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RÉSUMÉ 

 

Cette thèse propose des méthodes d'estimation de la direction d'arrivée (DOA) et d'amélioration 

de la résolution angulaire applicables aux antennes à balayage de fréquence (Frequency Scanning 

Antenna ou FSA) et présente un développement analytique et des confirmations expérimentales 

des méthodes proposées. Les FSA sont un sous-ensemble d'antennes à balayage électronique dont 

l'angle du faisceau principal change en faisant varier la fréquence des signaux. L'utilisation des 

FSA est un compromis entre des antennes à balayage de phase (phased arrays antennas) plus 

coûteuses et plus complexes, et des antennes à balayage mécanique plus lentes et non agiles. Bien 

que l'agilité et le faible coût des FSA les rendent un choix plausible dans certaines applications, 

les FSA à faible coût peuvent ne pas être conformes aux exigences souhaitées pour l'application 

cible telles que les exigences de résolution angulaire. Ainsi, cette recherche tente d'abord de 

caractériser les capacités de résolution angulaire de certains systèmes d'antennes FSA 

sélectionnés. Elle poursuit en explorant des modifications ou extensions aux algorithmes de 

super-résolution capables d'améliorer la résolution angulaire de l'antenne et de les adapter pour 

être appliqués aux FSA. 

Deux méthodes d'estimation de la résolution angulaire, l'estimation du maximum de 

vraisemblance (Maximum Likelihood ou ML) et la formation du faisceau de variance minimale de 

Capon (Minimum Variance Beamforming ou MVB) sont étudiées dans cette recherche. Les deux 

méthodes sont modifiées pour être applicables aux FSA. De plus, les méthodes d'étalonnage et de 

pré-traitement requises pour chaque méthode sont également introduites. Les résultats de 

simulation ont montré qu'en sélectionnant des paramètres corrects, il est possible d'améliorer la 

résolution angulaire au-delà de la limitation de la largeur de faisceau des FSA en utilisant les 

deux méthodes. Les critères pour lesquels chaque méthode fonctionne le mieux sont discutés et 

l'analyse pour justifier les conditions présentées est donnée. 

Les méthodes proposées sont également simulées à l'aide d'un diagramme de rayonnement 

d'antenne mesuré d'une FSA à 8 éléments, qui est construite à la base d'un guide composite 

droite/gauche (Composite Right/Left Handed ou CRLH). De plus, les résultats expérimentaux 
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obtenus avec une antenne à réflecteur parabolique à balayage de faisceau utilisant une 

alimentation d'antenne multiplexée en fréquence sont donnés. Les limites de conception de cette 

antenne réduisent les performances des méthodes d'amélioration de la résolution angulaire. Par 

conséquent, un système de balayage hybride combinant le balayage mécanique et de fréquence en 

utilisant l'antenne de réflecteur à balayage de faisceau est également proposée. L'estimation ML 

est adaptée et appliquée au système hybride et les résultats expérimentaux sont présentés. Il est 

montré que le système hybride peut également obtenir une résolution angulaire au-delà de la 

limite de la largeur de faisceau du système de balayage. 
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ABSTRACT 

 

This research investigates direction of arrival (DOA) estimation and angular resolution 

enhancement methods applicable to frequency scanning antennas (FSA) and provides analytical 

development and experimental validation for the proposed methods. FSAs are a subset of 

electronically scanning antennas, which scan the angle of their main beam by varying the 

frequency of the signals. Using FSA is a trade-off between more expensive and complex phase 

array antennas and slower and non-agile mechanical scanning antennas. Although agility and 

low-cost of FSAs make them a plausible choice in some application, low-cost FSAs may not 

comply with the desired requirements for the target application such as angular resolution 

requirements. Thus, this research attempts to first characterize the angular resolution capabilities 

of some selected FSA antenna systems, and then modify or extend super-resolution algorithms 

capable of enhancing the angular resolution of the antenna and adapt them to be applied to FSAs. 

Two angular resolution estimation methods, maximum likelihood estimation (ML) and Capon 

minimum variance beamforming (MVB), are studied in this research. Both methods are modified 

to be applicable to FSAs. In addition, the calibration and pre-processing methods required for 

each method are also introduced. Simulation results show that by selecting correct parameters, it 

is possible to enhance angular resolution beyond the beamwidth limitation of FSAs using both 

methods. The criteria for which each method performs the best are discussed and an analysis 

supporting the presented conditions is given.  

The proposed methods are also validated using the measured antenna radiation pattern of an 8-

element FSA which is built based on a composite right/left-handed (CRLH) waveguide. In 

addition, the experimental results using a beam scanning parabolic reflector antenna using a 

frequency multiplexed antenna feed is given. The design limitations of this antenna reduce the 

performance of angular resolution enhancement methods. Therefore, a hybrid scanning system 

combining mechanical and frequency scanning using the beam scanning reflector antenna is also 

proposed. The ML estimation is adapted and applied to the hybrid system and experimental 
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results are presented. It is shown that the hybrid system can also improve angular resolution 

beyond beamwidth limitation of the scanning system. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Why Studying Frequency Scanning Antennas? 

For many decades, beam scanning using mechanical steerable antennas was mainly used in 

satellite communication and radar applications such as weather sensing, marine navigation, 

tracking of fast rescue craft and person-in-water [1]-[6].  

However, mechanical scanning systems have limited scanning speed, which affects their 

performance. As an example, it is shown that replacing mechanical scanning with a fast 

electronic scanning system (using phased array antennas (PAA)) in weather forecasting can 

improve the performance of warning decision process in critical situations [7]. In addition, 

maintenance and replacements of rotational parts of mechanically steerable antennas could have 

considerable costs. With the emergence of many new applications in imaging, wireless 

communication, automotive and meteorology that require low-cost and fast scanning systems, 

finding electronic scanning methods that can be used for those applications is receiving 

considerable attention.  

Electronic scanning is commonly done using phased array antennas.  Phased array antennas can 

also be controlled adaptively and create beams and nulls in desired directions [8]. However, due 

to the cost of high frequency components, phased array antennas could be too expensive for 

many applications.  

Another solution for electronic scanning is to use frequency scanning arrays (FSAs), which can 

achieve low-cost and agile electronic scanning [8]. In FSA antennas, the main beam direction 

varies by changing the carrier frequency of the transceiver. Unlike PAAs, in frequency scanning, 

all radiating elements are parts of a waveguide with a frequency-sensitive feed as input. 

Therefore, the array elements can be assumed connected to each other and there is only one 

input/output channel for all the antenna elements. Thus, scanning with FSA can be done at lower-

cost compared to PAA. However, not having control of each element or access to each antenna 

port reduces significantly the possibility to apply array processing techniques. 
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Another disadvantage of FSAs is that conventional FSAs require frequency variation over a wide 

bandwidth [9] which is undesirable. Using a wide bandwidth not only reduces the spectral 

efficiency but also requires a wideband transceiver. However, new FSAs using dispersive feed 

networks based on metamaterial guiding structures can scan a wide angular range using a small 

bandwidth [10]. Therefore, as a result of tremendous progress on metamaterial-based leaky-wave 

antennas over the last two decades, using FSAs become practical in term of frequency bandwidth 

allocation.  

While FSAs provide a fast and low-cost electronic scanning, due to antenna design limitation, the 

width of its main beam in FSAs can be wider than needed for a typical application, which results 

in poor angular resolution. Thus appropriate signal processing for improving the angular 

resolution is necessary.  

The Poly-Grames Research Center of École Polytechnique de Montréal has conducted research 

projects on the possibilities of designing low-cost scanning antennas for meteorological 

applications. In order to achieve the desired angular resolution in a weather radar, the main beam 

of antenna radiation pattern has to have a beamwidth of about two degrees [7]. Employing PAA 

would have required hundreds of array elements, which together, with their electronics, would 

have made the array expensive. Therefore, different FSA antennas were designed to improve the 

cost/performance trade-off observed in this project. Consequently, evaluating the angular 

resolution capabilities of the designed antennas and finding signal processing algorithms to 

enhance their resolution in order to conform to application requirements became a priority.  

  

1.2 Motivations 

Considering meteorological applications as the main focus of this research, FSAs were chosen as 

a means to achieve fast and low-cost scanning, the goal of this research is to evaluate the 

performance of several available FSA scanning systems in order to explore the possibility of 

improving them by suggesting changes in the scanning system. Thus, the angular resolution of 

selected scanning systems will be analyzed. Appropriate signal processing methods to enhance 

the resolution will be proposed and their performance limitations in the context of two novel FSA 
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antennas will be studied. The methodology followed in this research included developing of a 

signal model representing our scanning system and proposing means to extend angular 

superresolution methods applicable to the signal model.  

Furthermore, since the practical FSA antennas and scanning system outputs can have deviations 

from the chosen signal model, appropriate calibration and pre-processing algorithms have to be 

considered. The selection of suitable calibration method will be done depending on the selected 

superresolution algorithms. 

Finally, in order to find the limitations and achievable performance of each superresolution 

algorithm for each selected FSA scanning system, the validity of proposed methods will be 

studied analytically and through various experiments. The conditions through which each 

selected method could perform correctly and deliver its best performance in such conditions will 

be given. 

 

1.3 Summary of Contributions 

In this thesis, frequency scanning as a means for fast and low-cost angular scanning is studied 

and the angular resolution and direction of arrival (DOA) estimation methods of scanning 

systems based on frequency scanning antennas are investigated.  

Most of the reported works on superresolution and DOA estimation for electrical scanning are 

based on phase array antennas, and usually imply that signals are available or can be controlled at 

all or at subsets of array elements. Few works were found on improving angular resolution of 

single-channel antenna scanning systems and no previous work was found on single-channel 

antenna frequency scanning. Two signal processing methods, the maximum likelihood (ML) 

estimation and the minimum variance beamforming (MVB) estimation, were adapted for DOA 

estimation and angular resolution improvement of frequency scanning antennas. The proposed 

methods are the extension of the original methods defined for PAA. Moreover, the conditions 

that have to be met in order to extend the proposed methods to single-channel antenna scanning 

systems are deduced using simulations and analytical considerations.  Furthermore, it is shown 

analytically and using simulations that the spatial smoothing methods used for decorrelation of 



4 

 

 

coherent incoming signals arriving to the antenna, can be extended to single antenna scanning 

systems, provided that certain previously defined conditions are met. 

In addition, a novel hybrid scanning method is proposed. This method is to be used when the 

antenna design limits the achievable angular resolution. In such cases, the hybrid design can 

serve as a relatively fast scanning with relatively fine resolution scanning solution.  

Finally, simulations and experimental results are provided to support the applicability of 

suggested algorithms and to evaluate the results. 

Parts of this research was published in two IET Radar, Sonar and Navigation journal papers [11]-

[12] that are presented in chapter 3 and 5 of this thesis. 

 

1.4 Thesis Outline 

The thesis is organized as follows. Chapter 2 briefly reviews the literature on superresolution and 

DOA estimation domain for phase array antennas and also some corresponding cases for 

mechanical scanning and frequency scanning antennas.  

In Chapter 3, a signal model that applies to FSA antennas is presented and the two existing DOA 

estimation methods, MVB and ML, which have been extended to FSA antennas are briefly 

described. In addition, the necessary compensation methods used to overcome gain and antenna 

pattern variations with frequency during the FSA scan are presented. Considering a radar system 

with a FSA antenna, the multiple targets DOA estimation capabilities of the system are evaluated. 

Representative simulation results are given and the performance of selected methods with respect 

to different system parameters is evaluated. Furthermore, an FSA system is selected, and the 

results of the proposed methods, using the measured antenna patterns of the selected novel FSA 

based on a CRLH waveguide are reported. 

In Chapter 4, an analytic study of the methods proposed in Chapter 3 is given. In addition, it is 

shown that subspace-based methods can be applied to single-channel antennas, scanning either 

mechanically or electrically, as long as certain conditions apply. Moreover, it is shown 

analytically that in case of coherent incoming signals, the spatial smoothing method can be 
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applied to decorrelate the signals, and therefore the DOA estimation can be applied to the single-

channel antenna scanning systems such as the frequency scanning antennas considered in this 

research. 

In Chapter 5, an experiment with a new novel frequency scanning reflector antenna is performed 

and the achievable angular resolution is investigated. In addition, an angular resolution 

enhancement method introduced in previous chapters is applied to obtain the presented results. 

Since design limitations restrict the angular resolution enhancement for this specific antenna, a 

novel hybrid method that combines mechanical scanning with frequency scanning is also 

introduced. The angular resolution of the hybrid system is given and the discussion regarding the 

trade-offs between the scanning speed and achieved resolution are provided.  

In Chapter 6, a general discussion of the article, how it fits in the thesis and its connections is 

provided. Conclusions and recommendation for future use are provided in Chapter 7.  
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CHAPTER 2 REVIEW OF LITERATURE  

 

As mentioned before, with the advent of new applications in imaging, wireless communication, 

automotive radars and meteorology, there is a need for low cost smart scanning systems.  

While small and inexpensive mechanical scanning systems can be used for several applications, 

the cost of rotational parts and maintenance is the main drawback. In addition, mechanically 

scanning systems have limited scanning speed. Another option is to employ phase array antennas. 

Array technologies have been studied for decades. Phase array antennas have the advantages of 

being agile and of supporting fast scanning, however they require electronically controlled phase 

shifters which are complex and expensive. 

Frequency scanning can provide fast and agile scanning and be inexpensive too. While FSAs can 

scan electronically and without any mechanical rotation, they can be modeled like mechanical 

scanning antennas. This is because FSAs have only one input/output port and therefore many of 

the original algorithms used to represent multi-channel antennas cannot be applied to FSAs 

without modifications. 

Considerable amount of work has been done on DOA estimation and superresolution algorithms 

applicable to multi-channel array antennas like phase array antennas. However, there have been 

much less reported studies on single-channel antennas angular resolution enhancement methods. 

In this chapter, some of the most known methods in superresolution and DOA estimation are 

discussed and the available corresponding angular resolution enhancement algorithms in single-

channel antennas are mentioned.  

 

2.1 Superresolution Methods 

The Cross Range (CR) or angular resolution in radars for two targets in the same range can be 

expressed as: 

∆𝐶𝑅 = 𝑅𝜃3𝑑𝐵,                                                           (2.1) 
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while 𝜃3𝑑𝐵 is the antenna main-beam 3dB beamwidth (represented in radians) and 𝑅 is the range 

(Figure 2-1). Therefore the angular resolution is limited by the antenna main-beam beamwidth. 

 

Radar

R

 

Figure 2-1: Angular resolution of radars is normally defined by the antenna beamwidth [13]. 

 

Many algorithms have been proposed in order to obtain angular resolution better than the ∆𝐶𝑅. 

These methods are called super-resolution, deconvolution or angular direction finding methods, 

depending on the applied algorithms. 

The superresolution methods can be divided into two major classes [14]-[15]. The first class, 

which is also known as parametric methods, builds a model of the spatial spectrum and 

introduces algorithms in order to find the unknown parameters in the defined model such as the 

DOA of signals received by an antenna. Using these methods isolated targets can be modeled, but 

complex targets may not be well presented. On the other hand, the number of signals, their 

position and amplitude should be estimated for this model. 

The second class, known as non-parametric models, tries to find the spatial spectral information 

using signal processing approaches such as spatial filtering [14]-[15]. In these methods extended 

targets are better represented and the number of received signals is assumed to be fixed so it does 

not need to be estimated. Isolated scatters, on the other hand, are not well modeled in this class. 
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2.2 Parametric Methods 

One of the most well-known superresolution methods is the Multiple SIgnal Classification 

(MUSIC) algorithm [16].  MUSIC uses eigenvector decomposition of the measured covariance 

matrix to locate closely placed targets with high resolution with an array of sensors.  

An extension of the MUSIC algorithm called Scan-MUSIC (SMUSIC) is presented in [17], [18] 

to resolve closely spaced targets in step-scanned single-channel mechanical scanning radar. In 

SMUSIC, the signal amplitude vector is formed by the antenna response as the antenna scans the 

field of view (FOV) in discrete steps. This replaces the vector of outputs of linear array antenna 

sensors.  

Methods like MUSIC which use eigenvector decomposition of the measured signal covariance 

matrix to estimate the location of targets are called subspace based methods. These methods do 

not work in the presence of correlated signals. Since the returns in radars are correlated, the DOA 

cannot be resolved using this method. However, spatial smoothing [19] can be used to overcome 

this problem. 

Spatial smoothing is applied to SMUSIC in [17], [20] by dividing the signal amplitude vector 

into subvectors and then performing spatial smoothing by subvectors averaging. This method 

offers poor results as the DOA seems to be different for each subvector. In order to resolve 

coherent signals, a technique based on interpolation of multiple shifted virtual linear arrays from 

beamspace data of signal amplitude vector is proposed in [21]. Spatial smoothing is then applied 

to the interpolated virtual arrays. This method has also an unsolved problem due to nonuniform 

Signal to Noise Ratio (SNR) profile across the virtual arrays. The work of Zhang et al. in [22] 

uses another method to decorrelate coherent signals. They impose signal decorrelation by 

transmitting orthogonal phase coded waveforms in each direction.  

