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With data becoming a new form of currency, its analysis has become a top

priority in both academia and industry. The vast amounts of data collected in every

domain has led to advancements in high-performance computing and machine learn-

ing. However, these large, real-world datasets come with additional complications

such as noise and class overlap. Problems are magnified when multi-class data is pre-

sented, especially since many of the popular algorithms were originally designed for

binary data. Another challenge arises when the number of examples are not evenly

distributed across all classes in a dataset. This often causes classifiers to favor the ma-

jority class over the minority classes, leading to undesirable results as learning from

the rare cases may be the primary goal. Since many of the classic machine learning

algorithms were not designed for multi-class imbalanced data or parallel computing,

their effectiveness is hindered.

Apache Spark is a distributed computing framework based on the MapReduce

model and has been a popular tool for big data analysis. A collection of oversampling
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methods, originally designed for small binary class datasets, have been implemented

using Apache Spark for the first time. Experimentation showed that not all of these

methods translate well to a distributed computing environment, indicating the need

for a new generation of algorithms targeting modern high-performance computing.

Previous works also showed that some data examples may be harder to learn

from than others. An extensive study was performed to learn how instance level diffi-

culty affects the learning from large datasets. Experimentation showed that the best

classifier performance came when considering instance level difficulty during the class

balancing process. Similar results were shown with a novel version of UnderBagging

which also considered the difficulty of individual examples when constructing bags.

Approximate tree based algorithms are a common way to improve execution time

for tasks like nearest neighbors. However, no such methods are currently availability in

the standard Apache Spark libraries so the k -Dimensional (KD) tree was implemented

for the first time. While often not as accurate as a third-party hybrid-spill tree, the

KD-tree still provided similar results and was up to three times faster, showing a

good accuracy/speed trade-off. Additional experiments were performed to provide

benchmarks on scalability and the effect leaf size on performance.

In the field of Radiation Oncology, physicians must delineate anatomical struc-

tures on Computed Tomography (CT) images to aid in the therapeutic delivery of

radiation. However, the structure names chosen by the physicians are frequently not

standardized making it impracticable for multi-facility studies. An Apache Spark

based solution was created to automate the process of standardizing these structure

name labels. This method showed high accuracy with some structure types and also

highlighted others that are still difficulty to classify. Including both image and dose

related information improved results and class balancing was also investigated.
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CHAPTER 1

INTRODUCTION

Data in all forms has become a valuable commodity and is being collected at an

ever increasing rate. Although the cost of computation and storage has dropped, the

complexity of analyzing this data has increased. This new paradigm, now going by

the term Big Data, introduces new challenges and opportunities. According to IBM,

Big Data is “data sets whose size or type is beyond the ability of traditional relational

databases to capture, manage and process the data with low latency” [1]. Big Data

is also described with the 5 V’s: Volume, Velocity, Variety, Variability and Value [2].

With the understanding of the value of data, Machine Learning (ML) and Ar-

tificial Intelligence (AI) methods have permeated almost all business sectors. Fields

like banking [3], retail sales [3], advertising [4], and real estate [5] have been utilizing

these methods to gain competitive advantages. ML tools and platforms, such as IBM

Watson, are now used in healthcare to help discover new drugs and improve patient

outcomes [6, 7].

Much of the initial machine learning researched was focused on binary problems;

those consisting of only two distinct classes of data. In reality, datasets may have

more than two classes that need to be analyzed which makes the task of analyzing

the data more difficult. If only two classes are present, the random chance of pick-

ing an example is fifty percent but this drops to twenty five percent if four classes

are provided. Building the best possible models from this kind of data will require

additional insight on which classes might be most difficult to learn from and what

methods could be applied to further improve results.
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Data imbalance also makes learning from data more difficult. In many real world

datasets, the most interesting or critical events to discover make up a small portion

of all observations. Many machine learning algorithms tend to favor the majority

class over the minority class as it tries to maximize its objection function and this

may lead to undesirable results. Ideally, the trained model would provide similar

predictive performance on all presented classes.

