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Abstract—In this paper, we propose sensing-assisted beam-
forming designs for vehicles on arbitrarily shaped roads by rely-
ing on integrated sensing and communication (ISAC) signalling.
Specifically, we aim to address the limitations of conventional
ISAC beam-tracking schemes that do not apply to complex
road geometries. To improve the tracking accuracy and com-
munication quality of service (QoS) in vehicle to infrastructure
(V2I) networks, it is essential to model the complicated roadway
geometry. To that end, we impose the curvilinear coordinate
system (CCS) in an interacting multiple model extended Kalman
filter (IMM-EKF) framework. By doing so, both the position
and the motion of the vehicle on a complicated road can
be explicitly modeled and precisely tracked attributing to the
benefits from the CCS. Furthermore, an optimization problem is
formulated to maximize the array gain by dynamically adjusting
the array size and thereby controlling the beamwidth, which
takes the performance loss caused by beam misalignment into
account. Numerical simulations demonstrate that the roadway
geometry-aware ISAC beamforming approach outperforms the
communication-only-based and ISAC kinematic-only-based tech-
nique in tracking performance. Moreover, the effectiveness of
the dynamic beamwidth design is also verified by our numerical
results.

Index Terms—V2X, integrated sensing and communication,
curvilinear coordinate system, beam tracking

I. INTRODUCTION

THE emerging autonomous driving applications will ne-
cessitate Ultra-low latency Gbps wireless links to en-

sure road safety [1]. In addition, centimetre-level position-
ing information is also essential to correctly make decisions
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for driving actions [2]. To achieve such goals, vehicle-to-
everything (V2X) communication has become one of the key
techniques for autonomous driving, of which two potential
technologies are widely discussed, namely, dedicated short-
range communications (DSRC) [3], [4] and Celluar V2X (C-
V2X) [5], [6]. While the two techniques do offer basic V2X
functionalities, they fall short of the demanding requirements
mentioned above. Indeed, the data rate of DSRC is restricted
to 27Mbps, and the vehicular links may become unreliable
in high-density and high-mobility scenarios due to the carrier-
sense multiple access mechanism employed [5]. Moreover, the
LTE-based system provides Gbps communication service with
the positioning accuracy of tens of meters and at a latency
often in excess of 1s [1]. As for the NR-V2X, the relative
position information can be obtained by side-link commu-
nication. Nevertheless, it remains unclear how to accurately
acquire the absolute location in real time [5]. Besides, while
the positioning error can be reduced to the centimetre-level
with the assistance of global navigation satellite-based systems
(GNSS), the refresh rate of the positioning information is
rather limited [1]. Real-time localization will necessitate the
aid of the roadside wireless network, and low latency Gbps
links will require accurate formation and steering of high-gain
beams.

Thanks to the recent advances in wireless communications,
massive multi-input-multi-output (mMIMO) arrays in conjunc-
tion with mmWave technologies offer an opportunity to tackle
the aforementioned problems [7], [8]. In particular, the large
bandwidth available at mmWave frequency simultaneously
provides a high data rate for communication and potentially
high range resolution for sensing. Meanwhile, the mMIMO
array is able to form “pencil-like” beams accurately steering
to the targets of interest, which generates a considerable array
gain to compensate for the path-loss incurred by mmWave
channels, while enhancing the angle resolution for the sensing
functionality. Critically, the channel of mmWave mMIMO
system exhibits sparsity, i.e., there are much fewer Non-Line-
of-Sight (NLoS) components compared with the sub-6 GHz
band, which is particularly favourable for vehicle localization
[9]. To fully exploit the above advantages of mmWave and
mMIMO technologies, it is natural to equip the V2X network
with both communication and sensing capabilities, such that
the safety and reliability of automated vehicle operation can
be significantly improved, with high-speed links and accu-
rate localization performance. In consideration of all these
perspectives, research efforts are well-underway toward the
deployment of integrated sensing and communication (ISAC)

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3250442

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 13,2023 at 12:25:40 UTC from IEEE Xplore.  Restrictions apply. 



2

in V2X networks [10]–[15].
More relevant to this work, a dedicated radar sensor

mounted on a roadside unit (RSU) may assist the communica-
tion beam training in vehicle-to-infrastructure (V2I) downlink
scenarios [10]. By doing so, the direction-finding ability of
the radar improves the precision of the beam alignment with
significantly reduced beam training overhead, which is how-
ever at a cost of extra hardware platform. To further exploit the
performance gain provided in ISAC V2X network, a vehicular
beamforming approach without any additional sensor was pro-
posed in [11], which employed the echo of mmWave payload
signal to sense the location of the vehicles and predictively
constructed the beamformer in high mobility scenarios. By
applying the matched filter (MF) or other estimation methods,
the vehicle’s state parameters can be estimated in real-time.
Then an EKF approach was applied to estimate the present and
predict the future position of the vehicle so that an efficient
ISAC-based predictive beamforming design can be attained.
On top of that, a message-passing-based algorithm from a
Bayesian perspective was proposed in [13] to achieve the same
objective. Overall, compared with the traditional beam training
schemes and emerging beam tracking schemes [16]–[20], the
ISAC-based predictive beamforming algorithm exhibits the
following superiorities:

• Low tracking overhead. Different from conventional
tracking techniques in [16]–[20], the dedicated pilot is
not required in the transmission frame, which benefits
from lower latency and continuous data transmission and
removes the need for CSI feedback and the associated
quantization and feedback errors.

• Significant matched-filtering gain. Through ISAC sig-
nalling, the whole transmission frame can be used for si-
multaneous data transmission and sensing, which leads to
a higher gain for matched-filtering processing, compared
with the conventional beam training/tracking approaches
relying on pilots only. The higher matched-filtering gain
improves the sensing performance and makes it easy to
construct beams accurately pointed to the vehicular user
(VU), thus to provide reliable communication service.

• Two dimensional localization. In contrast to conven-
tional approaches operated in the angular domain only,
ISAC-based schemes offer additional range information
which significantly improves the accuracy of localization.

Although numerous studies on ISAC-enabled V2X networks
have already been reported in the literature, there are still quite
a lot of critical challenges that prevent the practical imple-
mentation, where one important issue is the over-simplified
assumptions adopted. While the beam training schemes do
not need the prior information of the channel state, the beam
tracking algorithms often assume that the targets move around
the RSU at a constant absolute velocity [16], [17] or the target
is located at a given angle by treating the variation caused
by the movement as noise [18], [20], which is obviously
mismatched with the realistic scenarios. More importantly, in
many existing ISAC-based V2X schemes, the vehicle is as-
sumed to drive on a straight road parallel to the antenna array,
which represents a corner case and cannot cover the broader

scenarios [11]–[13]. Accordingly, the kinematic model in the
existing treatise and the resultant EKF-based beam tracking
algorithm only work under limited roadway geometries. The
complicated trajectories may impair the precision of sensing
and prediction, which further lead to a low communication
rate due to beam misalignment.

In light of the above, we propose a novel sensing-assisted
predictive beamforming scheme in V2I networks that is
able to operate on arbitrarily shaped roads, by employing a
curvilinear coordinate system (CCS) [21]. To further model
the complicated driving behavior of the vehicles, multiple
kinematic models are taken into consideration. For clarity, the
contribution of this paper can be summarized as follows:
• ISAC-based predictive beamforming for arbitrarily

shaped road. Inspired by [21]–[23], we model the
complicated roadway geometry as a CCS and reveal its
relationship with the Cartesian and the polar coordinate
systems used for sensing, which facilitates beam tracking
for the vehicle with uniform velocity.

• Interacting multiple model (IMM) based beamform-
ing and vehicle maneuver recognition. Based on the
CCS, we further consider a scenario where the vehicle
intermittently changes its lane. By applying the IMM
filter [24], a more reliable tracking process is established
and the maneuver of the vehicle can be readily identified.

