
Verification of a Distributed Ledger Protocol for Distributed Autonomous
Systems using Monterey Phoenix

Nickolas Carter∗

Naval Postgraduate School
nickolas.carter@acm.org

Duane Davis
Naval Postgraduate School

dtdavi1@nps.edu

Cynthia Irvine
Naval Postgraduate School

irvine@nps.edu

Peter Pommer∗

Naval Postgraduate School
peter.pommer@acm.org

Abstract

Autonomous multi-vehicle systems are becoming
increasingly relevant in military operations and
have demonstrated potential applicability in civilian
environments as well. A problem emerges, however,
when logging data within these systems. In particular,
potential loss of individual vehicles and inherently lossy
and noisy communications environments can result in
the loss of important mission data. This paper describes
a novel distributed ledger protocol that can be used
to ensure that the data in such a system survives and
documents verification of the behavioral correctness of
this protocol using informal verification methods and
tools provided by the Monterey Phoenix project.

Key words: autonomous systems, distributed ledger
protocol, behavioral modeling, verification, informal
verification

1. Introduction

Use of unmanned aerial vehicles (UAVs) in both
military and civilian environments has increased
dramatically, and these systems have proven effective
in roles for which manned systems are impractical
or unacceptable. This trend is likely to continue as
technology associated with autonomy, computational
power, and vehicle endurance improves. In particular,
these technologies support the development of
swarming systems in which large numbers of vehicles
operate cooperatively to accomplish complex tasks.

Maintenance of mission logs for swarm operations
can be important for purposes of mission reconstruction,
capability development, and performance analysis.
The nature of these systems, however, can limit
the completeness and accuracy of system-wide logs.
Among the purported advantages of swarm systems
are the relatively low cost of individual UAVs and

∗ Contributions to this work were performed while affiliated with
the Naval Postgraduate School.

the ability of the system to survive vehicle losses [1].
That is, the loss of a few vehicles will not lead to
mission failure. Unfortunately, locally maintained data
on failed vehicles will likely be unrecoverable. On the
other hand, maintaining a complete system-wide log
on every vehicle is unrealistic given the unreliable and
bandwidth-limited communications architectures upon
which multi-UAV systems typically rely [2].

We proposed the Unmanned Vehicle System
Logging Protocol (UVSLP) to address this issue
in [3] and documented its implementation and
testing in [4] and [5]. Here, we document the
verification of the protocol’s claimed properties using
the Monterey Phoenix (MP) behavioral modeling
tool [6]. Contributions of this work include:

1. a blockchain-based distributed ledger protocol
(DLP) suitable for mission log maintenance for
an autonomous multi-UAV system utilizing a
highly-constrained communications architecture,

2. verification of the protocol’s mathematical
properties using light-weight formal methods,
and

3. demonstration of the suitability of the MP
language and toolset for verification of complex,
parallel processes.

Section 2 of this paper discusses the problem, its
underlying assumptions, and the technologies upon
which our protocol relies. Section 3 provides a summary
of the proposed protocol, and Section 4 describes the
MP tool. Section 5 describes MP’s use in verifying the
protocol’s properties and discusses the verification test
results. Finally, Section 6 discusses the outcomes and
implications of this work.

2. Background

This section begins by describing the systems for
which the UVSLP is intended and goes on to describe
previous work leveraged in its development.

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 6716
URI: https://hdl.handle.net/10125/103446
978-0-9981331-6-4
(CC BY-NC-ND 4.0)



2.1. System assumptions

Multi-vehicle autonomous systems in general
and swarm systems in particular are inherently
decentralized. Each unmanned vehicle (UV) can be
thought of as an independent agent that processes and
interprets its own sensor information, maintains its own
“situational awareness,” determines its own courses of
action, and draws its own conclusions based on local
observations. Information is shared with other agents
only as required to facilitate collective objectives.

Swarm system advantages include their scalability
and ability to gracefully address individual vehicle
failures [1]. In fact, vehicle failures must not only be
tolerated, they should be expected. This means that
mission reconstruction and analysis requirements may
necessitate the distribution of important information
derived by individual agents among the swarm members
to the maximum extent possible to prevent its loss.

Swarm system communications architectures can
make information sharing challenging, however. During
a mission, the network may become segmented in a
highly dynamic manner as individual vehicles and
groups of vehicles go in and out of communications
with the rest of the swarm. Further, even within
connected network segments, communication is
frequently unreliable and often characterized as a
set of fair-loss links over which messages are only
probabilistically delivered [2, 7].

