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Abstract

Practitioners in the area of neurology often use brain landmarks in critical applications rang-
ing from planning stereotactic neurosurgery to the study of disease progression over time.
Although manual identification of these landmarks by experts is often possible for one or
more datasets, the task becomes impractical for larger datasets where the manual annotation
gets more erroneous, time-consuming, and expensive. As a result, developing fully automatic
methods to localize brain landmarks has been an active area of research in the field of medical
image analysis. Among the existing work, a group of algorithms considers solving the land-
mark detection problem by using an image registration algorithm. Although this approach is
applicable to detection of different landmarks, depending on the registration method and the
landmark of interest, it can be too computational or may lack accuracy. In contrast, a second
group of algorithms aims to develop a specialized detection algorithm for each landmark.
These algorithms achieve better accuracy and improved speed in the detection of the land-
mark they are designed for. However, their extension to the detection of another landmark
often requires a new algorithm. In this thesis, we propose a framework that bridges these
two approaches and strives for a good level of generalizability and accuracy in the detection
of brain landmarks. The proposed framework is composed of two stages: In the analysis
stage, we first represent landmarks by local feature points and identify reference landmarks
(defined as those that can be reliably detected) in a number of annotated brain MR datasets.
This stage can be considered as the learning stage of our framework and is done once for
a defined landmark. In the second stage, we consider landmark detection as a special form
of feature point matching guided by learned reference landmarks. In this stage, in addition
to the particular landmark, we make use of the more reliably-detectable reference landmarks
in the neighborhood of the landmark-of-interest. The proposed framework is generic in the
sense that we can apply the same scheme for any landmark of interest. It has also improved
accuracy and consistent detection performance because of the use of reference landmarks.
In this work, we used SURF (Speeded Up Robust Feature) feature extraction and matching
technique to represent and identify landmarks; however, any local feature point extraction
method is also immediately usable in the developed scheme. The proposed framework has
been tested on both T1 and T2 weighted MR images and for different applications, such as
slice matching, volume matching, and mid-sagittal plane detection. The experiments show a
significant improvement in the landmark detection with the proposed scheme over the detec-
tion without reference landmarks for both T1- and T2-weighted MR images.

Keywords: SURF, landmark detection, search and retrieval, volume matching, mid sagit-
tal plane detection



Contents

1 Introduction 4

1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Brain landmarks and feature extraction techniques 6

2.1 Brain landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Challenges in detecting landmarks in MRI images . . . . . . . . . . . . . . . . 9

2.3 Existing methods to detect landmarks in brain . . . . . . . . . . . . . . . . . 11

2.4 Existing feature extraction techniques . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Scale Invariant Feature Transform (SIFT) . . . . . . . . . . . . . . . . 13

2.4.2 Features from Accelerated Segment Test (FAST) . . . . . . . . . . . . 14

2.4.3 Speeded Up Robust Features (SURF) . . . . . . . . . . . . . . . . . . 15

3 Proposed Framework 17

3.1 Analysis stage of the framework . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Application stage of the framework . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Normalization and initial landmarks detection 21

4.1 Spatial normalization by voxel size correction . . . . . . . . . . . . . . . . . . 21

4.2 Intensity normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Background estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 Pixel intensity re-scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Initial landmarks detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 SURF Feature Extraction, Description, and Matching 27

5.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Feature description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Orientation Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.2 Descriptor Components . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.2 Symmetry test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.3 RANSAC test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.4 Spatial filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2



TU Eindhoven Thesis Report

6 Analysis of brain MR Images to identify reference landmarks 36
6.1 Proposed analysis scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Identification of reference slices . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.1 Slice salient score computation . . . . . . . . . . . . . . . . . . . . . . 37
6.2.2 Median salient score computation . . . . . . . . . . . . . . . . . . . . . 38
6.2.3 Reference slice selection . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Reference based localization of landmarks 42
7.1 Search and retrieval of landmark . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.1.1 Without reference landmarks . . . . . . . . . . . . . . . . . . . . . . . 42
7.1.2 With reference landmarks . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Volume matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3 Mid sagittal plane detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Results 53
8.1 Image data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3 Ground truth generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.4 Results of slice matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.5 Results of volume matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.6 Performance comparison between SIFT and SURF . . . . . . . . . . . . . . . 60

9 Discussion and conclusion 62

3



Chapter 1

Introduction

1.1 Problem description

Anatomical landmarks are well-defined references in the anatomy that experts use to establish
biologically meaningful correspondences between structures [1]. The human brain consist of
such structures that are important in the field of neuroimaging. Identification of anatomical
landmarks are used in critical application such as planning stereotactic and functional neuro-
surgery [2], for the localization of neuroanatomic targets, structure segmentation and labeling
in neuroradiology [3], to study brain asymmetry caused by pathology [4] and to study specific
disease progression over time.

Although manual identification of these landmarks by experts is often possible for one or
more datasets, the task becomes impractical for larger datasets where the manual annotation
gets more erroneous, time-consuming, and expensive. As a result, developing fully automatic
methods to localize brain landmarks has been an active area of research in the field of medical
image analysis. Among the existing work, a group of algorithms considers solving the land-
mark detection problem by using an image registration algorithm. Although this approach is
applicable to detection of different landmarks, depending on the registration method and the
landmark of interest, it can be too computational or may lack accuracy. In contrast, a second
group of algorithms aims to develop a specialized detection algorithm for each landmark.
These algorithms achieve better accuracy and improved speed in the detection of the land-
mark they are designed for. However, their extension to the detection of another landmark
often requires a new algorithm.

1.2 Solution approach

The approach to address the above problem is to develop a generic framework where we
first analyze brain MR images to identify the most reliable landmarks and use the identified
landmark positions to detect other landmarks. The framework will employ computer vision
techniques to extract information from MR brain images. The extracted information will be
used to identify the desired landmarks.
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1.3 Contributions

The important contributions towards this work include:

• Developing a generic framework by

(a) Analyzing brain MR volumes and extracting the most reliably detectable refer-
ence landmarks of the brain by using robust features.

(b) Using the reference landmarks to detect a landmark-of-interest in brain MR
images.

• Applying feature extraction algorithm from computer vision to MR brain images.

• Contrast independent detection – applicable for T1 and T2 images
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Chapter 2

Brain landmarks and feature
extraction techniques

In this chapter an introduction to brain landmarks and the existing methods to detect brain
landmarks are presented. The localization of clinically important landmarks in brain images
is crucial for many neurological studies. In Section 2.1 brain landmarks are discussed. In
Section 2.2 a brief insight on Magnetic Resonance Imaging (MRI) and the inherent problems
with MRI are explained. In Section 2.3 the existing methods to detect brain landmarks are
discussed. Later in Section 2.4, the feature extractors that were considered for this project
are explained.

2.1 Brain landmarks

The human brain is a relatively small organ (around 1400g) sitting within the skull and
protected by membranes called the meninges, which include an external dense outer layer,
called the dura mater, a thin inner layer, called the pia mater, and an intermediate layer, the
arachnoid, constituted as a layer of fibers. The brain floats in the cerebrospinal fluid (CSF)
that has various functions such as protection, nourishment and draining [5].

The basic subdivisions of brain are the two cerebral hemispheres, the brain stem, and the
cerebellum [5] as shown in Figure 2.1. The junction between the top of the spinal cord and
the brain is called the brain stem and it comprises around ten percent of the central nervous
system. This part is essential for involuntary functions such as breathing, digestion, heart rate
and blood pressure. The cerebellum (little brain) is posteriorly connected to the brain stem.
Despite occupying only one tenth of the volume of brain, the cerebellum accounts for around
half of the total number of neurons. Its primary functions are movement that it contributes
to coordination, precision, and accurate timing of motor activity and balance. Receiving and
processing a range of inputs from the eyes, ears, balancing systems and cortex, the cerebellum
dispatches instructions back through the brain stem to other regions of the brain.

Found above the midbrain and between the large cerebral hemispheres is the diencephalon
region, which contains several important substructures, including the thalamus and the hy-
pothalamus. The egg-shaped thalamus is essential in the gating, processing and transfer of
almost all the sensory information (except from the nose) entering the brain [6]. Sitting be-
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Figure 2.1: Cross Section – Human Brain [5]

neath the thalamus is the hypothalamus, where a multitude of critical functions are controlled
and regulated. Connected to almost every other part of the brain, the hypothalamus is es-
sential to motivation, including the seeking out of activities that the person finds rewarding,
like sex and music or even drugs. As a regulator of hormone release, the hypothalamus is also
involved in everything from homeostasis and eating to maternal behavior. It also manages
the daily cycle of the body: the circadian rhythm [6].

The two cerebral hemispheres are separated from one another by a longitudinal fissure,
also called the interhemispheric fissure or the mid sagittal plane, which contains the falx cere-
bri, a membranous septum that separates the hemispheres [5] as shown in Figure 2.2. The
cerebral hemispheres are symmetrical, and their surfaces, called the cortex or gray matter,
contain the cellular bodies of the neurons. The surfaces of the hemispheres are highly con-
voluted and can be described as a succession of crests, called the gyri,and fissures separating
them, called the sulci [5]. Underlying this gray mantle is the white matter, which is made of
bundles of fibers emerging from the bodies of neurons. These fibers are the axons enveloped
by their myelin. The two hemispheres are connected by a broad commissure of white-matter
tracts: the corpus callosum [5].

The hemispheres are commonly subdivided into six lobes, four of which are shown in Fig-
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Figure 2.2: Cross Section – Cerebrum

ure 2.3, that were named after the bones of the skull overlying them [8]. The frontal lobe,
directly beneath the forehead, is involved in what are collectively termed higher functions:
attention, planning, language and movement. It is like a master control unit that helps to
integrate information and govern what the rest of the brain does. Behind it, at the top of
the head, the parietal lobes process lots of sensory information, allowing us to perceive the
world and our place within it [6]. At the back, the occipital lobes deal primarily with vision;
it is here that signals from the eyes become transformed into a useful visual representation.
Finally, the temporal lobes down each side of the brain focus on sound and language, and, by
way of their connection with the hippocampus, memory formation and retrieval.

The hemispheres of brain are held together by the corpus callosum (thick body). This is
the largest bundle of nerve fibres in the body and the main channel through which informa-
tion flows from one side of the brain to the other - as it must for the whole brain to function
properly [6].

Landmarks refer to any brain structure that can be represented as a 3D structure like the
cerebellum, corpus callosum, etc., a plane such as the mid sagittal plane or a point like the
anterior commissure (AC) and posterior commissure (PC).
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Figure 2.3: Brain Lobes [7]

2.2 Challenges in detecting landmarks in MRI images

Magnetic resonance imaging (MRI) is the preferred imaging modality to non-invasively take
pictures of brain, by its cross section. MRI has several advantages:

• Neither the constant magnetic field, nor the radio frequency modulated one, which are
present in the MRI device, represent a danger to the humans.

• The MRI signal is determined by the proton density of the tissue, T1 and T2 relaxation
times, the type of sequence used, and the selected acquisition parameters. These pa-
rameters give the opportunity to enhance the image contrast between the two tissues
by cleverly choosing the type of sequence and the acquisition parameters, and thus
optimize the differentiation between tissue structures.

