139 research outputs found

    UTILIZING THE MESSAGING LAYER SECURITY PROTOCOL IN A LOSSY COMMUNICATIONS AERIAL SWARM

    Get PDF
    Recent advancements in unmanned aerial vehicle (UAV) capabilities have led to increasing research into swarming systems. Tactical employment of UAV swarms, however, will require secure communications. Unfortunately, efforts to date have not resulted in viable secure communications frameworks. Furthermore, the limited processing power and constrained networking environments that characterize these systems preclude the use of many existing secure group communications protocols. Recent research in secure group communications indicates that the Messaging Layer Security (MLS) protocol might provide an attractive option for these types of systems. This thesis documents the integration of MLS into the Advanced Robotic Systems Engineering Laboratory (ARSENL) UAV swarm system. The ARSENL implementation is intended as a proof-of-concept demonstration of the efficacy of MLS for secure swarm communications. Implementation test results are presented both for experiments conducted in a simulation environment and experiments with physical UAVs. These results indicate that MLS is suitable for a swarm, with the caveat that testing did not implement a delivery mechanism to ensure reliable packet delivery. For future work, mitigation of unreliable communications paths is required if a reliable MLS system is to be maintained.Civilian, CyberCorps: Scholarship for ServiceApproved for public release. Distribution is unlimited

    Verification of a Distributed Ledger Protocol for Distributed Autonomous Systems Using Monterey Phoenix

    Get PDF
    Autonomous multi-vehicle systems are becoming increasingly relevant in military operations and have demonstrated potential applicability in civilian environments as well. A problem emerges, however, when logging data within these systems. In particular, potential loss of individual vehicles and inherently lossy and noisy communications environments can result in the loss of important mission data. This paper describes a novel distributed ledger protocol that can be used to ensure that the data in such a system survives and documents verification of the behavioral correctness of this protocol using informal verification methods and tools provided by the Monterey Phoenix project

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Collaborative autonomy in heterogeneous multi-robot systems

    Get PDF
    As autonomous mobile robots become increasingly connected and widely deployed in different domains, managing multiple robots and their interaction is key to the future of ubiquitous autonomous systems. Indeed, robots are not individual entities anymore. Instead, many robots today are deployed as part of larger fleets or in teams. The benefits of multirobot collaboration, specially in heterogeneous groups, are multiple. Significantly higher degrees of situational awareness and understanding of their environment can be achieved when robots with different operational capabilities are deployed together. Examples of this include the Perseverance rover and the Ingenuity helicopter that NASA has deployed in Mars, or the highly heterogeneous robot teams that explored caves and other complex environments during the last DARPA Sub-T competition. This thesis delves into the wide topic of collaborative autonomy in multi-robot systems, encompassing some of the key elements required for achieving robust collaboration: solving collaborative decision-making problems; securing their operation, management and interaction; providing means for autonomous coordination in space and accurate global or relative state estimation; and achieving collaborative situational awareness through distributed perception and cooperative planning. The thesis covers novel formation control algorithms, and new ways to achieve accurate absolute or relative localization within multi-robot systems. It also explores the potential of distributed ledger technologies as an underlying framework to achieve collaborative decision-making in distributed robotic systems. Throughout the thesis, I introduce novel approaches to utilizing cryptographic elements and blockchain technology for securing the operation of autonomous robots, showing that sensor data and mission instructions can be validated in an end-to-end manner. I then shift the focus to localization and coordination, studying ultra-wideband (UWB) radios and their potential. I show how UWB-based ranging and localization can enable aerial robots to operate in GNSS-denied environments, with a study of the constraints and limitations. I also study the potential of UWB-based relative localization between aerial and ground robots for more accurate positioning in areas where GNSS signals degrade. In terms of coordination, I introduce two new algorithms for formation control that require zero to minimal communication, if enough degree of awareness of neighbor robots is available. These algorithms are validated in simulation and real-world experiments. The thesis concludes with the integration of a new approach to cooperative path planning algorithms and UWB-based relative localization for dense scene reconstruction using lidar and vision sensors in ground and aerial robots