2.2. Distributed ledger protocols (DLPs) and
unmanned vehicle (UV) swarms

Distributed ledger protocols (DLPs) synchronize
data among distributed agents through a consensus
process that ensures consistency across the entire
network [8]. In a UV swarm system, a properly
implemented DLP’s decentralized storage can prevent
data from being lost when individual UVs fail.

Blockchains are among the most common DLP
forms and possess cryptographic features that can both
ensure authenticity and facilitate consistency checks
as new entries are added [9]. A DLP relies on
blockchain consensus to ensure that blocks are stored
in an agreed upon order. The UVSLP further leverages
the blockchain consensus mechanism in the reconcile
process described in Section 2.3.

Blockchain-based DLPs have been suggested for a
number of multi-robot system issues including network
and swarm security, inventory management, and task
allocation [10]. These efforts primarily leverage
the blockchain consensus mechanism’s rejection of
malicious or invalid information (this is particularly
important if system or vehicle control relies on the

information being maintained). In contrast, UVSLP
is intended to improve the availability of mission
records and makes a number of design tradeoffs that
facilitate block distribution but sacrifice Byzantine
failure detection. Research efforts that specifically focus
on our choice of blockchain utilization are less common.

One effort that does closely align with the UVSLP’s
objectives is SwarmDAG [11]. Rather than utilizing
a blockchain, the SwarmDAG protocol maintains data
blocks in a directed acyclic graph to account for swarm
network partitioning. Nodes within a partition maintain
a partition-specific ledger fork of confirmed blocks.
When network partitions merge, their respective ledger
forks are merged as well. When an overall consensus
(defined as two thirds of the swarm) is achievable,
confirmed blocks are finalized and added to the formal
SwarmDAG ledger.

Similar to UVSLP, SwarmDAG provides for an
eventually consistent swarm-wide ledger that is derived
from blocks maintained by individual participants [11].
Unlike UVSLP, data blocks are not exchanged beyond
the partition in which they were created until they
are finalized and formally added to the ledger.
While the two-thirds consensus requirement does make
Byzantine failure detection possible, it can result in
data being lost if a participant fails before joining a
partition large enough to finalize its locally maintained
blocks. SwarmDAG also makes assumptions about
block exchange success within partitions and ongoing
awareness of swarm and partition membership that the
UVSLP does not.

2.3. Distributed consensus

Consensus is among the most important
requirements for a blockchain-based distributed
ledger [9]. In most cases, this means that a majority
of agents must agree before a proposed entry can be
added to the blockchain. Unfortunately, consensus
can only be guaranteed if the system satisfies specific
conditions [12]. The UVSLP deals with this by relaxing
the notion of consensus to agreement among a plurality
of agents (i.e., a majority of currently available agents).
This relaxation results in a set of consistent blockchains
as opposed to a single correct blockchain. For purposes
of the UVSLP, two blockchains are consistent if and
only if they can be unified into a single agreed-upon
blockchain through some reconciliation process [4, 5].
This allows the UVSLP to gracefully deal with network
discontinuity by ensuring that local blockchains remain
consistent and eventually unifiable.

The Paxos family of consensus algorithms is among
those most heavily utilized for transactional data

Page 6717



DLPs [13]. Paxos assigns individual agents to proposer,
acceptor, and learner roles. A proposer’s locally
generated entry is formally committed to the ledger by
a learner if a majority of acceptors approve. Thus,
Paxos maintains a ledger in which all entries have been
approved by a majority of the accepting agents [13].

A direct implementation of Paxos is not possible
for the envisioned swarm since the system described in
Section 2.1 cannot guarantee the eventual availability
of a majority. It does, however, form the basis of the
UVSLP consensus algorithm in that the UVSLP relies
on the three Paxos roles. Individual agents generate
and propose blocks for addition to the blockchain
(proposers). If a local majority of agents (i.e., among
those responding to the proposal) agrees to the addition
(acceptors), the proposing agent formally submits the
block for addition to the locally maintained blockchains
(learners) [3]. Since this approach relies upon a plurality
rather than a majority, it is robust in the communications
environment for which it is envisioned. In an ideal
network, majority-based consensus can be reached, and
a single unified blockchain is possible. In a lossy
or disconnected system, the pluralities ensure that the
locally maintained blockchains are at least consistent.

3. The Unmanned Vehicle System
Logging Protocol (UVSLP)

The UVSLP is a blockchain protocol that is
specified as a set of event handlers to be implented on
each participating UV. Event handlers are triggered
asynchronously by internal or external events. Data
to be recorded in the distributed log is incorporated
into blocks containing one or more log entries that
are committed to blockchains maintained on each UV.
Event handlers are organized into block generation and
commit and blockchain reconcile components.