• Some of the MRI devices give us the opportunity to produce multi–spectral images,
that is two or more images of the same cross section with different parameter setting.

In order to prevent possible misinterpretations, most MR images are acquired such a way
that the tissue contrast of various images is determined mainly on a single tissue parame-
ter. In this context, T1,T2 and PD–weighted images are produced. The MRI acquired is
a volumetric image that contain voxel forming the basic volumetric element, slices that is
composed of several volume elements or voxels and volume that is composed of several slices.
All of these spatial units can be a landmark of interest. The slice landmark is particularly
of interest to this work, since a slice landmark is well represented by its local content. This
can be used to localize a structure to a particular region of the brain volume or with in a
slice landmark. The MR images are stacked as slices in axial, coronal and sagittal direction
as shown in Figure 2.4. The axial plane is an x-y plane, parallel to the ground that separates
the superior from the inferior. A coronal plane, is an x-z plane, perpendicular to the ground
that separates the anterior from the posterior. A sagittal plane, is an y-z plane, perpendicular
to the ground that separates left from right. Figure 2.5(a) and 2.5(b) shows the three basic
anatomical planes and the brain structures observed in the planes. Figure 2.6 depicts the T1
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Figure 2.4: MRI volume showing axial(xy plane), sagittal(xz plane) and coronal(yz plane)
direction [9]

weighted images of brain.

(a) (b)

Figure 2.5: MRI planes. (a) Three basic anatomical planes [10]. (b) Typical cross section of
the brain

Magnetic resonance images (MRIs) acquired with similar protocols but on different scan-
ners show dissimilar intensity values for the same tissue types [11]. At times the recording
protocol also vary leading to differences in scale and voxel spacing from one patient to an-
other. The former limits the use of intensity information while the later reduces the accuracy
while comparing different MR volumes. The rotation induced in the acquired MRI due to
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(a) (b)

Figure 2.6: MRI. (a) MRI cross section of human brain. (b) MRI cross section of cerebrum.

pose difference from patient to patient while recording the MRI make it difficult for matching
algorithms.

Low frequency noises in the magnetic resonance imaging are generally referred to as in-
tensity inhomogeneity or intensity non–uniformity(INU) artifact, and manifest as a smooth
intensity variation across the image. This phenomenon causes regions of the image belonging
to the same tissue class have different intensities. Low magnitude INU is hardly noticeable
for the human eye, but it can induce confusion for image processing algorithms with high
sensitivity.

The partial volume artifact(PVA), also known as partial volume effect(PVE), represents
a phenomenon that is present in MR medical images due to its coarse resolution. Even if
MRI reportedly has higher than other medical imaging techniques, the highest resolution MR
images still have only 1–3 pixels per millimeter. Under such circumstances, it is unavoidable
to have pixels that are shared between two or even among three or more tissue types. This
is a problem for segmentation algorithms and may influence the extraction accuracy of some
features.

High similarity between relevant and irrelevant segments in brain MR volumes, such as
brain tissue vs. non-brain structures in the same slice and relevant slice vs. neighboring slices
in the same volume, makes it difficult for detecting landmark location. Anatomical differences
and pathological changes between patients, make it difficult for matching landmarks [12].

2.3 Existing methods to detect landmarks in brain

Quantitative and qualitative studies of anatomical brain tissues and structures that have
distinctive structural or functional properties usually relies on accurate detection of brain
landmarks. Software tools such as MRIcro [13], ITK-SNAP [14], rview [15] and 3D-Slicer [16]
are some of the freely available tools to perform manual segmentation of brain landmarks.
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The current proprietary software tools for segmentation of brain landmarks from MRI scans
are very laborious and time consuming and requires highly trained experts/technicians. An
experienced researcher may require two hours to trace a single structure such as the hippocam-
pus, and more than a week to trace all of the major structures of the brain [17]. Differences
in criteria among experts can lead to systematically different volume estimates of some brain
regions, and so the highest consistency and sensitivity is achieved when a single individual
traces the entire dataset. However, the criteria used by even a trained expert can subtly drift
during the course of a long study. For these reasons, semi automatic and fully automated
procedures for identifying brain landmarks have attracted considerable interest [17].

Morey et al. [17] has shown that automated procedures identify brain structures accurately
than manual procedures. Atlas-based registration is a commonly used technique to segment
3D or 2D landmark from a MRI volume. In principle, an atlas consists of two components:
the gray-scale information and the segmentation containing labels for different tissue classes
or anatomical structures. After registering an atlas to the destination image volume using
gray-scale information, the resulting transformation is used to propagate the labels into the
space of the destination volume [18]. Many different approaches has been reported using
atlas-based registration for segmenting anatomical structures structures [18, 19, 20]. The ma-
jor drawback of the atlas based landmark detection is that, it is computationally expensive
and the results depend on the proper selection of atlases.

Unay et al. [12] presented a novel search and retrieval technique for finding relevant slice
landmarks in brain MR (magnetic resonance) volumes. The approach uses Local Binary Pat-
tern(LBP) [21] and KLT Feature Points [22] to retrieve the slice landmarks. But the technique
is applied only in 2–D and relies on mid sagittal plane detection before matching.

Mid-sagittal plane (MSP), a plane landmark that is generally used to study brain sym-
metry. The existing methods for MSP detection follow either a feature based or a symmetry-
based approach. Ekin [23] proposed a robust feature-based approach to make it possible
to detect the mid-sagittal plane as long as two image lines are not affected by pathalogi-
cal abnormality. In the symmetry-based approach, mid-sagittal plane is defined as the one
that maximizes the similarity between the brain and its reflection. The methods following
this approach [24, 25, 26] first define a parameter space that describes the MSP, a similarity
measure, such as cross-correlation, to assess the interhemispheric symmetry in the selected
feature space, such as intensity or edges [25], and a search method and search criteria to find
the parameters that maximize the similarity measure.

Kruggel and Yves [27] have proposed an image processing chain to align MR brain datasets
with stereotactical coordinate system [28]. The method combines brain peeling, detection of
AC and PC and normalization in the Talairach space. The AC and PC point landmarks in
particular are detected by spanning a constant gradient field between the brain hemispheres
and identifying the local flow peaks in the mid-sagittal plane. Hu et al. [29] proposed to iden-
tify modified Talairach cortical landmarks [30] in three steps. In the first step, three planes
containing the landmarks are calculated. Then the plane is thresholded and segmented with
the chosen thresholds and morphologic operations. Finally, the segmentation is refined to
compensate for the influence of optic nerves and the partial volume effect [29].Prakash et al.
[31] have proposed a two step method to identify the AC and PC point landmark widely
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used for image registration and in neurosurgery. The method uses the anatomy information
surrounding the AC and PC to identify the third ventricle. In the first step 2D data is pro-
cessed to obtain the initial position of the commissures and the second step refines the initial
positions by processing 3D volume of interest. Fu et al. [32] proposed automatic identification
of fourth ventricular landmarks which are used to describe a variability study of brain stem
structures. The method uses the technique proposed by Prakash et al. [31] to identify the AC
and PC and then use these landmarks to identify the fourth ventricular landmarks.

The method proposed by Prakash et al. [31] and Fu et al. [32] rely on a successful local-
ization of corpus callosum. To overcome this problem Ardekani and Bachman [33] proposed
a model based approach to detect AC and PC. The approach uses 3D templates derived from
multiple model images for training. The training can be extended to identify other landmarks
which is close to the proposal made in this report [33]. Recently Don et al. [34] have employed
artificial neural networks to detect AC and PC which has shown to minimize the AC-PC lo-
calization error rate. The existing methods to detect point landmark have a major drawback
that they work only for that particular landmark. To detect a different point landmark, a
new method has to be designed. In this thesis we aim to develop an extendable or a generic
method that can be used to detect all landmarks.

2.4 Existing feature extraction techniques

In MRI brain volumes the landmarks are well distinguished from its neighbors based on their
intensity values. Hence the MRI brain landmarks can be identified across volumes by their
intensity values that form the feature set for this project. MR brain images are subjected to
various challenges as explained in Section 2.2. So feature extractors that are robust to noise,
bias field, rotation and that is generalizable to any dataset can be employed. Figure 2.7 shows
a point and a slice landmark. It is observed that point landmark is well distinguished from
its neighbors in Figure 2.7(a).

The feature extractors that are robust and have repeatable features were considered for this
project. These feature extractors perform well in case of rotation up to 10 degrees [35]. Also
the detected feature set depend on the local information rather than the global information,
hence the extractors are robust. These feature extractors are widely used in computer vision
applications but are rarely used in the field of medical image processing particularly in MR
images. In the case of medical image processing these feature extractors are applied in image
registration [36][37] and in image search and retrieval [38].

2.4.1 Scale Invariant Feature Transform (SIFT)

Scale Invariant Feature Transform(SIFT) was first proposed by Lowe [39]. SIFT describes
image features that have many properties that make them suitable for different images of
an object or a scene. The features are invariant to image scaling and rotation and partially
invariant to illumination and camera 3D viewpoint. They are well localized in both the spatial
and frequency domains, reducing the probability of disruption by occlusion, clutter, or noise
[39]. Since typically an image consist of a large number of features, extracting these would
be costly. SIFT reduces the cost of feature extraction by taking a cascade filtering approach,
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(a) (b)

Figure 2.7: MRI brain landmark. (a) Point landmark (AC-PC) [33]. (b) Slice landmark.

in which expensive operations are applied only at locations that pass an initial test [39]. The
following are the major stages stated by Lowe [39] that are used to compute features:

• Scale-space extrema detection: The first stage of computation searches over all scales
and image locations. It is implemented efficiently by using a difference-of-Gaussian
function to identify potential interest points that are invariant to scale and orientation.

• Keypoint localization: At each candidate location, a detailed model is fit to determine
location and scale. Keypoints are selected based on measures of their stability.

• Orientation assignment: One or more orientations are assigned to each keypoint location
based on local image gradient directions. All future operations are performed on image
data that has been transformed relative to the assigned orientation, scale, and location
for each feature, thereby providing invariance to these transformations.

• Keypoint descriptor: The local image gradients are measured at the selected scale in the
region around each keypoint. These are transformed into a representation that allows
for significant levels of local shape distortion and change in illumination.

Various refinements on this basic scheme have been proposed. Ke and Sukthankar [40]
applied PCA on the gradient image. This PCA-SIFT yields a 36-dimensional descriptor which
is fast for matching [40], but proved to be less distinctive than SIFT in a comparative study
by Mikolajczyk and Schmid [41] and slower feature computation reduces the effect of fast
matching. In the same paper the authors have proposed gradient location and orientation
histogram (GLOH) which is even more distinctive with the same number of dimensions.
However, GLOH is computationally more expensive.