    A review of task allocation methods for UAVs

    Get PDF
    Unmanned aerial vehicles, can offer solutions to a lot of problems, making it crucial to research more and improve the task allocation methods used. In this survey, the main approaches used for task allocation in applications involving UAVs are presented as well as the most common applications of UAVs that require the application of task allocation methods. They are followed by the categories of the task allocation algorithms used, with the main focus being on more recent works. Our analysis of these methods focuses primarily on their complexity, optimality, and scalability. Additionally, the communication schemes commonly utilized are presented, as well as the impact of uncertainty on task allocation of UAVs. Finally, these methods are compared based on the aforementioned criteria, suggesting the most promising approaches

    A Framework for Automatic Behavior Generation in Multi-Function Swarms

    Get PDF
    Multi-function swarms are swarms that solve multiple tasks at once. For example, a quadcopter swarm could be tasked with exploring an area of interest while simultaneously functioning as ad-hoc relays. With this type of multi-function comes the challenge of handling potentially conflicting requirements simultaneously. Using the Quality-Diversity algorithm MAP-elites in combination with a suitable controller structure, a framework for automatic behavior generation in multi-function swarms is proposed. The framework is tested on a scenario with three simultaneous tasks: exploration, communication network creation and geolocation of RF emitters. A repertoire is evolved, consisting of a wide range of controllers, or behavior primitives, with different characteristics and trade-offs in the different tasks. This repertoire would enable the swarm to transition between behavior trade-offs online, according to the situational requirements. Furthermore, the effect of noise on the behavior characteristics in MAP-elites is investigated. A moderate number of re-evaluations is found to increase the robustness while keeping the computational requirements relatively low. A few selected controllers are examined, and the dynamics of transitioning between these controllers are explored. Finally, the study develops a methodology for analyzing the makeup of the resulting controllers. This is done through a parameter variation study where the importance of individual inputs to the swarm controllers is assessed and analyzed

    Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research

    Get PDF
    Emerging applications such as Internet of Everything, Holographic Telepresence, collaborative robots, and space and deep-sea tourism are already highlighting the limitations of existing fifth-generation (5G) mobile networks. These limitations are in terms of data-rate, latency, reliability, availability, processing, connection density and global coverage, spanning over ground, underwater and space. The sixth-generation (6G) of mobile networks are expected to burgeon in the coming decade to address these limitations. The development of 6G vision, applications, technologies and standards has already become a popular research theme in academia and the industry. In this paper, we provide a comprehensive survey of the current developments towards 6G. We highlight the societal and technological trends that initiate the drive towards 6G. Emerging applications to realize the demands raised by 6G driving trends are discussed subsequently. We also elaborate the requirements that are necessary to realize the 6G applications. Then we present the key enabling technologies in detail. We also outline current research projects and activities including standardization efforts towards the development of 6G. Finally, we summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions towards 6G

    Artificial intelligence and game theory controlled autonomous UAV swarms

    Full text link
    Autonomous unmanned aerial vehicles (UAVs) operating as a swarm can be deployed in austere environments, where cyber electromagnetic activities often require speedy and dynamic adjustments to swarm operations. Use of central controllers, UAV synchronization mechanisms or pre-planned set of actions to control a swarm in such deployments would hinder its ability to deliver expected services. We introduce artificial intelligence and game theory based flight control algorithms to be run by each autonomous UAV to determine its actions in near real-time, while relying only on local spatial, temporal and electromagnetic (EM) information. Each UAV using our flight control algorithms positions itself such that the swarm main-tains mobile ad-hoc network (MANET) connectivity and uniform asset distribution over an area of interest. Typical tasks for swarms using our algorithms include detection, localization and tracking of mobile EM transmitters. We present a formal analysis showing that our algorithms can guide a swarm to maintain a connected MANET, promote a uniform network spread-ing, while avoiding overcrowding with other swarm members. We also prove that they maintain MANET connectivity and, at the same time, they can lead a swarm of autonomous UAVs to follow or avoid an EM transmitter. Simulation experiments in OPNET modeler verify the results of formal analysis that our algorithms are capable of providing an adequate area coverage over a mobile EM source and maintain MANET connectivity. These algorithms are good candidates for civilian and military applications that require agile responses to the changes in dynamic environments for tasks such as detection, localization and tracking mobile EM transmitters

    Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) 2019 Annual Report

    Get PDF
    Prepared for: Dr. Brian Bingham, CRUSER DirectorThe Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This 2019 annual report summarizes CRUSER activities in its eighth year of operations and highlights future plans.Deputy Undersecretary of the Navy PPOIOffice of Naval Research (ONR)Approved for public release; distribution is unlimited
    corecore