The SMUSIC algorithm is used to achieve higher angular resolution in single-channel antennas 

in different applications like wireless communication [23], surveillance and imaging radars [22], 

and Millimeter Wave (MMW) real-beam radars [20]. However, no mathematical proof is 

presented for the validity of this method and the conditions that have to be respected for the 

correct functionality of SMUSIC are not derived in any of these works.  
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ESPRIT is another well-known superresolution algorithm used for array antennas with multiple 

sensors [24]. This method reduces computation and storage cost and it is more robust against 

array imperfections and errors compared to MUSIC. The improvements with ESPRIT are 

obtained by exploiting the fact that array sensors have displacement invariance so that the sensors 

are grouped in matched pairs with identical displacement vectors. Another advantage of ESPRIT 

is that, unlike MUSIC, complete knowledge of array manifold is not required in this method. 

However this method is not used for superresolution in single-channel scanning antenna, as the 

constraint of displacement invariance cannot be easily met for the samples in different scanning 

directions. Since ESPRIT is based on grouping sets of sensors with identical displacement in 

different vectors, extending this method to the single-channel antenna requires complex pre-

processing. So far, it seems that no work has been reported using ESPRIT in single-channel 

antennas. 

The CLEAN algorithm [25] is used widely in astronomy. In this method targets are considered as 

point sources. The algorithm tries to find the sources in the scene by iteratively finding a point 

source with the largest absolute value in the observed data and subtracting the system response to 

a source of this strength at that position from the observed data. The resulting residual data is 

used in the next iteration as the input observed data. The algorithm stops when a predefined limit 

is reached. The limit can be the detection of a specified number of sources, or when the residual 

data is reduced to noise power level. This algorithm works only if the scene does not include any 

large scale object. Another disadvantage of CLEAN is that, in each iteration subtraction is done 

only in relation with the largest absolute source value and the knowledge that other sources are 

present in the scene is not considered. The CLEAN algorithm is also used in microwave imaging 

in [26] where it is extended for the case of coherent radiation from target echoes from radar with 

antenna array transmitter. 

A relaxation (RELAX) algorithm is introduced in [27] as an extension to CLEAN. Here at each 

iteration when a new target is found as the target with largest value, all the previously found 

targets are also re-estimated. This results in a more accurate target estimate. The Zoom-FFT 

algorithm presented in [28] reduces the RELAX computational requirement and avoids zero-

padding of FFT that is used in RELAX. CLEAN-based algorithms are independent of the number 

of sensors in the array and can be applied to single-channel antennas as well. 
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Another superresolution method is the Matrix Pencil (MP) algorithm [29]. In this method, first 

the number of targets in the scene is found by analyzing singular values of a data matrix built 

from shifted versions of measured data. In the next step, the singular vectors of the built data 

matrix is used to construct two filter matrices. The filter matrices are constructed using the 

singular vectors for overlapping parts of the original data matrix and including only singular 

values which do not correspond to noise. In the final step, the two filter matrices are combined 

and the DOA of the target echoes are found by extracting the eigenvalues of the combined 

filtered matrix. The complex amplitudes of the target echoes can then be determined using a 

standard least-squares pseudo-inverse approach. Unlike MUSIC-based methods that require 

several snapshots in order to form the covariance matrix, the Matrix Pencil method only needs 

one snapshot to estimate the DOA and computing the covariance matrix is not required. The fact 

that signals are correlated has no impact on the performance of this method and it can be even 

extended to non-uniform array sensors. Unfortunately, this method is very sensitive to noise and 

measurement errors and it therefore cannot perform well in low SNR conditions. This method is 

designed to be used in array antennas and not been explored for single-channel antennas. 

Another superresolution method that can be used to determine targets position is the Maximum 

Likelihood (ML) estimation method [30] . In ML, high resolution target distribution is found by 

maximizing the likelihood function (probability density of the observed low resolution target 

distribution). The maximum likelihood estimator searches for the steering vectors which are 

closest to the received data vector. The unknown parameters (like the DOA and the targets signal 

amplitudes) in the data model can be accurately estimated by minimizing the noise which is the 

difference between the steering vector of the incoming signal and the received data vector. 

Reference [31] proposes a ML method to estimate DOA of multiple radar targets present in the 

main beam of a single-channel mechanically scanning radar. The estimator is derived for both the 

Conditional ML (CML) and Unconditional ML (UML) cases when target amplitude is 

deterministic or stochastic respectively in white Gaussian noise. The estimator algorithm uses the 

amplitude modulation of the backscatters echoes induced by antenna scanning.  

Another popular ML based methods is the Richardson-Lucy algorithm also called Expectation 

Maximization (EM) method [32]-[33]. This is a nonlinear iterative image restoration algorithm 

which considers noise with Poisson probability density. The algorithm performs best when 
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images contain point sources over a zero background, like astronomical images, and is therefore 

commonly used in astronomy. In [34] the Richardson-Lucy algorithm is used to achieve high 

angular resolution in mechanically scanning radar. The method is iterative but converges quickly 

and has little computational burden.  

In [35] a new superresolution method is proposed for single-channel scanning antennas which 

captures the antenna power in different directions and then uses a linear transformation to map 

the received power vector to a spectral vector. The DOAs are then estimated using spectral 

estimation approaches. This method can detect as many sources as half of the number of the 

angles that power measurements are done for, but it only works when the sources are 

uncorrelated. 

 

2.3 Non-Parametric Methods 

One of the most basic non-parametric superresolution approaches is the Least Square (LS) 

deconvolution method. This approach minimizes the squared difference between the 

received/measured data and the expected data (the convolution of antenna pattern and scene 

information). Using matrix form, the LS problem is ill-posed and provides a pseudo-inverse 

solution. This method is also known as matrix inversion method and is unstable in the presence 

of noise. A well-known method to overcome ill-posed problem is Tikhonov regularization [36]. It 

adds a regularization term also called penalty function in the minimization equation which 

performs as a distance function between the solution and the observed data, as well as the 

solution and desired properties. This method works well but it is relatively slow and produces 

smoothed results. A special case of Tikhonov regularization is Wiener filtering which can be 

achieved by selecting noise to signal power spectrum density ratio as the penalty function. 

Wiener filtering drawback is the ringing effects artefacts and the need for spectral noise 

estimation, but it is very fast [37]. Regularization can be extended by using a generalized penalty 

function, such as those used for sidelobe reduction in antenna pattern synthesis. The most 

commonly used functions are Gaussian, Hamming, Hann, and Blackman [37].  
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Minimum Mean Square Error (MMSE) is a method similar to the LS approach. It uses an 

arbitrary threshold and iteratively computes the covariance matrix of the signal and the 

superresolution scene information. The work on [38] uses MMSE for superresolution object 

detection in scanning radars. The basic form of MMSE where the noise and scene covariance 

matrices are known in advance is equivalent to applying a Wiener filter. 

A superresolution method proposed to overcome the inherent instability of the deconvolution 

approach is constraint iterative deconvolution [39]. The algorithm is using the geometric series of 

the inverse of the antenna pattern in the Fourier domain to construct its iterative form. In order to 

eliminate ringing artefacts in the result, the inverse Fourier transform of the estimated result 

(reflectivity magnitude of the scene) is computed at all iterations and a positivity constraint is 

applied to it. Then, it is converted back to the Fourier domain to be used in the next iteration. The 

algorithm achieves good resolution but it converges slowly.  

Superresolution can be studied from a Bayesian viewpoint [40] using the maximum a posteriori 

(MAP) estimation method. The basic motivation to use Bayesian-based methods is to incorporate 

the prior knowledge about the sources in the scene into the superresolution algorithm. The prior 

information about the unknown source signals can be deduced from the probability distribution 

of the unknown. Therefore in radar imaging, statistics of probability distribution of targets can be 

used to estimate the targets distribution. The MAP estimation method incorporates the prior 

information about target distribution into the estimation problem. Using MAP, it is essential to 

determine a suitable prior information model that describes some statistical properties of the 

scene. The work in [41] presents a MAP framework to improve angular resolution in 

mechanically scanning radars. It is assumed that the unknown targets in the scene have a Poisson 

distribution. In [42], MAP algorithm is used to improve weather radar images. The unknown 

targets in the scene are considered to have exponential distribution. The algorithm requires heavy 

computations and optimisation. 

Capon Minimum Variance Spectral Estimation (MVSE) or Minimum Variance Beamforming 

(MVB) [43] is a non-parametric model that concerns finding targets at a desired frequency. This 

method uses a weighting that depends on the frequency of interest and finds the optimum weights 

by minimizing the energy contributed by interferers (the filter output energy) while keeping unit 
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gain at the desired frequency. This method requires estimation and inverting the covariance 

matrix of the observation. An extension of Capon’s method for mechanically step scanning radars 

is proposed in [43], [21]. Several variations of this method are also developed, like the General 

Capon beam-former (GCB) [44], which can be used even in the case of nonlinear sampling. GCB 

is used in [45] for azimuth resolution enhancement in mechanically scanning radars. 

Another technique based on successive FFT conversion is super Spatially Variant Apodization 

(Super-SVA) [46]-[47]. SVA is a nonlinear operation which can be used to reduce the sidelobes 

artefacts [48]. SVA is a special form of MVSE but it does not require matrix inversion. Super-

SVA achieves higher resolution by eliminating the sidelobes of the signal which consequently 

increases the bandwidth of it. In this method, first the FFT of the sampled data is computed and 

then the SVA is applied to the frequency domain signal to reduce sidelobes. After converting 

back the signal to the time domain by IFFT, the inverse weights are applied and then the signal is 

truncated to keep the bandwidth extension less than 60% of the original one. The central portion 

of the spectrum is then replaced by the original data.  This procedure is repeated until the 

bandwidth reaches a desired threshold. 

Another Capon-like method is the Amplitude and Phase Estimation of Sinusoid (APES) method, 

for complex spectral estimation [49]. This method is based on adaptive Finite Impulse Response 

(FIR) filtering which can achieve lower sidelobes and narrower spectral peaks than the 

conventional FFT method. Moreover, this approach has even a better spectral estimation than 

Capon method as it includes an estimate of the noise and interference covariance matrix to find 

the weights. To compute the sample data covariance matrix, both forward and backward 

covariance matrixes are used which can yield a numerically better condition matrix. 

Singular Value Decomposition (SVD) is another approach in which the antenna pattern is 

decomposed into two orthogonal matrices and a diagonal matrix with singular values in the 

diagonal. Any singular value which is smaller than a threshold is set to zero and then the antenna 

pattern is constructed again using the new singular value matrix. The inverse of the new antenna 

pattern matrix is calculated while the inverse of the singular values set to zero in previous step are 

set to zero again [38]. Removal of small singular values, which are responsible for the 
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amplification of noise, results in a better performance compared to the case when all singular 

values are used. However, removal of too many singular values may lead to biased estimation. 

 

2.4 Background Theory of the Selected Methods 

In this thesis, two methods have been chosen, one parametric method (ML estimation) and one 

non parametric method (Capon method) and they were extended to be applicable in single-

channel frequency scanning antennas. The ML method has good performance in low SNR 

conditions and works well in presence of multipath and the Capon method is a simple 

beamforming approach with good spectral estimation capability. The selected methods are among 

the most popular and practical DOA estimation methods. 

The original superresolution methods proposed for array antennas are presented in this section in 

details for reference. 

 

2.4.1 Signal Model of PAAs 

In order to be able to describe these superresolution methods, first a signal model for the received 

signals of an array antenna is presented here. 

Consider having an M-element uniform linear array. If a narrow-band signal from a known 

source in far-field impinges the array at the direction (𝛾𝑘) with respect to boresight, the complex 

response signals at the output of the array elements can be expressed as: 

𝒙(𝑙) =  𝒂(𝛾𝑘)𝑠(𝑙) + 𝒏(𝑙),    𝑙 = 1,… , 𝐿                                       (2.2) 

with: 

𝒙(𝑙) = [

𝑥1(𝑙)

𝑥2(𝑙)
⋮

𝑥M(𝑙)

] , 𝒏(𝑙) = [

𝑛1(𝑙)
𝑛2(𝑙)

⋮
𝑛M(𝑙)

] , 𝒂(𝛾𝑘) = [

1
𝑒𝑗𝜙

⋮
𝑒𝑗(𝑀−1)𝜙

]. 
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Here, 𝒙(𝑙) is the output of elements of array, L is the number of snapshots in time, 𝒂(𝛾𝑘) is the 

steering vector at direction 𝛾𝑘, 𝑠(𝑙) is a scalar denoting the complex amplitude of the incoming 

signal, 𝒏(𝑙) is zero mean white Gaussian noise at each element and 𝜙 is: 

𝜙 =
2𝜋

𝜆
 𝑑 sin 𝛾𝑘.                                                   (2.3) 

Where d is the distance between two elements and  is the wavelength of signals. If K signals 

impinging the array from the angles 𝜸 = [𝛾1, 𝛾2 , … , 𝛾𝐾], then the array response can be expressed 

as: 

𝒙(𝑙) = 𝑨(𝜸)𝒔(𝑙) + 𝒏(𝑙),                                                (2.4) 

with: 

𝑨(𝜸) = [𝒂(𝛾1), 𝒂(𝛾2),… , 𝒂(𝛾𝐾)],                                            (2.5) 

𝒔(𝑙) = [𝑠1(𝑙), 𝑠2(𝑙), … , 𝑠K(𝑙)]𝑇 .                                             (2.6) 

In case of single-channel antenna, a signal amplitude vector is formed by the antenna response as 

it scans the field of view (FOV) and it replaces the vector of outputs of a linear antenna array 

sensor (Fig 3-1). Therefore 𝒂(𝛾𝑘) in (2.2) will be replaced with 𝒂(𝜃𝑚 , 𝛾𝑘) which is the one-way 

antenna pattern at the angle 𝛾𝑘 when the antenna is pointed at the angle 𝜃𝑚 (Fig 3-2). However, if 

the antenna is part of a monostatic radar pointing to a scene and the signals impinging the antenna 

are from passive targets instead of emitters, then the 𝒂(𝜃𝑚 , 𝛾𝑘) will be the two-way antenna 

pattern. Note that one snapshot in array antenna is taken from all array elements at the same time, 

but in single-channel antenna one snapshot is taken from the antenna output at each scan position 

with relatively the same delay in each scan position. Also note that in all the above mentioned 

works in single-channel antenna domain, the antenna pattern is considered invariant in all 

steering directions, similar to the case of mechanical scanning antennas. The rest of formulation 

(2.4 to 2.6) will stay the same. 
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2.4.2 ML Estimation 

In array antennas, the ML estimator searches for the M steering vectors which are most probable 

to give the array received data vectors [30], [50].  The ML solution searches for maximum of the 

likelihood function 𝑝(𝒙 |𝜸, 𝒔) which is the probability density function of the data vector 𝒙 

conditioned to the unknowns (𝜸, 𝒔): 

𝑀𝐿(𝜸, 𝒔) =  max
𝜸,𝒔

𝑝(𝒙|𝜸, 𝒔).                                                 (2.7) 

Considering that each element of the noise vector 𝒏(𝑙) has a white complex Gaussian probability 

distribution function with zero mean and variance of 𝜎2, 𝒏(𝑙) is modelled as white complex 

Gaussian noise with zero mean and covariance matrix of 𝜎2𝑰 

𝒏(𝑙)  ~ 𝒞𝒩(0, 𝜎2𝑰).                                                      (2.8) 

If the incoming signals are deterministic and the array received data vector, 𝒙(𝑙) is a stationary, 

zero-mean, complex Gaussian process with  𝜸, 𝒔(𝑙), and 𝒏(𝑙) as unknown parameters, then the 

probability density function of the data vector 𝒙 conditioned to the unknowns (𝜸, 𝒔(𝑙)) is 

𝑝(𝒙(𝑙) |𝜸, 𝒔(𝑙)) =
1

(𝜋𝜎2)𝑀
exp (−

(𝒙(𝑙)−𝑨(𝜸)𝒔(𝑙))𝐻(𝒙(𝑙)−𝑨(𝜸)𝒔(𝑙))

𝜎2 ),                     (2.9) 

where (. )𝐻 denotes complex conjugate transpose. Using log likelihood of (2.9), 𝜸 and 𝒔(𝑙) can be 

estimated by minimizing the noise which is the difference between the steering vector of the 

incoming signal 𝑨(𝛾)𝒔(𝑙)  and the array’s received data vector 𝒙(𝑙) instead of (2.7). The method 

can be stated in least square form as: 

min
𝜸 ,𝐬(𝑙)

∑ ‖𝒙(𝑙) − 𝑨(𝜸)𝒔(𝑙)‖2𝐿
𝑙=1 .                                            (2.10)  

In order to minimize the above function, first 𝒔(𝑙) can be found as a function of 𝜸 and inserted 

back to form a function of only 𝜸. The estimate of 𝒔(𝑙) is a standard Least Squares (LS) solution 

[14] is: 

𝒔̂(𝑙) = [𝑨𝐻(𝜸)𝑨(𝜸)]−1𝑨𝐻(𝜸)𝒙(𝑙).                                        (2.11) 

After substituting the signal estimate back into (2.10), the minimization function can be rewritten 

as: 
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min
𝜸

∑ ‖𝒙(𝑙) − 𝑷𝑨𝒙(𝑙)‖2𝐿
𝑙=1 = min

𝛾
tr{𝑃𝐴

⊥𝑹𝑥̂},                               (2.12) 

with: 

𝑷𝑨 = 𝑨(𝛾)[𝑨𝐻(𝛾)𝑨(𝛾)]−1𝑨𝐻(𝛾)    and      𝑷𝑨
⊥ = 𝐼 − 𝑷𝑨 .                      (2.13) 

and 𝑹𝑥 is array’s output covariance matrix  

𝑹𝑥 = 𝐸{𝒙(𝑙)𝒙(𝑙)𝐻} =  𝑨(𝛾)𝑹𝒔𝑨
𝐻(𝛾) + 𝜎𝑛

2𝑰,                               (2.14) 

while 𝑹𝒔 = 𝐸{𝒔(𝑙)𝒔(𝑙)𝐻} is the signal covariance matrix and 𝜎𝑛
2𝑰 is the white complex Gaussian 

noise with zero mean and covariance matrix 𝑹𝑥 can be approximated with : 

𝑹𝒙 ≈  𝑹𝒙 
̂ = 

1

𝐿
∑ 𝒙(𝑙)𝒙(𝑙)𝐻𝐿

𝑙=1 .                                           (2.15) 

Therefore DOA can be found using the following minimization function: 

𝜸̂ = argmin
𝜸

tr{𝑷𝑨
⊥𝑹𝑥̂} = argmax

𝜸
tr{𝑷𝑨𝑹𝑥̂}.                                 (2.16) 

If the incoming signals are stochastic, then instead of signal waveform 𝒔(𝑙), the signal covariance 

matrix (𝑹𝑠) has to be estimated along with other unknown parameters. Therefore, the 

minimization function would be more complicated. 