2.4.2 Features from Accelerated Segment Test (FAST)

FAST(Features from accelerated segment test) is a feature detector based on segment test
proposed by Rosten and Drummond [42]. This is sufficiently fast that it allows on-line op-
eration for tracking features. A test is performed for a feature at a pixel p by examining a
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Table 2.1: Time taken for feature detection on a PAL field (768 × 288) pixels on the test
system. [42]

Detector FAST Harris Corner

Time (ms) 2.6 44

Figure 2.8: FAST Feature detection in an image patch. The highlighted squares are the pixels
used in the feature detection. The pixel at C is the centre of a detected corner. [42]

circle of 16 pixels (a Bresenham circle of radius 3) surrounding p. A feature is detected at p
if the intensities of at least 12 contiguous pixels are all above or all below the intensity of p
by some threshold, t [42]. This is shown in Figure 2.8.

The test for this condition is optimized by examining pixels 1, 9, 5 and 13, to reject
candidate pixels more quickly, since a feature can only exist if three of these test points are
all above or below the intensity of p by the threshold. With this optimization, on a sample
sequence of video, the algorithm examines, on average, 3.8 pixels to test if there is a feature at
a given location [42]. Table 2.1 shows the time taken to compute the corner by Harris corner
detector and FAST on a PAL field on the test system. From the Table 2.1 it is observed that
FAST is approximately 17 times quicker than Harris corner detection. FAST is not scale or
rotation invariant compared to SIFT and SURF.

2.4.3 Speeded Up Robust Features (SURF)

Speeded Up Robust Features (SURF) was proposed by Bay et al. [43]. SURF approximates or
even outperforms previously proposed schemes with respect to repeatability, distinctiveness,
and robustness, yet is computed and compared much faster. The following are the major
stages in SURF as stated by Bay et al. [43] :

• Interest point detection: The interest points are selected at distinctive locations in
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the image, such as corners, blobs, and T-junctions. The most valuable property of an
interest point detector is its repeatability. The SURF detector uses Hessain matrix
but uses a very basic approximation which are found to be more stable and repeatable
compared to the Harris based detectors. Also, approximations like the Difference of
Gaussians(DoG) [44] brings speed at a low cost in terms of lost accuracy.

• Feature description: The neighborhood of every interest point is represented by a fea-
ture vector. SURF descriptor uses Haar-wavelet responses within the interest point
neighborhood. This descriptor is distinctive and, at the same time, robust to noise,
detection errors, and geometric and photometric deformations.

Both the detector and descriptor uses integral images to reduce the computation time.
Comparison between SURF and SIFT on various parameter is shown in Table 2.2. The results
in the table are based on the work of Juan and Gwun [35] who performed the experiments
on various parameters with large dataset.

Table 2.2: Comparison between SURF and SIFT on various parameters [35]

Method Time Scale Rotation Blur Illumination Affine

SURF Best Good Common Good Best Good

SIFT Common Best Best Best Common Good
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Chapter 3

Proposed Framework

In this Chapter we present the proposed framework that can be used to detect any brain
landmark. The landmark can be a voxel, a slice or a group of slices(volume). The proposed
framework model is shown in Figure 3.1. The framework has two stages (a) Analysis stage
and (b) Application stage. In the analysis stage, we first represent landmarks by local feature
points and identify reference landmarks (defined as those that can be reliably detected) in a
number of annotated brain MR datasets. This stage can be considered as the learning stage
of our framework and is done once for a defined landmark. In the second stage, we consider
landmark detection as a special form of feature point matching guided by learned reference
landmarks. In this stage, in addition to the particular landmark, we make use of the more
reliably-detectable reference landmarks in the neighborhood of the landmark-of-interest. The
following sections brief about the analysis and application stages of the framework.

Figure 3.1: Proposed Framework

3.1 Analysis stage of the framework

In the analysis stage, the brain MR volumes are analyzed to identify reference landmarks
and reference datasets. The Figure 3.2 shows the flow chart of analysis stage. The input to
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Figure 3.2: Flow chart of the analysis stage.

the framework is the annotated data and the training set. The annotations can be manually
provided by experts or can be automated by image registration algorithms. Although manual
annotation of these landmarks by experts is often possible for one or more datasets, the task
becomes impractical for larger datasets where the manual annotation gets more erroneous,
time-consuming, and expensive. Alternatively the accuracy of automatic annotation depends
on the registration technique and landmark of interest. The number of MR volume in training
set in this project is limited to 11, but in principle there can be any number of MR volumes
in the training set. The training set is normalized to accommodate difference in MRI settings
while recording the MRI scan. Each of the MR volume in the training set act as a reference
at-least once. The training set is analyzed in the feature domain by matching the local feature
points of the reference and the training set. In principle the features can be from SIFT, SURF
or any feature extractor that extracts robust and repeatable features. In this project we use
SURF features. The result of such an analysis is a set of reference landmarks positions and
reference datasets. We select the reference datasets, because the reference landmarks are not
only defined by their positions but they are also dependent on the features themselves. Hence
we select reference datasets such that they contain all features of reference landmarks. The
number of reference datasets can be two or three or four or N depending on the reference
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landmarks. The reference datasets are chosen such that they do not represent similar brain
sizes. Figure 3.3 shows an example of reference datasets around the ventricle region of brain
showing different sizes of brain.

(a) (b) (c)

Figure 3.3: (a-c)Slices around the ventricle region from three datasets. They represent large,
medium and small ventricles of brain.

3.2 Application stage of the framework

In the application stage the framework uses the knowledge gained in the analysis stage to reli-
ably identify the query landmarks in a test MR volume. The Figure 3.4 shows the flow chart
of the application stage. In addition to the application specific input(voxel/slice/group of
slices), we make use of the more reliably-detectable reference landmarks in the neighborhood
of the landmark-of-interest identified in the analysis stage. The framework first matches the
reference landmarks positions from the reference dataset in the test MR volume, identifying
the reference landmark(s) positions in the test MR volume. The framework then estimates
the queried landmark position(application specific input) using the identified reference land-
marks in the test MR volume. This gives an initial position estimate of the query landmark
and an initial search area within which the queried landmark is contained. The final position
of the queried landmark is found by localizing the initial position estimate within the initial
search area.

In this Chapter, the reference landmarks and reference datasets are shown as two separate
outputs of analysis stage for clarity purpose. From now on the reference landmarks and the
reference datasets will be referred together as reference landmarks, and reference landmark
selection inherently means the reference datasets are also selected representing different brain
sizes as explained in the previous section.
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Figure 3.4: Flow chart of the landmark detection stage.
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Chapter 4

Normalization and initial
landmarks detection

Medical images are often deteriorated by noise due to various sources of interference and other
phenomena that affect the measurement processes in imaging and data acquisition systems.
The nature of the physiological system under investigation and the procedures used in imaging
also diminish the contrast and the visibility of details. In MR brain images, the MRI settings
vary according to the clinical practice. This leads to difference in the dynamic range of the
acquired scan and also the voxel dimension. To handle these differences spatial and intensity
normalization techniques are employed in this project. In Section 4.1, a brief explanation on
spatial normalization is presented. In Section 4.2, intensity normalization and its application
in this project are discussed. In Section 4.3, we identify the initial landmarks that form the
MRI boundaries.

4.1 Spatial normalization by voxel size correction

MRI settings vary according to different clinical practice. Hence, there may be wide variations
in the recording parameters. One such parameter is the dimension of the voxels that can
influence feature extraction. For instance an MR volume acquired from one scanner can have
voxel dimension of 1.0×1.0×1.0 mm and an MR volume from different scanner may have a
size of 0.94×0.8×1.0 mm. This can reduce the accuracy of feature extraction and matching.
To avoid this, the voxel dimensions are normalized to 1.0×1.0×1.0 mm. Thus all MR volumes
are handled in the same manner in the rest of the framework. The normalization is performed
by linear interpolation as it produces acceptable results in a speedy manner.

4.2 Intensity normalization

MRI acquired from various sources, as well as from the same source but at different time
points, generally do not have similar intensity ranges. For instance, MRI acquired from one
scanner may have a dynamic range of 0–100 whereas the MRI acquired from another scanner
may have a dynamic range of 0–3500. To handle such non-standard intensity variations,
intensity normalization is performed. The normalization is done in two steps:

1. Background estimation.
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(a) (b)

Figure 4.1: Dynamic range. (a) Axial slice with dynamic range 0–150. (b) Normalized image
with range 0–255.

2. Re-scaling pixels of interest to a fixed range, such as 0–255.

4.2.1 Background estimation

The background for an MR scan is defined as the air surrounding the patient while recording
the MRI. The background estimation is based on the histogram of the MRI volume. Instead
of calculating the histogram for the complete volume, the estimation is done at the slice level
i.e. local histogram estimation. Figure 4.1(a) and 4.2(a) shows the dynamic range of an
axial slice taken from different MRI sources. Intuitively, it can be observed that structures
of interest(the brighter pixels) are well distinguished from the background(the dark pixels).
The histogram corresponding to the axial slice in Figure 4.1(a) is shown in the Figure 4.3(a).
It is observed the pixels representing the dark pixels or the background is contained with in
6% of the histogram value.

4.2.2 Pixel intensity re-scaling

Once the background pixels are known, a window is defined to scale the pixel value within the
window. The window lower limit is set to 8% of the histogram value thus eliminating the pixels
in the background. The upper limit is selected such that the brightest pixels contributing to
the skull is excluded. This is observed at around 80% of the histogram value. The pixels that
lie within this window are re-scaled to 0–255. The pixels below the lower window limit are
clipped to 0, while the pixels that fall outside upper window limit are clipped to 255. The
scaling operation for a pixel ”x” is defined by the following equation:

Rescale(x) =


Outputmin x < windowmin,
Outputmax x > windowmax,

Outputmin+ (x−Windowmin)× Outputmax−Outputmin
Windowmax−Windowmin otherwise


(4.1)
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(a) (b)

Figure 4.2: Dynamic range. (a) Axial slice with dynamic range 0–927. (b) Normalized image
with range 0–255.

(a) (b)

Figure 4.3: Histogram of unprocessed and normalized images. (a) Histogram of an axial slice
with full range. (b) Histogram of an intensity normalized axial slice.

The window minimum and window maximum are set dynamically based on the analysis
of the histogram of a slice. The Outputmax is set at 255 and the Outputmin is set to 0. Then
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the intensity values of input image pixels are linearly transformed as in equation 4.1. The
linear transformation is defined by the minimum and the maximum values that the output
image should have and the lower and the upper limits of the intensity window of the input
image. Figure 4.1(b) and 4.2(b) show the intensity normalized image. The histogram of
the intensity normalized image in Figure 4.1(b) is shown in Figure 4.3(b). The histogram
illustrates that the pixel values are normalized between 0–255.

4.3 Initial landmarks detection

As explained in Chapter 2, MRI images are stacked as slices in the axial, coronal and sagittal
directions. It is generally observed that, there are always slices that contain no data before
the superior, anterior, left or right of the brain appears. The number of empty slices varies
with the MRI settings. The superior or top, anterior or front, left and right of the MR volume
approximately identify the boundaries of the brain. We detect them as our initial landmarks.
The idea is to extract the middle slice in the axial, coronal and sagittal directions by detecting
corners in them. The middle slice in each direction approximately represent the dimensions
in the whole volume.