• Dynamic beamwidth (DB) scheme under misalign-
ment probability constraint. To address the positioning
and angle uncertainty of the IMM-EKF-based algorithm,
we propose a dynamic beamwidth adjustment algorithm.
The proposed algorithm is capable of activating dynamic
numbers of antennas to optimize the array gain while
guaranteeing that the misalignment probability is lower
than a given threshold.

The remainder of this article is organized as follows, Section
II introduces the system model and the modeling of CCS,
Section III describes the proposed EKF approach and the
corresponding IMM filtering, Section IV proposes the dynamic
beamwidth algorithm, Section V provides the numerical re-
sults, and finally Section VI concludes the paper.

Notations: Unless otherwise specified, matrices are denoted
by bold uppercase letters (i.e., F), vectors are represented
by bold lowercase letters (i.e., x), and scalars are denoted
by normal font (i.e., ρ). (·)H stands for Hermitian transpose.
arctan (·) and arcsin (·) denote inverse tangent and inverse
sine function in radian. bnc denotes the maximum integer
no larger than a real number n, and E{·} represents the
statistical expectation. {x, y} and (s, n) denote the location
in the Cartesian coordinate system and the CCS, respectively.

II. SYSTEM MODEL

In this paper, we consider a V2I downlink scenario where
an RSU equipped with a massive antenna array and working
at mmWave frequency servers a single antenna vehicle. The
vehicle is assumed to be driven on a road with an arbitrary
shape on the x-y plane, and the RSU communicates with the
vehicle via Line-of-Sight (LoS) channel. Moreover, a uniform
planner array (UPA) with 2M columns and N rows is assumed
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Fig. 1. The Location and motion can be easily modeled in Curvilinear
Coordinate system.

to be deployed at the RSU, which is equally divided into
transmit and receive array, i.e., Nt = Nr = M × N . The
shape of the road around the RSU is known by importing a
map with high precision or acquiring the roadway information
from the road designers. Given the page limit, we designate the
discussion of the NLoS channel and the road in 3-dimensional
models as our future work.

A. Road Geometry Model

Our goal is to track the variation of the position and the
motion of the vehicle so that we can use quite a narrow beam
to communicate with the vehicle and obtain the high array
gain. In contrast to the straight road model considered in [11]–
[13], the kinematic equation of the vehicle on a curve road
is extremely difficult to be described either in the Cartesian
coordinate system or in the polar coordinate system. This
motivates us to model the motion of the vehicle on such road
in CCS.

1) Basic Concept of Curvilinear Coordinate System: The
CCS is characterized in the Euclidean space where a certain
number of the coordinate axes are represented based on a
curved geometry. As shown in Fig. 1, the complicated road
described by x, y, and z in the Cartesian coordinate system
can be represented in CCS by using s, n and q. Based on
the CCS, the position and motion have more clear meaning
compared with that in the Cartesian coordinate system. The
s axis represents the dimension that follows the curvature of
the arbitrary road, with the value of s denoting the distance
travelled along that axis. The n axis is perpendicular to s and
the value of n represents the lateral distance from the s-axis.
The q axis is perpendicular to s and n and the values of q
represent the distance on the height dimension in our scenario.
By converting the kinematic description into the roadway-
geometry-based CCS, the motion of the vehicle can be easily
described in an explicit way.

2) Description of the Curve by Fitting Equations: To set
up such a coordinate system under road geometry, we need
to first choose a proper method to describe the axis of the
new coordinate system. Without the loss of generality, we use
the cubic spline interpolation algorithm in this paper to fit
the line that runs across the middle of the road by using a
set of parametric functions. Accordingly, the new coordinate
system can be described by this set of parameters. The cubic
spline interpolation algorithm can offer not only a high fitting
precision but also continuous second-order derivation, which
is a useful property in the state description for our EKF in the
following. Besides, since road designers sometimes use the
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Fig. 2. The relationship between the CCS, Cartesian coordinate system and
the polar system.

cubic spline interpolation algorithm to describe the curve, the
fitting algorithm can achieve fairly high accuracy if the design
of the road is available.

In order to apply the cubic spline interpolation algorithm,
the curve of interest is divided into I segments by I+1 control
points, which include the start point and the endpoint. Any
point on the curve in the i-th segment between the i-th control
point and the (i+1)-th control point can be described by the
following equation:

[xs, ys, s]
T = [ai, bi, ci]

T [ρ3, ρ2, ρ, 1]T , (1)

where s is the length along the road and also the value
on the s axis in the CCS, (xs, ys) is the position of the
point in the Cartesian coordinate system, ai, bi, ci ∈ R4×1

are the parameter sets which calculated by the cubic spline
interpolation algorithm in the i-th segment, and ρ is the
variable of the parametric functions. This equation implies that
any given point on the curve can be simultaneously expressed
in the CCS and the Cartesian coordinate system by a certain
parameter ρ.

3) Interplay between the Coordinate Systems: In the con-
sidered ISAC system, we estimate the classic sensed param-
eters, such as Doppler frequency and angle of arrival (AoA),
which are naturally described in the polar coordinate system.
Thus, the relationship between the different coordinate systems
should be revealed. Since the conversion between the polar and
Cartesian coordinate systems is straightforward, we mainly
focus on the relationship between the CCS and the Cartesian
coordinate system.

As shown in Fig. 2, the RSU is located at {x0, y0} with
the height being H to give a bird’s eye view. The VU is
located at (s, n, 0) in the CCS, (θ,ϕ, d) in the polar coordinate
system and {x, y, 0} in the Cartesian coordinate system, where
θ, ϕ and d represent the azimuth angle, elevation angle
and the distance from the RSU to the VU, respectively. For
brevity, we express (s, n, 0) and {x, y, 0} as (s, n) and {x, y},
respectively. The closest point is the projection of the VU on
the s axis, which is located at (s, 0) in the CCS and {xs, ys}
in the Cartesian coordinate system. By recalling (1), it is easy
to convert this point between the two coordinate systems. By
denoting the direction of the road at the closest point as α,

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3250442

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 13,2023 at 12:25:40 UTC from IEEE Xplore.  Restrictions apply. 



4

the relationship between the VU and its closest point can be
expressed as

[x, y] = [xs, ys] + n[− sinα, cosα]. (2)

The direction α can be calculate by α = arctan(dys/dxs),
where dys/dxs can be obtained from (1). Since n is explicitly
expressed in the CCS, the conversion from the CCS to the
Cartesian coordinate system is straightforward. Moreover, it
can be shown in the following part that the reversed conversion
from the Cartesian coordinate system to the CCS is not
required in any step in the proposed algorithm.

B. Signal Model
As shown in Fig. 3, the RSU transmits the ISAC signal

to the vehicle and receives the echo signal from the vehicle
simultaneously in our considered ISAC V2I downlink sce-
nario. In each epoch, the RSU tries to construct a beam that
steers to the vehicle by applying the predicted angle of the
vehicle. To explore how the transmit and receive signal impact
the sensing and communication performance, we investigate
the signal model in this subsection. Since the initial state of
the vehicles can be easily obtained by conventional device-
based sensing methods, such as beam training and handoff
between the different RSUs, we focus on the signal model of
the tracking state at the l-th epoch.

ISAC RSU

Fig. 3. ISAC V2I scenario model.