In low SNR conditions, ML methods perform better than subspace methods. However, the 

minimization function requires a non-linear multi-dimensional search which is computationally 

very intensive. In order to reduce the computational load many modifications to ML estimation 

method are proposed. For example, the alternating projection algorithm uses an iterative 

relaxation-based technique in which the equation is minimized in each step using one signal 

parameter while other parameters are kept fixed [50]. In single-channel antennas, the ML 

estimator is proposed to be applied to the single-channel mechanically scanning antenna signal 

model in similar way [31]. 

 

2.4.3 Capon Method 

In beamforming, linear combination of the antenna outputs is formed by first multiplying each 

output 𝑥𝑖 by a complex weight 𝑤𝑖 and then summing all the terms (2.17) [14]. By controlling 
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amplitude and phase of each element (changing the complex weights), it is possible to adjust the 

side lobe levels, form different number of beams and also perform beam-steering and null-

forming in desired directions. The weighted output of the antenna array can be represented by 

𝑦(𝑙) = ∑ 𝑤𝑖
𝐻𝑥𝑖

𝑀
𝑖=1 (𝑙) =  𝒘𝐻𝒙(𝑙).                                         (2.17) 

The conventional beamformer maximizes the output power of the array for a given input signal. 

The noise is assumed to be spatially white and the norm of 𝒘 is constrained to unity. The 

maximization problem can be stated as: 

max
𝒘

𝐸{|𝒘𝐻𝒙|2}   subject to    𝒘𝐻𝒘 = 1.                                    (2.18) 

The solution to this maximization problem is: 

𝒘𝐵𝐹 =
𝒂(𝛾)

√𝒂(𝛾)𝐻𝒂(𝛾)
 ,                                                      (2.19) 

and the estimate of output power at direction γ is: 

𝑃𝑦(γ) =
𝒂(𝛾)𝐻𝑹𝒙 ̂ −1

𝒂(𝛾)

𝒂(𝛾)𝐻𝒂(𝛾)
  .                                                 (2.20) 

The angles corresponding to the highest peaks in the output power spectrum signify the directions 

of the incoming signals. The conventional beamformer has the limitation that it cannot resolve 

two sources spaced closer than the beamwidth of the array. Therefore, when there is more than 

one signal present within the beamforming interval, its performance is poor. Better resolution can 

be achieved by Capon beamformer. The Capon beamformer minimizes the power of signal-plus-

noise at the output of the beamformer subject to the constraint that the response of the 

beamformer to the desired signal with parameter 𝛾 is fixed [14], [43]. The optimization problem 

can be stated as: 

min
𝒘

𝒘𝐻𝑹𝒙 
̂ 𝒘      subject to    𝒘𝐻𝒂(𝛾) = 1.                                  (2.21) 

Using ( 𝑹𝒙 
̂  ) as the estimate of output covariance matrix computed from the array outputs 

samples, the solution is: 

𝒘𝑐𝑎𝑝𝑜𝑛 = 
𝑹𝒙 ̂ −1

𝒂(𝛾)

𝒂𝐻(𝛾)𝑹𝒙 ̂ −1
𝒂(𝛾)

 .                                                (2.22)  
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The full rank matrix inversion in Capon algorithm is computationally intensive. Besides, in 

presence of correlated signals Capon’s method fails. In such situation spatial smoothing can be 

used to decorrelate signals. Many other beamforming methods exist trying to maximize the 

output signal to interference-plus-noise ratio, minimize mean square error, and so on. Extension 

of Capon’s method for mechanically stepped scanning radar is proposed in [21] to be applied to 

the single-channel mechanically scanning antenna signal model. 

 

2.4.4 Subspace Methods  

Subspace or Eigen-structure methods in PAAs are based on spectral decomposition of antenna 

arrays output covariance matrix ( 𝑹𝑥). The eigen-decomposition of  𝑹𝑥 is:  

𝑹𝑥 = ∑ λ𝑚𝒗𝑚𝒗𝑚
𝐻𝑀

𝑚=1 ,                                                   (2.23) 

where λ𝑚 and 𝒗𝑚 are eigenvalues and eigenvectors of  𝑹𝑥 respectively. Arranging λ𝑚, in 

descending order, (λ1 ≥ λ2 ≥ ⋯ ≥ λ𝐾 ≥ λ𝐾+1 = λ𝐾+2 = ⋯ = λ𝑀) the first K eigenvalues 

correspond to the K signals. The K corresponding eigenvectors are referred to as the signal-

subspace eigenvectors (𝑬𝑠). The eigenvectors corresponding with the last M−K eigenvalues are 

referred to as the noise-subspace eigenvectors (𝑬𝑛).  

Subspace methods are based on the fact that the signal subspace spanned by the signal-subspace 

eigenvectors is orthogonal to the noise subspace spanned by the noise-subspace eigenvectors, i.e.:  

𝑠𝑝𝑎𝑛{𝑬𝑠} ⊥ 𝑠𝑝𝑎𝑛{𝑬𝑛}.                                                 (2.24) 

On the other hand, the signal subspace is also spanned by the steering vectors:  

𝑠𝑝𝑎𝑛{𝑬𝑠} = 𝑠𝑝𝑎𝑛{𝑨}.                                                  (2.25) 

So we have:  

𝒂(𝛾)𝐻𝑬𝑛 = 0.                                                                 (2.26) 

A typical subspace method having high resolution property is the MUSIC algorithm. The pseudo-

spectrum in MUSIC is composed as:  
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𝑃(𝛾) =   
1

𝒂(𝛾)𝐻𝑬𝑛𝑬𝑛
𝐻𝒂(𝛾)

 .                                                       (2.27) 

The K largest peaks of the pseudo-spectrum give the angle of arrival associated with K incoming 

signals. If the rank of the covariance matrix is smaller than the number of signals, (i.e., if there 

are coherent signals) the true steering vectors are not orthogonal to the noise subspace. In this 

situation the MUSIC algorithm will not provide correct DOA. Consequently, in multipath 

environment, spatial smoothing has to be used to decorrelate the coherent signals impinging the 

array [19]. Spatial smoothing is achieved by dividing the array into several overlapped subarrays. 

Then the average of subarrays covariance matrices is used to resolve the DOA of coherent 

signals. In single-channel antenna domain, SMUSIC [17], [18] is introduced for mechanical 

scanning radars to be applied to the single-channel mechanically scanning antenna signal model. 

 

2.4.5 Spatial Smoothing 

Spatial smoothing is a method to decorrelate signals impinging a uniform linear array [19]. The 

details of this method are presented in [19] and are repeated in this section for reference. 

As mentioned before, subspace-based methods are based on the assumption that the signal-

subspace eigenvectors are orthogonal to the noise subspace eigenvectors. Considering at least two 

of the incoming signals are coherent, i.e. 𝑠2 = 𝛼𝑠1, with 𝑠1 and  𝑠2 are incoming signals with 

respect to angles of 𝛾1 and 𝛾2, and 𝛼 is a complex value that represents the gain and phase 

difference between two coherent signals, the signal matrix and antenna response matrix in (2.5) 

and (2.6) can be rewritten as: 

𝒔 = [ (1 + 𝛼)𝑠1, … , 𝑠𝐾]T,                                                (2.28) 

𝑨(𝜸) = [𝒂(𝛾1) + 𝛼𝒂(𝛾2) , 𝒂(𝛾3),… , 𝒂(𝛾𝐾)].                                 (2.29) 

Since two of the incoming signals (𝑠1 and  𝑠2) are coherent, from (2.28) and (2.29) it can be 

concluded that the signal covariance matrix 𝑹𝒔 is a (𝐾 − 1) × (𝐾 − 1)  matrix of rank 𝐾 − 1 and 

matrix 𝑨  has 𝐾 − 1 independent columns. Therefore, there will be only 𝐾 − 1 eigenvalue of  𝑹𝑥 
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corresponding to signal subspace and applying subspace based methods only 𝐾 − 1 can be 

detected. 
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Figure 2-2: Spatial smoothing scheme in uniform linear arrays 

 

In spatial smoothing, the uniform linear array is divided into overlapping subvectors of  𝒙{𝑝} 

for 1 < 𝑝 < 𝑃, where 𝑃 is the number of subvectors each containing Q samples of  𝒙, so that  

𝑃 = 𝑀 − 𝑄 + 1 (see Fig. 2-2). Then we have: 

𝒙{𝑝} =  𝑨 𝑫𝑝−1𝒔 + 𝒏{𝑝}       for        1 < 𝑝 < 𝑃,                               (2.30) 

where 𝑫𝑝−1 are diagonal matrices defined as: 

𝑫𝑝−1 =

[
 
 
 
 𝑒

−𝑗
2𝜋

𝜆
 𝑑 (𝑝−1)𝑠𝑖𝑛 𝛾1 0 ⋯ 0

0 𝑒−𝑗
2𝜋

𝜆
 𝑑 (𝑝−1)𝑠𝑖𝑛 𝛾2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑒−𝑗
2𝜋

𝜆
 𝑑(𝑝−1) 𝑠𝑖𝑛 𝛾𝐾]

 
 
 
 

.          (2.31) 

The spatially smoothed covariance matrix 𝑹𝒑  is: 

𝑹𝒑 =
1

𝑃
∑ 𝒙{𝑝}𝒙{𝑝}𝐻

𝑃

𝑝=1
=  𝑨( 

1

𝑃
∑ 𝑫𝑝−1𝑹𝒔𝑫𝑝−1

𝑯 )𝑨𝑯
𝑃

𝑝=1
+ 𝜎2𝑰,                (2.32) 

and the spatially smoothed signal covariance matrix is: 
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𝑹𝒔
̅̅ ̅ =

1

𝑃
∑ 𝑫𝑝−1𝑹𝒔𝑫𝑝−1

𝑯
𝑃

𝑝=1
 .                                             (2.33) 

In order to be able to apply subspace based DOA estimation methods, the modified signal 

covariance matrix 𝑹𝒔
̅̅ ̅ should be nonsingular and should have the rank of K. It is shown in [19] 

that for P ≥ K, 𝑹𝒔
̅̅ ̅ will be full rank and nonsingular. This is proven by rewriting 𝑹𝒔

̅̅ ̅ as: 

𝑹𝒔
̅̅ ̅ = 𝑻 𝑻𝑯,                                                           (2.34) 

where 𝑻 is a 𝐾 × 𝑃𝐾 block matrix defined by: 

𝑻 = [𝑪 ,𝑫1𝑪,… ,𝑫𝑝−1𝑪 ].                                               (2.35) 

In (2.35), matrix 𝑪 is the Hermitian square root of  
1

𝑃
𝑹𝒔 defined as: 

𝑪𝑪𝑯 =
1

𝑃
𝑹𝒔 .                                                          (2.36) 

It can be concluded from equation (2.34) that rank of 𝑹𝒔
̅̅ ̅ is the same as rank of 𝑻 (𝑟𝑎𝑛𝑘(𝑹𝒔

̅̅ ̅) =

 𝑟𝑎𝑛𝑘(𝑻) = 𝑟𝑎𝑛𝑘(𝑻𝑯)) and consequently if 𝑻 is non-singular, 𝑹𝒔
̅̅ ̅ will be non-singular too.  

In order to find the rank of  𝑻 and prove it is non-singular, a new matrix 𝑻́ is constructed by 

permutation of columns of matrix 𝑻. As column permutation does not change matrices rank, the 

rank of 𝑻 and 𝑻́ are equal. Therefore, the matrix 𝑻́ is: 

𝑻́ = [
𝑐11𝒃𝟏 𝑐12𝒃𝟏  ⋯ 𝑐1𝐾𝒃𝟏

⋮ ⋮ ⋮
𝑐𝐾1𝒃𝑲       𝑐𝐾2𝒃𝑲         𝑐𝐾𝐾𝒃𝑲

].                                     (2.37) 

In (2.37),  𝑐𝑖𝑗 are the elements of matrix 𝑪, and 𝒃𝑖 (i = 1,.., K) are the vectors of: 

𝒃𝑖 = [1, 𝑒−𝑗
2𝜋

𝜆
 𝑑 𝑠𝑖𝑛 𝛾𝑖 , … , 𝑒−𝑗

2𝜋

𝜆
 𝑑(𝑃−1) 𝑠𝑖𝑛 𝛾𝑖].                                (2.38) 

For 𝑃 ≥ 𝐾, the 𝒃𝑖 vectors are linearly independent and form a Vandermode matrix. Also each 

row of C has at least one nonzero element. Thus matrix 𝑻́ is full rank and non-singular and has 

rank K. 

Consequently 𝑻   and 𝑹𝒔
̅̅ ̅ has rank K and therefore it is possible to detect all K of signals using 

spatial smoothing when incoming signals are coherent. 
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In the next chapter, the applicability and performance of the Capon MVB method along with 

spatial smoothing and the ML estimation method on FSA scanning systems are studied.  
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Abstract: In this work, we address the problem of resolving angular position of multiple targets in 

the same range and separated by less than an antenna beamwidth using frequency scanning array 

(FSA) antennas.  First, the frequency scanning antenna signal model is derived and then the 

necessary compensation methods to overcome antenna pattern variations with frequency during 

the scan in FSAs are presented. Two direction-of-arrival (DOA) estimation algorithms, the 

minimum variance beamforming (MVB) and the maximum likelihood (ML) estimation are 

applied on the signal model. Simulation results show that both methods can separate targets with 

angular separations smaller than a beamwidth by selecting correct parameters. The performance 

of the two DOA estimation methods with respect to different system parameters are investigated 

based on the signal model through Monte Carlo simulations and compared with the Cramér–Rao 

lower bound (CRLB). In addition, an FSA antenna is presented in this work and simulations of 

the DOA estimation algorithms are performed using the measured antenna pattern of this 

antenna. The performance and limitations of target DOA estimation methods for the measured 

antenna patterns are also discussed. 

 

3.1 Introduction 

Low-cost electronically scanning radars are receiving considerable attention. Frequency scanning 

arrays (FSAs) are a solution to achieve low-cost and agile electronically scanning radars, without 
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the need for phase shifters on the array elements. Unlike conventional FSAs that require 

frequency variation over a wide bandwidth [9], new FSAs using dispersive feed networks based 

on metamaterial guiding structures, can scan a wide angular range using a small bandwidth [10]. 

Therefore, using FSAs become practical in term of frequency bandwidth allocation. However, 

when the length of the array is limited, the width of its main beam can be wider than needed for a 

typical radar application, which results in poor angular resolution. Thus appropriate signal 

processing for improving the angular resolution is necessary.  

Examples of FSA utilization in high resolution radars are presented in [7], [51]. This paper is 

considering a system that is used to estimate the angular position of targets using standard 

direction of arrival (DOA) algorithms. A pulsed step frequency mode of operation is assumed. 

Although angular resolution in an FSA antenna is obtained along with range resolution in [52], 

[53], improving angular resolution beyond beamwidth limitations in FSA has not been studied. 

Consequently, considering the low cost of FSAs compared to phased arrays, it is relevant to 

develop methods to improve the angular resolution of systems based on such antennas. 

Unlike phased array antennas, in FSAs, all the radiating elements are fed with a waveguide 

having a frequency dispersive characteristic. So, the array elements can be assumed connected to 

each other and there is only one input/output port for all the antenna elements. Therefore the FSA 

can be modelled like a mechanically or electronically scanning antenna, with the difference that 

each part of the field of view (FOV) is illuminated by a different frequency related to the angle of 

transmission. This differs from multiport antennas such as phased arrays in which elements can 

be weighted to shape the beam. 

There are several superresolution algorithms that are able to detect signals separated by less than 

an antenna beamwidth. These algorithms are making use of multi-channel array antennas. DOA 

estimation methods based on maximum likelihood (ML) [54] and superresolution subspace 

methods like MUSIC [16] and ESPRIT [55] are some of the most well-known algorithms. 

However, there has been little work on improving angular resolution of a single channel antenna, 

so that it can resolve signals from directions separated by less than one beamwidth [17], [21], 

[31], [35], [45], [56]-[60]. In this work we use two angular resolution improvement methods, 



26 

 

 

minimum variance beamforming (MVB) [43] and ML estimation, which were previously applied 

to mechanically scanning antennas [31], [45]  and adapt them for FSA antennas.  