(a) (b)

Figure 4.4: FAST corner detection in the sagittal direction.

FAST corner detection technique is applied to the middle slices to detect corners. Figure
4.4, 4.5 and 4.6 illustrate the corners detected by FAST in the sagittal, axial and coronal
slices. The figures show that a number of corners is detected in the skull of human brain in
all three directions. The detected corners are examined line by line until ’n’ corners are vis-
ited from the origin of an image. The top left hand corner is defined as the origin for an image.

To identify the superior of the brain, the middle slice in the sagittal direction is extracted.
For instance the sagittal slice in Figure 4.4(a) is taken and FAST corner detection technique
is applied. Figure 4.4(b) depicts the corners detected by FAST in the slice. The corners are
examined line by line until ’n’ corners are visited. The nth corner is visited approximately
at a distance of 2mm inside the skull. To this distance a margin x mm is added to identify
the superior of the brain. Similarly to locate the anterior of the brain, the middle slice in
the axial direction is considered to which FAST corner detection technique is applied. Figure
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(a) (b)

Figure 4.5: FAST corner detection in the axial direction.

(a) (b)

Figure 4.6: FAST corner detection in the coronal direction.

4.5(a) and 4.5(b) shows the axial slice and the corners detected by FAST. The corners are
examined line by line until ’n’ corners are visited and a margin x mm is added to locate the
anterior of the brain. Figure 4.7(a) shows the yellow line indicating the identified superior
landmark and the Figure 4.7(b) shows a red line indicating the anterior landmark of the MR
volume.

To identify the left and the right of the brain, the middle slice in the axial direction shown
in Figure 4.5(b) is considered again. The corners are analyzed starting from (0, h2 ) to locate

the right and (w, h2 ) to locate the left of the brain where w and h are the width and height
of the slice, instead of the origin. Similar to the anterior and superior landmarks, the corners

25



TU Eindhoven Thesis Report

(a) (b)

Figure 4.7: Initial landmarks. The markings A, P, R, L, S and I refer to anterior, posterior,
right, left, superior and inferior of the brain MRI volume. (a) Superior landmark. (b) Anterior
landmark.

Figure 4.8: Initial landmarks. Left and right of human brain in a MRI volume

are examined line by line till ’n’ corners are visited. Figure 4.8 shows the vertical yellow and
red line, indicating the left and right of human brain in the MR volume.

The obtained MRI boundaries approximately identify the initial volume of interest that
contains the brain, excluding the background.
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Chapter 5

SURF Feature Extraction,
Description, and Matching

In this chapter a brief explanation on SURF feature extraction, description and matching
are discussed. Section 5.1 explains the details of SURF feature extraction. In Section 5.2,
SURF feature description is discussed. Later in Section 5.3, we discuss how SURF features
are matched.

SURF was proposed by Bay et al. [43]. SURF approximates or even outperforms pre-
viously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet
is computed and compared much faster. This is achieved by relying on integral images[45]
for image convolutions; by building on the strengths of the leading existing detectors and
descriptors and by simplifying these methods to the essential. The major stages in SURF
are:

• Feature extraction

• Feature description

• Feature matching (when comparing two images.)

5.1 Feature extraction

SURF feature extraction or feature point extraction is based on Hessian matrix because of
its good performance on computation time and accuracy. SURF uses integral images [45] to
reduce the computation time. SURF relies on the determinant of Hessian for selecting the
location and scale [43]. Given a point x = (x, y) in an image I, the Hessian matrix H(x, σ)
at position x and at a scale σ is defined as follows

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

]
(5.1)

where Lxx(x, σ) is the convolution of the second order derivative ∂2x
∂x2 g(σ) with the image I

at position x, and similarly for Lxy(x, σ) and Lyy(x, σ). Gaussians are optimal for scale-space
analysis, however the Gaussians needs to discretised and cropped, and even with Guassian

27



TU Eindhoven Thesis Report

Figure 5.1: Left to right: Gaussian second order partial derivatives in y-direction and xy-
direction, and SURF approximations thereof by using box filters. The grey regions are equal
to zero.[43]

(a) (b)

Figure 5.2: SURF feature point detection in the axial direction.

filters aliasing still occurs as soon as the resulting images are sub-sampled. Also, the property
that no new structures can appear while going to lower resolutions may have been proven in
the 1D case, but is known to not apply in the relevant 2D case [46]. Hence, the importance
of the Gaussian seems to have been somewhat overrated in this regard, and SURF tests for
a simpler alternative. Similar to LoG approximations [44], SURF uses box filter [43]. These
approximate second order Gaussian derivatives, can be evaluated very fast by using integral
images, independently of size.

The 9 × 9 box filters in Figure 5.1 are approximations for Gaussian second order deriva-
tives with σ = 1.2 and represent lowest scale or highest spatial resolution for SURF. The
approximations are denoted by Dxx, Dxy and Dyy [43]. The weights applied to the rectan-
gular regions are kept simple for computational efficiency. The relative weights are further

balanced in the expression for Hessian’s determinant with
|Lxy(1.2)|F |Dxx(9)|F
|Lxx(1.2)|F |Dxy(9)|F ' 0.9, where |x|F

is the Frobenius norm. This yields

det(Happrox) = DxxDyy − (0.9Dxy)2 (5.2)

Scale spaces are usually implemented as image pyramids. The images are repeatedly
smoothed with a Gaussian and subsequently sub-sampled in order to achieve a higher level of
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(a) (b)

Figure 5.3: SURF feature point detection in the sagittal direction.

(a) (b)

Figure 5.4: SURF feature point detection in the coronal direction.

the pyramid. Due to the use of box filters and integral images, it is not required to iteratively
apply the same filter to the output of a previously filtered layer, but instead can apply such
filters of any size at exactly the same speed directly on the original image. Therefore, the
scale space is analysed by up-scaling the filter size rather than iteratively reducing the image
size [43]. The output of the above 9 × 9 filter is considered as the initial scale layer, which
is referred as scale s = 1.2. The following layers are obtained by filtering the image with
gradually bigger masks, taking into account the discrete nature of integral images and the
specific structure of our filters. Specifically, this results in filters of size 9 × 9, 15 × 15, 27 ×
27, etc. At larger scales, the step between consecutive filter sizes is also scaled accordingly.
Hence for each new octave, the filter size increase is doubled [43].

As the ratios of filter layout remain constant after scaling, the approximated Gaussian
derivatives scale accordingly. Thus, for example, the 27 × 27 filter corresponds to σ = 3×1.2
= 3.6 = s. In order to localise feature points in the image and over scales, a non-maximum
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suppression in a 3 × 3 × 3 neighbourhood is applied. The maxima of the determinant of
the Hessian matrix are then interpolated in scale and image space. Figure 5.2, 5.3 and 5.4
show the feature points detected on a slice in the axial, sagittal and coronal directions of a
MR dataset respectively. A representative feature set showing the selected scales is shown in
figure 5.6.

5.2 Feature description

SURF descriptor is found in two steps [43]:

a) The first step consists of fixing a reproducible orientation based on information from a
circular region around the feature point.

b) Then, a square region aligned to the selected orientation is constructed, and the SURF
descriptor is extracted from it.

These two steps are explained below.

5.2.1 Orientation Assignment

To be invariant to rotation, a reproducible orientation is identified for the feature points. For
this purpose, Haar-wavelet responses are calculated in x and y direction shown in Figure 5.5,
and this in a circular neighborhood of radius 6s around the feature point, with s the scale at
which the feature point is detected [43]. The wavelet response is calculated at that scale s.
Accordingly, at high scales the size of the wavelets is big. Therefore, integral images are used
for fast filtering. Only six operations are needed to compute the response in x or y direction
at any scale [43].

Once the wavelet responses are calculated and weighted with a Gaussian (σ = 2.5s) cen-
tered at the feature point, the responses are represented as vectors in a space with the horizon-
tal response strength along the abscissa and the vertical response strength along the ordinate.
The dominant orientation is estimated by calculating the sum of all responses within a sliding
orientation window covering an angle of Π

3 . The horizontal and vertical responses within the
window are summed. The two summed responses then yield a new vector. The longest such
vector lends its orientation to the feature point [43].

5.2.2 Descriptor Components

For the extraction of the descriptor, a square region centered around the feature point is
constructed, and oriented along the orientation described above. The size of this window is
20s [43]. The region is split up regularly into smaller 4 × 4 square sub-regions. This keeps
important spatial information in. For each sub-region, few simple features are computed at
5×5 regularly spaced sample points. Haar wavelet responses are calculated in the horizontal
dx and the vertical direction dy defined in relation to the selected feature point orientation. To
increase the robustness towards geometric deformations and localisation errors, the responses
are first weighted with a Gaussian (σ = 3.3s) centered at the feature point. Then, the wavelet
responses dx and dy are summed up over each subregion and form a first set of entries to the
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Figure 5.5: Left: Detected feature points for a sunflower field. Right: Haar wavelet types
used for SURF [43].

Figure 5.6: Representative sample of scale and orientation assignment to SURF feature points.
The circles indicate the scale at which the feature points were detected. The line within the
circle indicate the orientation of the feature point.

feature vector. In order to bring in information about the polarity of the intensity changes,
the sum of the absolute values of the responses, |dx| and dy are extracted which for the second
set of entries to the feature vector. Hence, each subregion has a four-dimensional descriptor
vector for its underlying intensity structure. This results in a descriptor vector for all 4×4
sub-regions of length 64 [43]. The wavelet responses are invariant to a bias in illumination
(offset). Invariance to contrast (a scale factor) is achieved by turning the descriptor into a
unit vector.

5.3 Feature matching

The features extracted from two or more images can be tracked in similar images by matching
their feature description vectors. Hence the features and their descriptions can be used in a
variety of applications such as automated panorama stitching [47], image retrieval [48], object
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localisation [44] and in image registration.

Given two images and their features, the matching can be defined by the following equation

∀k,l
64∑
i=1

d(I1(P i
k), I2(P i

l )) (5.3)

d(u, v) =

(∑
i

(ui − vi)2

) 1
2

(5.4)

where I1 and I2 are the reference and test images, Pk and Pl are the kth and ith feature
points and i is the index of the feature description vector. d is Euclidean distance given by
equation 5.4 where u and v are the feature description vectors. In order to match the land-
marks between two MRI volumes, for instance a slice in the axial direction, the matching is
done as follows. A slice from the test MRI volume is compared to the reference slice from the
template MRI volume, by matching their feature points. A feature point in the test image
is compared to a feature point in the reference image by calculating the Euclidean distance
given by the equation 5.4, between their feature description vectors.

Each feature description vector from the slice in test MRI volume is then compared to all
feature description vectors of the reference slice from the template MRI volume. The pair
that obtains the best score (that is, the lowest distance between the two vectors) is then
kept as the best match for that feature point. This process is repeated for all feature points
obtained from the test MRI volume.