1) Communication Signal Model: Let us denote the down-
link transmitted ISAC data stream at the l-th epoch and time
t as s̄l(t). The transmit signal can be expressed as

s̃l(t) =
√
plfls̄l(t) ∈ CNt×1, (3)

where fl is the transmit beamforming and pl is the total
transmit power at the RSU. Since we consider an LoS channel
between the RSU and the vehicle with a single antenna, the
channel vector has the similar form as the steering vector from
the RSU to the VU, i. e., hc =

√
αa(θ, ϕ), with α being the

path-loss. The m-th entry of the array steering vector can be
modeled as

a(θ, ϕ)m = e−jπ(bm
M c sinϕ cos θ+(m−Mbm

M c) sinϕ sin θ). (4)

As we aim to achieve the highest array gain, the transmit
beamformer should be designed in the following form, which
corresponds to the channel vector,

fl = a(θl, ϕl) ≈ a(θ̂l|l−1, ϕ̂l|l−1), (5)

where θ̂l|l−1 and ϕ̂l|l−1 are the predicted angles at the l-th
epoch based on the estimation at the (l−1)-th epoch since the
real angle is unavailable to the RSU.

The receive signal at the vehicle can be accordingly ex-
pressed as

rc,l(t) =
√
αla

H(θl, ϕl)s̃(t− τc,l)ej2π%c,lt + zc(t), (6)

with τc,l and %c,l being the time delay and the Doppler
frequency at the vehicle at the l-th epoch, respectively. 1

Assuming the RSU is equipped with omnidirectional antennas,
the path-loss can be modeled as [25]

αl(dB)=32.4+20 log10 fc(MHz)+(20×η) log10 dl(km), (7)

with η being the path-loss factor corresponding to the carrier
frequency and the electromagnetic propagation environment
and we assume η = 1 in this paper.

2) Radar Signal Model: Compared with the communi-
cation signal, the channel matrix should be formulated as
cascaded channel vectors, and the Doppler frequency and time
delay of the radar signal are doubled due to the round trip of
the reflected signal. The power of the reflected signal is not
only determined by the round-trip path-loss but also by the
radar cross-section (RCS) of the target. Thus, the received
signal vector can be expressed in the following form

rl(t) = βlb(θl, ϕl)a
H(θl, ϕl)s̃(t− τl)ej2πµlt + zr(t), (8)

where zr ∈ CNr×1 denotes the complex additive white
Gaussian noise with zero mean and variance of σ2 and βl,
µl and τl represent the reflection coefficient, the Doppler
frequency and the time delay for the RSU. Besides, the receive
channel vector b(θ, ϕ) has the same form as the transmit
channel vector when the number of the receive antenna is the
same as the transmit antenna. Based on the radar equation,
the reflection coefficient of this ISAC system with standard
omnidirectional antennas, which contains the RCS and path-
loss, can be modeled as [25]

βl =
λεl

(4π)3/2d
(2×η)
l

, (9)

where εl represents the RCS at the l-th epoch, dl represents
the propagation distance and λ is the wavelength of the carrier,
which can be mathematically expressed as λ = fc/c with fc
being the frequency of the carrier and c being the speed of the
light. Again, we assume a free space propagation which leads
to η = 1.

III. THE PROPOSED APPROACH

A. Extended Kalman Filter

1) State Evolution Model: To accurately track the position
and the reflection coefficient of the vehicle, the kinematic
states should be properly modeled. Based on the aforemen-
tioned curvilinear coordinate system, the position state and
the motion state of the vehicle can be naturally decomposed
into two orthogonal directions, namely the longitudinal and
lateral directions.

1The predicted Doppler frequency and delay can be estimated by the RSU
and fed to the VU to alleviate the computational overhead of the VU.
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In this paper, we assume that the vehicle is stably driven
forward or changed its lane, such that the velocity of the
vehicle remains unchanged within a single epoch, and that
the change between the two adjacent epochs is regarded as
system noise. Therefore, without considering the system noise,
the distance and the velocity in the two directions at the
l-th epoch can be expressed by sl = sl−1 + vs,l−1∆T ,
nl = nl−1 + vn,l−1∆T , vs,l = vs,l−1 and vn,l = vn,l−1,
where ∆T is the duration of a single epoch. By defining the
propagation distance of the signal as

d =
√

(x0 − x)2 + (y0 − y)2 + z2
0 , (10)

the reflection coefficients in the two adjacent epochs can be
expressed as

βl =
λεl

(4π)3/2d2
l

, βl−1 =
λεl−1

(4π)3/2d2
l−1

, (11)

where {x0, y0, z0} and {x, y} denote the Cartesian coordinates
of the RSU and the vehicle, respectively, and εl and εl−1

denote the complex RCS at the l-th epoch and (l − 1)-th
epoch, respectively. The RCS of the vehicle is assumed to be a
constant within a short period, i. e., εl ≈ εl−1, corresponding
to a Swerling I target model [25]. Therefore, the evolution of
the reflection coefficient can be formulated as

βl = βl−1

εld
2
l−1

εl−1d2
l

≈ βl−1

d2
l−1

d2
l

. (12)

The full state evolution model can be accordingly summarized
as 

sl = sl−1 + vs,l−1∆T + ωs,

vs,l = vs,l−1 + ωvs ,

nl = nl−1 + vn,l−1∆T + ωn,

vn,l = vn,l−1 + ωvn ,

βl = βl−1
d2l−1

d2l
+ ωβ

(13)

where ωs, ωvs , ωn, ωvn and ωβ are the system noise of the
state evolution function, which are related to the approxima-
tion and systematic error of the description to the system.

Further, we introduce two classic motion models to interpret
the behavior of the vehicle. When the vehicle is moving stably
on the road at a constant velocity without any turning, we can
describe the motion of the vehicle by using s, n, and vs. In
this model, the lateral velocity and its corresponding system
noise are considered as vs = 0, ωvs = 0, which is called lane-
keeping (LK). On the other hand, in the lane-changing (LC)
model, we describe the motion of the vehicle by taking the
lateral velocity vn into account when the vehicle is changing
the lane. By adding such an additional state variable, the
maneuver of the vehicle can be described while the additional
system noise is also introduced.

2) Radar Measurement Model: Once the RSU receives the
echo signal at the l-th epoch, we can first invoke the classic
MUltiple SIgnal Classification (MUSIC) algorithm to estimate
the AoA, θ̂l and ϕ̂l [26].2 Then, by employing the Angle
and Phase EStimation (APES) algorithm [27], the reflection

2The estimated or the predicted AoA can be fed to the VU to construct a
receive beamformer when the VU is equipped with an antenna array [11].

coefficient β̂l can also be readily obtained. After that, by
constructing the receive beamformer from the estimated AoA,
the weighted received signal can be expressed as

r̃l(t)=βlw
H(θ̂l, ϕ̂l)b(θl, ϕl)a

H(θl, ϕl)s̃(t−τl)ej2πµlt+z̃r(t),
(14)

where wH(θl, ϕl) is the receive beamforming vector which
can be expressed as

w(θ̂l, ϕ̂l) =

√
1

Nr
b(θ̂l, ϕ̂l). (15)

It should be highlighted that by using the massive MIMO array
at the RSU, the transmit and receive beams are sufficiently
narrow, such that the inter-beam interference can be omitted
for multiple vehicles scenario. This follows from the estab-
lished mMIMO theory and can be mathematically expressed
as follows [9]:

|aH(θ0, ϕ0)a(θ1, ϕ1)| → 0,∀θ0 6= θ1 orϕ0 6= ϕ1, Nt →∞.
(16)

Then, by employing the matched filter with a delayed and
Doppler-shifted counterpart of sl(t), one can estimate the de-
lay τl and the Doppler frequency µl, which can be analytically
given as

{τ̂l, µ̂l} = arg max
τ,µ

∣∣∣∣∣
∫ ∆T

0

r̃l(t)s̄
∗
l (t− τ)e−j2πµt dt

∣∣∣∣∣
2

. (17)

For the sake of simplicity, we summarize the estimated pa-
rameters and the corresponding noise as follows:

[θ̂l, ϕ̂l, µ̂l, τ̂l, β̂l] = [θl, ϕl,
2 cos(ϕ)vR,l

λ
,

2dl
c
, βl] + z (18)

where vR,l is the radial velocity which can be expressed as
vR,l = vs,l cos(θ − α) + vn,l sin(θ − α), z = [zθ, zϕ, zµ, zτ ,
zβ] is measurement noise vector.