The paper is organized as follows. Section 3.2 briefly reviews the literature on single channel 

antenna superresolution and DOA estimation domain. In Section 3.3, a signal model that applies 

to FSA antennas is presented. In Section 3.4, the necessary compensation methods used to 

overcome gain and antenna pattern variations with frequency during the scan in FSA are 

presented. In Section 3.5, the MVB and ML estimation methods are briefly described. In Section 

3.6, representative simulation results are given and the performance of selected methods with 

respect to different system parameters is evaluated. In Section 3.7, an FSA antenna is presented 

and the performance of the ML and MVB methods are evaluated for this FSA. Conclusions and 

remarks are provided in Section 3.8.  

 

3.2 Brief Overview of Recent Works on DOA Estimation with 

Single Channel Antennas 

Most of the work in the single channel antenna superresolution and DOA estimation domains is 

based on the fact that antenna scanning induces amplitude modulation on signal backscatters and 

therefore, by utilizing prior knowledge of the antenna pattern, the angular position of targets can 

be extracted [56], [57]. For example, Ly [17] developed a MUSIC based technique called scan-

MUSIC (SMUSIC) to resolve target positions within a beam. In this method, the signal amplitude 

vector is formed using the response of the antenna as it scans the FOV. This differs from multi 

sensor array antennas in which multiple sensor outputs is used to form the signal amplitude 

vector. However, subspace based methods do not work in the presence of correlated signals. In 

order to resolve correlated signals, in Ref. [17] the signal vector is divided into subvectors and a 

forward subvector averaging is performed as a form of spatial smoothing [19]. Ref. [21] proposes 

a technique based on interpolation of multiple shifted signal vectors from beamspace data to 

virtual multi sensor array antennas. Spatial smoothing is then applied to the interpolated vectors. 

This method has performance limitations due to nonuniform signal-to-noise ratio (SNR) profile 

across the interpolated vectors. 
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As an alternative to MUSIC based methods, beamforming approaches can be applied to the 

signal amplitude vectors. Reference [52] studied the special case of a conventional beamformer 

in FSA antennas. Capon’s MVB is also used in [21] to resolve DOA of signals in scanning 

antennas. Extension of the MVB method for step scanning radars is proposed in [45]. Unlike 

MUSIC based methods, beamforming methods do not need prior knowledge on the number of 

targets. 

In [31], DOAs of multiple radar targets present in the main beam of a rotating antenna are 

estimated using the same concept as in [17] to form signal amplitude vector and by applying the 

ML technique. Both cases of conditional and unconditional ML are studied in [31]. A simplified 

version of the same method is presented in [58] as the pseudo-monopulse algorithm for target 

direction estimation and compared with the monopulse technique. An asymptotic maximum 

likelihood estimator is also used in [59], [60] for detecting targets and estimating their complex 

amplitude and DOA in mechanically rotating antennas.  

In [35], DOAs of multiple uncorrelated sources in single channel scanning antennas are estimated 

by measuring the power of the radiation pattern received during scanning. Then the vector of 

power measurements is transformed into a vector of spectral observations. Finally, DOA 

estimation is performed by spectral analysis methods. 

In this paper, the effectiveness and performance of two of the above methods, MVB with spatial 

smoothing and ML estimation, when applied to FSA antennas are evaluated and compared. Using 

a FSA antenna, there is no need for mechanical rotation of the antenna which could be an 

advantage if targets move rapidly. FSA also enable agile operation not limited by constraints of 

mechanical systems. The selected methods are applicable to coherent signals and therefore they 

are able to estimate DOA of multiple targets. 

 

3.3 Problem Formulation 

In FSA antennas, the main beam direction varies by changing the carrier frequency of the 

transceiver. This is achieved by using a series feed structure, in which the phase shift between 
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adjacent element ports varies as a function of frequency. Using the simple delay line concept, the 

direction of the beam 𝜃𝑚 can be expressed as: 

sin(𝜃𝑚) =
𝜆

𝑑
(

𝑠

𝜆𝑔
− 𝑎)                                                      (3.1) 

where 𝑠 is the length of the feed line between element ports, 𝜆 is the free-space wavelength, 𝜆𝑔 is 

the wavelength in the feed line, d is the distance between radiating elements in the aperture plane, 

and a is an integer (see Fig. 3-1) [8]. The main beam direction 𝜃𝑚 is taken with respect to the 

normal of the antenna aperture. When the frequency varies, 𝜆 and 𝜆𝑔 change at different rates 

which causes a variation of 𝜃𝑚. 

 

 

Figure 3-1: Schematic representation of a frequency scanning antenna and the process of 

selecting N frequencies for which the main beam is in the 𝛥𝑓𝑜𝑣 angular range 

 

The field of view (FOV) of the antenna corresponds to the angular sector scanned by the main 

beam direction when the frequency is swept over the complete frequency bandwidth of the 

antenna. Consider K targets present in the FOV at the same known range of  𝑅𝑙 =
𝑐𝑡𝑙 

2
  , where 𝑡𝑙 

is the time for receiving an echo from targets at the range 𝑅𝑙 and c is the speed of light. When the 

antenna main beam of an FSA radar is steered in the direction 𝜃𝑚, the received baseband signal 

can be written as 
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𝑥𝑟(𝑡𝑙 , 𝜃𝑚) =  ∑ 𝑠𝑘(𝑓𝑚)𝑔𝑚(𝛾𝑘)𝑒
−𝑗2𝜋𝑓𝑚𝑡𝑙 

𝐾

𝑘=1
+ 𝑛(𝑡𝑙 , 𝜃𝑚),                        (3.2) 

where 𝑓𝑚 is the carrier frequency when the FSA beam is pointed at the angle  𝜃𝑚, 𝑠𝑘(𝑓𝑚) is the 

complex signal scattered from the k-th target with the angular position 𝛾𝑘, 𝑔𝑚(𝛾𝑘) is the two-way 

antenna pattern at the angle 𝛾𝑘 when the antenna is pointed at the angle 𝜃𝑚 (see Fig. 3-2), 

and  𝑛(𝑡𝑙 , 𝜃𝑚) is the complex white Gaussian noise coming from the scene and introduced by the 

receiver components. It has been assumed that the Doppler shift of the echo can be neglected. 

 

Figure 3-2: Two-way antenna gain pattern. 

 

If the antenna pattern is approximated with a virtual linear array antenna pattern as: 

ℎ(𝜃𝑚, 𝛾𝑘) =  𝐻𝑚  
sin(𝑁𝑒 𝜓/2)

sin( 𝜓/2)
          𝜓 = 𝛽𝑑[sin(𝛾𝑘) − sin(𝜃𝑚)],                    (3.3) 

where 𝐻𝑚  is the maximum gain, 𝑁𝑒 is the number of elements in the array antenna, and  𝛽 is the 

wave number, the two-way antenna pattern at the angle 𝛾𝑘 when the antenna is pointed at the 

angle 𝜃𝑚 can be approximated as:  

𝑔𝑚(𝛾𝑘) =  ℎ2( 𝜃𝑚, 𝛾𝑘).                                                    (3.4) 

It is assumed that the phase response of the antenna pattern can be removed by appropriate a 

priori calibration of the FSA. In the vector notation of the signal model, the complex echo signal 

vector and the steering vector for a target at angle 𝛾𝑘, when the antenna is steered to the angles 

𝜃𝑚 with 𝑚 =  1, . . , 𝑀 are defined as: 

𝒔𝑘 = [ 𝑠𝑘(𝑓1), 𝑠𝑘(𝑓2),… , 𝑠𝑘(𝑓𝑀)]𝑇,                                          (3.5) 
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𝒂(𝛾𝑘) = [ 𝑎(𝜃1, 𝛾𝑘), 𝑎(𝜃2, 𝛾𝑘),… , 𝑎(𝜃𝑀, 𝛾𝑘)]
𝑇,                                 (3.6) 

where (. )𝑇 denotes the transpose operation, M is the total number of the frequencies, and steering 

vector elements are: 

𝑎(𝜃𝑚 , 𝛾𝑘) = 𝑔𝑚(𝛾𝑘)𝑒
−𝑗2𝜋𝑓𝑚𝑡𝑙.                                             (3.7) 

With K targets at directions 𝜸 = [𝛾1, 𝛾2 , … , 𝛾𝐾], the antenna response matrix and targets echo 

matrix are: 

𝑨(𝜸) = [𝒂(𝛾1), 𝒂(𝛾2) , … , 𝒂(𝛾𝐾)],                                           (3.8) 

𝑺 = [ 𝒔1, 𝒔2, … , 𝒔𝐾].                                                       (3.9) 

Eq. (3.2) can be rewritten in the vector form as: 

𝒙𝒓 = (𝑨(𝜸) ⊙ 𝑺)𝟏𝑲×𝟏 + 𝒏 ,                                             (3.10) 

where ⊙ is the Hadamard product, 𝟏𝑲×𝟏is a column vector of ones, and 𝒙 and 𝒏 are: 

𝒏 =  [ 𝑛(𝑡𝑙, 𝜃1), 𝑛(𝑡𝑙, 𝜃2),… , 𝑛(𝑡𝑙, 𝜃𝑀)]𝑇,                                    (3.11) 

𝒙𝒓 = [ 𝑥𝑟(𝑡𝑙, 𝜃1), 𝑥𝑟(𝑡𝑙, 𝜃2), … , 𝑥𝑟(𝑡𝑙, 𝜃𝑀)]𝑇.                                (3.12) 

Note that the received signal 𝑥𝑟(𝑡𝑙, 𝜃𝑚) comprises the responses of all the visible targets when the 

FSA is operated at frequency 𝑓𝑚. It has been assumed that the targets cross sections do not 

change when the transmitted frequency changes, which may be a valid assumption when the used 

bandwidth is narrow.  Then we have: 

𝑠𝑘 = 𝑠𝑘(𝑓1) =  𝑠𝑘(𝑓2) = ⋯ = 𝑠𝑘(𝑓𝑀),                                      (3.13) 

and 

𝒔 = [ 𝑠1, 𝑠2, … , 𝑠𝐾]T.                                                    (3.14) 

Thus the data model can be simplified to: 

𝒙𝒓 = 𝑨(𝜸)𝒔 + 𝒏.                                                       (3.15) 

The objective is to estimate the vector of target angular positions 𝜸 while the targets complex 

echo vector, 𝒔 is unknown. 
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3.4 Calibration and Interpolation 

When using FSAs, some preprocessing steps are required before applying subspace based target 

DOA estimation methods in which spatial smoothing is required. Spatial smoothing works when 

steering vectors can be divided into shift invariant overlapping subvectors [19]. It can be easily 

shown that shift invariant subvectors can be formed from the steering vector only if: 

1) the steering vector only includes the main beam of the antenna pattern, 

2) the gain of the antenna pattern in different steering angles are balanced,  

3) and the angular separation between steering angles (|𝜃𝑚 − 𝜃𝑚+1|) are uniform. 

In order to achieve the above properties the following compensation methods are considered. 

First, the FOV is divided into several sectors called 𝛥𝑓𝑜𝑣 and DOA estimation methods are 

performed for each  𝛥𝑓𝑜𝑣 separately to find targets that are present in that sector. Using small 

𝛥𝑓𝑜𝑣 reduces the computational complexity. In addition, for each 𝛥𝑓𝑜𝑣, only N of the 

frequencies (N < M) for which the main beam belongs to that 𝛥𝑓𝑜𝑣, are used in (3.5-3.14) (Fig. 

3-1). As mentioned before, using our signal model, the subspace based target DOA estimation 

methods work well only if, for each 𝛥𝑓𝑜𝑣, only the beams having their main beam in that sector 

are considered in the superresolution computations. 

Furthermore, in a practical FSA the maximum gain of the antenna pattern always vary with 

frequency. This variation must be compensated using suitable calibration prior to processing. In 

order to compensate existing gain imbalance, one of the N frequencies in the set of fixed 

frequencies 𝑓𝑛 (n=1,..,N) is selected as a reference (𝑓𝑟), and the ratio between the amplitude of 

antenna pattern for the corresponding reference pointing angle (𝜃𝑟) with respect to other steering 

angles are chosen as compensation weights 𝑐(𝜃𝑛) =
𝑔𝑟(𝜃𝑟)

𝑔𝑛(𝜃𝑛)
 . The compensation matrix is then 

formed as follows: 

𝑪 = diag[ 𝑐1, 𝑐2, … , 𝑐𝑁],                                                 (3.16) 

and the calibrated antenna response matrix 𝑨𝒄(𝛄) is: 

𝑨𝒄(𝛄) = 𝑪𝑨(𝛄).                                                        (3.17) 



32 

 

 

Therefore (3.15) can be modified to:  

𝑪𝒙𝒓 = 𝑨𝒄(𝛄)𝒔 + 𝑪𝒏.                                                    (3.18) 

This process involves antenna pattern measurement and it has to be done once offline.  

Moreover, according to (3.1), by changing the frequency in uniform steps, the antenna steering 

angle will change nonlinearly. In other words, the steps between steering angles [𝜃1, 𝜃2, … , 𝜃𝑁] 

are not equal. We can thus write 

𝜃𝑛 = 𝜃1 + ∑ 𝛥𝜃𝑖
𝑛−1
𝑖=1 ,                                                   (3.19) 

where 𝛥𝜃𝑖 is the angular step between beam steering angles. While in some FSAs this 

nonlinearity can be small and negligible, the performance of spatial smoothing degrades when 

uniform frequency steps are assumed in the model. Therefore, an interpolated version of 

𝑨𝒄(𝛾) can be used in (3.18) in which the relation between steering angle and frequency is linear. 

Interpolation is performed using a method similar to the algorithm presented in [61] by 

computing an interpolation matrix. 

First, for each sector (𝛥𝑓𝑜𝑣) a set of interpolation angles is defined:   

𝜞 = [𝛾̅1, … , 𝛾̅𝐷],                                                        (3.20) 

where D is the number of hypothetical DOAs of targets that are only used for interpolation.   

Then, an interpolation matrix is computed by mapping 𝑨𝒄(𝜞) = [𝒂𝒄(𝛾̅1), 𝒂𝒄(𝛾̅2) , … , 𝒂𝒄(𝛾̅𝐷)]  to 

a virtual matrix 𝑨̅(𝜞) = [𝒂̅(𝛾̅1), 𝒂̅(𝛾̅2) , … , 𝒂̅(𝛾̅𝐷)]. This is done so that in each virtual steering 

vector 𝒂̅(𝛾𝑑) = [ 𝑎̅(𝜃̅1, 𝛾̅𝑑), 𝑎̅(𝜃̅2, 𝛾̅𝑑),… , 𝑎̅(𝜃̅𝑁 , 𝛾̅𝑑)]𝑇 the steps between virtual steering angles 

[𝜃̅1, 𝜃̅2, … , 𝜃̅𝑁] will be equal: 

𝜃̅𝑛 = 𝜃1 + (𝑛 − 1)𝛥𝜃 ,    𝛥𝜃 =  
|𝜃1−𝜃𝑁|

N
                                     (3.21) 

with 𝑛 =  1, . . , 𝑁. It is assumed that the virtual matrix 𝑨̅(𝜞) can be obtained by linear 

interpolation of the real matrix 𝑨𝒄(𝜞), so that  

𝑨̅(𝜞) = 𝑩𝑨𝒄(𝜞).                                                       (3.22) 

In which the interpolation matrix 𝑩 is the least square solution of (3.22) that should be found 

only once offline.  
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Thus, the signal model in (3.15) can be modified to: 

𝒙̅𝒓 =  𝑩𝑪𝒙𝒓 =  𝑩𝑪𝑨(𝛄)𝒔 + 𝑩𝑪𝒏 ,                                         (3.23) 

where 𝒙̅𝒓 is the corrected received data vector. Note that noise is no longer white in (3.23) and 

noise-whitening is also required. 

 

3.5 Proposed DOA Estimation Methods 

Brief descriptions of the target DOA estimation methods exploited in this paper are presented in 

this section for completeness. 

3.5.1 Minimum Variance Beamforming  

Using adaptive beamforming, a weight vector (𝒘) is applied to the corrected received data vector 

𝒙̅𝒓  in a way that, in the beamformer output, the desired signals are emphasized and noise is 

suppressed. 

𝒚 = 𝒘𝐻𝒙̅𝒓.                                                            (3.24) 

MVB is an adaptive beamforming approach which determines the optimum weight vector by 

minimizing the power of signal plus noise at the output of an adaptive beamformer 𝑬[|𝒘𝐻𝒙̅𝒓|
2] . 