For the matches to be robust and reliable, matching is performed both ways, i.e., test
slice to reference slice and vice versa. Also two matches are chosen for every feature point
based on the best score for every feature point that is observed in the other. Therefore, for
each feature point, there are two candidate matches from the other. These candidate matches
represent the best matches for a feature point but they do not always correspond to the same
landmark. This because of the similarities between brain tissues and non brain tissues. Hence
to remove the outliers from the initial candidate matches, the following steps are performed.

5.3.1 Ratio test

The chosen candidate matches are the two best matches based on the best score for every
feature point that is observed in the other. If the measured distance is very low for the first
candidate match, and much higher for the second candidate match then the first match can be
safely accepted as the good one, since it is unambiguously the best choice. Reciprocally, if the
two best candidate matches are relatively close in distance, then there exists a possibility that
an error is made while selecting one or the other. In this case, both matches are rejected. This
is similar to the Nearest-Neighbor Distance Ratio (NN-DR) thresholding technique proposed
by Lowe [39]. The accept criteria is given by

d1

d2
> Threshold (5.5)
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(a) Matches 1→2 (b) Matches 2→1 (c) Symmetric matches

Figure 5.7: Symmetry test (a) A feature point from reference slice is matched to a test slice.
(b) Two feature points from test slice matches to the same feature point in reference slice.
The feature point that is not in agreement with both the slice is removed. (c) Symmetric
matches after removing outliers.

where d1 and d2 are the distances to the nearest and 2nd nearest match. The matches
that do not satisfy equation 5.5 are removed from the initial list of matches. This is done for
each slice in both direction i.e test slice to reference slice and vice versa.

5.3.2 Symmetry test

The ratio test explained in Section 5.3.1 eliminates a number of ambiguous matches. Now
there are two relatively good match sets one from the test slice to reference slice and the other
from reference slice to the test slice. From these sets, the matches that are in agreement with
both sets are extracted. This is the symmetrical matching scheme imposing that, for a match
pair to be accepted, both points must be the best matching feature point of the other [49].
Figure 5.7 shows an illustrative example of the matching scheme. Figure 5.7(a) shows a
feature point from the reference slice is matched to a feature point in the test data. Similarly,
Figure 5.7(b) shows two feature points from the test data are matched to the same feature
point in the reference slice. It is observed that one of the two matches in test data is in
agreement with both the slices. Hence this matched feature is selected as the best matching
feature point of the other, while the second match from test data is discarded. Figure 5.7(c)
shows the final matches after the symmetry test.

5.3.3 RANSAC test

The symmetry test explained in Section 5.3.2 removes a good number of outliers. But from
Figure 5.7(c) it can be observed that a number of outliers still exists after ratio and sym-
metry tests. In order to determine the good matches from the list of available matches, an
epipolar constraint is used. If the corresponding point of a point p (expressed in homogenous
coordinates) is p’, and if F is the fundamental matrix between the two slices, then since p’
lies on the epipolar line Fp, given by:

p′Fp = 0 (5.6)

The fundamental matrix associated with an image pair can be estimated from the feature
point matches. For the fundamental matrix to be exact, the match set must be made of only
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good matches. However, in a real context, it is not possible to guarantee that a match set
obtained by comparing the descriptors of detected feature points will be perfectly exact. This
is why a fundamental matrix estimation method based on the RANSAC (RANdom SAm-
pling Consensus) strategy is employed. The RANSAC algorithm aims at estimating a given
mathematical entity from a data set that may contain a number of outliers. The idea is to
randomly select some data points from the set and perform the estimation only with those
points. The number of selected points is the minimum number of points required to estimate
the mathematical entity. In the case of the fundamental matrix, eight matched pairs is this
minimum number. In this project, OpenCV implementation is used to find fundamental ma-
trix that takes RANSAC method as an input parameter.

Once the fundamental matrix is estimated from the random 8 matches, all of the other
matches in the match set are tested against the epipolar constraint that derives from this
matrix. All of the matches that fulfill this constraint (that is, matches for which the corre-
sponding feature is at a short distance from its epipolar line) are identified. These matches
form the support set of the computed fundamental matrix. Figure 5.8 shows the matches
after RANSAC test. It is observed that 95% of the outliers are removed.

Figure 5.8: Result of RANSAC after removing outliers.

5.3.4 Spatial filtering

This is the final step in obtaining the best inliers from the list of available matches after
the RANSAC test. This is a novel contribution to the work presented. It can be noted
from the Figure 5.8 that the remaining outlier can be filtered by means of their spatial
position(coordinates). For instance a feature point in reference represented by the coordinate
i = (x, y), is matched to a feature point with coordinate i′ = (x′, y′) in the test data. A
difference of the spatial position of i− i′ gives a good indication of their correspondence. The
match is accepted if the difference is less than the specified threshold. For slices having the
same scale, this can be directly applied to remove the outliers. When the scale of the slices
vary, then the spatial position of the features is also scaled in accordance to a scale factor.
The scale factor is the ratio of scales of test slice to the reference slice. The threshold is also
varied to accommodate the scale changes. The matches are filtered according to the select
criteria in equation 5.7. Figure 5.9 shows the result of matched features after spatial filtering.
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Figure 5.9: Spatial Filtering. The matches are filtered by their coordinates removing the
outliers.

SelectCriteria =

{
(i− i′) <Th if scale is equal
(i− i′) < s×Th if scale is different. s is the ratio of scales

}
(5.7)
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Chapter 6

Analysis of brain MR Images to
identify reference landmarks

6.1 Proposed analysis scheme

The feature extraction and matching described in Chapter 5 is used to analyze the brain
MR images. The MR image of brain is a volumetric data that contains information in axial,
coronal and sagittal directions containing point (voxel), slices and volume. Each of these can
be a reference landmark of interest. But not all reference landmarks can be reliably identified
in the test MR volumes. Hence we aim to find the reference landmarks that can be reliably
identified in most MR volumes.

Let R1, R2,. . . , Rn be the input reference landmarks. The input reference landmarks
can either be a structure (voxel, slices and volume) of interest specific to a disease or well
known landmarks defined in human brain anatomy, annotated by an expert(s). The input
reference landmarks are represented and described by means of their local features points.
For instance a point landmark can be represented either by one feature or by features rep-
resenting a rectangle or circle around the point landmark. A slice landmark is represented
by a number of features either in 2D or in 3D(in case of group of slices/volume). The input
reference landmarks defined in terms of features are then matched in test MR volumes T1,
T2,. . . , Tk. For each input reference landmark R there are k feature match values. Hence for
n input reference landmarks, there are n × k feature match values. The prominence of each
reference or the feature match values are then computed by calculating the salient score. The
landmarks with high salient score over all tests set are selected. The result of such an analysis
is a collection of identified reference landmarks that can be reliably identified in most test
MR volumes. In this way the framework learns the landmarks that can be reliably identified.

In this project, we are interested in slice landmarks as explained in Chapter 2. The
following sections will brief about the experimental setup and the statistical analysis involved
to identify the reference slice landmarks.
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6.2 Identification of reference slices

To identify the reference landmark slices, 11 test MR volumes having same scale are used.
The test MR volumes are registered data set i.e., the correspondence between slices among
the test MR volumes are approximately the same, taken from OASIS [50] public archive.
For instance an axial slice extracted at the same position from two test MR volumes ap-
proximately represent the same structure in the brain. From the test MR volumes, one MR
volume is chosen as the reference and the remaining 10 MR volumes are matched against the
reference volume. For each input reference landmark a feature match profile is constructed.
The profile is a plot of Slice Number Vs. Number of matched feature points. Hence for every
input reference landmark there are 10 feature match profiles. This is done for each input
landmark taken in axial, coronal and sagittal directions.

Since the structures in the brain are volumetric, it is important to choose landmarks
that best represent the brain without redundancy. For instance choosing a landmark slice
in the coronal direction at a distance of 2mm from the current selection may represent the
same structure in the brain as shown in Figure 6.1. A landmark slice chosen at distance of
5mm from the current selection, show discriminative structures as depicted in Figure 6.1(c).
Landmark slice chosen at distance of 10mm shows high variation in the structures resulting
in loss of valuable information, so it was not considered. Hence a sampling rate of 5mm is
introduced to remove this redundancy. So if the size of MR volume is 176×208×176mm, the
input reference landmark is taken at 5, 10, 15. . .mm.

The process is repeated till each of the tests set is made as reference at-least once. The
information extracted from this process is raw and has to be analyzed statistically to derive
meaning-full information. The following subsections explain the statistical analysis involved
in selecting the reliable slices.

(a) Initial (b) 2mm (c) 5mm

Figure 6.1: Sampling rate. Coronal slice taken at 2mm show similar structures whereas slice
taken at 5mm show different structure.

6.2.1 Slice salient score computation

The extracted information contains feature match value i.e. number of matched features for
each sample taken in the axial, coronal and sagittal directions. To understand the prominence
of the match value, a salient score is calculated for each profile. The salient score is defined
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Figure 6.2: Salient score. The valley is marked in orange. The clear peak and the peak
outside the valley is marked in red. The ratio of clear peak to the peak outside the valley
gives the salient score for a slice.

as the ratio of the clear peak value to the maximum peak value outside the valley. The valley
is defined as a 10mm distance to either side of the clear peak. The peaks within the valley
are not considered for calculating the salient score, since they may contain similar structure
as the landmark of interest. When the salient score is less than or equal to 1, the match value
has low prominence otherwise the match value has high prominence. Hence a profile with
lower salient score can be excluded from further analysis.

SalientScore =
ClearPeak

Peakvalueoutsidethevalley
(6.1)

Figure 6.2 show the valley and the peaks that are selected for calculating the salient score.
The salient score is computed according to the equation 6.1. Figure 6.3 illustrates the plot
of Slice number Vs. Salient scores calculated for samples taken in all three direction for a
reference MR volume matched against the remaining 10 test MR volume. From Figure 6.3(c)
it can be observed that there is a well distinguished peak around 85mm–90mm in the sagittal
direction. Hence it is possible to make a decision to select the reliable slices in the sagittal
direction. The pattern is similar for other MR volumes in the tests set.

6.2.2 Median salient score computation

From the previous subsection it can be observed that a decision can be made to identify the
reliable slices in the sagittal direction, but for the axial and coronal directions the data should
be analyzed further. This is done by computing the median of the salient scores for each input
reference landmark along the axial and coronal directions. This is repeated for all the test
MR volumes. A plot of Slice number Vs. Median salient score is shown in the Figure 6.4.
Figure 6.4(a) and 6.4(b) show the plot of Slice numbers Vs. Median salient scores in the axial
and coronal directions. It can be observed from the figures that there are clear peaks in the
axial and coronal directions. Hence it is possible to identify reliable slices in those directions.
To validate the identified reliable slices in the sagittal direction in the above subsection, we
plot the median salient score for the MR volumes in the sagittal direction. The Figure 6.4(c)
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(a) (b) (c)

Figure 6.3: Salient scores for a reference MR volume. Plot of Slice number Vs. Salient score
for each input reference slice landmark.(a) Profile in the axial direction. (b) Profile in the
coronal direction. (c) Profile in the sagittal direction. The profile in the sagittal direction
shows a clear peak around 85mm-90mm.

validates the claim for reliable slices in the sagittal direction showing peaks at 85mm and
90mm.

