458 research outputs found

    Data mining for detecting Bitcoin Ponzi schemes

    Full text link
    Soon after its introduction in 2009, Bitcoin has been adopted by cyber-criminals, which rely on its pseudonymity to implement virtually untraceable scams. One of the typical scams that operate on Bitcoin are the so-called Ponzi schemes. These are fraudulent investments which repay users with the funds invested by new users that join the scheme, and implode when it is no longer possible to find new investments. Despite being illegal in many countries, Ponzi schemes are now proliferating on Bitcoin, and they keep alluring new victims, who are plundered of millions of dollars. We apply data mining techniques to detect Bitcoin addresses related to Ponzi schemes. Our starting point is a dataset of features of real-world Ponzi schemes, that we construct by analysing, on the Bitcoin blockchain, the transactions used to perform the scams. We use this dataset to experiment with various machine learning algorithms, and we assess their effectiveness through standard validation protocols and performance metrics. The best of the classifiers we have experimented can identify most of the Ponzi schemes in the dataset, with a low number of false positives

    Handling Imbalanced Data through Re-sampling: Systematic Review

    Get PDF
    Handling imbalanced data is an important issue that can affect the validity and reliability of the results. One common approach to addressing this issue is through re-sampling the data. Re-sampling is a technique that allows researchers to balance the class distribution of their dataset by either over-sampling the minority class or under-sampling the majority class. Over-sampling involves adding more copies of the minority class examples to the dataset in order to balance out the class distribution. On the other hand, under-sampling involves removing some of the majority class examples from the dataset in order to balance out the class distribution. It's also common to combine both techniques, usually called hybrid sampling. It is important to note that re-sampling techniques can have an impact on the model's performance, and it is essential to evaluate the model using different evaluation metrics and to consider other techniques such as cost-sensitive learning and anomaly detection. In addition, it is important to keep in mind that increasing the sample size is always a good idea to improve the performance of the model. In this systematic review, we aim to provide an overview of existing methods for re-sampling imbalanced data. We will focus on methods that have been proposed in the literature and evaluate their effectiveness through a thorough examination of experimental results. The goal of this review is to provide practitioners with a comprehensive understanding of the different re-sampling methods available, as well as their strengths and weaknesses, to help them make informed decisions when dealing with imbalanced data

    Strengthening intrusion detection system for adversarial attacks:Improved handling of imbalance classification problem

    Get PDF
    Most defence mechanisms such as a network-based intrusion detection system (NIDS) are often sub-optimal for the detection of an unseen malicious pattern. In response, a number of studies attempt to empower a machine-learning-based NIDS to improve the ability to recognize adversarial attacks. Along this line of research, the present work focuses on non-payload connections at the TCP stack level, which is generalized and applicable to different network applications. As a compliment to the recently published investigation that searches for the most informative feature space for classifying obfuscated connections, the problem of class imbalance is examined herein. In particular, a multiple-clustering-based undersampling framework is proposed to determine the set of cluster centroids that best represent the majority class, whose size is reduced to be on par with that of the minority. Initially, a pool of centroids is created using the concept of ensemble clustering that aims to obtain a collection of accurate and diverse clusterings. From that, the final set of representatives is selected from this pool. Three different objective functions are formed for this optimization driven process, thus leading to three variants of FF-Majority, FF-Minority and FF-Overall. Based on the thorough evaluation of a published dataset, four classification models and different settings, these new methods often exhibit better predictive performance than its baseline, the single-clustering undersampling counterpart and state-of-the-art techniques. Parameter analysis and implication for analyzing an extreme case are also provided as a guideline for future applications

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Improvement in the prediction of the translation initiation site through balancing methods, inclusion of acquired knowledge and addition of features to sequences of mRNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The accurate prediction of the initiation of translation in sequences of mRNA is an important activity for genome annotation. However, obtaining an accurate prediction is not always a simple task and can be modeled as a problem of classification between positive sequences (protein codifiers) and negative sequences (non-codifiers). The problem is highly imbalanced because each molecule of mRNA has a unique translation initiation site and various others that are not initiators. Therefore, this study focuses on the problem from the perspective of balancing classes and we present an undersampling balancing method, M-clus, which is based on clustering. The method also adds features to sequences and improves the performance of the classifier through the inclusion of knowledge obtained by the model, called InAKnow.</p> <p>Results</p> <p>Through this methodology, the measures of performance used (accuracy, sensitivity, specificity and adjusted accuracy) are greater than 93% for the <it>Mus musculus</it> and <it>Rattus norvegicus</it> organisms, and varied between 72.97% and 97.43% for the other organisms evaluated: <it>Arabidopsis thaliana</it>, <it>Caenorhabditis elegans</it>, <it>Drosophila melanogaster</it>, <it>Homo sapiens</it>, <it>Nasonia vitripennis</it>. The precision increases significantly by 39% and 22.9% for <it>Mus musculus</it> and <it>Rattus norvegicus</it>, respectively, when the knowledge obtained by the model is included. For the other organisms, the precision increases by between 37.10% and 59.49%. The inclusion of certain features during training, for example, the presence of ATG in the upstream region of the Translation Initiation Site, improves the rate of sensitivity by approximately 7%. Using the M-Clus balancing method generates a significant increase in the rate of sensitivity from 51.39% to 91.55% (<it>Mus musculus</it>) and from 47.45% to 88.09% (<it>Rattus norvegicus</it>).</p> <p>Conclusions</p> <p>In order to solve the problem of TIS prediction, the results indicate that the methodology proposed in this work is adequate, particularly when using the concept of acquired knowledge which increased the accuracy in all databases evaluated.</p

    Learning from Multi-Class Imbalanced Big Data with Apache Spark

    Get PDF
    With data becoming a new form of currency, its analysis has become a top priority in both academia and industry, furthering advancements in high-performance computing and machine learning. However, these large, real-world datasets come with additional complications such as noise and class overlap. Problems are magnified when with multi-class data is presented, especially since many of the popular algorithms were originally designed for binary data. Another challenge arises when the number of examples are not evenly distributed across all classes in a dataset. This often causes classifiers to favor the majority class over the minority classes, leading to undesirable results as learning from the rare cases may be the primary goal. Many of the classic machine learning algorithms were not designed for multi-class, imbalanced data or parallelism, and so their effectiveness has been hindered. This dissertation addresses some of these challenges with in-depth experimentation using novel implementations of machine learning algorithms using Apache Spark, a distributed computing framework based on the MapReduce model designed to handle very large datasets. Experimentation showed that many of the traditional classifier algorithms do not translate well to a distributed computing environment, indicating the need for a new generation of algorithms targeting modern high-performance computing. A collection of popular oversampling methods, originally designed for small binary class datasets, have been implemented using Apache Spark for the first time to improve parallelism and add multi-class support. An extensive study on how instance level difficulty affects the learning from large datasets was also performed
    corecore