The UVSLP blockchain differs from most
implementations in two ways. First, it does not attempt
to construct a single, majority-approved blockchain.
Rather, individual agents maintain possibly disparate
blockchains and reconcile them as communications
permit. Second, the blockchain is not additive only.
During reconciliation, blocks can be removed from
the reconciling vehicle’s blockchain and re-added after
extending a locally agreed-upon blockchain.

The UVSLP is specified with flow diagrams and
language-independent pseudocode in [4] and [5] and
was fully implemented on the Naval Postgraduate
School (NPS) Advanced Robotic Systems Engineering
Laboratory (ARSENL) swarm system [14]. It was
incorporated into the system as a single Robot Operating
System [15] node (i.e., process) written in Python.

The implementation was tested in the
ARSENL software-in-the-loop (SITL) simulation
environment [16] and in live-flight experiments as
documented in [5]. SITL testing was conducted with
various known packet-loss rates, and live-flight testing
validated SITL environment results. Implementation
experiments yielded consistent local blockchains
(i.e., unifiable by post-flight application of the
reconcile process), identified no protocol requirement
violations, and provided empirical evidence of protocol
correctness. They were not able to test network
segmentation performance, however the MP validation
documented here does account for segmentation.

The remainder of this section presents the ptotocol’s
formal properties and describes its components.

3.1. Protocol properties

Given the nature of the systems for which it was
developed, the UVSLP must satisfy a number of
general requirements. First, it must be compatible
with the envisioned communications environment,
meaning that it needs to work when communications
are unreliable. Also, since each agent operates
independently, the protocol must be fully implemented
on every vehicle. The following properties formally
describe the protocol’s requirements [3]:

1. Block creation: No block will exist
within the system that was not proposed by a
participating agent.

2. No block duplication: No more than one
copy of a particular block will be maintained
by any agent at any time. A block can be
present in the local blockchain or in a temporary
local data structure associated with the protocol
implementation.

3. No block loss: All blocks proposed by
participating agents will be maintained by at least
one agent (vehicle loss notwithstanding).

4. Idle stop: If an agent’s protocol event
handlers are in an idle state, then all blocks
maintained by that agent must be present in the
local blockchain.

5. Block propagation: In a fully connected
system, all blocks will eventually be committed
to all locally maintained blockchains.

6. Uniform chain: In a fully connected system
where all agents have opportunities to reconcile
blockchains, one uniform blockchain will emerge.

Page 6718



The first four properties relate to block generation
and maintenance. They assert that blocks will not be
erroneously created or duplicated, that they will not be
lost once they have been added to the system, and that
an individual vehicle’s event handlers will not enter an
idle state until all blocks maintained by that vehicle have
been committed to the local blockchain. The final two
properties relate to the distribution of blocks among the
participating agents. In a fully connected system with
no disjoint segments, every agent’s local blockchain will
eventually contain a copy of every block that has been
added to the system. In addition, a uniform system-wide
blockchain can eventually be obtained through repeated
iterations of a reconciliation process.

Importantly, these properties do not require that a
system-wide blockchain be available at any particular
moment. They only require that a system-wide
blockchain among surviving agents can be obtained in
ideal circumstances. This follows from the relaxed
notion of consensus presented in Section 2.3 and implies
that, so long as locally maintained blockchains do not
contradict one another, differences can eventually be
resolved to obtain a single unified blockchain.

It is also worth noting that none of these properties
impose specific security requirements. In fact, the
UVSLP test implementation documented in [5] uses
simple SHA3-256 hashes to ensure integrity of both
the blockchain and the individual blocks. A specific
implementation may require an agent-specific digital
signature (e.g., RSA) in place of the block hash
to prevent the addition of inauthentic blocks, and it
may replace the blockchain hash with a shared-key
message authentication code (MAC) such as hash-based
MAC (HMAC) to ensure authenticity of the blockchain
itself. The cryptographic specifics are not included
in the protocol’s specification, however. This means
that cryptographic functionality must be built into a
particular implementation as required or provided by the
target platform’s cryptographic implementation.

Further, since the protocol focuses on the availability
of the data rather than its provenance, it does not
address Byzantine failures (the ability to detect these
failures is at best questionable given the connectivity
and synchronicity assumptions of this work [12]).
Nevertheless, while a malfunctioning or malicious
participant might add invalid content to the log,
satisfaction of the stated properties by all correct agents
will prevent the loss or corruption of valid blocks.

3.2. Block generation and commit

Individual vehicles generate loggable events and
add them to the distributed ledger through the block

generation and commit process depicted in Figure 1.
When an agent accumulates enough log entries to form
a full block, the block is finalized and proposed to
the other participants for addition to the blockchain.
If a majority of the responding agents approve of the
addition, the block is committed. If, on the other hand,
a majority of the respondents reject the addition, the
new block is locally pushed to a reconcile stack, and the
blockchain reconcile process is initiated.