3) Covariance Matrices Approximation: To better exploit
the EKF algorithm, the covariance matrices of the measure-
ment noise should be properly set. Before analyzing the
covariance matrices, we first rewrite the received signal in
a more compact form to derive the receive signal-to-noise
ratio (SNR), which has an explicit impact on the measurement
noise, and can be given by

r̃l(t) =
√
plβlκT,lκR,ls̄l(t− τl) + z̃r(t), (19)

where κT and κR are the transmit and receive beamforming
gains which are defined as

κR,l =

√
1

Nr

∣∣∣wH(θ̂l, ϕ̂l)b(θl, ϕl)
∣∣∣ ≤√Nr, (20)

κT,l =

√
1

Nt

∣∣∣aH(θl, ϕl)a(θ̂l|l−1, ϕ̂l|l−1)
∣∣∣ ≤√Nt. (21)

Thus, the per antenna receive SNR and the beamformed SNR
can be expressed as

ρ0 =
plβ

2
l κ

2
T,l

σ2
, ρ1 =

plβ
2
l κ

2
T,lκ

2
R,l

σ2
. (22)

Since what we actually estimated by applying the MUSIC
algorithm are the spatial frequencies a = π sinϕ cos θ and
b = π sinϕ sin θ, the actual azimuth angle and elevation angle
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and the corresponding Cramer-Rao Lower Bound (CRLB) can
be calculated by the following equations,

θ = arctan

(
b

a

)
, ϕ = arcsin

√
a2 + b2

π
, (23)

Cθ,ϕ =

[
∂θ
∂a

∂θ
∂b

∂ϕ
∂a

∂ϕ
∂b

] [
Ca 0
0 Cb

] [
∂θ
∂a

∂θ
∂b

∂ϕ
∂a

∂ϕ
∂b

]T
, (24)

where the Jacobian matrix is easy to calculate. The CRLB of
a and b can be formulated as

Ca = Cb =
6

N2
SampleNrρ0

, (25)

with Nsample being the number of signal samples. As for the
reflection coefficient, while the CRLB of the APES algorithm
has not been explicitly given, we apply the empirical equation
to estimate CRLB of which the approximated error can be
verified to be quite small [28]. Thus, we approximate the lower
bound of the estimation error of β as

Cβ =
1

NsampleNrρ0
. (26)

The CRLB of estimation for a classic MF algorithm can be
directly expressed as [25]

Cτ =
3

2π2Bwχ
,Cµ =

1

(2π)2∆T 2fsχ
. (27)

In (27), Bw and fs denote the bandwidth of the ISAC signal
and the sample rate of the analog-digital converter (ADC),
respectively, and χ is the output power SNR of the MF with
the following definition

χ =
Es
N0

=
Pr∆TBw

σ2
= ρ1∆TBw. (28)

4) Preparation of EKF Procedure: In this subsection, we
summarize the state evolution model and the measurement
model and then derive the corresponding covariance matrices
and Jacobian matrices before showing the standard EKF
procedure. Although the nonlinearity of the kinematic model
is alleviated by applying the CCS, the nonlinearity of the
conversion between the polar coordinate system and the CCS
still makes it impossible to directly employ the linear Kalman
filter in our system. Thus, we consider an extended Kalman
filtering approach that employs the first-order Taylor expansion
as the approximation of the nonlinear model. By denoting
the state variables and the measurement signal vector as
X = [s, vs, n, vn, β]T and Y = [θ̂, ϕ̂, µ̂, τ̂ , β̂], respectively,
the model derived in (13) and (18) can be recast in compact
forms as{

State Evolution Model: Xl = g(Xl−1) + ωl,

Measurement Model: Yl = h(Xl) + zl,
(29)

where g(·) is defined in (13), with ω= [ωs,ωvs ,ωn,ωvn ,ωβ ]T

being the system noise vector and h(·) is defined in (18) with
z = [zθ, zϕ, zµ, zτ , zβ ]T being the measurement noise vector.

As considered above, ω can be modeled as zero-mean
Gaussian distributed noise with the covariance matrices being
expressed as Qs [18], [25]. As for z, the empirical estimation
errors of the MUSIC algorithm and the APES algorithm follow

the Gaussian distribution while the errors of matched filter are
not Gaussian distributed [25]–[27]. However, since the errors
show similar distribution with the Gaussian distribution, the
EKF may not suffers severe performance loss by regarding
these errors as Gaussian. For sake of simplicity, we model
the measurement as Gaussian distribution with a covariance
matrix Qm.

Qs =


σ2
s σ2

s,vs 0 0 0
σ2
s,vs σ2

vs 0 0 0
0 0 σ2

n σ2
n,vn 0

0 0 σ2
n,vn σ2

vn 0
0 0 0 0 σ2

β

 , (30)

Qm = diag(Cθ,ϕ, Cτ , Cµ, Cβ), (31)

where σs, σvs , σn, σvn , and σβ denote the variance of the state
variables, and σs,vs as well as σn,vn denote the covariance
of velocity and distance. Moreover, the covariance matrix of
the system noise can be empirically set by considering the
type of the vehicle, the road condition, the frame of the ISAC
system, and other relevant factors of the system. To linearize
the models, we give the Jacobian matrices for both g(X ) and
h(X ) as

∂g

∂X
=


1 0 ∆T 0 0
0 1 0 ∆T 0
0 0 1 0 0
0 0 0 1 0
∂β̌
∂s

∂β̌
∂n

∂β̌
∂vs

∂β̌
∂vn

d2

ď2

 , (32)

∂h

∂X
=


∂θ
∂s

∂θ
∂n 0 0 0

∂ϕ
∂s

∂ϕ
∂n 0 0 0

∂µ
∂s

∂µ
∂n

∂µ
∂vs

∂µ
∂vn

0
∂τ
∂s

∂τ
∂n 0 0 0

0 0 0 0 1

 , (33)

where we omit the time index l − 1 at the l-th epoch and
substitute (·)l as (̌·). The derivates in the two matrices can
be calculated by recalling the definition of the state evolution
model and the measurement model and applying the chain
rule. The overall EKF algorithm will be summarized with the
IMM algorithm as IMM-EKF scheme in the next subsection.

B. IMM Filtering for Motion Tracking and Reasoning

While the EKF scheme is capable of achieving high ac-
curacy when tracking and predicting the state of the vehi-
cle under a single kinematic model, it may be difficult to
generalize to the case where the vehicle may switch among
multiple kinematic models. This implies that the motion of the
target may not be matched with the predicted motion of the
given tracking model when the vehicles are maneuvered by the
drivers. For example, the lateral velocity is considered noise
when the state is predicted by an LK model while the vehicle
is changing the lane. This can lead to severe prediction error
and even loss of tracking. Adding some additional state vari-
ables which describe the maneuver in other dimensions may
help, such as applying the LC model. However, the system
noise may also be introduced when the models with more
state variables are considered, which leads to performance

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3250442

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 13,2023 at 12:25:40 UTC from IEEE Xplore.  Restrictions apply. 



7

LK EKF

LC EFK

1,1T

(2)

l

(1)

1l

(2)

1l

(1)

1lp

(2)

1lp

LK EKF

LC EFK

1,1T

2,2T

2,1T

2,1T

ISAC Signal Processor

(1)

l

(1)

1l

(2)

1l

(1)

lp

(2)

lp

(1)

1lp

(2)

1lp

(1)

1l

(2)

1l

| 1l l l

Input

State
Interacting

Elementary

Filter

Output

State

(1)

l

(2)

l

(1)

lS

(2)

lS

Probability

Updating

1,1T

2,2T

High Level

Processor

( )i

lp

Fig. 4. A flowchart of the IMM filter scheme.

degeneration when the vehicle is stably moving. To improve
the robustness of the tracking when maneuver occurs and
guarantee the effectiveness when the vehicle is in a stable
state, we invoke the IMM filtering algorithm.