A major challenge facing analysis of these large datasets is how to process the

data in a timely manner. The execution time of many of the popular machine learning

algorithms increases in a non-linear fashion as the dataset size grows. In addition, the

datasets themselves may be too large to fit on a standard computer which ultimately

requires parallel or distributed computing. Message Passing Interface (MPI) is a

popular framework for parallelizing algorithms which provides low level access to

underlying hardware its running on. However, this comes at the cost of a high software

development resources and less portability. The Apache Hadoop system was later

created to solve some of these limitations. It uses the MapReduce [8] model originally

created by Google and provides a framework for running distributed applications on

any supported hardware and operating system. One major limitation to Hadoop is

that each stage in the MapReduce process is written to disk which may add significant

time penalty. Apache Spark [9] was then created to improve upon Hadoop. While it

is also based on the MapReduce model, Apache Spark tries to keep all intermediate

stages in main memory and also optimizes the data transformations using a directed

acyclic graph (DAG).

This dissertation begins in Chapter 2 with a review of existing challenges with

imbalanced data, SMOTE, ensemble learning, minority types and the MapReduce

framework. Chapter 3 poses five research questions which are addressed in Chapters 4

– 8. In Chapter 9, future research directions are discussed and Chapter 10 summarizes
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the main contributions of this work.

3



CHAPTER 2

BACKGROUND

Modern systems increasingly generate massive amounts of data, driving the desire

and necessity to have algorithms that can learn from this data. The data mining

community has developed, and continues to develop, many algorithms that are ca-

pable of learning from big data, but the ever increasing volume of data still presents

challenges. Datasets may easily be larger than is possible to store on a single machine,

or data may arrive continuously as an infinite stream, requiring rapid processing. For

this much data, distributed and parallel processing is essential which has led to an

increased focus in such platforms.

The improved computer hardware and cheaper storage does not in itself make

it any easier to learn from the every growing and diverse data. These real world

datasets include noisy data as well as class imbalanced, leading to examples that are

difficult to learn from. The following sections provide an overview of approaches that

have been applied to these kind of data problems.

2.1 Learning from Imbalanced Data

Imbalanced data occurs when examples are non-uniformly distributed across the

available classes in a dataset which can lead to reduced performance of learning

algorithms [10]. Traditional machine learning methods tend to be favor the larger

(majority) class at the expense of the underrepresented, smaller class (minority).

However, in many real world cases the most critical information to learn or discover

is present in the minority class. The few anomalous transactions in fraud detection are
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the most important to locate just as finding occurrences of rare but serious medical

conditions in clinical decision systems. The problem is further complicated when

more than two classes is present in a dataset, leading to cases where there can be

multiple majority classes, multiple minority classes or a combination of both. Even

within these classes, there can be additional inter-class relationships which represents

new majority/minority decision boundaries [11].

While imbalance in datasets can make it harder for learning algorithms, chal-

lenges are often not from the imbalance itself but class overlapping and noise [12].

If the classes in an imbalanced dataset are well separated, it is still relatively easy

to find the correct decision boundaries. However, if there is class overlap it because

much more difficult to determine where one class end and the other begins. This

problem is made worse with class imbalanced as the majority class is likely to be

disproportionately preferred in the overlapping section leading to lower performance

for the minority class.

In addition to simple class overlapping, small disjoint clusters and changes of class

representation between the training and testing datasets may also exist [13]. Class

noise can also severely impact performance and this is more severe in the minority

classes [14]. The problem of imbalanced data becomes more difficult when more than

two classes are present in the dataset. In these multi-class problems, the same issues

of class overlap, disjoint clusters and noise are now magnified with more potential

classes to choose from.

