roots out of the original m-th 
order polynomial.

Consider the Mx3 Butler matrix beamformer, S, defined as

a(2/M) • a(0) I a(-2/M )

where a(u) is defined as follows.

a(u) • • • ,e“j2;ru, e - ^u, e ^ V ,ej*Lu

(B-I)

(B.2)

Here M=2L+1 such that L =(M -l)/2 . Let z be a Vandermonde vector defined

[I z z2 Z3 ,M-IlT (B.3)

such that the inner product of any Mxl vector with z is a polynomial of order
M-l. Now, consider the roots of each of the three polynomials formed,
respectively, with each of the three columns of S defined in (B.l). The middle
column, a(0), is simply a vector c o m p o s e d  of all ones corresponding to
rectangular weighting with a beam steered to broadside, i. e., u = 0 . When
viewed as a weight vector, &(0) sets up an array pattern

. - , MxSin(--- TTU )
aH(0)a(u)

sin (yu)
which exhibits M-I nulls at u =  ±  m — m—M

This translates into a statement that the polynomial aH(0)z has M-I roots on
 ̂2/Tm

the unit circle at the values z =  e , Bt= I v mM-I. The situation is 
depicted in Figure B(b). The vector a(2/M), which produces the upper
auxiliary beam, sets up an array pattern which is merely the pattern produced

2
by the weight vector a(0) shifted to the right by the ,amount — ; its peak

occurs at the first null on the upper side of the reference beam. The net effect 
with regard to the roots is a counter-clockwise, circular shift by the amount
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(a) (b) (c)

/  M'
2 = 1

Upper Auxiliary Beam Reference Beam Lower Auxiliary Beam

Figure B.l Location of the respective roots of each of the three polynomials 
formed with a coefficient vector equal to the (a) first (b) second, 
and (c) third column of an Mx3 Butler matrix beamformer 
(M = 15). All of the roots lie on the unit circle; the polynomials 
have M-3=12 roots in common.
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—  as depicted in Figure B(a). That is, is added to the argument of each
M M

root of the "reference" polynomial aH(0)z. Thus, the M-I roots of the
.. 27rm_

polynomial aH(2/M)z occur at z =  e M , m =2,...,M . Arguing along similar
lines, we find that the roots of the polynomial aH(-2/M )z are those of the

: • 2 r
"reference" polynomial circularly shifted clockwise by the amount —  as

. 2rcm 
■J TkyT

depicted in Figure B(c). That is, the roots of aH(-2/M )z occur at z =  e 
J11- O  ... M-2. Superimposing the respective M-I roots of each of these three. 27rm

m”polynomials, we find M-3 roots in common; the common roots are z =  e , 
m=2,...,M-2. We will make use of this observation shortly. Note that this 
observation implies that the respective beam patterns set up by the weight 
vectors a(2/M), a(0), and a(-2/M ) have M-3 nulls in common.

Now, consider the coefficient vector e =  S v, where v =  [V1 , V2 , v3]T and 
the V i , i=  1,2,3, are real-valued. The (M-l)-th order polynomial e(z)= (Sv)Hz 
may be expressed as a linear combination of the reference and two auxiliary
polynomials defined above as follows:

e(z) == (Sv)Hz =  V1 aH(2/M)z +  v2 aH(0)z +  v3aH(-2/M )z (B.4)

It follows trivially that any root common to all three polynomials will be a
root of any linear combination of the three polynomials. As a consequence of
the above observations, therefore, it is apparent that regardless of the values

.2  Trm

of Vi , i=  1,2,3, M-3 roots of the polynomial (Sv)Hz occur at z =  e , 
m=2,...,M-2. Note that this statement involves no approximation whatsoever. 
Thus, the roots of interest are those of a quadratic equation obtained via the
following polynomial division:

q(z) =  qo +  Qiz +  ^2z2
(S v )h Z

M -2

]1, (m=2

2 Trm 
" M "

)

(B.5)

This polynomial division indicated above may be accomplished via a 
deconvolution of the respective coefficients of the numerator and denominator 
polynomials. We proceed along these lines in accordance with the following 
development.