Figure 1. High-level depiction of the UVSLP block

generation and commit process.

Commits are performed locally and remotely.
Simply adding the block to the local blockchain
completes the local commit, while remote commits are
initiated by broadcasting a commit request. Receiving
agents with local blockchains that match the requestor’s
precommit blockchain will commit the new block
locally. Other agents will simply ignore the request.

3.3. Blockchain reconcile

Rejection of a proposed commit by a local majority
indicates that the proposing agent’s local blockchain has
diverged from that of its neighbors. The blockchain
reconcile process, see Figure 2, allows the agent to
bring its blockchain into agreement with a plurality of
its neighbors prior to reattempting the proposed commit.

The blockchain reconcile process is completed
in three steps: identify common blockchain, extend
common blockchain, and commit reconcile stack. The
identify common blockchain step is applied recursively
to identify the point of local blockchain divergence
from the neighboring agents’ blockchains. With each
iteration, the neighbors are queried as to the presence of
the local blockchain’s high-order block (identified by its
blockchain hash) anywhere in their local blockchains.
If a majority of respondents possess the block, the
point of divergence has been identified. Otherwise, the
high-order block is removed from the local blockchain
and pushed to a reconcile stack, and the process is
repeated.

Page 6719



Figure 2. High-level depiction of the UVSLP

blockchain reconcile process.

The extend common blockchain step is used to
add missing blocks to the local blockchain. At each
iteration, the reconciling agent requests the next block
from the other participants (i.e., the block that they have
adjacent to the current common chain high-order block).
If responses are received, the reconciling agent adds the
most common response block to its local blockchain and
repeats the process. If not, the blockchain reconcile
process proceeds to the commit reconcile stack step.

In the commit reconcile stack step, blocks are
iteratively popped from the reconcile stack and
committed to the blockchain locally and remotely as in
the blockchain generation and commit process.

4. Monterey Phoenix (MP)

MP is a NPS-developed formal language and toolset
for developing executable behavior models for systems,
software, hardware, people, and organizations that
capture their dependencies on one another and on the
environment [6]. Its development was motivated by a
desire to enable the detection, classification, prediction,
and control of emergent behaviors arising from the
interaction between individual processes or agents in

complex systems [17].
MP system models deal with the behaviors

of individual components separately from their
interactions [18]. A behavior is formally defined as a
collection of related events, set operations, and predicate
logic that captures input requirements, decision points,
and potential outcomes of those decisions. Activities
that occur within the environment, on the other hand, are
specified as sets of interactions between components.
A specific interaction is represented as a sequence
of events that occur as the a result of the interacting
components’ behaviors. MP uses Monte Carlo
simulation to explore the combinatoric possibilities of
the behaviors associated with interactions and provides
results in the form of event traces [17]. This separation
of component behaviors and their interactions leads
to system models in which independent components
interact without the imposition of assumptions about
those interactions that might otherwise overconstrain
the system [19].

MP’s reliance on abstractions is premised on
the small scope hypothesis [20] which surmises that
a high proportion of errors can by identified by
exhaustive evaluation of a process over a small scope
of possible inputs. Stated differently, most errors can be
exposed by testing with a small subset of the possible
inputs. Properly defined models, therefore, amount to
executable abstractions with which exhaustive traces
provide what are referred to as lightweight proofs [21].

MP’s lightweight proofs do not equate to formal
mathematical proofs. Rather, they only verify that no
errors exist for the small-scope testing. Thus, MP
results are considered verification that an algorithm
works correctly, not that it is completely error free [6].
Also, since MP uses an algorithm’s abstraction, it cannot
provide assurance about an algorithm’s implementation.

MP has proven useful in analyzing a diverse range
of scenarios involving complex interactions between
agents. Among other applications, it has been used
to identify emergent behaviors associated with business
processes [22], layperson execution of first responder
actions [23], and UAV search and rescue mission
failure scenarios [24]. Its use in the validation of the
UVSLP is a natural extension of its demonstrated utility
in identifying unexpected behaviors in other types of
complex systems. More complete descriptions of the
MP vocabulary, syntax, semantics, and use are available
in [6], [17], and [21].

5. Design validation

Verification of the UVSLP amounts to confirmation
that it satisfies the properties specified in Section 3.1.

Page 6720



While MP’s small-scope testing falls short of a formal
proof, its use in the verification of other complex
systems supports the assertion that it can provide
assurances that the protocol behaves as desired in most
situations and does not violate the requirements in any
identifiable scenarios.

