2,909 research outputs found

    Brain Abscess

    Full text link
    Magnetic Resonance Imaging (MRI) in cerebral abscess, as with most other forms of intracranial inflammatory or infectious diseases, is a powerful though largely nonspecific diagnostic tool. This unit presents a variant of a previously published standard imaging protocol, to include gadolinium‐enhanced sequences for imaging of these patients. Several optional sequences, including diffusion (dMRI), perfusion (pMRI), and spectroscopic (MRS) sequences are outlined that can be employed should patient tolerance allow and if specific clinical situations require further clarification. The parameters given in this unit are derived from experience at 1.5 T and may need to be altered slightly depending on the field strength available and the specific equipment manufacturer.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145392/1/cpmia0401.pd

    Consensus Recommendations of the Multiple Sclerosis Study Group and the Portuguese Neuroradiological Society for the Use of Magnetic Resonance Imaging in Multiple Sclerosis in Clinical Practice: Part 2

    Get PDF
    INTRODUCTION: Magnetic resonance imaging is recognized as the most important diagnostic test in the diagnosis of multiple sclerosis, differential diagnosis and evaluation of progression/therapeutic response. However, to make optimal use of magnetic resonance imaging in multiple sclerosis, the use of a standard, reproducible and comparable imaging protocol is of uttermost importance. In this context, the Portuguese Society of Neuroradiology and the Group of Studies of Multiple Sclerosis, after a joint discussion, appointed a committee of experts to create recommendations adapted to the national reality on the use of magnetic resonance imaging in multiple sclerosis. This document represents the second part of the first Portuguese consensus recommendations on the use of magnetic resonance imaging in multiple sclerosis in clinical practice. MATERIAL AND METHODS: The Portuguese Society of Neuroradiology and the Group of Studies of Multiple Sclerosis, after discussing the topic in national meetings and after a working group meeting held in Figueira da Foz, May 2017, appointed a committee of experts that have developed several standard protocols on the use of magnetic resonance imaging on multiple sclerosis by consensus. The document obtained was based on the best scientific evidence and expert opinion. Portuguese multiple sclerosis consultants and departments of neuroradiology scrutinized and reviewed the consensus paper; comments and suggestions were considered. Standardized strategies of magnetic resonance imaging referral in clinical practice for diagnosis and follow-up of multiple sclerosis were published in the first part of this paper. RESULTS: We provide magnetic resonance imaging acquisition protocols regarding multiple sclerosis diagnostic and monitoring and the information to be included in the report for application across Portuguese healthcare institutions. CONCLUSION: We hope that these first Portuguese magnetic resonance imaging guidelines will contribute to optimize multiple sclerosis management and improve patient care in Portugal.info:eu-repo/semantics/publishedVersio

    Landmark detection in MR brain images using SURF

    Get PDF

    Advances in ENT imaging

    Get PDF
    Over the last ten years or so radiology has shown dramatic technological developments especially in cross sectional imaging and the investigation and management of the complex ENT patient has benefitted enormously. Plain radiographs are being utilised less and less as their limitations are becoming more apparent and various studies have shown for example a 75% discrepancy between plain sinus radiographs and coronal sinus CT in children1,2 . The incorporation of small and flexible ultrasound transducers with high-resolution imaging into the tips of endoluminal catheters has allowed good quality endoluminal ultrasound. Recently endolaryngeal ultrasound has been clinically evaluated in 38 patients with a variety of laryngeal pathology including vocal fold polyps, laryngeal cysts, chronic laryngitis, epithelial dysplasia and cancer 5 . Using this technique tumour size and infiltration could be measured and involvement of the thyroid cartilage or anterior commissure could be visualised. Not surprisingly it was not able to detect any specific changes in the sonographic picture of patients suffering from chronic laryngitis, epithelial dysplasia or microinvasive cancer. Although these results are encouraging, its relative lack of availability will result in it only having a limited role in evaluating laryngeal pathology.peer-reviewe

    Human Immunodeficiency Virus (HIV)