The minimization is subject to the constraint that the response of the beamformer to the desired 

signal with parameter 𝛾 is fixed [43]. The optimization problem can be stated as: 

min
𝑤

𝒘𝐻𝑹̂̅ 𝒘      subject to    𝒘𝐻𝒂̅(γ) = 1,                                   (3.25) 

Where 𝒂̅(γ) =  𝑩𝒂𝒄(γ) and the sampled data covariance matrix 𝑹̂̅  is: 

𝑹̂̅ =
1

𝐿
∑ 𝒙̅𝒓𝒙̅𝒓

𝑯𝐿

𝑙=1
,                                                      (3.26) 

L is the number of snapshots or complete scans over the FOV. The solution to the optimization 

problem in (3.25) is: 

𝒘̂(γ) =
𝑹̂̅−1𝒂̅(γ)

𝒂̅𝐻(γ)𝑹̂̅−1𝒂̅(γ)
.                                                    (3.27) 
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And the estimate of output power at direction γ is: 

𝑃𝑦(γ) =
1

𝒂̅𝐻(γ)𝑹̂̅−1𝒂̅(γ)
.                                                   (3.28) 

If the target response is coherent, 𝑹̂̅ will be rank deficient and the algorithm will fail to resolve 

targets. In order to decorrelate target responses and to obtain a full rank covariance matrix, spatial 

smoothing [19] can be used. In spatial smoothing, the sampled data vector is divided into 

overlapping subvectors of  𝒙̅𝑟
{𝑖}

 for 1 < 𝑖 < 𝑃, where 𝑃 is the number of subvectors each 

containing Q samples of  𝒙̅𝒓, so that  𝑃 = 𝑁 − 𝑄 + 1. The data covariance matrix can be then 

estimated by: 

𝑹𝒇
̅̅̅̂̅ =

1

𝑃
∑ 𝑹̂̅{𝑖} 

𝑃

𝑖=1
.                                                     (3.29) 

Spatial smoothing works when the number of subvectors is equal to or larger than the number of 

targets (P ≥ K) and the size of each subvector 𝑄 is at least K+1[19]. Therefore we have: 

𝑁 ≥ 2𝐾.                                                             (3.30) 

The optimal subvector size is computed in [62] as: 

𝑄𝑜𝑝𝑡 = 0.6(𝑁 + 1).                                       (3.31) 

 

3.5.2 Maximum Likelihood Estimation  

The use of maximum likelihood (ML) to estimate multiple target directions in scanning antennas 

is presented in [31]. The same method can be used for the case of an FSA antenna as the FSA 

signal model is similar to the one found in [31]. The only difference is that in the FSA signal 

model, the antenna response matrix 𝑨(𝛾) contains an extra phase term.  Note that the 

interpolation step is not needed for the ML estimation method and the signal model in (3.18) or 

(3.15) is used for this method. Considering that each element of the noise vector n has a white 

complex Gaussian probability distribution function with zero mean and variance of 𝜎2, n is 

modelled as white complex Gaussian noise with zero mean and covariance matrix of 𝜎2𝑰  
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𝒏 ~ 𝒞𝒩(0, 𝜎2𝑰),                                                       (3.32) 

Therefore the probability density function of the data vector 𝒙𝒓 conditioned to the unknowns 

(𝜸, 𝒔) is 

𝑝(𝒙𝒓|𝜸, 𝒔) =
1

(𝜋𝜎2)𝑁
exp (−

(𝒙𝒓−𝑨(𝛾)𝒔)𝐻(𝒙𝒓−𝑨(𝛾)𝒔)

𝜎2 ).                             (3.33) 

The ML estimation of 𝜸 and 𝒔 can be found by maximizing the conditional probability density 

function of 𝒙𝒓 with respect to 𝜸 and 𝒔. If 𝒔 is modelled as a deterministic unknown vector and 𝜸 

as a deterministic constant vector then the conditional ML will be:  

𝜸̂, 𝒔̂ = argmax
𝜸,𝒔

{𝑝(𝒙𝒓|𝜸, 𝒔)}.                                              (3.34) 

The above maximization gives the estimate of 𝜸̂ and 𝐬̂ as:  

𝒔̂ = (𝑨𝑯𝑨)−1𝑨𝑯𝒙𝒓,                                                     (3.35) 

𝜸̂ = argmax
𝜸

 𝒙𝑟
𝐻𝑨(𝑨𝑯𝑨)−1𝑨𝑯𝒙𝒓.                                         (3.36) 

It is assumed that no prior knowledge is available for DOAs of  𝜸 = [𝛾1, 𝛾2 , … , 𝛾𝐾]. The ML 

method can detect targets in both cases of correlated and non-correlated signals. It also has good 

performance in presence of noise and in the cases where only as few as one scan of the FOV is 

available. However, for K targets, the ML method requires a K-dimensional search over FOV to 

find the DOAs. Therefore when the considered number of targets increases, the ML estimation 

becomes more computationally intensive. In addition, ML estimation requires prior knowledge of 

the number of targets. This number has to be estimated in a preprocessing step if no prior 

information is available. 

 

3.6 Simulation Results with Emulated Antenna Pattern 

In order to verify the performance of the proposed methods with respect to different system 

parameters, a two-way antenna pattern which is approximated using the array factor of a linear 

array with uniform amplitude weighting as presented in (3.3) is used.  
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For this simulation, carrier frequency is considered to be changing between 8 GHz and 8.5GHz in 

N=21 steps according to (3.1). This corresponds to the operation of an FSA described in [64], 

which scans between -9.7 and 7.7 degrees in nonuniform steps in frequency. The -3dB 

beamwidth of these patterns is 13 degrees. 

In addition, the 𝛥𝑓𝑜𝑣 is selected to be the range of [-6, 6] degrees, and simulations are done to 

detect targets in this region. As an arbitrary but representative example, a benchmark with two 

targets is considered. Targets are assumed to be at the same range and at -3 and 3 degrees with 

respect to boresight.  The number of beams in the selected  𝛥𝑓𝑜𝑣 N and the subvector size Q are 

selected equal to N=21 and 𝑄𝑜𝑝𝑡= 13 according to (3.31). The targets amplitude vector 𝒔  in 

(3.14) is assumed to consist of two coherent random complex numbers (𝑠2 = 0.9𝑠1) and n is a 

white Gaussian noise vector. The SNR is defined as the total power of the received signals over 

the noise power.  

Fig. 3-3 shows the result of applying the MVB method (Eq. 3.28) in two different SNR 

conditions of SNR = 20dB and SNR = 5dB. It can be seen that at SNR = 20dB, the targets are 

detected at 𝛾1 = -3 and 𝛾2= 3 degrees (Fig. 3-3a). However, when SNR = 5dB the MVB method 

cannot detect two targets in the  𝛥𝑓𝑜𝑣 (Fig. 3-3b). The ML method also detects the targets DOA 

at  𝛾1 = -3 and 𝛾2= 3 degrees when SNR = 20dB and 𝛾1 = -2 and 𝛾2= 4 degrees when SNR = 

5dB. Note that the interpolation step described in Section 3.4 is applied with the MVB method. 

Also note that both methods are implemented with one degree resolution.  

In order to evaluate the performance of the two methods with respect to different parameters, the 

root mean square error (RMSE) of the targets DOA estimation is calculated. Given the above 

setup the RMSE is defined as:   

RMSE = √𝐸[∑ (𝛾𝑘 − 𝛾𝑘̂)2𝐾
𝑘=1 ],                                                 (3.35) 

where E(.) is the expected value estimated using 100 Monte Carlo trials and K=2 is the number of 

targets. The Cramér–Rao Lower Bound (CRLB) [63] which serves as an optimality criterion for 

DOA estimation is also computed and presented for evaluation of the results. CRLB estimation 

of real parameters based on a complex data vector with complex Gaussian probability density 
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function is computed according to equations given in [31] and [63] with minor modifications and 

reported in Appendix A.  

 

         a  

 

b 

Figure 3-3: Results of applying the MVB method along with spatial smoothing. 

a) SNR=20dB. b) SNR=5dB. 
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Fig. 3-4 shows the RMSE of DOA estimation obtained with the two methods as a function of the 

SNR. In that simulation, two targets were also assumed to be at -3 and 3 degrees and the number 

of beams was also set to N=21. The estimation results in Fig. 3-4 show that in low SNR situations 

(SNR <10dB), the DOA estimation performance is low.  For SNR values lower than 10dB, the 

ML method can detect two targets with a total error of 4 to 6 degrees and the MVB method 

cannot detect two targets in the 𝛥𝑓𝑜𝑣. For the MVB method, when two targets cannot be 

separated from each other in more than 5% of the trials, the RMSE values is not plotted in the 

figures 3-4, 3-5 and 3-8, as RMSE calculation becomes ambiguous. Also note that both methods 

are implemented with one degree resolution. Accuracy corresponding to this resolution is 

achieved when SNR is above 15dB for the ML method and above 20dB for the MVB method. 

 

 

Figure 3-4: RMSE of target DOA estimation methods versus SNR for N= 21, 𝛾1 = -3 and 𝛾2= 3. 

 

Fig. 3-5 shows the RMSE obtained with the two methods as a function of N, the number of 

beams in the 𝛥𝑓𝑜𝑣 form the received signal vector. For this simulation, the SNR is fixed at 20dB 

and other parameters including 𝛥𝑓𝑜𝑣 and the frequency range are kept unchanged. This means 
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that by increasing N, the beams will be closer to each other. It can be seen that for the ML 

method, increasing N decreases the RMSE. The MVB method also has better performance when 

the number of beams is large (more than 21). However, this method cannot detect two targets in 

the 𝛥𝑓𝑜𝑣 when N < 21.  

 

 

Figure 3-5: RMSE of target DOA estimation methods versus N, SNR=20dB, 𝛾1 = -3 and 𝛾2= 3. 

 

Next, the impact of angular separation of the two targets on the RMSE is studied (Fig. 3-6). It can 

be seen that using the ML method, the RMSE decreases when the angular separation between the 

two targets increases which means that ML can detect two targets more accurately when they 

have larger angular distance from each other. However, when using the MVB method, the RMSE 

increases if the angular separation between two targets is larger than 8 degrees. This is due to the 

fact that for this simulated antenna patterns and with the current settings, the angular separation 

between two targets larger than 8 degrees requires sampling from sidelobes of some of the 

antenna patterns, which decreases the performance of the MVB method. 
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Figure 3-6: RMSE of target DOA estimation methods versus angular separation between two 

targets SNR=20dB, and N= 21. 

 

3.7 Simulation Results with Real Antenna Pattern 

In this section the performance of the two considered DOA estimation methods is studied by 

taking into account the antenna patterns of a real FSA antenna. The antenna was designed to 

work in the X-band and the measured antenna patterns are used in the simulations.  

Fig. 3-7a shows the two-way radiation pattern of an 8-element FSA which is built based on a 

composite right/left-handed (CRLH) waveguide with air-filled double-ridge waveguide [64]. The 

antenna scans the angles between -5 to 35 degrees by changing the frequency from 8 to 8.8 GHz 

in 40 steps. The half-power beamwidth of the antenna varies between 15 and 21 degrees for the 

different steering angles. This FSA antenna can scan the FOV continuously with controllable 

frequency steps. 
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a 

 

b 

Figure 3-7: Measured FSA 2-way antenna gain pattern in the range 8-8.8 GHz with frequency 

steps of 20 MHz. a) Non-Calibrated b) Calibrated beams for N=31 
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The 𝛥𝑓𝑜𝑣  is selected to be the range of [6, 24] degrees, and simulations are done to detect targets 

in this region. As an arbitrary but representative example, a benchmark with two targets is 

considered. Targets are to be at the same range and at 9 and 21 degrees with respect to boresight. 

The number of beams in the selected 𝛥𝑓𝑜𝑣 N and the subvector size Q are selected equal to N = 

31 and 𝑄𝑜𝑝𝑡= 19 according to (3.31). The targets amplitude vector 𝒔 in (3.14) is assumed to 

consist of two coherent random complex numbers and n is a vector of white Gaussian noise. 

In this FSA, the beamwidth and the gain of the antenna main beam is changing for the various 

steering angles (Fig. 3-7a). Furthermore, the antenna steering angle changes nonlinearly when the 

frequency is changed in uniform steps. Therefore, the compensation methods discussed in 

Section 3.4 is applied before applying the MVB method. Fig. 3-7b shows the calibrated antenna 

patterns. 

Fig. 3-8 shows the RMSE of DOA estimation for the two methods as a function of the SNR. The 

estimation results in Fig. 3-8 show that in low SNR situations (SNR < 5 dB), the ML method can 

detect two targets with total error of 4 to 7 degrees while the MVB method cannot separate two 

targets in more than 5% of trials and therefore is not plotted. 

Fig. 3-9 shows the impact of angular separation of two targets on the RMSE. The achieved 

results agree with the results in the previous section. It can be seen that using the ML method, the 

RMSE decreases when the angular separation between two targets increases, which shows that 

the ML method can detect two targets more accurately when they have more angular distance 

from each other. However, using the MVB method, the RMSE increases when the angular 

separation between two targets is larger than 12 degrees. Again, this is due to the fact that for this 

FSA and with the current settings, the angular separation between two targets larger than 12 

degrees requires sampling from sidelobes of antenna patterns, which decreases the performance 

of the MVB method. 
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Figure 3-8: DOA estimation RMSE versus SNR for N= 31, 𝛾1 = 9 and 𝛾2= 21. 

 

 

Figure 3-9: DOA estimation RMSE versus angular separation between two targets SNR=20dB, 

and N= 31. 
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3.8 Conclusion 

In this work, we addressed the problem of resolving the direction of arrival (DOA) of multiple 

radar targets separated by less than an antenna beamwidth using frequency scanning array (FSA) 

antennas. The FSAs are advantageous because frequency scanning can be done very rapidly and 

accurately, therefore it is easier to track moving targets. 

Performance of two DOA estimation algorithms, MVB and ML estimation are studied. These 

methods were first adapted for our signal model and their performance were investigated through 

Monte Carlo simulations and compared against each other in terms of root mean square error. 

Simulation results showed that in low SNR situations, the RMSE of DOA estimation is large and 

the MVB method cannot separate two targets. In addition, it was shown that sampling from 

sidelobes of the antenna pattern decreases the performance of the MVB method. In other cases, 

by selecting correct parameters, both methods can separate targets with angular separations 

smaller than the antenna pattern beamwidth. We have also presented a calibration scheme which 

worked efficiently when it was applied to different antenna pattern shapes at each frequency and 

nonuniform scanning angles. In the next step, the proposed methods will be applied to the 

experimental data captured from a radar experiment using real targets.  

 

3.9 Appendix A: CRLB Calculation 

Considering the complex-value amplitude 𝒔 being a deterministic unknown vector and defined 

as 𝑠𝑖 = 𝐴𝑖𝑒
𝑗Φ𝑖, then the vector of unknown parameters will be 𝜻 =

 [𝛾1, … , 𝛾𝐾, 𝐴1, … , 𝐴𝐾 , Φ1, … ,Φ𝐾]. 

In addition, assuming that n is modeled as white complex Gaussian noise with zero mean and 

covariance matrix of 𝜎2𝑰, then the Fisher information matrix [19] for our signal model in (3.2) 

can be written as: 

𝐽𝒊𝒋 = [𝑱]𝒊𝒋 =
2

𝜎2 Re {
∂𝝁𝐻

∂𝜁𝑖
 
∂𝝁

∂𝜁j
},                                                (3.36) 
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where 𝝁 = E{𝒙𝒓} =∑ 𝑠𝑘𝒂(𝛾𝑘)
𝐾
𝑘=1 . For the first K elements of 𝜻 that represent unknown targets 

DOA, we have: 

𝜕𝝁

𝜕𝜁𝑖
= 𝑠𝑖𝝑𝑖         𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝐾  ,                                           (3.37) 

where 𝝑𝑖 is the vector with elements of : 

[𝜗𝑖]𝑛 = 𝐻𝑛(
𝑁𝑒𝛽𝑑 cos(𝑁𝑒𝑢)sin(𝑁𝑒𝑢)cos (𝛾𝑖)

 sin2(𝑢)
− 

𝛽𝑑 cos(𝑢) sin2(𝑁𝑒𝑢) cos (𝛾𝑖)

 sin3(𝑢)
)𝑒−𝑗2𝜋𝑓𝑛𝑡𝑙 ,       (3.38) 

and 𝑢 =  𝛽𝑑 [sin(𝛾𝑖) − sin (𝜃1 +
𝑛

𝑁
(𝛥𝑓𝑜𝑣))] /2. 

The CRLBs are then calculated form diagonal elements of 𝑱−𝟏 as CRLB(𝛾𝑖) =   [𝑱]𝒊𝒊
−𝟏

. Therefore 

for one target (K=1), the CRLB(𝛾𝑖) will be:  

CRLB(𝛾𝑖) =  
1

2𝑆𝑁𝑅
 Re{𝝑𝑖

𝑯𝝑𝑖}.                                            (3.39) 
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CHAPTER 4 SUBSPACE BASED DOA ESTIMATION METHODS IN 

SCANNING ANTENNAS   

 

As mentioned before, in subspace-based methods and in the presence of coherent signals, spatial 

smoothing is required to decorrelate the coherent signals. Spatial smoothing is based on dividing 

the steering vectors into shift invariant overlapping subvectors. The validity of the spatial 

smoothing method in scanning antennas can be investigated by following the same method used 

in [19]. In this chapter the complete analysis of subspace based methods and spatial smoothing 

applicability in scanning antennas is presented.  

 

4.1 Ideal Signal Model for Scanning Antennas 

In Chapter 3, it is shown using simulations that the MVB method and spatial smoothing can be 

applied to scanning antennas when the steering vector has the following characteristics: 

 the steering vector only includes the main beam of the antenna pattern; 

 the gain of the antenna pattern in different steering angles are balanced;  

 and the angular separation between steering angles are uniform. 

In addition, the preprocessing steps including calibration and interpolation required before 

applying the MVB method, spatial smoothing and the subspace-based DOA estimation methods 

are described in section 3.4. The preprocessing is required to compensate for gain and angular 

steps variation in different scanning steps. 