6.2.3 Reference slice selection

An algorithm is used to select the reliable slices in the axial and coronal directions automati-
cally based on a threshold T defined on median salient score. The algorithm ranks slices that
are above the defined threshold T . The flow chart to automatically rank the slices is shown
in Figure 6.5. The algorithm follows the following logic:

Step 1 Select the maximum median salient score above T and mark it as the current selec-
tion.

Step 2 Assign a priority value for the current selection, the lowest value being the highest
priority.

Step 3 Define a valley(5mm) around the current selection and discard the median salient
score in the valley for the next iteration.

Step 4 Go to Step 1 and repeat till all the median scores above T are selected at-least once.

The result of such an algorithm over the median salient scores of all the test MR volume
is shown in Figure 6.6. The thresholds for axial and coronal directions are set at 2 and 1.5
respectively. The figure gives a good indication of the prominence of slices and their rank
of selection by means of their priority value. The peaks are distributed throughout the MR
volume in the axial and coronal directions. The peaks can be selected to represent different
regions of the brain. For instance in the coronal direction, slices 50, 95 and 125 represent the
posterior, middle and anterior region of the brain. Similarly for axial direction slices 55, 85
and 105 represent the inferior, middle and superior region of the brain. Hence these slices
can be chosen as reference slices or reference landmarks in the axial and coronal directions,
that can be reliably identified in most MR volumes.
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(a) (b)

(c)

Figure 6.4: Median salient scores for 11 MRI test volume. (a) Plot of Slice number Vs. Median
salient score each input reference slice landmark in the axial direction. (b) Plot of Slice number
Vs. Median salient score each input reference slice landmark in the coronal direction. (c) Plot
of Slice number Vs. Median salient score each input reference slice landmark in the sagittal
direction.

Figure 6.5: Flow chart for automatic ranking of reliable slices.
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(a)

(b)

Figure 6.6: Result of automatic ranking of slices. (a) The ranking of slices with their priority
in the axial direction. (b) The ranking of slices with their priority in the coronal direction.
It is observed that the peaks are distributed throughout the volume. These peaks can be
selected as the reference slices.
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Chapter 7

Reference based localization of
landmarks

In this chapter, reference based localization of landmarks are discussed. The localization of
clinically important landmark in brain images is crucial for many neurological studies such
as surgical planning and diagnosis of specific diseases. The localized landmarks can also be
used to register an MR volume. Conventional manual landmark annotation requires expertise
and is often time-consuming. In this chapter we use the knowledge gained from analysis of
MR volume in Chapter 6. We show the gained knowledge can be used to localize landmarks
robustly. We also show that the accuracy of the framework increases with the knowledge
gained from analysis stage. In Section 7.1, search and retrieval of landmark slices based
on the reference landmarks identified in Chapter 6 is discussed. First we present the work
without reference landmarks and then with reference landmarks. We show that the accuracy
of landmark localization improves with the use reference landmarks. In Section 7.2, matching
different MRI volumes or localizing group of slices using reference landmarks is discussed. In
Section 7.3, detection of mid sagittal plane (MSP) using reference landmarks is discussed.

7.1 Search and retrieval of landmark

In the medical domain, experts usually look at specific anatomical structures to identify the
cause of a pathology, and therefore they can largely benefit from automated tools that re-
trieve relevant slice(s) from a patients image volume in diagnosis. In diagnosing diseases
with high prevalence and unknown cause or progress, medical experts can largely benefit
from patient–to–patient search methods that compare multiple patient data and retrieve rel-
evant cases [12]. Accordingly, retrieving the relevant slice given a query, which is a specific
case of patient-to-patient search, can be of further help to the expert in diagnosis of anatomi-
cal structure specific diseases, such as hypocampus or basal ganglia disorders of the brain [12].

7.1.1 Without reference landmarks

Given a query slice, similar slice(s) are searched and retrieved from a test MR volume. The
query slice is represented and described by its features. These features are searched in all
slices of a test MR volume by matching them. Each slice in the test MR volume is represented
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(a) Query

(b) (c) (d)

(e) (f) (g)

Figure 7.1: Search and Retrieval – same scale. (a) Good input query slice. (b–e) Retrieved
slices from 6 MR volumes.

by a match score. For a retrieval task, the test slice with the highest match score is assigned
as the most similar slice to the query and retrieved. It is possible to retrieve slices that are
similar to the query slice by analyzing the match scores in the test MR volume and ranking
them according to the match score.

For example a query slice in the axial direction is shown in Figure 7.1(a). The query
slice is around the AC–PC region of the brain has discriminative structures and hence can be
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(a) (b)

(c) (d)

Figure 7.2: Profiles around ventricle region - MR volume with different scales. The profile
is a plot of Slice Number Vs Number of matched feature. (a-c) Profiles with clear peak and
correspond to same structure as query. (d) Profile showing clear peak which is also false
positive.

matched easily. Such a slice is considered as a good query. The framework uses this query
slice as its input. The framework extracts and matches query features against all slices in
the test MR volume. The query slice with the highest number of matches with respect to the
test slice is retrieved. Figure 7.1 shows the query and the corresponding retrieved slice from
6 MR volumes having the same scale. Therefore, given a query, the framework automatically
retrieves relevant slice(s) from a patient’s image volume.

Similarly a slice that has discriminative structures around the ventricular region is manu-
ally annotated and selected as a query slice. In this case, the query and the test MR volume
have different scales. The query slice is retrieved by matching its features against all slices in
the test MR volume. The query slice with the highest number of matches with respect to the
test slice is retrieved. Figure 7.2 shows the profile for the four test MR volumes corresponding
to the query shown in Figure 7.3(a). The profile is a plot of Slice Number Vs. Match score.
Figure 7.3 show their corresponding retrieved slices from the four test MR volume.

However, the query landmarks can vary from patient-to-patient and also depends on di-
agnosis to specific diseases. Hence, there is a possibility that a given query may not have
discriminative structures and hence not reliably identified by feature extraction and matching
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(a) Query (b) (c)

(d) (e)

Figure 7.3: Search and Retrieval – different scales. (a) Good input query slice. (b–e) Retrieved
slices from 4 MR volumes.

technique. This might lead to retrieving wrong slices or false positives. A slice that does not
have discriminative structure or a bad query slice is shown in Figure 7.4(a). The retrieved
slices from five test MR volumes are shown in Figure 7.4(b) – 7.4(f). The figures show that
the retrieved slices are not the intended target slice in the test MR volume but are false pos-
itives. False positive is defined as the ratio of number of wrongly retrieved slices to the total
number of query. Table 7.1 shows the percentage false positive among 10 test MR volume
having the same scale for the query slice in Figure 7.4. The table also show the mean error
for correctly retrieved slices(True Positive(TP)), wrongly retrieved slices(False positive (FP))
and the mean error over 10 test MR volumes. For true positives the mean error is small but
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(a) Query (b) (c)

(d) (e) (f)

Figure 7.4: Search and Retrieval - Without reference slices. (a)Bad query slice. (b-f) Re-
trieved slices from five MR volumes showing false positives.

is considerably high for false positives. Sometimes wrong slice or false positives are observed
even when the query slice have discriminative structures. The retrieved slice in Figure 7.3(e)
is a false positive. Hence given a query slice, it is possible that the retrieved slice is a false
positive. The current methods to search and retrieve landmarks from an MR volume employ
similar techniques and hence they are prone to error when the query is not discriminative
enough.

7.1.2 With reference landmarks

The search and retrieval technique explained in the earlier subsection can retrieve wrong slices
when the given query can not be reliably identified in a test MR volume. To overcome this
problem and to identify any query slice, we propose to use the reference slices identified in
Chapter 6 and the initial landmarks identified in Chapter 4. The framework initially localizes
the reference slices in the test MR volume through feature extraction and matching. The
localized slices in the test MR volume together with the initial landmarks demarcate brain
into different regions. The localized slices in the test MR volume also give an approximate
correspondence between the reference volume and the test volume. The query slice is then
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Table 7.1: Mean error and percentage of false positive for the query slice in Figure 7.4 among
10 MR volumes.

% FP TP Mean Err. (mm) FP Mean Err. (mm) Mean error (mm)

40 1.16 23.09 12.12

localized to one of the regions in the test MR volume say R, using the position of the query
slice in the reference MR volume. The position of the query slice is then scaled within the
region to locate the query slice in the test MR volume. The scaling can be linear or non-linear
based on the scales of the reference and test MR volume. This is the initial estimate P of the
query slice that is to be retrieved from the test MR volume.

(a) Query (b) (c)

(d) (e) (f)

Figure 7.5: Search and Retrieval - With reference slices. (a) Bad query slice. (b-f) Retrieved
slices from five MR volumes showing correct slices.

To increase the accuracy and robustness of the search and retrieval method, the query
slice is searched independently of the reference slices as mentioned in the previous subsection.
The profile is analyzed and the position of the clear peak is selected as the second estimate
P ′ of the query slice in the test MR volume. The final position of the retrieved slice is found
according to the equation 7.1.
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(a) Query (b) (c)

Figure 7.6: Search and Retrieval - With reference slices.(a) Good input query (b)Retrieved
slice without reference landmarks is 40mm from the ground truth. (c)Retrieved slice with
reference landmarks is 3mm from the ground truth.

Retrieveposition =


P if P ′ lies outside R
P ′ if abs(P − P ′) < 5mm
avg(P, P ′) if 5mm ≤ abs(P − P ′) < 10mm
P if abs(P − P ′) ≥ 10mm

 (7.1)

where P and P ′ are position estimates with reference slices and without reference slices.

When the position estimate P ′ falls outside the localized region R, then P is selected. If
the position estimates fall within the localized region R and they are less than 5mm apart,
then the position estimate P ′ is selected. If the position estimates are less than 10mm apart,
then the average of their positions is selected. When the estimated positions are more than
10mm apart, then P is selected. The slice at this position is the final retrieved slice.

Using the reference landmarks improves the accuracy and reliability of the search and re-
trieval operation. Given the same query slice in Figure 7.4(a), the false positives are reduced
considerably with the use of reference slices. Figure 7.5 shows the retrieved slices for the
query slice observed in the previous subsection. The retrieved slices show similar structures
as the query slice. Table 7.2 show the search and retrieval results with reference slices with
the same query as in Figure 7.4. The search is done on the same 10 test MR volumes chosen
in the previous subsection. The results show good improvement in the mean error of the re-
trieved slice for true positives(TP), false positives(FP) and for the whole search and retrieval
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application. The percentage of false positives are also considerably reduced with the reference
slices.

Table 7.2: Mean error and percentage of false positive for the query slice in Figure 7.4 among
10 test MR volumes - with reference slices

% FP TP Mean Err. (mm) FP Mean Err. (mm) Mean error (mm)

10 0.3 3 1.65

In cases where the input query slice is discriminative enough, but shows false positive as in
Figure 7.3(e), the reference landmarks removes the false positives and improves the detection
accuracy as shown in Figure 7.6.