The requirement that the system include only
legitimately proposed blocks (i.e., the block
creation property) is only partially verifiable
with MP since it is dependent on the security of the
underlying system (i.e., on the authenticity of the
data being logged). MP could be used to verify that
blocks do not spontaneously appear in the system;
however, this can be verified trivially by noting that
blocks are only created by the block generation and
commit event handlers as a result of log entries being
submitted. Correct implementation of the protocol’s
event handlers, therefore, will preclude the generation
of invalid blocks by the protocol itself [4].

Verification of the remaining properties is
accomplished through testing with two MP models:
a consensus model and a state model. This section
discusses the use of the consensus model to verify
the no block duplication, no block loss,
block propagation, and uniform chain
properties and the use of the state model to verify the
idle stop property.

5.1. The UVSLP consensus model

The MP consensus model was derived from
the UVSLP blockchain reconcile process and was
developed to capture the semantics of the protocol’s
plurality-based approach to consensus.

5.1.1. Consensus model abstraction The UVSLP
process abstraction upon which the MP consensus
model was based is depicted in Figure 3. Each
oval represents one or more event handlers, and each
arrow represents generated events that trigger the next
set of handlers. Event handlers are implemented
across multiple UVs and include actions taken by the
reconciling vehicle and results of actions taken by other
vehicles. They are represented in the model from
the perspective of the reconciling vehicle. Depicted
event-based data flows represent local events (i.e., events
triggered on the reconciling vehicle).

The implementation of Figure 3 as an MP model
consists of five components (left side of the figure) and
two data structures with which they interact (center and
right side of the figure). The phase 1 vote component
captures the identify common blockchain step of the

Figure 3. The UVSLP consensus process as an

abstracted MP model.

blockchain reconcile process described in Section 3.3.
Rather than implementing the voting process in the
model, the MP exhaustive trace is used to account for
all possible voting outcomes. In this case, the vote will
indicate that the local blockchain’s current high-order
block is contained in a plurality of neighboring local
blockchains (invoke the phase 2 vote component) or
that it is not (move the block to the reconcile stack and
reinvoke the phase 1 vote component).

The phase 2 vote component implements the first
portion of the extend common blockchain step in which
a block that can be added to the local blockchain
is identified. The outcome of this vote will provide
the block hash digest of a block to be added to
the local blockchain (invoke the reconcile stack check
component) or indicate that the local blockchain cannot
be extended (invoke the reconcile finalize component).

If the local blockchain can be extended, the new
block may already be available locally in the reconcile
stack (i.e., if it had been previously added to and
subsequently removed from the local blockchain). This
check is accomplished by the reconcile stack check
component. If the block is present in the reconcile stack,
it is moved to the local blockchain, and the phase 2 vote
component is invoked. If the block is not present, the
phase 3 request component is invoked.

The phase 3 request component is used to obtain a
missing block from a neighboring agent. One possible
outcome of the request is that the block is obtained. In
this case it is added to the local blockchain and the phase
2 vote component is invoked. It is also possible that
no response is received (i.e., the agent from which it
would be obtained no longer has communications with
the requesting agent). In this case, the local blockchain
cannot be extended further, and the reconcile finalize
component is invoked.

Page 6721



The reconcile finalize component conducts the
commit reconcile stack step of the blockchain reconcile
process. It iteratively pops blocks from the reconcile
stack and adds them to the local blockchain.

The MP model also includes three “universal
behaviors” that describe how the model is to execute:

1. all pathways through the algorithm will terminate
upon and only upon termination of the reconcile
finalize component,

2. execution will not terminate unless the reconcile
stack is empty, and

3. execution will always begin with invocation of the
phase 1 vote component.

5.1.2. Consensus model property verification
Exhaustive tracing of the consensus model by MP
was used to verify UVSLP compliance with the no
block duplication, no block loss, block
propagation, and uniform chain properties. In
keeping with the small scope hypothesis, the required
number of iterations of each loop was limited to
facilitate the analysis. An example corresponding to
a trace in which the UV successfully reconciles is
depicted in Figure 4. Yellow blocks in the diagram
represent Figure 3 events while blue blocks indicate
nondeterministic event outcomes. Diagrams for all
traces are available in the appendix to [4].

To validate adherence to the no block
duplication property, it must be established
that no block was ever stored in the local blockchain
more than once. Analysis of the data structures in
which a block can be stored confirmed that this was the
case. In the Figure 4 example, the initial phase 1 vote
component outcome indicates that the top of the local
blockchain had diverged, so a single block was removed
from the local blockchain and pushed to the reconcile
stack. The second phase 1 vote iteration indicated that
the common blockchain had been reached. At this
point, the manipulated block was being maintained in
exactly one data structure (i.e., the reconcile stack).