Although traditional machine learning has been the basis for most imbalanced

learning up to this point [15], more such research is now being directed towards deep

learning problems using various approaches. In [16], an evolutionary cost-sensitive

deep belief network (ECS-DBN) was designed. This method learns misclassification

costs during training to combat class imbalance issues. A study on imbalanced learn-
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ing with convolutional neural networks (CNN) [17] said that these networks can be

negatively affected by class imbalance as with traditional machine learning. It was

also reported that oversampling works well in general and undersampling can be used

in cases of extreme class imbalance. Unlike some previous algorithms, CNNs tend to

be less susceptible to overfitting when using oversampling.

The strategies for dealing with data imbalance can be divided into two cate-

gories: data-level and algorithm-level. Data-level methods include algorithms that

perform data preprocessing with the aim of reducing the imbalance ratio, either by

decreasing the number of majority observations (undersampling) or increasing the

number of minority observations (oversampling). After applying such preprocessing,

the transformed data can be later classified using traditional learning algorithms.

Algorithm-level methods alter the traditional learning algorithms to eliminate the

shortcomings they display when applied to imbalanced data problems. These meth-

ods do not modify the training data directly unlike data-level approaches.

2.1.1 Binary Imbalanced Problems

One of the most prevalent data-level approaches is the Synthetic Minority Over-

sampling Technique (SMOTE) [18] algorithm. It is a guided oversampling technique,

in which synthetic minority observations are created by interpolation of the exist-

ing instances. Today it is considered a cornerstone for the majority of the following

oversampling methods [19]. However, due to the underlying assumption of minority

class homogeneity, SMOTE can inappropriately alter the class distribution when fac-

tors such as disjoint data distributions, noise, and outliers are present. Numerous

modifications of the original SMOTE algorithm have been proposed in the literature.

The most notable include Borderline SMOTE [20], which focuses on the process of

synthetic observation generation around the instances close to the decision border;
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Safe-level SMOTE [21] and LN-SMOTE [22], which aim to reduce the risk of intro-

ducing synthetic observations inside regions of the majority class; and ADASYN [23],

that prioritizes the difficult instances.

The second category of methods for dealing with data imbalance consists of

algorithm-level solutions. These techniques alter the traditional learning algorithms

to eliminate the shortcomings they display when applied to imbalanced data problems.

Notable examples of algorithm-level solutions include: kernel functions [24], splitting

criteria in decision trees [25], and modifications of the underlying loss function to make

it cost-sensitive [26]. However, contrary to the data-level approaches, algorithm-level

solutions necessitate a choice of a specific classifier. Still, in many cases, they are

reported to lead to a better performance than sampling approaches [27].

2.1.2 Multi-class Imbalanced Problems

While performing binary classification, one can easily define the majority and the

minority class, as well as quantify the degree of imbalance between the classes. This

relationship becomes more convoluted when transferring to the multi-class setting.

One of the earlier proposals for the taxonomy of multi-class problems used either: the

concept of multi-minority, a single majority class accompanied by multiple minority

classes; or multi-majority, a single minority class accompanied by multiple majority

classes [28]. However in practice, the relationship between classes tends to be more

complicated, and a single class can act as a majority towards some, a minority towards

others, and have a similar number of observations to the rest of the classes. Such

situations are not well-encompassed by the current taxonomies. Since categorizations

such as the one proposed by Napiera la and Stefanowski [29] played an essential role

in the development of specialized strategies for dealing with data imbalance in the

binary setting, the lack of a comparable alternative for the multi-class setting can be
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seen as a limiting factor for the further research.

The difficulties associated with the imbalanced data classification are also fur-

ther pronounced in the multi-class setting, where each additional class increases the

complexity of the classification problem. This includes overlapping data distribu-

tions, where multiple classes can simultaneously overlap a particular region, and the

presence of noise and outliers, where on one hand a single outlier can affect class

boundaries of several classes at once, and on the other can cease to be an outlier

where some of the classes are excluded. Finally, any data-level instance generation

or removal must be done by a careful analysis of how action on a single class influ-

ences different types of instances in the remaining classes. This leads to a conclusion

that algorithms designed explicitly to handle the issues associated with multi-class

imbalance are required to adequately address the problem.