7.2 Volume matching

Volume matching identifies group of slices rather than a single slice. Such an application can
be used to study the correspondence between two MR volumes or the output of the applica-
tion can be an input to applications such as detection of point landmarks and segmentation
of brain structures. The requested group of slices is given as an input to the framework by
its spatial position in the reference MR volume. The framework identifies the requested vol-
ume in two steps. First, by localizing the reference slices identified in Chapter 6 in the test
MR volume which gives an approximate correspondence with the reference MR volume and
identify the approximate group or volume of interest by scaling the positions of the requested
group of slices. Second, the approximate volume of interest is fine tuned by matching the
requested group of slices with the approximate group of slices. The profile with the highest
match score is selected as the final volume of interest. The two steps are explained below.

First, the framework localizes the reference slices in the test MR volume through feature
extraction and matching. The localized slices identify the correspondence between the test
and reference MR volumes. Then the approximate group of slices is retrieved either by linear
or non-linear scaling, based on the scales of reference and test MR volumes. The scaling is
linear when both the template and test MR volumes are of same scale and non-linear other-
wise. The requested group of slices is represented by their spatial positions in the reference
MR volume and hence they can be localized in a region either between the reference slices or
between the MR boundaries and the reference slices. So, the requested group of slices can be
localized within a region in the test MR volumes using the localized references and the MR
boundaries identified in Chapter 4. The lower and the upper bound of the requested group of
slices is found by its position in the reference MR volume. These bounds are used to identify
the approximate volume of interest with in a localized region in the test MR volume. For
volumes with the same scale, linear scaling is performed by adding the difference between the
reliable slice in the reference and the volume bound i.e, the lower and the upper bounds, to
the corresponding identified slices in the test MR volume.

The scaling factor for non-linear scaling is defined as the ratio of the distance between
the identified slices in the test MR volume to the distance between the reliable slices in
the template MR volume. The scaling factor varies according to the distance between the
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reference slice identified in the test MR volume and vary non-linearly. For scaling factor
computation, the initial landmark identified in Chapter 4 is used. For instance the axial
direction is divided into five regions. The region is a group of slices between the identified
slices in the test MR volume. Suppose the position of reference slices in the axial direction
are R1, R2 and R3, and the position of localized slices in the test MR volume are S1,S2 and
S3 and the initial landmarks CS and CI represent the position of superior and inferior in the
test MR volume. Then the axial direction can be demarcated into four regions having four
scaling factor, one for each region given by the following equations:

S1 =
S1 − S2

R1 −R2
(7.2)

S2 =
S2 − S3

R2 −R3
(7.3)

S3 =
S3 − CS

R3 − Templatesuperiorposition
(7.4)

S4 =
S1 − CI

R3 − Templateinferiorposition
(7.5)

where the current superior(CS) and inferior(CI) positions are identified as initial land-
marks in Chapter 4 and they vary for each test MR volume. Thus in the axial direction, the
bounds are scaled non-linearly according to equations 7.2–7.5. Similarly for the coronal and
sagittal directions the scaling factor is determined by localizing the reference slices in the test
MR volume.

Second, the approximate group of slices are fine tuned to identify the final group of slices.
A profile for the requested group of slices is constructed by matching the boundary and middle
slices of the requested region to the approximate group of slices. This is repeated within a
window of 5mm. The lower bound and the upper bound of the approximate group of slices
is modified by ±5mm. The profile with the highest match value is chosen and retrieved as
the final group of slices.

7.3 Mid sagittal plane detection

In this section, we describe another application of the proposed framework. Identification
of mid sagittal plane is important since they are used in a variety of application such as
AC–PC point landmark detection, registration and to study brain symmetry. The proposed
framework can be easily used to identify the MSP in two ways. First, by providing any slice
as an query to the proposed frame. Second, by using the identified reference landmarks in
the sagittal direction from analysis stage. These methods are explained below.

In the sagittal direction, feature extraction and matching can be used to identify the sym-
metry of brain hemispheres, that is a slice with similar anatomical structure can be identified
in the brain hemispheres. Given an input query slice, feature extraction and matching is
performed against all slices in a test MR volume in the sagittal direction. The slices with the
highest match score is selected. Figure 7.7 shows a profile of a slice landmark in the sagittal
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direction depicting the symmetry observed in brain hemispheres. It can be observed that
there are two peaks approximately at the same distance from boundary of each hemisphere.
The Figure7.8 shows the query and the retrieved slices from a test MR volume. Let the
position of the retrieved slices be P and P ′. The average of P and P ′ gives the approximate
position of MSP. To reliably identify the MSP position, average position estimates from a
number of sagittal query slices can be taken.

Figure 7.7: Profile of a slice in the sagittal direction. The profile shows peaks at two region
around slice number 50 and 125, depicting the symmetry of brain hemispheres in the sagittal
direction.

Secondly, we use the reference landmark slices identified for the sagittal direction in the
analysis stage. The identified reference slices slices are shown in the Figure 7.9. The reference
slices are matched in a test MR volume. The positions of the clear peak are identified. The
profile of a test MR volume matched against the reference is shown in Figure 7.10. The clear
peaks are observed at 84mm and 87mm. The distance between peaks of the profiles is the
region containing the MSP. In the profiles shown in Figure 7.10 the distance between the
peaks is 3mm. This 3mm region can be an input to other applications to detect the exact
MSP location. Alternatively, the average of the positions in the 3mm region can be chosen
as the position of mid sagittal plane. This is more reliable and robust approach compared to
the first approach, since the reference slices are reliably identified in most MR volumes.
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(a) Query (b) (c)

Figure 7.8: Brain symmetry. (a) Query slice. (b-c) Retrieved slices from a MR volume.

(a) (b)

Figure 7.9: Reference slices in sagittal direction. (a) Reference slice 1. (b)Reference slice 2.

(a) (b)

Figure 7.10: MSP detection using reference slices. (a-b) Profiles showing a clear peak and
low peak values outside the valley for an MR volume. The difference between the peak values
identify the region within which the MSP is contained.
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Chapter 8

Results

In this chapter the quantitative and qualitative results of this project are discussed. In
Section 8.1 the details about the test dataset and their respective sources are explained. In
Section 8.2, the test setup for the experiments is discussed. In Section 8.3, the ground truth
generation for the tests set is explained. In Section 8.4, the results about slice matching and
the performance of framework are discussed. In Section 8.5, the results of volume matching
and its accuracy is presented.In Section 8.6, the performance of the framework with SURF
and SIFT is discussed.

8.1 Image data

The database comprises of 470 MR T1 and 14 T2 weighted images. Out of which 435 MRI
volumes of size 176× 208× 176mm are taken from OASIS public archive [50], provided under
an open access data use agreement. The subjects are all right-handed and include both men
and women. 100 of the included subjects over the age of 60 have been clinically diagnosed
with very mild to moderate Alzheimers disease. The remaining 35 MRI volumes of size
150 × 256 × 256mm are taken from IXI public archive [51]. The 14 T2 weighted images of
size 256×256×130mm are taken from IXI public archive [51].

8.2 Test setup

The algorithm was implemented in C++ using OpenCV [49] and ITK [52] on a Windows 7
OS with intel i5 processor. OpenCV is used to extract and match features while ITK was
used for preprocessing the MRI volume. Three MRI volumes are selected to represent the
different age groups and they act as reference. The reference MR volumes are taken from
the OASIS dataset for T1 weighted images and from IXI for T2 weighted images. Out of the
470 T1 weighted images, 60 are selected alphabetically to form the T1 test set. 30 of which
are chosen from the OASIS dataset and the remaining 30 are taken from IXI dataset. The
tests set are chosen such that the included MR volumes did not contribute to the analysis
done in Chapter 6. Similarly out of the 14 T2 weighted dataset, 3 MR volumes are selected
as reference and the remaining 11 are made the test set.
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(a) (b) (c)

Figure 8.1: Selected reliable slice in the axial direction in 3 references - Reference slice 1

8.3 Ground truth generation

The ground truth for all 71 cases, 30 OASIS and 30 IXI T1 weighted dataset and 11 T2 IXI
dataset, were provided independently by two researchers by manually annotating the refer-
ence landmark slices identified in Chapter 6, in the test dataset. Figure 8.1, 8.2, 8.3 ,8.4
and 8.5 show the selected reference slices in the axial and coronal directions. The Euclidean
distance in millimeters between the ground truth and the position obtained by the algorithm
was the error measure. The mean and standard deviation of the estimation error of landmarks
against the ground truth are calculated.

(a) (b) (c)

Figure 8.2: Selected reliable slice in the axial direction in 3 references - Reference slice 2

The inter-observer variability analysis was carried out by finding the difference in the
positions of reference slices, identified by the researchers. Table 8.1 shows the inter-observer
variability as a difference in the positions. In the axial direction, the reference slice in Figure
8.3 has the highest percentage difference. We attribute this to the presence of similar slices
around the reference slice. The reference slice in Figure 8.1 has the lowest percentage differ-
ence, since the structures are discriminative can be identified by the researchers more easily.
In the coronal direction, the reference slices in Figure 8.4 and 8.5 show similar percentage
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(a) (b) (c)

Figure 8.3: Selected reference slice in the axial direction in 3 references - Reference slice 3

(a) (b) (c)

Figure 8.4: Selected reliable slice in the coronal direction in 3 references - Reference slice 1

(a) (b) (c)

Figure 8.5: Selected reliable slice in the coronal direction in 3 references - Reference slice 2

difference. The inter-observer variability analysis shows that the identified reference slice
positions vary based on the researchers perception and when the reference does not show dis-
tinct structures compared to its neighbors, the variability between the researchers increases.
In this project we took the average of the reference slice positions by the researchers as the
ground truth.
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Table 8.1: Inter-observer variability between Researcher-1 and Researcher-2 by the difference
in the identified position of reference slices.

Direction Ref. slice 1 diff. (mm) Ref. slice 2 diff. (mm) Ref. slice 3 diff (mm)

Axial 1.2 2.8 7

Coronal 1.3 1.2 -

8.4 Results of slice matching

Figure 8.6: Plot of Slice Vs. Mean error in (mm) in 30 OASIS test set in the axial direction.
The green and the blue curve show the mean error with and without reference slice. The
cross mark indicate the identified reference slices.

First, we present the results of slice matching for T1 weighted dataset. The axial slices
from an T1 weighted OASIS MR volume are given as the query slice to the framework. The
axial slices are sampled at an interval of 5mm. The axial slices are matched against 30 T1
weighted OASIS test data set chosen in the test setup. Figure 8.6 show the results of slice
matching for the corresponding slices. The figure is a plot of axial slice numbers Vs. Mean
error in mm i.e., the Euclidean distance from the ground truth. The matching is first per-
formed without reference slices and then with reference slice. The results of slice matching
without reference slice show a mean error up to 70mm. With reference slices, the query slices
are detected accurately and the mean error is approximately the same for all slices. The mean
error with reference slices is between 1mm-2mm. Hence, there is a good improvement in the
mean error compared to the method without reference slices. The cross mark in the Figure
8.6 indicate the position of the chosen reference slices. It is observed from the figure that at
chosen reference slices, the mean error without reference slice converges to the mean error
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with reference slice. Table 8.2 shows the mean minimum, mean maximum and median error
in mm for 30 T1 weighted MR volumes, without and with reference slices. It is observed that
the mean minimum error for both the approaches between 0.5mm and 1.0mm inclusive. But
when reference slices are not used, the error increases considerably for query slices that are
not reliably identified.