The initial phase 2 vote indicated that a block
could be added to the blockchain, and the outcome
of the phase 3 request component indicated that it
was obtained from another UV after verification that
it was not already present in the reconcile stack. At
this point the block was added directly to the local
blockchain. Again, the block was present in exactly one
data structure (i.e., the blockchain).

Subsequent invocation of the phase 2 vote
component indicated that the local blockchain could not

Figure 4. Example MP consensus model trace

(events in yellow) of a successful reconcile.

be extended further, so the reconcile finalize component
moved the previously removed block from the reconcile
stack back to the blockchain.

Analyses of other consensus model execution traces
yielded similar results and indicated that every event
affecting a block did so in one of three ways: the
block was moved from the blockchain to the reconcile
stack, received from another vehicle and added to the
blockchain, or moved from the reconcile stack to the
blockchain. No result indicated that a block was ever
present in more than one data structure at a time. Thus,
the no block duplication property was satisfied
in all traces and was evidently verified.

Similar analysis was conducted to verify the no
block loss property. This property is verified
by demonstrating that any block removed from the
blockchain is eventually placed back into the blockchain
and that any block received from another UV is
eventually added to the blockchain. In the trace
of Figure 4, a block was removed from the local
blockchain following the first invocation of the phase
1 vote component. It was subsequently added back
to the blockchain by the eventual invocation of the
reconcile finalize component. A block was received
from another UV following invocation of the phase 3
request component and immediately added to the local
blockchain. Analysis of other execution traces provided

Page 6722



similar results indicating that the protocol consistently
satisfied the no block loss property.

Use of the MP consensus model to verify the block
propagation and uniform blockchain
properties is predicated on an important assumption.
That is, if it can be demonstrated that two
network-adjacent UVs can be brought into unison,
then the resulting blockchain can be inductively brought
into unison with the rest of the agents in a connected
network. With this in mind, verification of these
properties reduces to verification for two UVs.

In that context, verification requires confirmation
that a UV will eventually obtain all missing blocks
from a neighboring UV’s blockchain and that they will
be added in the same location as in the neighbor’s
blockchain. This verification can be simplified by
noting that it relies primarily on the traces corresponding
to successful communication (i.e., the communications
model implies that this trace will be realized eventually).

In the trace of Figure 4, the reconciling UV obtains
a single block from a neighboring UV. The outcome
of the second phase 1 vote invocation indicates that the
high-order block of its local blockchain is contained in
the neighboring UV’s blockchain. Since the response to
the phase 3 request component is the block adjacent to
the local high-order block in the neighbor’s blockchain,
clearly it will be added to the reconciling UV’s
blockchain in the same location as the neighbor.

Additional analysis verified that this scenario was
the only one in which a block received from another
UV through the blockchain reconcile process was added
to the local blockchain. Further, it should be noted
that while the local blockchains of the two UVs from
Figure 4 may not agree at the end of the trace (i.e.,
the second UV’s blockchain might not contain blocks
added by the reconcile finalize component), the disparity
can be resolved by a subsequent blockchain reconcile
process with the roles reversed. Thus, satisfaction
of both the block propagation property and the
uniform blockchain property is demonstrated by
the MP consensus model.

5.2. The UVSLP state model

A state model was utilized to verify the idle stop
property. This model was developed to capture the
system states that start with the proposal of a new block
in the block generation and commit process through the
end of the blockchain reconcile process.

5.2.1. State model abstraction The UVSLP state
model abstraction is depicted in Figure 5. As with

Figure 3, each oval represents one or more UVSLP event
handlers and arrows indicate possibly nondeterministic
outcomes of those event handlers. Unlike the consensus
model, the MP state model includes events associated
with the agent being modeled and external events
associated with other UVs.

Figure 5. The MP UVSLP abstracted state model.

The MP implementation of Figure 5 consists of three
external events (depicted in blue) that account for the
ways in which new blocks can be received by a UVSLP
agent and five internal components (depicted in yellow)
that describe how received blocks are processed.

The ready to create block component represents
the local generation of a block. When it is invoked,
it subsequently invokes the block ready component to
process the new block and propose it for addition.

The block ready component receives newly
generated blocks and determines whether or not they
can be processed. If the agent is not reconciling its local
blockchain, the approval vote component is invoked.
If, on the other hand, the agent is in the midst of
a blockchain reconcile, the addition is not possible,
and the trace ends without processing the new block.
In this case, the protocol calls for the addition to be
reattempted upon completion of the reconcile process.
The abstract state model does not include this step,
however, because it is logically identical to the ready to
create block invocation.