In order to prove analytically the validity of the 3 conditions mentioned above, a scanning system 

which conforms to the proposed specifications is considered. The antenna pattern of such 

scanning system, including only the main beam, can be approximated with a Gaussian function 

[31]. Knowing that the 3dB beamwidth (𝐵𝑊) and the standard deviation of a Gaussian 

function (𝜎𝐺) are related as follows [65]: 

𝐵𝑊 =  2√2 ln (2) 𝜎𝐺,                                                    (4.1) 
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the antenna pattern can be written as: 

ℎ(𝜃𝑚, 𝛾𝑘) =  √𝐺 exp (−4 (ln 2) (
𝜃𝑚−𝛾𝑘

𝐵𝑊
)
2

),                                   (4.2) 

where 𝜃𝑚 is the pointing angle of the antenna beam and 𝐺 is the maximum gain. Consequently, it 

can be shown that the two-way antenna pattern at the angle 𝛾𝑘 when the antenna is pointed at the 

angle 𝜃𝑚 is: 

𝑔𝑚(𝛾𝑘) =  ℎ2(𝜃𝑚, 𝛾𝑘) = 𝐺 exp (−8 (ln 2) (
𝜃𝑚−𝛾𝑘

𝐵𝑊
)
2

).                           (4.3) 

 

Figure 4-1: Assumed Gaussian two-way antenna pattern ℎ(𝜃𝑚, 𝛾𝑘) for a beam pointing in the 

direction 𝜃𝑚 

 

Considering that 𝑎(𝜃𝑚 , 𝛾𝑘) = 𝑔𝑚(𝛾𝑘), then the steering vector for a target at angle 𝛾𝑘, when the 

antenna is pointed to the angles 𝜃𝑚 with 𝑚 =  1, . . , 𝑀 is defined as:  

𝒂(𝛾𝑘) = [ 𝑎(𝜃1, 𝛾𝑘), 𝑎(𝜃2, 𝛾𝑘),… , 𝑎(𝜃𝑀, 𝛾𝑘)]
𝑇,                                 (4.4) 

where (. )𝑇 denotes the transpose operation and M is the total number of the scanning angles. In 

order to respect the previously stated specifications, it is assumed that 𝐺 is equal in all beam 

directions and the steps between steering angles 𝛥𝜃 are equal so that: 
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𝜃𝑚 = 𝜃1 + (𝑚 − 1) 𝛥𝜃.                                                   (4.5) 

Considering K signals are received by antenna, the signal matrix 𝒔 and antenna response matrix 𝑨 

can be written as: 

𝒔 = [ 𝑠1, 𝑠2, … , 𝑠𝐾]T,                                                      (4.6) 

𝑨(𝜸) = [𝒂(𝛾1), 𝒂(𝛾2) , … , 𝒂(𝛾𝐾)].                                           (4.7) 

 The data model of the scanning system is: 

𝒙𝒓 = 𝑨(𝜸)𝒔 + 𝒏.                                                         (4.8) 

Note that a real scanning system normally do not conform to the three conditions mentioned 

above. In other words, in a real scanning system the steering vector also includes the sidelobes of 

the antenna pattern, the antenna pattern has different gains in different steering angles, and the 

angular separation between steering angles may not be uniform. 

 

4.2 Subspace Methods in Scanning Antennas 

From (4.8), the received data covariance matrix 𝑹 = 𝐸[𝒙𝒓 𝒙𝒓
𝑯] can be obtained as:  

𝑹 =  𝑨𝑹𝒔𝑨
𝑯 + 𝜎2𝑰,                                                      (4.9) 

where 𝑹𝒔 is the covariance matrix of the received signals 𝑹𝒔 = 𝑬[𝒔𝒔𝑯]. The noise is assumed to 

be white Gaussian with the variance of 𝜎2. In addition, signals and noise are assumed to be 

stationary zero mean uncorrelated random processes. The matrix  𝑹𝒔 is non-singular when the 

signals are uncorrelated or partially correlated, but singular when at least two of the signals are 

fully correlated.  

Considering the cases that signals are uncorrelated or partially correlated, and assuming that 𝜃1 =

0 and  
−8 ln2

𝐵𝑊2 = 𝑤 , then the matrix  𝑨 can be simplified to: 

𝑨 =  𝐺𝑨1𝑨2𝑨3.                                                        (4.10) 

with 
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𝑨1 = [

1 0 ⋯ 0

0 𝑒𝑤𝛥𝜃2
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑒𝑤(𝑀−1)2𝛥𝜃2

],                                      (4.11) 

𝑨2 = [

1 ⋯ 1
𝑒−2𝑤∆𝜃𝛾1 ⋯ 𝑒−2𝑤∆𝜃𝛾𝐾

⋮ ⋱ ⋮
𝑒−2𝑤(𝑀−1)∆𝜃𝛾1 ⋯ 𝑒−2𝑤(𝑀−1)∆𝜃𝛾𝐾

],                               (4.12) 

and 

𝑨3 = 

[
 
 
 𝑒

𝑤𝛾1
2

0 ⋯ 0

0 𝑒𝑤𝛾2
2

⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑒𝑤𝛾𝐾
2 ]
 
 
 

 .                                         (4.13) 

In equation (4.10), 𝑨1 and 𝑨3 are diagonal matrices with nonzero elements and therefore they are 

full rank and nonsingular. On the other hand, matrix 𝑨2 has a Vandermonde structure with 

distinct elements and linear independent columns when 𝑀 ≥ 𝐾. Therefore matrix 𝑨2 is also 

nonsingular and has rank K. Since 𝑨1,𝑨2, and 𝑨3 are all non-singular, matrix 𝑨 is non-singular 

and has rank K. As mentioned before, 𝑹𝒔 is non-singular for uncorrelated or partially correlated 

signals. Consequently, 𝑨𝑹𝒔𝑨
𝑯 is non-singular with rank K. 

Considering {𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑀} and {𝒗1, 𝒗2, … , 𝒗𝑀} eigenvelues and the corresponding 

eigenvectors of 𝑹, the above rank property imply that the first K eigenvalues are corresponding to 

the K received signals and the 𝑀 − 𝐾 minimal eigenvalues are equal to 𝜎2  and corresponding to 

noise 𝜆𝑖 = 𝜎2 for 𝑖 ≥ 𝐾 + 1 . In addition, the eigenvectors corresponding to the last 𝑀 − 𝐾 

eigenvalues, referred to as noise-subspace eigenvectors, are orthogonal to the steering vectors so 

that {𝒗𝐾+1, 𝒗𝐾+2, … , 𝒗𝑀} ⊥ {𝒂(𝛾1), 𝒂(𝛾2) , … , 𝒂(𝛾𝐾)}. 

The subspace based methods and eigenstructure techniques work only when rank 𝑹 is K and 

therefore the above properties holds. Since 𝑨𝑹𝒔𝑨
𝑯 is non-singular with rank K, subspace based 

DOA estimation methods and the MVB method which requires inversing the matrix 𝑹 are 

applicable to scanning antennas with the signal model defined in (4.8). 
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4.3 Subspace Methods in Scanning Antennas in the Presence of 

Coherent Signals 

Considering a case when at least two of the incoming signals are coherent, i.e. 𝑠2 = 𝛼𝑠1, with 𝑠1 

and  𝑠2 are incoming signals with respect to angles of 𝛾1 and 𝛾2, and 𝛼 is a complex value that 

may represent a difference of propagation delay and path loss, the signal matrix and antenna 

response matrix in (4.6) and (4.7) can be rewritten as: 

𝒔 = [ (1 + 𝛼)𝑠1, … , 𝑠𝐾]T,                                               (4.14) 

𝑨(𝜸) = [𝒂(𝛾1) + 𝛼𝒂(𝛾2) , 𝒂(𝛾3),… , 𝒂(𝛾𝐾)].                                (4.15) 

As two of the signals are coherent, from (4.14) and (4.15) it can be observed that the covariance 

matrix is a (𝐾 − 1) × (𝐾 − 1)  matrix of rank 𝐾 − 1 and therefore it will not be possible to 

detect all K signals using subspace methods. 

 

1 M-Q +1M-Q2 Q Q +1 Q +2
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{1}
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{2}
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{3}
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{P}
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Figure 4-2: Spatial smoothing scheme in scanning antennas 

 

In general, if from K incoming signals, v of them are coherent, the subspace based methods can 

detect only 𝐾 − 𝑣 DOAs. Spatial smoothing is an approach to decorrelate coherent signals and 

results in detecting all the DOAs [19] .  
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To apply spatial smoothing, the sampled data vector 𝒙𝒓 is divided into overlapping subvectors of  

𝒙𝑟
{𝑝}

 for 1 < 𝑝 < 𝑃, where 𝑃 is the number of subvectors each containing Q samples of  𝒙𝒓, so 

that for a total number of M scanning angles we have: 𝑃 = 𝑀 − 𝑄 + 1 (see Fig. 4-2). 

𝒙𝑟
{𝑝}

= 𝑼𝑝−1 𝑨 𝑫𝑝−1𝒔 + 𝒏{𝑝}       for        1 < 𝑝 < 𝑃,                          (4.16) 

where 𝑼𝑝−1 and 𝑫𝑝−1 are diagonal matrices defined as  

𝑫𝑝−1 = [

𝑒−2𝑤(𝑝−1)∆𝜃𝛾1 0 ⋯ 0
0 𝑒−2𝑤(𝑝−1)∆𝜃𝛾2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑒−2𝑤(𝑝−1)∆𝜃𝛾𝐾

],                  (4.17) 

And 

𝑼𝑝−1 = 

[
 
 
 𝑒

𝑤(𝑝−1)2𝛥𝜃2+2𝑤(𝑝−1)∆𝜃 0 ⋯ 0

0 𝑒𝑤(𝑝−1)2𝛥𝜃2+2𝑤2(𝑝−1)∆𝜃 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑒𝑤(𝑝−1)2𝛥𝜃2+2𝑤𝑄(𝑝−1)∆𝜃]
 
 
 
 

(4.18) 

The spatially smoothed covariance matrix 𝑹𝒇  can be written as: 

𝑹𝒇 =
1

𝑃
∑ 𝒙𝑟

{𝑝}
𝒙𝑟

{𝑝}𝐻
𝑃

𝑝=1
= 

1

𝑃
∑ 𝑼𝑝−1𝑨𝑫𝑝−1𝑹𝒔𝑫𝑝−1

𝑯 𝑨𝑯𝑼𝑝−1
𝑯

𝑃

𝑝=1
+ 𝜎2𝑰.          (4.19) 

As discussed before, in order to be able to apply subspace based DOA estimation methods, the 

rank of 𝑹𝒇 should be K. In order to find the rank of 𝑹𝒇, it is rewritten as 

𝑹𝒇  = 𝑽𝑻𝑯𝑻𝑽𝑯 +𝜎2𝑰,                                                  (4.20) 

where 𝑽 is a 𝑄𝑃 × 𝑃𝐾 block matrix defined by: 

𝑽 = [

𝑰𝑨 0 ⋯ 0
⋮ 𝑼1𝑨 ⋱ ⋮
0 0 ⋯ 𝑼𝑝−1𝑨

],                                           (4.21) 

and 𝑻 is a 𝐾 × 𝑃𝐾 block matrix defined by: 

𝑻 = [𝑪 ,𝑫1𝑪,… ,𝑫𝑝−1𝑪 ].                                                (4.22) 
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In (4.22), matrix 𝑪 is the Hermitian square root of  
1

𝑃
𝑹𝒔 defined as: 

𝑪𝑪𝑯 =
1

𝑃
𝑹𝒔.                                                          (4.23) 

From equation (4.21), it can be observed that matrix 𝑽 and 𝑽𝑯 are block diagonal, full rank and 

non-singular. Thus, 𝑹𝒇 and 𝑻 have the same rank (𝑟𝑎𝑛𝑘(𝑹𝒇) =  𝑟𝑎𝑛𝑘(𝑻) = 𝑟𝑎𝑛𝑘(𝑻𝑯)). 

Therefore if 𝑻 is non-singular, 𝑹𝒇  will be non-singular too. In order to find the rank of  𝑻 and 

prove it is non-singular, a new matrix 𝑻́ is constructed by permutation of columns of matrix 𝑻. As 

column permutation does not change matrices rank, the rank of 𝑻 and 𝑻́ are equal. 

𝑻́ = [
𝑐11𝒃𝟏 𝑐12𝒃𝟏  ⋯ 𝑐1𝐾𝒃𝟏

⋮ ⋮ ⋮
𝑐𝐾1𝒃𝑲       𝑐𝐾2𝒃𝑲         𝑐𝐾𝐾𝒃𝑲

].                                    (4.24) 

In (4.24),  𝑐𝑖𝑗 are the elements of matrix 𝑪, and 𝒃𝑖 (i = 1,.., K) are the vectors of: 

𝒃𝑖 = [1, 𝑒−2𝑤∆𝜃𝛾𝑖 , … , 𝑒−2𝑤(𝑃−1)∆𝜃𝛾𝑖].                                      (4.25) 

For 𝑃 ≥ 𝐾, the 𝒃𝑖 vectors are linearly independent and form a Vandermode matrix. Also each 

row of C has at least one nonzero element. Thus matrix 𝑻́ is full rank and non-singular and has 

rank K. 

Consequently 𝑹𝒇  has rank K and therefore it is possible to detect all K of DOA using spatial 

smoothing when incoming signals are coherent. 

 

4.4  Frequency Scanning Antennas  

The analysis done in Sections 4.2 and 4.3 is also valid for FSAs with the difference that in FSAs 

we have an extra phase variation due to the frequency shift between each steering direction, i.e. 

𝑎(𝜃𝑚 , 𝛾𝑘) = 𝑔𝑚(𝛾𝑘) 𝑒−𝑗2𝜋𝑓𝑚𝑡𝑙 . Assuming that the scanning frequency and antenna steering 

angle vary linearly and therefore the frequency steps between steering angles 𝛥𝑓 are equal so 

that 𝑓𝑚 = 𝑓1 + (𝑚 − 1) 𝛥𝑓, the equations 4.11 and 4.17 have the following form for FSA 

antennas: 
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𝑨1 = [

𝑒−𝑗2𝜋𝑓1𝑡𝑙 0 ⋯ 0

0 𝑒𝑤𝛥𝜃2−𝑗2𝜋𝑓2𝑡𝑙 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑒𝑤(𝑀−1)2𝛥𝜃2−𝑗2𝜋𝑓𝑀𝑡𝑙

],                   (4.26) 

And 

𝑼𝑝−1 = [

𝑒𝑤(𝑝−1)2𝛥𝜃2+2𝑤(𝑝−1)∆𝜃−𝑗2𝜋(𝑝−1)∆𝑓𝑡𝑙 ⋯ 0
0 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 𝑒𝑤(𝑝−1)2𝛥𝜃2+2𝑤𝑄(𝑝−1)∆𝜃−𝑗2𝜋(𝑝−1)∆𝑓𝑡𝑙

]. 

 (4.27) 

As it can be observed, matrix 𝑨1 is still a diagonal matrix with nonzero elements and therefore it 

is full rank and nonsingular. Consequently, 𝑨𝑹𝒔𝑨
𝑯 is non-singular with rank K. Therefore 

subspace based DOA estimation methods and the MVB method which requires inverting the 

matrix 𝑹 are applicable to FSA antennas too. In addition, the new 𝑼𝑝−1 is still diagonal with 

nonzero elements and therefore it is full rank and nonsingular. Consequently, matrices 𝑽 and 𝑽𝑯 

are block diagonal, full rank and non-singular. Thus equations 4.19 up to 4.25 for FSAs are the 

same as for scanning antennas. Therefore 𝑹𝒇  has rank K and it is possible to detect all K of DOA 

using spatial smoothing when incoming signals are coherent in FSAs too. 

 

4.5 Noise Whitening 

As it is mentioned in section 3.4, after interpolation and calibration the noise is not white 

anymore and noise pre-whitening is required. In this section the noise whitening procedure is 

presented. 

Considering that the calibrated signal model (3.23) can be simplified as: 

𝒙̅𝒓 =  𝑩𝒙𝒓 =  𝑩𝑨(𝛄)𝒔 + 𝑩𝒏 ,                                             (4.28) 

Where 𝑩 is the calibration matrix, the sampled data covariance matrix 𝑹̂̅  is: 

𝑹̂̅ =
1

𝐿
∑ 𝒙̅𝒓𝒙̅𝒓

𝑯𝐿

𝑙=1
 = 𝑩𝑨𝑹𝒔𝑨

𝑯𝑩𝑯 + 𝜎2𝑩𝑩𝑯 .                                (4.29) 
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As 𝑩𝑩𝑯  ≠ 𝑰, the noise is colored and not white anymore. Since DOA estimation methods work 

with white noise, it is necessary to whiten the noise before applying DOA estimation techniques. 

Assuming that 

𝑹𝒏 =  𝑩𝑩𝑯,                                                          (4.30) 

The pre-whitening can be done by [61]: 

𝑹̃ =  [𝑹𝒏]−𝟏/𝟐 𝑹̂̅  [𝑹𝒏]−𝑯/𝟐 ,                                              (4.31) 

where (. )−𝟏/𝟐 denotes the square root of inverse matrix and (. )−𝑯/𝟐 denotes the square root of 

the Hermitian transpose of the inverse matrix. Note that, this process does not change the rank of 

covariance matrix. In another word 𝑟𝑎𝑛𝑘(𝑹̂̅) = 𝑟𝑎𝑛𝑘(𝑹̃). 

 

4.6 Subspace Based DOA Estimation Methods 

The MUSIC technique is a subspace technique which is based on the fact that noise eigenvectors 

of covariance matrix are orthogonal to the signal steering vectors. The output spectrum of 

MUSIC algorithm at direction γ is: 

𝑃𝑀𝑈𝑆𝐼𝐶(γ) =
1

∑ |𝒗𝑖
𝐻𝒂(γ)|

2𝑀
𝑖=𝐾+1

 ,                                              (4.32) 

where 𝒗𝑖  (𝑖 = 𝐾 + 1,… ,𝑀) are the eigenvectors of covariance matrix corresponding to the noise. 