Let d(z) denote the (M-3)-th order polynomial in the denominator of (B.5) 
with coefficients denoted di? i=0,...,M-3, as follows
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.M -2 : j - - - - -
d(z) — 11 ( z —e M ) = d0 +  d, z +  • • • +  dM_3zM“3 (B.6)

" m = 2

As indicated above, the (M-l)-th order polynomial in the numerator is denoted 
e(z); the coefficients of e(z) are denoted ej, i=0,...,M -l, as follows

€(z) (Sv)Hz =  e0 +  ejz +  * * * +  eM_2zM_i (B.7)

(B.5) trivially implies that d(z) q(z) =  e(z) which when expanded as follows

(do +  d]Z + • • • +  dM_3zM_3) (q0 +  q^z +  q2z2)

=  e0 + C 1Z +  • • • + C m^ zm- 1 (B.8)

allows us to determine q0 , qj , and q2 in terms of d0 , dj , and dM_3 and 
e0 ̂  ej , and ej^_j in accordance with the following recursive relationships:

e0 •'
d0q o = eo c r  q0 =  —  (B.9a)

d O

d0qi +  q0dj = e ,  CT qj qodi
(B.9b)

d M-3 q z  -  e M-I q-2
eM-I

^M-3
(B.9c)

At this point, we need to determine d0 , dr , and dM_3 and e0 , C1 , and eM_j 
in terms of known parameters and the elements of the vector v: vj, i=  1,2,3. 
Let us concern ourselves with d0 , df , and dM_3 first. From (B.6), we 
immediately note that the coefficient associated with the highest order power 
zM-3 is unity, i. e., dM_3 — I. To determine d0 and dlt we note that with the 
coefficient of the highest order power equal to unity, i. e., dM_3 =  I, do is 
equal to the product of the roots of d(z) while dj is equal to the negative of 
the sum of the roots of d(z). Since the roots of d(z) occur in complex conjugate

pairs, as signified by the relationship
2”m

—27rm j 2ff(M—m)

m—2,...,M-2, it immediately follows d0 is equal to one, i. e.
M-2 j-
n  e 

m=2
M

>

=  I. In determining di as the negative of the sum of the

roots of d(z), we make the observation that since z =  e ^  is a root of the
U - I -  .. v: M-I j-2™

polynomial aH(0)z =  j ]  zm, as discussed above, we have that V  e M =  0
En=O m=0
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such that
27TtaM~2 j

d, ; =  -  S < "
m=2

I +  2 c o s ( f ) (B -IO )

Next, we turn our attention to the numerator polynomial e(z) defined by 
(B.4) and (B.7). Returning to the definition of a(u) in (B.2), we find that

e 0 = V 1 e +  V2 - V 3 e
- j -

- '  . - .J L_Jt ; j m *
-Vj e +  v-2 +  V3 e — Gm-I

2*(L—I) -J; 2rr(L-l)

: V1 e + v2 +  v3 e

(B I la)

-j- J-
=  -V 1 e + v 2 — v3 e lV1 (B-Hb)

where we have used the fact that L =(M -l)/2  and the fact that Sv1 is
hermitian centro-symmetric, i. e., I m S v — (Sv) . (v must be real-valued for 
this to hold.) We now have all the quantities necessary for substitution in
(B 9a), (B.9b), and (B.9c) to determine q0 , qi , and q2 in terms of
d0 , dj , dM_3, e0 , ej , e ^ ,  V1 , v2 , and v3. After some trivial algebraic
manipulation, we arrive at the following expressions for the coefficients of q(z):

- j— j—
q0 =  - V 1 e M +  v2 — v3 e M 92 (B.12a)

q i  = 2 ( Vl + v 3) c o s ( ^ ) -  2 v 2 c o s ( H )  (B.12b)

Thus, q(z) =  qo +  9i z +  9oz2 "where the center coefficient, q1? is real. (B.12a) 
and (B.12b) constitute the main result of this Appendix invoked in Section III.

Consideration of the symmetric inultipath problem as done in Section II 
leads to a consideration of the special case where v  is centro-symmetric, 
I3V =  v. In this case, we express v as v =  Jv1 , v0 , V1Jt , where we have 
chosen to put a subscript 0 on the center element in keeping with the notation 
in Section II. This, of course, leads to certain simplifications with regard to
the coefficients of v which are indicated below:
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q0 = V 0 — 2v1cos(— ) = q 2 ; qi =  cos( — ) -  2v0cos(— ) (B.13)

In this case, all the coefficients of q(z) are real implying that its roots are 
either real or form a complex conjugate pair.
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Appendix C

Simplification of the Cost Function for 
B isectorA ngleE stim ation

In this Appendix, we show that the cost function in (4.45) can be
expressed in the form of a fourth order polynomial and the minimizing uc can
be determined by rooting a quartic equation. We begin the derivation by
substituting (4.44) into the matrix W (Uc)Cj1I1W(Uc) in (4.45). Letting Cjj