An IMM filter scheme is designed for estimating the state of
a system that may be matched with more than one potential
model (hypothesis). As shown in Fig. 4, an IMM filtering
scheme consists of three steps: interacting, elementary fil-
tering, and model probability updating and combining. The
estimation and prediction of each model are calculated by a
Kalman filter in the second step, and the results of different
models interact at the initial and the final step of an IMM filter.
Compared with Kalman filters with only one hypothesis, the
transition probability matrix T between different hypotheses is
needed as prior information. The entry in the j-th column and
the i-th row of T represents the transition probability from
the j-th model to the i-th model, which is irrelative to the
estimation but only depends on the kinematic model and road
geometry.

In the first step of the IMM filter scheme at the l-th epoch,
the probability, estimated state, MSE matrix, and predicted
state are regarded as input. We first calculate the mixed
probability, which represents the weight of each model at this
epoch. By mixing the estimated probability of each model and
the transition probability matrix, the mixed probability can be
expressed as

c
(i|j)
l =

(
Tj,ip

(j)
l−1

)/(∑
j

Tj,ip
(j)
l−1

)
, (34)

where p(j)
l−1 is the estimated probability of the j-th model at

the (l-1)-th epoch. Then, the input of the i-th elementary filter
can be calculated by mixing the output of all the filters and
the mixed probability c as follows

X̄ (i)
l−1 =

∑
j

X̂ (j)
l−1c

(i|j)
l , X̄ (i)

l|l−1 =
∑
j

g(i)(X̂ (j)
l−1)c

(i|j)
l , (35)

M̄
(i)
l−1 =

∑
j

c
(i|j)
l ×(M

(j)
l−1 +(X̄ (i)

l−1−X̂
(j)
l−1)(X̄ (i)

l−1−X̂
(j)
l−1)T ).

(36)

Besides, to construct the transmit beamformer, it is necessary
to calculate the mixed prediction for the interacted model by
the following equation,

X̄l|l−1 =
∑
i

X̄ (i)
l|l−1/N, (37)

where N is the number of hypotheses. 3

After that, the standard EKFs are employed as elementary
filters to respectively estimate and predict the state. Each
elementary filter contains six steps, which are listed as below
[29]
1) State Prediction:

X̂ (i)
l|l−1 = g(i)(X̂ (i)

l−1), (38)

2) Linearization:

G
(i)
l−1 =

∂g(i)

∂X

∣∣∣∣
X=X̂ (i)

l−1

,H
(i)
l =

∂h(i)

∂X

∣∣∣∣
X=X̂ (i)

l|l−1

, (39)

3) MSE Matrix Prediction:

M
(i)
l|l−1 = G

(i)
l−1M

(i)
l−1G

(i)H
l−1 + Q(i)

s (40)

4) Residual Covariance and Kalman Gain Calculation:

S
(i)
l = H

(i)
l M

(i)
l|l−1H

(i)H
l + Qm, (41)

K
(i)
l = M

(i)
l|l−1H

(i)H
l

(
S

(i)
l

)(−1)

, (42)

5) Measurement Residual and State Update:

Ỹ(i)
l = Y(i)

l − h
(i)(X̂ (i)

l|l−1), X̂ (i)
l = X̂ (i)

l|l−1 + K
(i)
l Ỹ

(i)
l

(43)

6) MSE Matrix Update:

M
(i)
l = (I−K

(i)
l H

(i)
l )M

(i)
l|l−1, (44)

where i = 1, 2 denotes the index of models. To be mentioned,
the simple EKF can be implemented by removing the model
index and employing the steps above.

In the last step, the likelihood L and the probability p for
the i-th model at the l-th epoch are updated by analyzing the

3Although we regard the interacting step as the first step of the IMM filter,
we need to calculate all these variables at the end of the previous epoch to
output the best prediction of the best beam pattern in this epoch in (5).
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measurement residual and the residual covariance matrix by
the following equations:

L
(i)
l =

exp

(
− 1

2

(
Ỹ(i)
l

)T (
S̃

(i)
l

)−1

Ỹ(i)
l

)
(

√
(2π)n|S̃(i)

l |
, (45)

p
(i)
l =

L
(i)
l

∑
j

Tj,ip
(j)
l−1

∑
i

(
L

(i)
l

∑
j

Tj,ip
(j)
l−1

) . (46)

By following the steps above, the fitnesses between the actual
states and the hypotheses are measured by probabilities, and
the beamformer is almost determined by the model with the
best matching probability. Besides, the overall output state and
corresponding MSE matrix can be expressed as

X̂l =
∑
j

X̂ (j)
l p

(j)
l , (47)

Ml =
∑
j

p
(j)
l × (M

(j)
l + (X̂ (i)

l − X̂l)(X̂
(i)
l − X̂l)

T ), (48)

which can be employed to analyze the estimation and predic-
tion performances. The overall IMM-EKF scheme is summa-
rized in Algorithm 1 for clarity.

Algorithm 1 IMM-EKF algorithm
Input : Transition probability matrix T, estimated probabili-

ties p(i)
l−1, estimated states X̂ (i)

l−1, estimated MSE matrices
M

(i)
l−1, state evolution models g(i), measurement models

h(i), covariance matrices Q
(i)
s ∀i = 1, 2.

Output Transmit beamformer fl, estimated probabilities p(i)
l ,

estimated states X̂ (i)
l , estimated MSE matrices M

(i)
l .

1. Update the mixed probability c(i|j)l , the mixed estimated
state X̄ il , the mixed predicted elementary state X̄ il|l−1, the

mixed MSE matrix M̄
(i)
l−1, (i, j = 1, 2), by employing (34),

(35), and (36).
2. Update the mixed state X̄l|l−1 and the corresponding
beamformer fl based on (37) and (5).
3. Obtain the measurements and their corresponding covari-
ance matrix by employing the estimators.
4. Execute the elementary filtering based on (38)-(44).
5. Update the likelihood and the probabilities based on (46).
6. Calculate the output state and the output MSE matrix by
employing (48).

IV. DYNAMIC BEAMWIDTH SCHEME FOR ISAC V2I LINK

The transmit beam should be as narrow as possible to
achieve high array gain once the accurate location of the
vehicle is predicted. However, the accuracy of the IMM-EKF
algorithm is limited by both the system noise and measurement
noise. This indicates that in the massive-MIMO regime, the
vehicle may locate at the sidelobe which accordingly leads
to low array gain and poor sensing and communication per-
formance. In this section, we propose a dynamic beamwidth
method to provide robust array gain with given misalignment
probability by analyzing the uncertainty of the prediction.

A. Analysis on Prediction Uncertainty and Array Gain

To characterize the uncertainty of the prediction, we derive
the distribution of the predicted state, which has a direct impact
on beamforming. Following the definition of the MSE matrix
in the EKF algorithm, the expectation of error between the
predicted state and the true state can be given as

E{(X̂l|l−1 −Xl)(X̂l|l−1 −Xl)H}
=E{(g(X̂l−1)−g(Xl−1)−ωl)(g(X̂l−1)−g(Xl−1)−ωl)H}

(a)
≈E{

(
Gl−1(X̂l−1−Xl−1)−ωl

)(
Gl−1(X̂l−1−Xl−1)−ωl

)H}
(b)
=Gl−1Ml−1G

H
l−1 + Qs = Ml|l−1, (49)

where the linear approximation (a) follows by the linearization
step of EKF and (b) follows by the fact that the system noise
ωl is independent to Xl−1 and X̂l−1, i.e., E{Xl−1ω

H
l } = 0

and E{X̂l−1ω
H
l } = 0. Since both X̂l−1 and ωl are Gaussian

distributed, X̂l|l−1 is Gaussian distributed as well, which
subject to X̂l|l−1 ∼ CN (Xl,Ml|l−1).