As the steering vector 𝒂(γ) is orthogonal to 𝒗𝑖, the denominator of (4.32) is identically zero. 

Therefore, the peaks of the function 𝑃𝑀𝑈𝑆𝐼𝐶(γ) points to the DOAs of received signals. 

 

4.7 Simulation Results 

In this section, the simulation results of MUSIC method (4.32) and MVB method (3.28) in 

presence of coherent signals are illustrated. A scanning antenna with the antenna pattern 

approximated with a Gaussian function as presented in equation (4.2) is used. The selected 

simulation parameters are identical to those of Section 3.6. As an arbitrary but representative 
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example, a benchmark with two signals with DOA at -3 and 3 degrees with respect to boresight is 

considered. Targets are assumed to be at the same range. The number of beams M and the 

subvector size Q are selected equal to N=21 and 𝑄𝑜𝑝𝑡= 13 according to (3.31) and SNR = 20dB. 

Figure 4-3 shows the result of applying the MVB method (3.28) and MUSIC method when two 

received signals are uncorrelated. As can be seen, when signals are uncorrelated both methods 

can detect two targets. 

In the next step, the received signal vector 𝒔  in (4.14) is assumed to consist of two coherent 

random complex numbers (𝑠2 = 0.9𝑠1). Figure 4-4 and 4-5 show the results of MVB and MUSIC 

methods with and without spatial smoothing respectively. 

It can be seen that while without spatial smoothing none of the methods was able to detect the 

DOAs of two received coherent signals correctly, after applying spatial smoothing both DOAs 

were detected (at 𝛾1 = -3 and 𝛾2= 3 degrees) by the two methods. 

 

 

Figure 4-3: DOA estimation methods results for two uncorrelated received signals. 
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Figure 4-4: DOA estimation methods results for two coherent received signals without spatial 

smoothing. 

 

Figure 4-5: DOA estimation methods results for two coherent received signals with spatial 

smoothing. 
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4.8 Conclusion  

In this chapter, it is shown analytically and with simulations that the MVB method and subspace-

based DOA estimation methods can be applied successfully to a scanning system which 

conforms to the 3 proposed conditions listed in section 4.1. In addition, it is shown that spatial 

smoothing can be applied to such system when incoming signals are coherent to uncorrelate 

signals in order to detect the DOAs. 
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CHAPTER 5 RADAR SYSTEM WITH ENHANCED ANGULAR 

RESOLUTION BASED ON A NOVEL FREQUENCY SCANNING 

REFLECTOR ANTENNA  

 

In this chapter, the results of applying a DOA estimation method on a radar system that uses a 

novel beam scanning reflector antenna using a frequency multiplexed antenna feed is presented. 

In section 3.7, the results of applying the same DOA estimation method on a different frequency 

scanning antenna was presented. However, the reflector antenna system presented in this chapter 

has a larger gain and narrower bandwidth. While the reflector antenna scans over 50 degrees 

using a bandwidth of only 2.2%, the antenna presented in chapter 3 used a bandwidth of 8% to 

scan the same scanning angle. Reducing the bandwidth used by the antenna scanning system is an 

important improvement, since the radio transceiver systems needed to detect the targets (or 

sources) which are transmitting over the full frequency band of the system can operate more 

easily in narrower bandwidth. Also, from a practical spectrum management point of view, 

reducing the bandwidth is an advantage in the context of limited available spectrum for weather 

radars for instance. 

The FSA used for the experiments presented in this chapter is a fast scanning and low-cost 

antenna. The antenna system consists of a reflector and a frequency multiplexer as the feed chain. 

The multiplexer has an input port and horn antennas as output ports which are placed in the focal 

plane of the reflector. Depending on the frequency of the input signal, one horn is selected (by 

passive bandpass channel filters) to feed the reflector. Due to the displacements of the output 

horns, the beams generated by each horn are steered in a different direction by the reflector.  

Therefore, this antenna can scan the FOV either by sequential switching the horns and by 

stepping the frequency of the input signal or steer all the possible beam directions at the same 

time by applying frequency division multiplexing (FDM) to the input signal. The later scenario 

results in a significantly faster scanning. 

The achievable angular resolution of this antenna depends on the number of horns in the antenna, 

the width of the beams and the angular separation between each two adjacent beams. Due to the 
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limitation in the placement of the horns and the reflector, it is not possible to easily achieve the 

desirable beams cross-over level and angular separation. For example, increasing the focal length 

of the antenna can increase the beams cross-over level, it will also increase the spillover losses. 

Because of the large separation between the adjacent beam directions in the employed FSA, the 

angular scanning is done in very coarse steps which limits the angular resolution of the system. 

This is shown in details in the section 5.5.1. In order to overcome this problem, a hybrid scanning 

system is proposed. The hybrid system combines frequency scanning with mechanical scanning 

over a limited angular range by time multiplexing the scanning results. The mechanical scanning 

will cover the angular section between the frequency-scanned beams.  

While the hybrid system has a slower scanning speed compared to pure electronic scan, it can 

achieve higher angular resolution. The larger number of mechanical scanning steps results in 

slower scanning and higher angular resolution. Therefore, the number of mechanical scanning 

steps has to be selected based on the desired angular resolution and scanning speed. The scanning 

speed of this hybrid system is increased by a factor approximately equal to the number of output 

channels in the frequency multiplexing feed chain.  

In the next section, the scanning antenna system will be briefly introduced. Then in Section 5.2, a 

signal model that applies to this antenna will be presented. In Section 5.3 the hybrid scanning 

model will be presented. In Section 5.4 the angular estimation method will be described and in 

5.5 the experimental results obtained with the frequency scanning reflector antenna will be 

shown. 

 

5.1 Beam Scanning With a Parabolic Reflector 

Before presenting the antenna signal processing results, the antenna architecture and operation 

principles of a frequency scanning reflector antenna with a parabolic reflector and multiplexer 

feeding system is briefly introduced in this section. This antenna was designed by Dr. F. Siaka as 

part of his Ph.D. work [64].  
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The designed beam scanning reflector antenna is using the feed displacement concept (Fig. 5-1). 

The direction of the main beam is changing by moving the position of the feed in the focal plane 

of a reflector. The direction of the main beam can be estimated with: 

𝜃 = BDF × tan−1 (
𝑦

𝐹
) , with BDF =  

(4𝐹
𝐷⁄ )

2
+0.36

(4𝐹
𝐷⁄ )

2
+1

 ,                                    (5.1) 

where BDF is the Beam Deviation Factor, y is the feed displacement, F is the focal distance, and 

D is the diameter of the reflector. Feed displacement is realized using a frequency multiplexer. 

Having a multi-frequency signal at the input port of the multiplexer, each output horn will have a 

single frequency signal with a displaced phase center. A picture of the complete system mounted 

for tests in an anechoic chamber is shown in Fig. 5-1.  

 

 

Figure 5-1: Picture of the parabolic dish fed by the frequency beam scanning system [12]. 

 

Fig. 5-2 shows the measured radiation patterns of the antenna. As expected, each frequency gives 

a beam at a specific direction. A scanning angle of 50 degrees is obtained with a frequency 
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bandwidth of 2.2%. Since the system bandwidth depends on the characteristics of the filters 

forming the multiplexers, by selecting higher-order filters narrower bandwidths can also be 

achieved.  

The rest of the chapter that is published in [12] is the contribution of the author of this thesis.  

 

 

Figure 5-2: Measured radiation patterns of the proposed beam scanning reflector antenna. 
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5.2 Signal Model of Frequency Scanning Reflector Antenna1 

In this section a signal model that can be used to predict DOA with a frequency scanning antenna 

is developed. As mentioned before, it is assumed that the antenna performs horizontal scanning 

and the DOA estimation is considered to be performed in only one dimension. 

K targets are considered present in the field of view (FOV) at the same known range of  𝑅𝑙 =
𝑐𝑡𝑙 

2
  

, where 𝑡𝑙 is the time for receiving the signal from targets at the range 𝑅𝑙 and c is the speed of 

light. The received baseband signal from the FSA antenna main beam, which is steered in the 

direction 𝜃𝑚, can be written as 

𝑥(𝑡𝑙 , 𝜃𝑚) =  ∑ 𝑠𝑘(𝑓𝑚)𝑎𝑚(𝛾𝑘)
𝐾

𝑘=1
+ 𝑛(𝑡𝑙 , 𝜃𝑚),                                (5.2) 

where 𝑓𝑚 is the center frequency of the FSA beam pointed at the angle  𝜃𝑚, 𝑠𝑘(𝑓𝑚) is the 

complex signal from the k-th target with the angular position 𝛾𝑘, 𝑎𝑚(𝛾𝑘) is the complex antenna 

pattern factor at the angle 𝛾𝑘 from the antenna beam pointed at the angle 𝜃𝑚, and  𝑛(𝑡𝑙 , 𝜃𝑚) is the 

complex white Gaussian noise coming from the scene and introduced by the receiver 

components. It has been assumed that the Doppler shift of the targets can be neglected. Note that 

if FSA is part of a monostatic radar pointing to a scene and the signals impinging the FSA are 

from passive targets, then the 𝑎𝑚(𝛾𝑘) will be the two-way antenna pattern. However, if the FSA 

is only receiving signals from active emitters, then the 𝑎𝑚(𝛾𝑘) will be the one-way antenna 

pattern. 

The steering vector for a target at angle 𝛾𝑘, for the FSA antenna beams steered to the angles 𝜃𝑚 

with 𝑚 =  1, . . , 𝑀 is defined as: 

𝒂(𝛾𝑘) = [ 𝑎1(𝛾𝑘), 𝑎2(𝛾𝑘),… , 𝑎𝑀(𝛾𝑘)]
𝑇,                                       (5.3) 

                                                 

1 This section is an excerpt from section 5 of the following published journal paper:   

 F. Siaka, M. A. Tehrani, J. J. Laurin and Y. Savaria, “Radar system with enhanced angular resolution based 

on a novel frequency scanning reflector antenna”, in IET Radar, Sonar & Navigation, 2016. 
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where (. )𝑇 denotes the transpose operation, and M is the total number of the frequencies (in the 

multiplexed feed introduced in the previous section M = 8).  

With K targets at directions 𝜸 = [𝛾1, 𝛾2 , … , 𝛾𝐾], the antenna response is: 

𝑨(𝜸) = [𝒂(𝛾1), 𝒂(𝛾2) , … , 𝒂(𝛾𝐾)],                                           (5.4) 

and the targets signal matrix for the K targets at directions defined above can be defined as: 

𝑺 = [
𝑠1(𝑓1

), 𝑠2(𝑓1
), … 𝑠𝐾(𝑓

1
)

… … … …
𝑠1(𝑓𝑀

), 𝑠2(𝑓𝑀
), … 𝑠𝐾(𝑓

𝑀
)
]

𝑇

,                                       (5.5) 

where 𝑠𝑘(𝑓𝑚) is: 

𝑠𝑘(𝑓𝑚) =  𝑠𝑘𝑒
−𝑗2𝜋𝑓𝑚𝑡𝑙.                                                          (5.6) 

Considering that the targets cross sections do not change when the transmitted frequency 

changes, which may be a valid assumption when the used bandwidth is narrow, the targets signal 

matrix can be decomposed to 

𝑺 =  [𝑒−𝑗2𝜋𝑓1𝑡𝑙 , 𝑒−𝑗2𝜋𝑓2𝑡𝑙 , … , 𝑒−𝑗2𝜋𝑓𝑀𝑡𝑙]𝑇[𝑠1, 𝑠2, … , 𝑠𝐾], 

𝑺 =  𝒆𝒔𝒂
𝑻.                                                              (5.7) 

Considering 𝑬 = diag(𝒆), the data model can be rewritten as: 

𝒙 = 𝑬𝑨(𝜸)𝒔𝒂 + 𝒏,                                                       (5.8) 

where 𝒙 and 𝒏 are: 

𝒏 =  [ 𝑛(𝑡𝑙, 𝜃1), 𝑛(𝑡𝑙, 𝜃2),… , 𝑛(𝑡𝑙, 𝜃𝑀)]𝑇,                                     (5.9) 

𝒙 =  [𝑥(𝑡𝑙, 𝜃1), 𝑥(𝑡𝑙, 𝜃2), … , 𝑥(𝑡𝑙, 𝜃𝑀)]𝑇.                                    (5.10) 

The objective is to estimate the vector of targets angular positions 𝜸 while the targets complex 

echo vector 𝒔𝒂 is unknown. 
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5.3 Combining Frequency Scanning with Mechanical Scanning 2 

As mentioned before, antenna design limitations impose a large separation between the different 

antenna beam directions, which can be observed in Fig. 5-2. Therefore, the scanning increment of 

the angular range is too coarse to enable accurate targets angular position estimation beyond 

beamwidth limitations as will be shown later in section 5.5.1.  

Considering that the antenna can be rotated mechanically over a small angular range, it is 

possible to finely scan a large section of the FOV with a relatively small mechanical rotation. 

This will allow further processing and achieving higher angular resolution (see Fig 5-3). 

It can be assumed that the angular steps between the steering angles of the FSA are equal so 

that 𝜃𝑚+1 = 𝜃𝑚 + 𝛥𝜃, and the FSA can be rotated mechanically, with 𝑀𝑟 steps of 𝛥𝜃/𝑀𝑟 

degrees. Using the combination of frequency scanning and mechanical rotation, the FOV can be 

scanned with total of 𝑁 = 𝑀𝑟 × 𝑀 beams. If the signal model of FSA for each mechanical 

scanning position is defined as:  

𝒙𝒊 = 𝑬𝑨𝒊(𝜸)𝒔𝒂 + 𝒏𝒊,           𝑖 = 1,… ,𝑀𝑟                                 (5.11) 

The signal model of the combined mechanical and frequency scanning system can be written by 

time-multiplexing the signal model of FSA for each mechanical scanning position as: 

𝒙𝒄 = 𝑬𝒄𝑨𝒄(𝜸)𝒔𝒂 + 𝒏𝒄,                                               (5.12) 

where 𝒙𝒄, 𝒏𝒄 ∈  ℂ𝑁×1 , 𝑬𝒄 ∈  ℂ𝑁×𝑁 and 𝑨𝒄(𝜸) ∈  ℂ𝑁×𝐾 with elements of 𝒙𝒄(𝑛) =  𝒙𝒊(𝑚), 

𝒏𝒄(𝑛) =  𝒏𝒊(𝑚) , 𝑬𝒄(𝑛) =  𝑬𝒊(𝑚), and 𝑨𝒄(𝑛, 𝑘) =  𝑨𝒊(𝑚, 𝑘) while  𝑛 = (𝑚 − 1)𝑀𝑟 + 𝑖.   

 

 

                                                 
2 This section is an excerpt from section 6 of the following published journal paper:   

 F. Siaka, M. A. Tehrani, J. J. Laurin and Y. Savaria, “Radar system with enhanced angular resolution based 

on a novel frequency scanning reflector antenna”, in IET Radar, Sonar & Navigation, 2016. 
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   a 

 

b 

Figure 5-3: FSA radiation. a) Original measured FSA radiation pattern normalized at each 

frequency, b) Antenna pattern of seven combined radiation patterns normalized at each frequency 

[12]. 
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5.4 Proposed DOA Estimation Method 3 

As the evaluation results in section 3.6 shows, the MVB method does not perform well when the 

number of beams covering a selected FOV is small. In this experiment, it can be observed from 

Fig. 5-3 that even with combined radiation pattern presented in Section 5.3, the number of beams 

in each section of FOV will be 𝑁 ≅ 7 which is smaller than it is required for MVB method to 

function properly (𝑀 > 21). However, the ML DOA estimation method that was introduced and 

discussed in details in section 3.5.2 can be applied to (5.12). This method is using the fact that 

antenna scanning induces amplitude modulation on signal backscatters and therefore, by  utilizing  

prior  knowledge  of  the  antenna  pattern,  the  angular  position  of  targets can  be  extracted.  

 

5.4.1 Maximum Likelihood Estimation  

Considering that each element of the noise vector 𝒏𝒄 has a white complex Gaussian probability 

distribution function with zero mean and variance of 𝜎2, 𝒏𝒄 is modelled as white complex 

Gaussian noise with zero mean and covariance matrix of 𝜎2𝑰  

𝒏𝒄 ~ 𝒞𝒩(0, 𝜎2𝑰).                                                           (5.13) 

Therefore, the probability density function of the data vector 𝒙𝒄 conditioned to the unknowns 

(𝜸, 𝒔𝒂) is 

𝑝(𝒙𝒄|𝜸, 𝒔𝒂) =
1

(𝜋𝜎2)𝑁
exp (−

(𝒙𝒄−𝑬𝒄𝑨𝒄(𝜸)𝒔𝒂)𝐻(𝒙𝒄−𝑬𝒄𝑨𝒄(𝜸)𝒔𝒂)

𝜎2 ).                           (5.14) 

The ML estimation of 𝜸 and 𝒔𝒂 can be found by maximizing the conditional probability density 

function of 𝒙𝒄 with respect to 𝜸 and 𝒔. If 𝒔𝒂 is modelled as a deterministic unknown vector and 𝜸 

as a deterministic constant vector then the conditional ML will be:  

                                                 
3 This section is an excerpt from section 7 of the following published journal paper:   

 F. Siaka, M. A. Tehrani, J. J. Laurin and Y. Savaria, “Radar system with enhanced angular resolution based 

on a novel frequency scanning reflector antenna”, in IET Radar, Sonar & Navigation, 2016. 