~ fb j~ fb ) •
denotes the ij-th component of C hh, i. e., CjJ =  |C hh I , we have

W t (Uc) C hhW ( U c)

ej"u O Q C1I C12 C13 e~jiru“ O O
= O l O c12* C22 C12 O 1 0

O O e - '" Cl3* C12* C11 0 0 eJ"

Cu
„ * - J 7rV Cj2 e

' J 7ruV
c 12e Cl3e

c 22 c 12e  

C13V - 21" -  C13V - ' " -  C11

2j7TU,

j i r u , . ( C . l )

Note that we have invoked the property IaC hhI3 =  C hh . The real part of 
(C.l) is

Re{W(uc)t C hh W (uc)}

2
j-u,

!e
2j-TVlr

2 Qi1 C13Ci" - + ^ ,  V i" - c13e2̂ U' + c 13*e

+C13V i" - 2c22 Ci2eJ,rUr+Ci2*e

+C13V - 21" - JTTVlr . * -irJ TTUr
c12eJ + c 12 *e 2cn

2 j JTUr 

-jiru,. (C.2)

With some algebraic manipulation, we have

det|Re{W (uc)t C hhW (uc)}]

I f *  —4j JTU1- . * - 2 j ^ u r , 2 jiru,. , 4jjruf]
=  — |p0*e +  Pi e +  P2 +  P le + P o e J

where : p0 = C j2C13 —c22cl3 ; P1 =  2 | C12 | 2c13 — 2cu c12

(C.3)
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P2 — 4c 11 c22 +  c 12 *2C]3 +  <* 12c13 ’ — 4cU I C12 I 2 — 2 c22 | C13 | 2

Differentiating (C.3) with respect to u and set to zero, we get

-2 p 0*e-4jru - P 1V 2jjruW -P ie2̂ u' + 2 p oe4j'TU = 0  (C.4)

This suggests that the solution for uc can be obtained by solving the following 
quartic equation

—2p0*X 2 — Pi*X 1 +Pi X +  2p0X2 = 0  (C.5 )

for a unit root Xc, where Xc =  e?J lU‘.
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Appendix D
P roof of Conjugate Centro-Sym m etry of the Columns of Ropt

In this appendix, we prove that the 3x3 matrix R opt obtained in (5.58) 
satisfied I3Ropt =Ropt- We do so by first investigating some properties 
associated with the SVD of G '1P h W 0. From (5.48), it is easily deduced that 
P  satisfies

ImP I3 = P  (D-la )

and so does G "1 as shown below
' : . _ I

I3G - 1I3 -  (I3G I3) - 1 = (I3PhPI3)" 1

_ _ L  . ,  ■ '

=  (PHP*) 2 = (G ') ’ (D.lb)

W° is the Mx3 Butler beamforming matrix such that

I mW 0 =  (W°)‘ (D-2)

Combining (D.l) and (D.2), we have

I3G 1P hW 0 = I 3G 1I3I3P hI3I3W 0

=  (G-1P hW g)* (D.3)

which gives rise to the following results

l3G - 1P HW 0W °HP (G -1)HI3 = ( G -1P hW 0W oHP (G - 1)h)* (D.4a)

W oHP (G -1 )hG -1 P h W 0 =  W °HP (G -1 )hI3!3G -1 P h W 0

=  (W°HP ( G - 1 )hG -1P hW ° ) ‘ (D.4b)

(D.4) states that G -1P HW 0W oHP (G -1)H is both hermitian and per-hermitian 
while W °HP (G -1 )h G -1 P hW 0 is real. It is well known that if
G -1P hW 0 = U E V h is the SVD, then

G -1p Hw °W °HP (G -1 )H =  UEVhVEUh =  UE2Uli (D.5a)

and
W °HP (G -1)hG -1P hW° = V E U hUEVh = V E 2Vh (D.5b)

are the EVD’s for G -1P HW °W °HP (G -1)H and W oHP (G -1)HG -1P HW °, 
respectively. These indicate that U consists of the eigenvectors associated
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with a hermitian-per-hermitian matrix while V  consists of the eigenvectors of 
a real symmetric matrix. Exploiting the fact that eigenvectors of a hermitian- 
per-hermitian matrix are conjugate centro-symmetric and that eigenvectors of 
a real symmetric matrix are real, we have

I3U = U * (D.6a)

V  =  V* (D.6b)

which yields immediately

I3Ropt = I 3G -1 U V h = I 3G -1 I3I3U V h

= (G-1̂ U1V r = R j pt ( H )

This concludes the proof.
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