Figure 8.7: Box plot showing the distribution of Mean error in (mm) in 30 OASIS test set in
the axial direction.

Table 8.2: Distribution of mean error for axial query slices among 30 T1 weighted MR volumes

No: query slice Mean minimum Err. (mm) Mean maximum Err. (mm) Median error (mm)

Without reference slices

19 1 69.30 3.72

With reference slices

19 0.50 1.70 0.90

The box plot in Figure 8.7 show the distribution of mean error in mm, when the frame-
work do not use reference slices and when the framework use reference slices. The plots show
that the error is high when there are no reference slices and low when there are reference slices.

Similarly for T2 weighted images, the input query landmarks in the axial direction are
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shown in Figure 8.8(a), 8.8(b) and 8.8(c). The slice matching results for T2 dataset are shown
in Table 8.3. The query slices are matched and identified within a maximum mean error of
1.4mm. Hence, the developed framework is contrast independent and can be applied to both
T1 and T2 weighted dataset.

(a) (b) (c)

Figure 8.8: T2 weighted MR images. (a) Query slice 1. (b) Query slice 2. (c) Query slice 3.

Table 8.3: T2 weighted MR volume: Reference slice matching results

Data No. of datasets Mean Error (mm) SD of Error

Volume with same scaling 11 - -

Query slice 1 11 0.27 0.90

Query slice 2 10 1.34 1.82

Query slice 3 10 1.0 1.77

The accuracy of the framework is measured by the percentage of true positives and false
positives. Since the performance of the framework depend on how well the reference slices
are identified in the test MR volumes, the true positives and false positives are computed for
the same. To find the accuracy at which reference slices are detected, the slices are retrieved
from 60 T1 weighted MR volumes. The reference slice is retrieved for all the 60 T1 weighted
dataset. The position of the retrieved slice is compared with the ground truth by computing
the Euclidean distance in millimeters between them.

Table 8.4 shows the mean error and standard deviation of the retrieved slice in 60 T1
weighted test MR volumes in the axial direction. It is observed that the mean error for all
volumes in the axial direction is 0.38mm for reference slice 1, whereas the mean error increases
to 1.1mm for reference slice 2. This is because the reference slice 1 has more discriminative
structure than reference slice 2, and hence feature extraction and matching identify reference
slice 1 more accurately. All reference slices in the axial direction are identified within a mean
distance of 1.5mm from the ground truth.

Similarly, Table 8.5 shows the mean error and the standard deviation for reference slices
in the coronal direction. The mean error for all volumes in the coronal direction is 0.062mm
for reference slice 1 and 0.2 for reference slice 2. The reference slices in the coronal direction
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Table 8.4: Mean and SD of error for reference slices in axial direction in 60 T1 weighted MR
volumes

Data No. of datasets Mean Error (mm) SD of Error

Reference slice 1

All volumes 60 0.38 1.57

OASIS 30 0.33 0.88

IXI 30 0.44 2.14

Reference slice 2

All volumes 60 1.09 2.30

OASIS 30 1.31 2.00

IXI 30 0.84 2.60

Reference slice 3

All volumes 60 0.82 1.16

OASIS 30 0.70 1.15

IXI 30 0.95 1.20

are identified within a distance 1mm of ground truth in the OASIS tests set whereas for IXI,
the reference slices are identified within a distance of 2mm from the ground truth.

Table 8.5: Mean and SD of error for reference slices in the coronal direction in 60 T1 weighted
MR volumes.

Data No. of datasets Mean Error (mm) SD of Error

Reference slice 1

All volumes 60 0.06 2.54

OASIS 30 0.23 0.97

IXI 30 0.62 2.12

Reference slice 2

All volumes 60 0.20 2.30

OASIS 30 0.14 0.99

IXI 30 0.28 1.31

True positives and false positives are calculated according to the following equation

TP =
Numberofcorrectlyretrievedslices

Totalnumberofinputquery
× 100 (8.1)

FP =
Numberofwronglyretrievedslices

Totalnumberofinputquery
× 100 (8.2)

59



TU Eindhoven Thesis Report

Correctly retrieved slices are defined as those slices that are identified within an absolute
distance of 5mm from the ground truth. All the slices outside this limit are considered false
positives. In addition to identifying the true and false positives, the framework makes no
decision when there is no sufficient information. This makes it possible for the clinical tech-
nician to identify the required structure manually. Table 8.6 show the accuracy of framework
in the axial and sagittal directions. The average framework accuracy in the axial direction is
87.7% whereas in the coronal direction it is 78%.

Table 8.6: Framework Accuracy

Slice No. of datasets True Positive (%) False Positive (%) No decision (%)

Axial

Reference slice - 1 60 93.33 5 1.67

Reference slice - 2 60 91.6 8.4 -

Reference slice - 3 60 78.4 16.6 5

Coronal

Reference Slice - 1 60 78 22 -

Reference Slice - 2 60 80 20 -

8.5 Results of volume matching

For volume matching, 15 OASIS dataset and 15 IXI dataset are taken from the 60 T1 weighted
dataset. The bounds of the group of slices are given as the input to the framework. The
retrieved group of slices is compared with ground truth by their Euclidean distance. The
error is calculated by computing the average error of the bounds. Table 8.7 show the mean
error for 30 dataset. The framework identifies query group of slices within a 4mm distance in
case of OASIS dataset and 6mm in case of IXI dataset.

Table 8.7: Results of volume matching

Data No. of datasets Mean Error (mm)

OASIS 15 3.43

IXI 15 5.24

8.6 Performance comparison between SIFT and SURF

To benchmark the results obtained using SURF, we compare the results of the framework
with SURF and with SIFT. 10 MR volumes out of the chosen 30 OASIS dataset is taken
alphabetically. The reference slices in Figure 8.1, 8.2 and 8.3 were given as an input query
slice to the framework. The error is calculated by the Euclidean distance between the retrieved
position and ground truth. Table 8.8 shows the mean error of 10 MR volumes by SURF and
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SIFT, for reference slices in the axial direction. It is observed that the accuracy of the retrieved
slices in both SIFT and SURF are similar. The accuracy of SIFT in detecting reference slice
- 3, is slightly higher than SURF but at a higher computation cost. Table 8.9 show the
computation time required to retrieve all axial reference slices in an MR volume. It is seen
than SURF is approximately 50% faster than SIFT.

Table 8.8: Mean error in the axial direction. SURF and SIFT.

Slice No. of datasets Mean error (mm) SD

SURF

Reference slice - 1 10 0 0

Reference slice - 2 10 1.6 1.70

Reference slice - 3 10 0.7 1.05

SIFT

Reference Slice - 1 10 0.2 0.42

Reference Slice - 2 10 1.4 1.70

Reference slice - 3 10 0.1 0.31

Table 8.9: Computation time between SIFT and SURF in the axial direction for an MR
volume of size 176× 208× 176mm

Method Time (sec)

SIFT 227.7

SURF 130.7
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Chapter 9

Discussion and conclusion

The results of slice matching in Chapter 8 show that the framework detects query landmarks
more accurately with reference slices. When reference slices are not used the detection rate
is low and have higher error value. The mean error value starts to rise rapidly beyond the
ventricle region when reference slices are not used. This is because beyond the ventricular
region the slices are not discriminative enough and the background starts to appear. Hence
feature extraction and matching do not perform well in this region. With reference slices
the landmarks are detected within a mean error of 2mm in both the axial and coronal direc-
tion. The accuracy of the framework is highest in the axial direction. We attribute this to
the discriminative structures observed in the axial direction. Similarly, for the coronal and
sagittal direction we observed that the landmarks are detected more accurately with reference
slices. The difference in the mean error value with and without reference slices prove that the
accuracy of the framework improves considerably with reference slices.

The framework was tested for contrast independent detection by using T2 weighted MR
images. The selected query slices closely resemble the reference slices identified for T1
weighted images. The accuracy of the framework with T2 weighted images is similar or
comparable to that of T1 weighted MR images. In some cases the mean error value is lower
than that of T1 reference slices. While testing for slice matching, we also included a couple
of MR datasets that had orientation difference. The framework was able to correctly retrieve
the query slice. The framework was used to detect slice, group of slices or volume and plane
landmarks. In principle the framework can be used to detect any landmark in brain. The
framework was tested with SIFT and SURF feature extractors. The results in Chapter 8
show that reliable slice 1 in the axial direction was detected more accurately SURF, but
reliable slices 2 and 3 in the axial direction were detected accurately by SIFT. We believe
by comparing the methods over larger dataset the mean error rate of SIFT and SURF will
approximately be similar.

The novel contributions to this thesis work include (a) a generic framework development
that can be extended to detect any landmark in brain. (b) Using SURF to extract robust
and repeatable features and to the best of our knowledge SURF was never applied on MR
brain images. (c) Analyzing the MR volumes using robust features and identifying reference
landmarks that can be reliably detected in most MR volumes. (d) Prove that the accuracy
of landmark detection improves considerably with reference slices identified by analyzing the

62



TU Eindhoven Thesis Report

MR volumes. (e) Contrast independent landmark detection i.e. applicable to both T1 and
T2 weighted images.

Future works includes (a)point landmark detection. The initial analysis over 100 test MR
volumes to identify consistent point landmarks did not provide us with good results. The
analysis showed that point landmarks showed a maximum repetition rate of 40% over 100
MR volume. We believe analysing more test MR volumes and using lower sampling rate than
5mm can identify consistent point landmarks and will give better results. (b) The background
estimation in this thesis work is performed by calculating the local histogram value for a slice
instead of the complete volume and then defining a threshold at 8% of the histogram value to
eliminate background. This approach is not adaptive to input MR volume. This can be made
adaptive by using the estimates of MR image boundaries. The MR boundaries approximately
identify the brain tissues excluding the background. Hence using the intensity distribution
of the brain tissues and the local histogram estimate, the background detection can be made
adaptive to the input MR volume. (c) The computation time of the framework can be reduced
considerably given that feature extraction and matching can be implemented in a GPU. In
this project this was not tried since the focus was to use SURF to detect landmarks in brain
MR images.

To conclude, in this project, we have developed a framework that can be extended to
detect all landmarks in brain. We have used SURF feature extraction and matching technique
and applied it successfully on brain MR images. We have analyzed brain MR volumes by
extracting robust features and identified reference landmarks by statistical analysis, which
can be reliably detected in most MR volumes. We have proved that the accuracy of the
framework improves considerably using the reference slices found by analysing the brain MR
images. We have shown that the framework can be used to detect slice landmarks, match
group of slices or volume landmarks and in mid sagittal plane detection. The performance
of the framework with SURF is comparable to that of framework with SIFT in terms of
detection accuracy, but at a 50% faster computation time than SIFT.
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