The approve vote component represents the block
generation and commit proposal and approval process.
If the proposed addition is approved, the verify chain
component is invoked. If the addition is rejected, the
reconcile component is invoked.

The verify chain component accounts for a race
condition arising from near-simultaneous proposal of
block additions by multiple agents. If a proposing

Page 6723



vehicle processes a commit request from another agent
before its own voting process is complete, its local
blockchain will not match what had been approved. In
this case, the verify chain will note the mismatch and
reinvoke the approval vote component. If the local
blockchain still matches what was proposed, the add
block to local chain component is invoked.

The add block to local chain component finalizes
the addition of a new block to the local blockchain and
terminates the thread upon completion.

The external receive commit message component
accounts for the receipt of a commit request from
another agent (i.e., following completion of the sending
agent’s block generation and commit process). Upon
initiation, the component determines if the commit can
be completed based on the high-order block of the
local blockchain. If the local blockchain matches the
commit request, the add block to local chain component
is invoked. If not, the received block is ignored (the
request is not locally valid), and the thread ends.

The final external component, receive phase 3
response, accounts for receipt of new blocks from other
agents as part of the blockchain reconcile process. If the
local vehicle is in the midst of a reconcile and the block
is received in response to its request, the add block to
local chain component is invoked. If not, the reconcile
component is invoked or the thread ends depending on
whether or not the local blockchain can be improved
through reconciliation with neighboring blockchains.
Though not required, this feature improves protocol
performance and was included in the abstraction.

MP state model execution begins with invocation of
any of the three external components. A single trace can
include asynchronous invocation of multiple external
components effectively resulting in multiple execution
threads. Each thread executes independently and ends
upon completion of the behaviors associated with the
add block to local chain or reconcile component or
upon specific outcomes associated with the block ready,
receive commit message, and receive phase 3 response
components.

5.2.2. State model property verification
Exhaustive tracing of the MP state model was
used to verify UVSLP satisfaction of the idle stop
property. As with the consensus model, the execution
scope of the state model traces was limited to facilitate
MP execution and results analysis. Figure 6 depicts a
trace in which the external ready to create block, receive
commit message, and receive phase 3 response events
were each invoked. The first two execution threads end
with the individual invocations of the add block to local

chain component, and the third ends upon completion
of the reconcile component.

Figure 6. Example MP state model trace (events in

yellow) with three external component invocations.

To demonstrate satisfaction of the idle stop
property, it must be established that any blocks received
by the UV are added to the local blockchain or discarded
before the program terminates. In the Figure 6 example,
three blocks were received over the course of the
trace. The second was immediately added to the local
blockchain, and the first was eventually added after
invoking the approval vote component a second time.
The third was presumably received as a byproduct of
another agent’s blockchain reconcile process and led to
the invocation of the reconcile component. Completion
of the reconcile process would include the addition of
the newly received block to the local blockchain (per the
no block loss property). Had the receive phase 3
response component determined that a reconcile was not
required, the block would have been discarded.

Analysis of the other state model trace diagrams
as described in [4] did not identify any idle stop
violations. When addition of a new block to the
local blockchain was appropriate, it was added. When
addition of the new block to the local blockchain was not
possible, that is when the local blockchain did not match
the blockchain to which it was to be added or when
it had not been requested, it was either discarded or
accounted for by invocation of the reconcile component.
Thus, UVSLP satisfaction of the idle stop property
is demonstrated by the MP state model.

6. Conclusion

This paper provided an overview of the UVSLP,
a distributed blockchain protocol for maintenance
of system-wide logs by swarm systems operating

Page 6724



in unreliable or constrained communications
environments. We examined the use of two executable
MP UVSLP models to verify the satisfaction of
mathematical properties presented as protocol
requirements.

The MP models provided assurances that the
UVSLP functioned correctly and that there were no
apparent violations of the required properties. Although
exhaustive MP traces do not amount to a formal proof,
its use in verifying the UVSLP functionality provides a
basis for confidence that the protocol is correct. Further,
it provides an MP use case example that is generalizable
to a large set of additional complex, parallel processes.

Acknowledgement This material was supported in
part by the National Science Foundation under
Agreement No 1565443. Any opinions, findings, and
conclusions or recommendations expressed are those of
the authors and do not necessarily reflect the views of the
National Science Foundation or the U.S. Government.

References

[1] J. Arquilla and D. F. Ronfeldt, Swarming & the Future of
Conflict. Santa Monica, CA: Rand Corporation National
Defense Research Institute (U.S.), 2000.

[2] X. Chen, J. Tang, and S. Lao, “Review of unmanned
aerial vehicle swarm communication architectures and
routing protocols,” Applied Sciences, vol. 10, no. 10,
p. 3661, 2020.