As our main purpose is to find the proper beamwidth, we
focus on the state variables s and n, which are relative to ϕ
and θ. The uncertainty of the angle can be modeled as

Ψ=

[
∆θl
∆ϕl

]
=

[
θ̂l|l−1 − θl
ϕ̂l|l−1 − ϕl

]
≈
[
∂θ
∂s

∂θ
∂n

∂ϕ
∂s

∂ϕ
∂n

] [
ŝl|l−1 − sl
n̂l|l−1 − nl

]
,

(50)
where we apply the first-order linear approximation in the
above equation due to the non-linearity between the angle
and the state variables. With the distribution of predicted state
X̂l|l−1 in hand, one can directly express the distribution of Ψ
as

Ψ ∼ N (0,Σ), Σ =

[
∂θ
∂s

∂θ
∂n

∂ϕ
∂s

∂ϕ
∂n

]
Ml|l−1

[
∂θ
∂s

∂θ
∂n

∂ϕ
∂s

∂ϕ
∂n

]T
. (51)

Then, the array gain at the l-th epoch with the beamformer
designed to point at θ̂l|l−1 and ϕ̂l|l−1 can be expressed as (52).
To further reveal the relationship between the array gain and
the prediction uncertainty, (52) can be approximated as

κ2 ≈
∣∣∣N−1∑
n=0

M−1∑
m=0

ejπ(nΨ‖+mΨ⊥)
∣∣∣2

= MN
sin2(

πNΨ‖
2 )

sin2(
πΨ‖

2 ))

sin2(πMΨ⊥
2 )

sin2(πΨ⊥
2 )

, (53)

with[
Ψ‖
Ψ⊥

]
=

[
− sin θ sinϕ cos θ cosϕ
sin θ cosϕ cos θ sinϕ

] [
∆θ
∆ϕ

]
= TΣΨ. (54)

By denoting Ψ̃ = [Ψ‖,Ψ⊥]T , the distribution and the corre-
sponding PDF can be expressed as

Ψ̃ ∼ N (0, Σ̃), f(Ψ̃) =
1

2π|Σ̃| 12
e−

1
2 Ψ̃Σ̃−1Ψ̃T

, (55)

where Σ̃ = TΣΣTT
Σ denotes the covariance matrix.
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κ(θl, ϕl, θ̂l|l−1, ϕ̂l|l−1) = (52)∣∣∣∣N−1∑
n=0

M−1∑
m=0

exp{jπ
(
n(cos θl sinϕl − cos θ̂l|l−1 sin ϕ̂l|l−1)+m(sin θl sinϕl − sin θ̂l|l−1 sin ϕ̂l|l−1)

)
}

∣∣∣∣∣,

B. Proposed Beamwidth Control Method

Due to the limitation of prediction precision, the beam
should be properly widened. Thus, our goal is to find a
minimal beamwidth and the corresponding minimal beam-
covered area D0 to provide high array gain while guaranteeing
the misaligned probability lower than a given threshold Γ. This
task can be mathematically formulated as

min D0

s.t.

∫∫
D0

f(Ψ̃)dD > 1− Γ. (56)

With the given threshold, one may employ a two-dimensional
linear search to find the optimal beamwidth, which could
be computationally expensive. On this basis, we propose a
dynamic beamwidth method, which calculates the sub-optimal
solution in closed form.

Fig. 5. Contour plot of f(Ψ̃), best area with Γ0 and the approximated beam-
covered area.

Since the double integral on the θ-ϕ plane, which integrates
the PDF grid-by-grid, is difficult to solve, we resort to calcu-
lating the integral circle-by-circle from the center point. By
defining the radius scale r as r2 = Ψ̃HΣ̃−1Ψ̃, the cumulative
probability in the area D1 where r < R0 can be expressed as

F (R0) =

∫∫
D1(R0)

f(Ψ̃)dD =

R0∫
0

1

2π|Σ̃| 12
e−

1
2 r

2

2π|Σ̃| 12 rdr

= 1− e− 1
2R

2
0 . (57)

Accordingly, as shown in Fig. 5, for any given Γ0, it is possible
to find a corresponding R0 which guarantees the cumulative
probability being equal to 1− Γ0.

Since Σ̃ is not a diagonal matrix, the area D1 is a rotated
eclipse while the beam-covered area is a set of standard
eclipses. This makes it difficult to find the optimal beam-
covered area by directly employing R0. Therefore, as shown
in Fig. 5, we turn to find the sub-optimal region D̃0 ⊇ D1(R0)
where the misalignment probability is less than Γ which results

in little performance loss. By simple geometric derivation, the
expression of the sub-optimal beam-covered area which covers
D1(R0) with the highest array gain can be given as

D̃0 : Aθθ
2 +Bϕϕ

2 ≤ 1. (58)

In the above equation, Aθ and Bϕ are the parameters of the
semi-major axis and semi-minor axis of D̃0, which can be
expressed as

Aθ = Σ̃−1
1,1 − |Σ̃

−1
2,1|
√

Σ̃−1
1,1/Σ̃

−1
2,2/2, (59a)

Bϕ = Σ̃−1
2,2 − |Σ̃

−1
1,2|
√

Σ̃−1
2,2/Σ̃

−1
1,1/2, (59b)

with Σ̃−1
i,j being the element in i-th column and j-th row

of the inversed covariance matrix. Further, the corresponding
beamwidth can be expressed as θBW =

√
1/Aθ and ϕBW =√

1/Bϕ.
In the mMIMO regime, the beamwidth is almost continuous

to the number of stimulated antennas. Therefore, for ease of
implementation, we employ a rectangular window to control
the beamwidth, where the number of the non-zero elements
are denoted as M̃ and Ñ in the two directions. By employing
separable spectral weightings method, the optimal M̃ and Ñ
can be directly given as [30]

Ñ∗=

0.89

√√√√√ Σ̃2,1

√
Σ̃1,1

8
√

Σ̃2,2

 , M̃∗=

0.89

√√√√√ Σ̃2,1

√
Σ̃2,2

8
√

Σ̃1,1

 .
(60)

The overall algorithm is summarized in Algorithm 2.

Algorithm 2 Dynamic Beamwidth control scheme
Input : Desired misalignment probability Γ, predicted State
X̂l|l−1, predicted MSE matrix M̂l|l−1, Jacobian matrix for
evolution function Gl−1.

Output The number of the non-zero elements of the rectan-
gular window M̃∗ and Ñ∗.
1. Calculate the covariance matrix by using (51) and (55).
2. Get the radius scale factor R0 by calculating F (R0) <
1− Γ in (57).
3. Normalize the covariance matrix and calculate the corre-
sponding sub-optimal beam-covered area by using (58).
4. Calculate the sub-optimal beamwidth in (59) and control
the beamwidth by employing (60).

V. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed
scheme in both sensing and communication functionalities
by using numerical simulation. Unless otherwise specified,
both the RSU and the vehicle operate at fc = 30GHz with
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Fig. 6. Two road models used in the simulation.

a bandwidth Bw as 500MHz, the transmit power Pt is con-
sidered as Pt = 30dBm, and the data-frame block duration
is set as ∆T = 20ms. The noise power spectral density is
considered as −144 dBm/Hz at all the receivers, which leads
to the variance of the noise as −57 dBm. The path losses
for both sensing and communication functions are calculated
by applying the free space transformation model. The road
models applied in this section are imported from Google
Earth and shown in Fig. 6. We choose the center line of
the roads as the s axes of the CCSs and regard them as
the ideal trajectories. We choose 50 control points in Fig.
6(a) and 30 control points in Fig. 6(b) with considering the
curvature and the shape of the roads. The first model is a
part of the country road in London, UK, with longitude and
latitude coordinates being 51°26’52”N, 0°08’54”E. In this
model, the coverage of the RSU is assumed to be 200m and
the minimum distance from the road to the RSU is 15m.
The second model is a roundabout in Dalian, China, with
coordinates being 38°55’14”N, 121°37’,20”E. The radius of
the roundabout is 50m, which follows existing standards in
China with the maximum velocity of the vehicle being limited
to 10m/s [31], and with the origin of the Cartesian coordinate
system is set as the center of the roundabout. The RSU is
located at {18, 15} in the Cartesian system in order to sense
the Doppler shift along the road. The variances of system
noise for both models are set as follows: σs= 0.08m, σn=
0.016m, σvs= 0.1m/s, σvn = 0.02m/s, σβ = 2 × 10−6, and
the covariance matrix of the measurement noise is calculated
in EKF procedure by applying (24) and (26-27). Moreover, to
separately explore the improvement of each proposed scheme,
the dynamic beamwidth scheme is only applied in the last
subsection.