 



67 

 

 

𝜸̂, 𝒔𝒂̂ = argmax
𝜸,𝒔𝒂

{𝑝(𝒙𝒄|𝜸, 𝒔𝒂)}.                                                (5.15) 

The above maximization gives the estimate of 𝜸̂ and 𝒔𝒂̂ as:  

𝒔𝒂̂ = (𝑨𝒄
𝑯𝑬𝒄

𝑯𝑬𝒄𝑨𝒄)
−1𝑨𝒄

𝑯𝑬𝒄
𝑯𝒙𝒓                                                      (5.16) 

and 

𝜸̂ = argmax
𝜸

 𝒙𝑐
𝐻𝑬𝒄𝑨𝒄(𝑨𝒄

𝑯𝑬𝒄
𝑯𝑬𝒄𝑨𝒄)

−1𝑨𝒄
𝑯𝑬𝒄

𝑯𝒙𝒄.                                (5.17) 

It is assumed that no prior knowledge is available for DOAs of  𝜸 = [𝛾1, 𝛾2 , … , 𝛾𝐾].  

 

5.5 DOA Estimation Experiment with Frequency Scanning 

Reflector Antenna 4 

In order to study the direction of arrival (DOA) estimation capabilities of the reflector antenna, 

experimental tests were conducted in an anechoic chamber. The FSA described in section 5.1 is 

used to receive signals and patch antennas are used as transmitting sources to simulate reflections 

from radar targets. The patches and the FSA operate in vertical polarization, perpendicular to the 

scanning plane. The 3dB beamwidth of each patch is approximately 30 degrees.  The FSA and 

radiofrequency receiver are mounted on a rotating platform in the center of chamber. The targets 

view angle is varied by rotating the platform with respect to stationary sources. The distance from 

the receiver to the sources plane is only 3m, due to the limited size of our test chamber. The 

sources are fed using a signal generator set at the frequencies corresponding to the bands of the 

multiplexing feed (see Fig. 5-2).  A vector network analyzer (VNA) is used to collect data from 

the receiver. A schematic of the test setup can be seen in Fig. 5-4.  

 

                                                 
4 This section is an excerpt from section 8 of the following published journal paper:   

 F. Siaka, M. A. Tehrani, J. J. Laurin and Y. Savaria, “Radar system with enhanced angular resolution based 

on a novel frequency scanning reflector antenna”, in IET Radar, Sonar & Navigation, 2016. 
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5.5.1 FSA Scanning Results 

As shown in Fig. 5-2, the receiving FSA scans the angular section between -25 to 25 degrees 

with eight beams. The half-power beamwidth of the measured beams in the scan plane varies 

between 7 to 8.5 degrees. The received signals from the FSA were used to detect angular position 

of the sources with respect to the receiver boresight. Several test scenarios were performed in 

order to detect DOA of transmitting sources. In the first scenario, only one source was placed in 

the FOV of the receiver at 0 degree. In the second scenario, two sources were placed at 0 and -3 

degrees. Fig. 5-5 shows the magnitude of the received signal from the FSA at each frequency for 

both scenarios, when the platform is stationary in the 0-degree position (as in Fig. 5-4).  

 

Power Divider
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Figure 5-4: Top view of the test setup. The rotation axis of the antenna platform is perpendicular 

to the plane of the image [12]. 

 

As can be seen in Fig. 5-5, it is not possible to detect the exact position of the source in the first 

scenario with one source. The source is detected at 2 degrees, while it was placed at 0 degrees. It 

is also not possible in the second scenario to distinguish two sources from each other as they are 

placed closer than a beamwidth from each other. This is due to the fact that the radiation pattern 

of the frequency scanning system includes eight beams with large separations which can be 
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observed in Fig. 5-2. In order to be able to detect the angular position of sources more accurately, 

a smaller scanning increment, such as the one realized by the proposed combination of electrical 

and mechanical scanning is needed.  

 

5.5.2 FSA and Mechanical Scanning Combined Results 

The radiation patterns obtained by mechanical rotation of the FSA of Fig.5-2 are first normalized 

with respect to their maximum value and using the prior information of antenna pattern and then 

combined according to (5.12), and a new set of radiation patterns is constructed. This set 

emulates an antenna with N=56 beams scanning the angles between -30 and 24 degrees with one 

degree steps (see Fig. 5-3b). Note that as the angular distance between FSA beams are not equal, 

the combined radiation patterns will have beams pointing to the same angle (i.e. at -24 degrees). 

 

 

a      b 

Figure 5-5: FSA received signal from, a) One source at 0 degrees, b) Two sources at 0 and -3 

degrees. 

 

During the experiments, the antenna platform was rotated between -6 to 0 degrees and the 

received signals at the eight frequencies were collected by the VNA at the common FSA port for 

all the rotation angles. Using this data, we can reconstruct the received signal for the combined 
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radiation patterns by combining received signal from corresponding rotating angles of the FSA 

antenna. 

Figures 5-6a and 5-6b show the magnitude of the measured received signal for both previously 

described scenarios and using the new combined radiation pattern.  

 

 

           a           b 

  

         c                                   d 

Figure 5-6: Results for combined emulated antenna. a) FSA received signal of one source at 0 

degrees, b) FSA received signal of two sources at 0 and -3 degrees, c) ML DOA estimation 

results for one source at 0 degrees, d) ML DOA estimation results for two sources at 0 and -3 

degrees [12]. 
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As can be seen, for one source scenario and using the combined antenna radiation pattern, it is 

now possible to detect the exact position of the source at 0 degrees. However, it is still not 

possible to distinguish two targets form each other. For such cases, using the combined antenna 

radiation pattern and applying the DOA estimation method proposed in section 5.4.1, it is 

possible to detect two sources. Figures 5-6c and 5-6d show the ML estimation results for both 

previously described scenarios while using the new combined radiation pattern in (5.12). For the 

one-source scenario (Fig. 5-6c), it can be seen that the ML method (knowing the number of 

sources) estimates the DOA at 𝛾1 = 0 degrees. However, applying ML estimation is not needed as 

with a simple analysis of the combined radiation pattern the source position can be found (Fig.  5-

6a). Fig. 5-6d shows the result of applying the ML method for the second scenario. The ML 

method that assumes knowledge of the number of sources estimates the DOA at 𝛾1 = -4 and 𝛾2= 

0 degrees. Note that data acquisition was done in 1 degree steps. Therefore, the algorithm is 

implemented with one degree resolution, which is approximately five times less than the actual 

beamwidth of the reflector antenna.  

 

5.5.3 Performance Evaluation 

In order to evaluate the performance of the applied methods, the position of sources with respect 

to FSA antenna is changed and the test is repeated. The root mean square error (RMSE) of the 

DOA estimation is then calculated for all the source positions. Given the above setup and 

discussed scenarios, the RMSE is defined as:   

RMSE = √𝐸[∑ (𝛾𝑘 − 𝛾𝑘̂)2𝐾
𝑘=1 ].                                            (5.18)  

Fig. 5-7 shows the result of applying the ML method for the second scenario with two sources 

separated by 3 degrees, when the sources are moved between (𝛾1, 𝛾2) = (-38,-35) and (𝛾1, 𝛾2) = 

(31, 34) degrees. 
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Figure 5-7: RMSE of ML DOA estimation for two sources moving between (-38,-35) and (31, 

34) degrees [12]. 

 

As can be seen, the RMSE increases significantly when the sources are out of the range of the 

scanning system (between -30 and 24 degrees) as expected. In the normal scanning range, on the 

other hand, the RMSE is very low with 0 to 1.5 degree errors in most angles. The peaks in the 

RMSE are due to the relatively large sidelobes that exist at the corresponding angles. In addition, 

the assumption in (5.7) does not apply to the experimental case and the emitters’ frequency 

response has some variations within the band. This can cause error in DOA estimation.  

 

5.6  Conclusion 

In this chapter, a DOA estimation method is proposed for a novel frequency scanning system 

based on a frequency-multiplexed feed. It is shown using experiments that this estimation method 

can achieve high angular resolution by applying a combination of mechanical and electrical 

scanning. The proposed low-cost hybrid system can scan a large section of the FOV with a 
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relatively small mechanical rotation, which results in faster scanning compared to a pure 

mechanical scanning. Analysing the DOA capabilities of the antenna, it could be seen that using a 

combined radiation pattern from mechanical and electrical scanning and applying a proper DOA 

estimation method, like ML estimation, it is possible to detect two sources separated by less than 

a beamwidth distance from each other when scanning with this antenna. 
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CHAPTER 6 GENERAL DISCUSSION 

 

In the last decades, electronic scanning has been investigated thoroughly. Fast electrical scanning 

is of interest for many applications. Most of the previous works in this domain are dedicated to 

phase array antennas, which are expensive when used in many applications. The goal of this work 

was to investigate the possibility to use other scanning approaches and achieve fast and low-cost 

scanning systems. The main motivation for this research was radars used in meteorological 

forecast.  

Therefore, the motivations for this thesis were: 

- suggesting scanning methods applicable to meteorological applications; 

- investigating the resolution of suggested methods and finding appropriate signal 

processing methods to achieve high angular resolution; 

- and finally optimize the results of each selected method by applying proper pre or post 

processing algorithms. 

Considering the above motivations, this thesis is focused on: 

- frequency scanning as a means to obtain fast and low cost scanning; 

- suggesting signal processing methods for DOA estimation and angular resolution 

improvement, 

- analytical development of the proposed methods; 

- and providing simulation and experimental results to support the applicability of 

suggested algorithms. 

This research started by reviewing PAA functionality, DOA estimation methods applicable to 

them and calibration methods proposed to compensate for the errors and imperfections in the 

phase array design. Moving to FSA and considering similarities between FSA and PAA, the 

possibility of extending available signal processing methods designed for PAAs to be used in 

other either mechanically or electronically scanning antennas are investigated. In Chapter 2, the 
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literature review, including the signal model and main signal processing methods on the DOA 

estimation and angular resolution enhancement available are introduced. In addition calibration 

and pre-processing methods required to compensate for the antennas imperfections are also 

presented. However, almost all the introduced algorithms were proposed for PAA.  

Selecting two main DOA estimation methods namely ML and MVB, it is shown in Chapter 3 that 

we can adapt those methods for FSA antennas. Preprocessing and calibration methods that should 

be applied to FSAs before DOA estimation methods are also presented. Simulation results of 

suggested methods and evaluation of the results with respect to different parameters are also 

given. Two sets of simulations were provided in this chapter. First, results using simulated 

antenna pattern and the second set of simulation results using measured antenna patterns from an 

FSA antenna designed in the Poly-Grames Rresearch Center of École Polytechnique de Montréal.  

Although, the effectiveness of the proposed methods are shown in Chapter 3, no mathematical 

proof is presented to demonstrate the applicability of those methods to frequency scanning 

antennas. In Chapter 4, we present such analysis to show that not only ML and MVB methods, 

but also all the subspace-based methods are extendable to scanning antennas and in particular to 

frequency scanning antennas. The pre-processing steps including calibration and interpolation 

that are required, are also presented and justified analytically. In addition, it is shown that spatial 

smoothing can be applied to scanning and frequency scanning antennas to decorrelate incoming 

signals for the cases of DOA estimation of coherent incoming signals. 

Finally in Chapter 5, the results of an experiment which is performed using a beam scanning 

reflector antenna with a frequency multiplexed antenna feed is presented. Since the chosen 

antenna had only eight non overlapping beams and the angular estimation using the MVB method 

did not perform well when the number of beams covering a selected FOV is small, only the 

results of the ML method were shown in this chapter. In addition, in order to achieve finer 

angular resolution with an antenna having only eight scanning beams, a hybrid scanning system 

is proposed that could scan relatively fast and achieve a finer angular resolution. The results of 

such hybrid system was also presented and compared with the original full electronic scanning 

system. 
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As mentioned before, most of the previous work in this domain target PAA. Very little work was 

reported on superresolution for mechanically scanning antenna and available publications mostly 

contain simulation results. Moreover, angular resolution enhancement in FSAs had not been 

studied before. Therefore we can summarize the contributions of this thesis as: 

- First in Chapter 3, angular resolution improvement methods for FSA is proposed along 

with required preprocessing algorithms including calibration and interpolation that should be 

applied before the suggested methods. In addition, simulation results evaluating the proposed 

methods and the required parameters to achieve desired angular resolution are reported. 

- In Chapter 4, analytical developments for suggested methods and their related 

preprocessing algorithms is presented for all subspace-based methods applicable to scanning 

antennas. 

- And finally in Chapter 5, experimental results are provided and an alternative hybrid 

scanning method is proposed to achieve relatively fast but low-cost scanning solution for the 

situations where the antenna design limitation do not allow respecting the required parameters to 

achieve some desired angular resolution. 
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CHAPTER 7 CONCLUSION AND RECOMMENDATIONS 

 

In this chapter the achievements of this project are summarized and topics for future work in this 

domain are discussed. This thesis addressed the problem of fast and low-cost scanning using 

frequency scanning antennas. Since the FSA antennas may have limited angular resolution, we 

focused on the direction of arrival (DOA) estimation and angular resolution enhancement of FSA 

systems. This was obtained with proper calibration and pre-processing.  

In Chapter 3, the performance of two DOA estimation algorithms, MVB and ML estimation 

adapted for FSA antennas were studied. Monte Carlo simulations were used to evaluate the 

performance of the proposed methods and their results were compared against each other in terms 

of root mean square error. Simulation results showed that in low SNR situations, the RMSE of 

DOA estimation is large and the MVB method cannot separate two targets. In other cases, by 

selecting correct parameters, both methods can separate targets with angular separations smaller 

than the antenna pattern beamwidth. 

In addition, we showed the limitation of the proposed DOA estimation methods and the 

conditions that had to be met before we can apply them. It was shown using simulations that 

sampling from sidelobes of the antenna pattern decreases the performance of the MVB method. 

In addition, the gain of the antenna pattern in different steering angles should be balanced and the 

angular separation between steering angles should be uniform for the MVB method to function 

properly. The ML methods only require a balanced gain for all the antenna patterns pointing to all 

scanning angles. 

We have also presented a calibration scheme that worked efficiently when it was applied to 

different antenna pattern shapes at each frequency and non-uniform scanning angles. This 

calibration method allows to compensate for imperfect antenna patterns by transforming them to 

the shapes that conform to the specified conditions when needed. The contributions presented in 

Chapter 3 are published in [11]. 

In Chapter 4, it was shown analytically that the MVB method, and the subspace-based DOA 

estimation methods could be applied successfully to a scanning system which conforms to the 
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proposed conditions found in Chapter 3. In addition, it was shown that spatial smoothing could 

be applied to such systems when incoming signals are coherent in order to decorrelate signals and 

detect the DOAs. 

In Chapter 5, the result of an experiment which was conducted using a novel beam scanning 

reflector antenna based on a frequency-multiplexed feed proposed for frequency scanning was 

presented. As the employed FSA antenna had only eight scanning beams with very small cross-

over, the previously proposed methods would not improve the angular resolution. Therefore, a 

low-cost hybrid system was proposed that could scan a large section of the FOV with a relatively 

small mechanical rotation, which results in faster scanning compared to a pure mechanical 

scanning. Selecting the number of mechanical scanning steps is a trade-off between the desired 

angular resolution and scanning time. It was shown using experiments that this estimation 

method can achieve high angular resolution by applying a combination of mechanical and 

electrical scanning. Since, according to the evaluation results in Chapter 3, the MVB method 

does not perform well when the number of beams covering a selected FOV is small, only ML 

estimation was performed. Analysing the DOA capabilities of the antenna, it could be seen that 

using a combined radiation pattern from mechanical and electrical scanning and applying a 

proper DOA estimation method, like ML estimation, it was possible to detect two sources 

separated from each other by less than a beamwidth distance when scanning with this antenna. In 

our experiments, the angular resolution was reduced to half of the beamwidth by adding six 

mechanical scanning steps. The contributions presented in Chapter 5 are published in [12]. 

 

7.1 Future Works 

In this thesis, we selected only two DOA estimation methods and shown analytically, as well as 

using simulations the performance of those methods when extended so that they can be applied to 

FSA antennas. There are many other DOA estimation methods proposed for PAA [16], [24], 

[25], [27], [49], each have advantages and disadvantages when used for a specific application or 

environment. We have just selected the most basic methods and provided the proof of their 

applicability for the new scanning system as a first step. Indeed the adaptation of all other 
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methods can be investigated in the same way and their performance can be evaluated for different 

applications. As an example, we have shown in Chapter 4 that the subspace based methods such 

as MUSIC are also extendable to single-channel FSA antennas. Although not presented in this 

thesis, the primary results of SMUSIC application on FSA were also found during this research. 

A promising next step would be to work on the required preprocessing for SMUSIC and evaluate 

the performance of SMUSIC in FSA systems. Another example would be employing the UML 

method. In Chapters 3 and 5 we used the CML method in order to estimate target angular 

resolutions. However, using the UML method may result in more realistic results since in UML, 

the signals backscattered from targets are modeled as random variables. Using random variables 

models, the targets backscattered fluctuation from scan to scan with varying frequency can be 

modeled more accurately. 

Moreover, trying to reproduce the results with a more realistic data model will be an interesting 

next step. As described in section 3.3, a simplified data model is used during this research by 

assuming that the targets cross sections do not change when the transmitted frequency changes. 

Reproducing the results with the original data model in (3.10) may results in a lower level of 

estimation error.  

Finally, the performance of the methods proposed in this research can be analysed more 

profoundly by evaluating the effects of other parameters such as having different SNRs or power 

between received signals from different targets or having more than two sources in the 𝛥𝑓𝑜𝑣. 
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