[3] N. Carter, P. Pommer, D. T. Davis, and C. E.
Irvine, “Increasing log availability in unmanned vehicle
systems,” in National Cyber Summit, pp. 93–109,
Springer, 2021.

[4] N. Carter, “Design and informal verification of a
distributed ledger protocol for distributed autonomous
systems using Monterey Phoenix,” MS thesis, Naval
Postgraduate School, Monterey, CA, December 2020.

[5] P. Pommer, “Design and implementation of a distributed
ledger to support data survivability in an unmanned
multi-vehicle system,” MS thesis, Naval Postgraduate
School, Monterey, CA, June 2021.

[6] M. Auguston, “Monterey Phoenix, or how to make
software architecture executable,” in Proceedings of
the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and
applications, pp. 1031–1040, 2009.

[7] D. T. Davis, T. H. Chung, M. R. Clement, and M. A.
Day, “Consensus-based data sharing for large-scale
aerial swarm coordination in lossy communications
environments,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pp. 3801–3808, IEEE, 2016.

[8] M. Hancock and E. Vaizey, Distributed Ledger
Technology: Beyond Block Chain. UK Government
Chief Scientific Adviser, 2016.

[9] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain
technology overview,” arXiv preprint arXiv:1906.11078,
2019.

[10] T. Alladi, V. Chamola, N. Sahu, and M. Guizani,
“Applications of blockchain in unmanned aerial
vehicles: A review,” Vehicular Communications, vol. 23,
p. 100249, 2020.

[11] J. A. Tran, G. S. Ramachandran, P. M. Shah, C. B.
Danilov, R. A. Santiago, and B. Krishnamachari,
“Swarmdag: A partition tolerant distributed ledger
protocol for swarm robotics,” Ledger, vol. 4, no. Supp
1, pp. 25–31, 2019.

[12] D. Dolev, C. Dwork, and L. Stockmeyer, “On the
minimal synchronism needed for distributed consensus,”
Journal of the ACM (JACM), vol. 34, pp. 77–97, January
1987.

[13] L. Lamport, “Paxos made simple,” ACM SIGACT News
(Distributed Computing Column), vol. 32, pp. 51–58,
December 2001.

[14] T. H. Chung, M. R. Clement, M. A. Day, K. D. Jones,
D. Davis, and M. Jones, “Live-fly, large-scale field
experimentation for large numbers of fixed-wing uavs,”
in 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1255–1262, IEEE, 2016.

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, A. Y. Ng, et al., “ROS: an
open-source robot operating system,” in ICRA workshop
on open source software, no. 3.2 in 3, p. 5, Kobe, Japan,
2009.

[16] M. A. Day, M. R. Clement, J. D. Russo, D. Davis,
and T. H. Chung, “Multi-uav software systems
and simulation architecture,” in 2015 International
Conference on Unmanned Aircraft Systems (ICUAS),
pp. 426–435, IEEE, 2015.

[17] K. Giammarco and M. Auguston, “Monterey
Phoenix—behavior modeling approach for the early
verification and validation of system of systems
emergent behaviors,” in Engineering Emergence,
pp. 357–388, CRC Press, 2018.

[18] K. Giammarco, K. Giles, and C. A. Whitcomb,
“Comprehensive use case scenario generation: An
approach for modeling system of systems behaviors,” in
2017 12th System of Systems Engineering Conference
(SoSE), pp. 1–6, IEEE, 2017.

[19] K. Giammarco and M. Auguston, “Well, you didn’t
say not to! A formal systems engineering approach to
teaching an unruly architecture good behavior,” Procedia
Computer Science, vol. 20, pp. 277–282, 2013.

[20] D. Jackson, Software Abstractions: Logic, Language,
and Analysis. The MIT Press, 2006.

[21] M. Auguston, “Monterey Phoenix system and behavior
modeling language (version 4.0) user manual.” https:
//wiki.nps.edu/download/attachments/
604667916/MP2-syntax-v4.pdf, March 2020.
[Accessed May 2022].

[22] M. Auguston, K. Giammarco, W. C. Baldwin,
M. Farah-Stapleton, et al., “Modeling and verifying
business processes with Monterey Phoenix,” Procedia
Computer Science, vol. 44, pp. 345–353, 2015.

[23] J. Bryant, “Using Monterey Phoenix to analyze
an alternative process for administering naloxone,”
Capstone Research Project, Science and Math Academy,
Aberdeen, MD, 2016.

[24] M. Revill, “UAV swarm behavior modeling for
early exposure of failure modes,” MS thesis, Naval
Postgraduate School, Monterey, CA, September 2016.

Page 6725