A. Performance for Tracking the Vehicle in the LK Model

We first evaluate the communication and sensing perfor-
mances of the proposed technique under the LK assumption.
Without loss of generality, we set the initial state of the vehicle
as s = 2m, vs = 10m/s, n = 0m, β = 2× 10−5 × (1 + j).

In Fig. 7, we show the downlink achievable rates of the
communication link with the increased size of the antenna
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Fig. 7. Achievable rate for proposed scheme, with initial state s = 2m, vs =
10m/s, n = 0m, β = 2× 10−5 × (1 + j), Pt = 30dBm.
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Fig. 8. Position tracking performance for proposed scheme , with initial state
s = 2m, vs = 10m/s, n = 0m, β = 2× 10−5 × (1 + j), Pt = 30dBm.

array. In both scenarios, the initial location of the vehicle is
far from the RSU, which leads to low SNRs and corresponding
low achievable rates. When the vehicle is approaching the
RSU, the path-losses decrease with respect to the distance,
which accordingly leads to increasing achievable rates. Note
that, the communication performance degenerates when the
vehicle is quite near to the RSU in the country road model
when Nt = 32 × 32. On the one hand, the velocity of
the vehicle is almost vertical to the propagation direction of
the signal, which makes the Doppler frequency hard to be
estimated. On the other hand, since the distance between the
RSU and the vehicle is sufficiently small, the angle changes
too fast for EKF tracking. Fortunately, this degeneration does
not occur when the size of the antenna array is small and can
also be compensated by the dynamic beamforming algorithm
proposed in Sec. IV when the size of the antenna array is
large.

In Fig. 8, we demonstrate the radar sensing performance
in terms of root mean squared error (RMSE) for the position
tracking performance in the CCS and reveal how the com-
munication performance depends on the sensing performance.
As shown in Fig. 8, benefiting from the improvement of the
SNR and the accuracy of the measurement in each epoch, the
tracking performances generally increase when the vehicle is
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Fig. 9. CDF of achievable rates for different algorithms with Nt = Nr =
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moving near the RSU. Moreover, when the direction of the
vehicle is almost perpendicular to the RSU (700ms in (a) and
(c), and 2100ms in (b) and (d)), it is difficult to track the
Doppler shift in the longitudinal direction while the tracking
performance in the lateral direction is improved. The spikes in
the RMSEs in (b) and (d) (at about 500ms and 3500ms) are
due to the swift direction changes when entering and exiting
the roundabout in Fig. 6(b). When the vehicle is near enough to
the RSU, the angle prediction error is sensitive to the location
prediction error. Such that, the large error of longitudinal
distance prediction error in the country road model leads
to slight beam alignment and corresponding communication
performance degeneration in Fig. 7(a). It is noteworthy that,
when the beam precisely points to the vehicle, the RMSE is
tightly bounded by PCRB, which proves the effectiveness of
the proposed scheme in Sec. IV that dynamically adjusts the
beamwidth by leveraging the predicted MSE matrix.

B. Performace Comparision for Proposed Algorithm and
Benchmark Schemes

In this subsection, we examine the superiorities of our
proposed algorithm (ISAC-RG) by comparing it with the
following beam tracking schemes in the country road model:
• The ISAC-based beam tracking scheme in the Cartesian

coordinate system, which predicts the state of the vehicle
on the complicated road by applying a difference algo-
rithm (ISAC-Cartesian). [14].

• The ISAC-based beam tracking scheme which assumes
the vehicles are driven on a straight road (ISAC-SR). [11].

• The auxiliary beam pair algorithm where quaternary
training beams are transmitted to the vehicle at the
beginning of an epoch (ABP) [20].

Note that the ABP algorithm is a kind of communication-only
beam tracking algorithm that needs additional uplink feedback
to inform the RSU of the channel estimation, thus the overhead
is much higher than that of ISAC-based algorithms. The ISAC-
Cartesian algorithm is applied to situations where the state
evolution functions are difficult to derive and usually has some
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Fig. 10. Achievable rates comparison for different algorithms with Nt =
Nr = 256, Pt = 30dBm and 50dBm.

performance loss. Here, the number of transmit and receive
antennas is assumed to be 256, and the half-searching range
of both elevation and azimuth beamforming region for the
ABP algorithm is set as π/8 without loss of generality.

In Fig. 9, we first explore the communication performance
by showing the empirical cumulative distribution functions
(CDF) in terms of the achievable rates. It is notable to see that
the proposed algorithm always achieves the best performance
compared with the benchmark schemes and shows robustness
to the transmit power budget. It can also be seen that the gap
in communication performance between the ISAC-Cartesian
and the proposed algorithm reduces as the transmit power
increases, and the gap between the ABP and the ISAC-RG
also decreases since the roundabout model is friendly to the
ABP algorithm. As for the ISAC-SR, the mismatched model
makes it difficult to track the vehicle properly and leads to
severe performance loss.

We further show the achievable rates obtained for different
schemes in one realization in Fig. 10 to interpret how the
movement of the vehicle affect communication performance.
To be mentioned, we do not show the ISAC-SR in this
figure since the reason for performance loss is obvious and
the performance with a higher power budget has too many
crossovers with that of other schemes with a lower budget.
It can be seen that the ABP algorithm shows comparable
performance when the vehicle is moving to the RSU (0
to 0.5), and suffers severe performance loss after passing
the RSU. This is because the ABP algorithm exploits the
feedback direction information to perform beam tracking,
whose performance relies on the accuracy of angle estimation
in the current epoch but not all the past epochs, which results
in instability of tracking. More specifically, once the angle
begins to vary rapidly, the beam misalignment may become
severe. As a result, an outage may occur in tracking and
communication with the VU. Moreover, because the minimum
distance from the vehicle to the RSU in the roundabout is
much larger than that in the country road, the angular velocity
is smaller and leads to fewer performance losses. As for the
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ISAC-Cartesian algorithm, since the prediction performance
only relies on the measurement in the last three steps and the
RMSE of the prediction is several times of the RMSE of the
estimation, the achievable rate is more relevant to radar SNR
compared with the proposed algorithm. As shown in the figure,
the performance is comparable with the proposed algorithm in
the area near the RSU where the radar SNR is high enough,
but severe performance degenerations occur in the other area.