    Full text link
    Magnetic Resonance Imaging (MRI) for the evaluation of patients infected with human immunodeficiency virus (HIV), as with most other forms of intracranial inflammatory or infectious diseases, is a powerful though largely nonspecific diagnostic tool. For imaging of these complex patients with the varied and numerous pathologies they may harbor, the standard protocol is utilized to include gadolinium‐enhanced sequences. This unit presents optional imaging sequences, including magnetic resonance diffusion (dMRI), magnetic resonance perfusion (pMRI), and magnetic resonance spectroscopy (MRS), that can be employed should patient tolerance allow and if specific the clinical situation requires further clarification.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145277/1/cpmia0403.pd

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    This Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that offers, in addition to all the functionality specifically described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient

    Automatic linear measurements of the fetal brain on MRI with deep neural networks

    Full text link
    Timely, accurate and reliable assessment of fetal brain development is essential to reduce short and long-term risks to fetus and mother. Fetal MRI is increasingly used for fetal brain assessment. Three key biometric linear measurements important for fetal brain evaluation are Cerebral Biparietal Diameter (CBD), Bone Biparietal Diameter (BBD), and Trans-Cerebellum Diameter (TCD), obtained manually by expert radiologists on reference slices, which is time consuming and prone to human error. The aim of this study was to develop a fully automatic method computing the CBD, BBD and TCD measurements from fetal brain MRI. The input is fetal brain MRI volumes which may include the fetal body and the mother's abdomen. The outputs are the measurement values and reference slices on which the measurements were computed. The method, which follows the manual measurements principle, consists of five stages: 1) computation of a Region Of Interest that includes the fetal brain with an anisotropic 3D U-Net classifier; 2) reference slice selection with a Convolutional Neural Network; 3) slice-wise fetal brain structures segmentation with a multiclass U-Net classifier; 4) computation of the fetal brain midsagittal line and fetal brain orientation, and; 5) computation of the measurements. Experimental results on 214 volumes for CBD, BBD and TCD measurements yielded a mean L1L_1 difference of 1.55mm, 1.45mm and 1.23mm respectively, and a Bland-Altman 95% confidence interval (CI95CI_{95}) of 3.92mm, 3.98mm and 2.25mm respectively. These results are similar to the manual inter-observer variability. The proposed automatic method for computing biometric linear measurements of the fetal brain from MR imaging achieves human level performance. It has the potential of being a useful method for the assessment of fetal brain biometry in normal and pathological cases, and of improving routine clinical practice.Comment: 15 pages, 8 figures, presented in CARS 2020, submitted to IJCAR

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    Cotutela con il Dipartimento di Biotecnologie e Scienze della Vita, Universiità degli Studi dell'Insubria.openThis Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that offers, in addition to all the functionality specifically described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient.openInformaticaPedoia, ValentinaPedoia, Valentin

    Evaluation of some spiral and sequential computed tomography protocols of adults used in three hospitals in Shiraz, Iran with American College of Radiology and European Commission guidelines

    Get PDF
    Purpose: Use of computed tomography (CT) has increased considerably all over the world. In addition, there has been an increased demand for utilisation of CT scanning in Iran over the past decade, especially after introducing multi-detector computed tomography (MDCT). It should be considered that making a mistake in the selection of scan parameters leads to patients receiving higher doses and having increased risk of cancer. All of these facts prompted us to compare six routine CT protocols in three hospitals in the city of Shiraz, and to compare the results with American College of Radiology (ACR) practice parameters and European Commission (EC) guidelines for dual- and multi-detector CT. Material and methods: In the studied hospitals, 10 adult patients were chosen randomly for every six protocols, taken by different technologists. Seven and 11 scan factors in sequential and spiral scans, respectively, were compared with ACR (2014) and EC guidelines (EC16262 & EC2004). Results: The majority of scan factors in sequential and the spiral protocols that were scrutinised met the guidelines. The CTDIvol and DLPs for sequential and spiral scans were lower than the dose reference level (DRL) pronounced by ACR in three CT departments, and they were compatible with the recommended dose by EC (16262) in a private hospital. Conclusions: Based on accordance of CTDIvol with ACR measurements and incompatibility with EC (2004) in teaching hospitals, we concluded that the recorded doses should be compared with different criteria. A regular review of protocols, using special protocols for different pathologic circumstances and continual education for technologists in the three CT departments, are recommended

    Three-dimensional ulstrasound study of fetal craniofacial anatomy

    Get PDF
    corecore