To verify the superiority of the proposed method in high-
mobility scenarios and to further discuss the impact of the
sensing performance on the communication performance, we
show the overall RMSE result of the angle prediction and
the average achievable rate versus velocity in Fig. 11 and
Fig. 12. In general, the performance of the ISAC-RG and
ISAC-Cartesian is robust to the change of the velocity, while
the performance of the ABP algorithm degenerates quickly
when the velocity is high. As we mentioned above, the
accuracy of the proposed EKF-based algorithm mainly relies
on estimation accuracy in all past observations and the system
noise, which is more reliable in high-mobility networks. For
the ABP algorithm, the uncertainty imposed by the prediction
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Fig. 13. CDF of achievable rates for the IMM-based algorithm and single-
model-based algorithms in the maneuver scenarios.

is avoided by using the feedback information, which leads
to better performance in the low-velocity regime. However,
when the angular variation becomes large, the ABP method
quickly breaks down. Meanwhile, since the ISAC-SR adopts
a mismatched state evolution model, it is not able to track
the vehicle properly and the communication performance
mainly relies on the power budget. It is also obvious that
the communication performance is generally dominated by the
sensing performance with a given power budget. For example,
the RMSE of the ABP algorithm increases when the velocity
is larger than 8m/s while the communication performance also
degenerates in the same region. It is noteworthy that, the
improvement of the achievable rate is negligible when the
RMSE is low enough since the array gain is almost flat in
the center of the main lobe.

C. Performance for IMM tracking and Behavior Reasoning

In this part, we study the performance of the proposed IMM-
based tracking scheme. We consider two scenarios where the
vehicle tries to maneuver at a constant lateral velocity on the
country road. In the first scenario, the vehicle firstly moves
stably at a longitudinal velocity of 5m/s from 0ms to 600ms.
Then the vehicle changes its lane from 600ms to 1200ms at
a lateral velocity of 1m/s while the longitudinal velocity is
still 5m/s. After that, the vehicle continues to move stably. In
the second scenario, the vehicle has the same state as the first
scenario before 1200ms but quickly changes its lane to the
other direction in 2m/s from 1200ms to 2000ms. The lateral
velocity in the two scenarios is demonstrated as the bottom
bar in Fig. 14.

In Fig. 13, we investigate the comparison of communica-
tion performance between the IMM-based algorithm and the
single-model-based algorithms by showing the CDF versus
achievable rates. It is obvious that the IMM-based shows
superiority over the single-model-based algorithms in the
given scenarios. More specifically, the achievable rate of the
LK-based algorithm always has a notable gap between the
other schemes which verifies that the EKF with the LK model
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Fig. 14. Reasoning Performance of IMM-based algorithm.

is difficult to generalize to other models. The performance
of the LC model also lags behind the IMM-based algorithm,
especially in scenario 1 in which the vehicle only slightly
changes lanes. It is because the LC model introduces an
additional state variable to track the lateral movement and
leads to more system noise and larger error of angle prediction,
even though the vehicle is moving stably.

Then we show the stacked probability of the two models
in Fig. 14 to evaluate the reasoning ability of the IMM-based
algorithm. As shown in both the subfigures, when the lateral
velocity is not zero, the probability of the LC model is close
to 1, which indicates that we can always identify the lane-
changing operation. In the other situations, the probability of
the LK model is not always close to 1 which slightly impairs
the tracking performance. However, the reasoning performance
is still guaranteed since the LK probability is larger than 0.5,
which is usually regarded as a threshold of identification. 4

D. Performance for Dynamic Beamforming

In this subsection, we compare the misalignment probability
and achievable rate between the general constant beamwidth
(CB) algorithm which tries to form the narrowest beam and our
proposed dynamic beamwidth (DB) scheme which guarantees
a given misalignment probability. To be mentioned, we assume
the system noise as σs = 0.16m and σn = 0.0032m to reveal
the performance under a worse situation where the error of the
roadway geometry map is larger or the behavior of the vehicle
is more unpredictable.

In Fig. 15, we first evaluate the misalignment probability
of the two schemes. It can be observed that the misalignment
probability of the CB algorithm increases with respect to the
size of the antenna array while that of the DB algorithm is
always lower than the given threshold. Then we focus on
the tendency of probability to change along the positional

4Note: It is worth mentioning that we assume the lateral velocity is a
constant when the vehicle changes its lane and mutated when the changing
is stopped. This is an extreme case that barely occurs on the real-world road
but can prove that the proposed algorithm is able to work even in extreme
cases.
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Fig. 15. Misalignment probability of constant beamwidth scheme and
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RSU in country road model.
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Fig. 16. Achievable rate of constant beamwidth scheme and proposed
dynamic beamwidth scheme when the vehicle is near to the RSU in
country road model.

axis. The change of the CB algorithm is obviously intuitive,
where the misalignment probability increases with the vehicle
nearing the RSU. It is worth pointing out that there is a
distinct gap between the threshold and the actual misalignment
probability of the DB scheme at some certain points. The first
reason for this phenomenon is that when the size of the antenna
is small, the discreteness of adjustment makes it impossible to
achieve the best beam-covered area and accordingly leads to
lower misalignment probability and potential performance loss
of achievable rate. The second reason is that when the cross-
correlation between the two spatial frequencies is large, the
rotation angle of the eclipse of the PDF is approximated to be
π/4 while that of the beam-covered area is always 0, which
results in the largest residual error of the approximation.

We then compare achievable rates of the proposed scheme,
the CB scheme and the ideal scenario where the system always
has a full array gain in Fig.16. Both the algorithms show the
same performance with the ideal scenario when the vehicle is
far from the RSU where the misalignment probability is low
enough which is consistent with the analysis above. As the
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misalignment of DB algorithm is lower, the communication
performance shows superiority over the DB algorithm and
inferiority as compared with the ideal scenario. In addition,
it is interesting to note that crossover occurs in the area where
the performance curves begin to separate, which is because
the discreteness of the array size and the residual error leads
to excessive adjustment and performance loss. Fortunately,
the degeneration is moderate and may not occurs in other
circumstance.

TABLE I
COMPUTATIONAL COMPLEXITY FOR DIFFERENT ALGORITHMS PER DATA

FRAME.

ISAC-RG ISAC-Cartesian ABP ISAC-SR
Analytical O(Kζ) O(K) O(K) O(K)

Numerical (µs) 53.29 8.25 4.73 21.73

To verify the practical feasibility of introducing the IMM-
EKF-based algorithm with dynamic beamwidth adjustment
under the CCS, we give a brief discussion on the complexity of
our proposed method. The number of the VU K is assumed to
be 1 and the number of the potential kinematic ζ is assumed to
be 2 in this simulation. The simulation is performed on an Intel
Core i5-11500T CPU 32GB RAM computer with 1.5GHz.
As shown in Table 1, the overheads of the benchmarks are
all O(K) while that of the proposed method is O(Kζ). The
additional overhead comes from the IMM algorithm which
simultaneously tracks multiple kinematic models. However,
since there is no iterative procedure in the proposed method
(neither in the benchmarks), the average per-frame execution
time on the PC is 53.29 µs, which can be greatly reduced on
a 5G cellular base station. Moreover, the computing tasks for
the elementary filters are irrelative to each other, which means
while complexity is O(Kζ), the execution time can be reduced
to O(K) by employing parallel computing techniques.

VI. CONCLUSION

In this article, we have proposed a novel predictive beam-
forming scheme for tracking and communicating with a
vehicle on arbitrarily shaped roads by employing an RSU
equipped with the ISAC capability. By applying the CCS,
the proposed approach enabled the implementation of high-
accuracy EKF beam prediction to detect and track the vehicle
given any roadway geometries. Furthermore, we have pro-
posed an IMM-based filtering scheme to track and identify
vehicle maneuvering. Considering the beam misalignment
incurred by system noise and measurement noise, a dynamic
beamwidth adjustment algorithm has been further proposed by
analyzing the properties of the spatial frequency uncertainty.
The algorithm is aimed at maximizing the array gain while
ensuring that the misalignment probability is lower than a
given threshold. Finally, to validate the effectiveness of our
proposed algorithms, numerical results have been provided
to show that the IMM-EKF-based predictive beamforming
scheme outperforms conventional benchmark techniques. The
ability of tracking and identifying the vehicle maneuvering
has also been verified. Additionally, the trade-off between
the misalignment probability and the array gain has been
demonstrated by adopting the dynamic beamwidth scheme.
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Linköping University Electronic Press, 2015, vol. 1642.
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