The existing methods for handling multi-class imbalance can be divided into

two categories, binarization solutions, which decompose a multi-class problem into

either M(M − 1)/2 (one-vs-one, OVO), or M (one-vs-all, OVA) binary sub-problems

[30] where each sub-problem can then be handled individually using a selected binary

algorithm. An obvious benefit of this approach is the possibility of utilization existing

algorithms [31], however binarization solutions have several significant drawbacks.

Most importantly, they suffer from the loss of information from class relation-

ships. In essence, we either completely exclude the remaining classes in a single step

of OVO decomposition or discard the inner-class relations by merging classes into a

single majority in OVA decomposition. Furthermore, especially in the case of OVO,

the computational cost of decomposition can quickly grow with the number of classes

and observations, making the approach ill-suited for dealing with big data problems.

Among the binarization solutions, recent literature suggests the efficacy of using en-

semble methods with OVO decomposition [32], augmenting with cost-sensitive learn-
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ing [33], or applying dedicated classifier combination methods [27].

The second category of methods consists of ad-hoc solutions: techniques that

treat the multi-class problem natively, proposing dedicated solutions for exploiting

the complex relationships between the individual classes. Ad-hoc solutions require ei-

ther a significant modification to the existing algorithms, or exploring an entirely novel

approach to overcome data imbalance, both on the data and algorithm level. How-

ever, they tend to significantly outperform binarization solutions, offering a promising

direction for further research. The most popular data-level approaches include ex-

tensions of the SMOTE algorithm for the multi-class setting [11, 34], strategies using

feature selection [35, 36], and alternative methods for instance generation by using

Mahalanobis distance [37, 38]. Algorithm-level solutions include decision tree adapta-

tions [39], cost-sensitive matrix learning [40], and ensemble solutions utilizing Bagging

[36, 41] and Boosting [28].

The previously mentioned techniques were developed for two-class big imbalanced

data. To the best our knowledge, there exists no algorithms dedicated specifically for

large-scale multi-class imbalanced data, neither for GPUs nor CPU clusters [27, 42],

apart from our preliminary work on Spark-based ensembles [43].

2.2 Other Class Balancing Methods

The strengths and weaknesses of the original SMOTE algorithm has continued

to inspire more recent class balancing solutions. Majority Weighted Minority Over-

sampling TEchnique (MWMOTE) [44] uses the proximity of majority examples to

detect minority examples that are harder to learn in order to guide the synthetic

example generation. Another method, Radial-Based Oversampling (RBO) [45], uses

a Gaussian radial basis functions to detect regions that should be used for oversam-

pling based on imbalance distributions. This provides an advantage over standard
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SMOTE as it takes in account the neighborhood of the examples used for sampling.

In a similar fashion, Sampling WIth the Majority (SWIM) [46] uses majority class in-

formation for minority class oversampling and generates new minority examples with

a similar probability density of existing examples. Clustering has also been used to

aid SMOTE based oversampling. KSMOTE [47] uses the k -Means algorithm to split

the dataset into two clusters to use SMOTE on subsets of the data. The k -Means

SMOTE method [48] performs SMOTE oversampling on clusters that have a high

ratio of minority examples.

The increasing popularity of deep learning has lead to a new class of class bal-

ancing algorithms using a variant of generative adversarial networks (GAN) [49]. One

such method, BAGAN [50], uses an autoencoder to initialize the GAN based on the

probability distribution of the training images in the latent space for each class. Both

GAMO [51] and BCGAN [52] were designed to generate synthetic examples near the

boarder between different classes. GAMO generates examples within a convex hull

keeping the new synthetic minority near the class boundary. BCGAN instead iden-

tifies borderline examples in the training set to make a new minority class. By using

majority, minority and borderline minority classes, the discriminator can explicitly

focus on difficult examples while not ignoring those further from the decision bound-

aries. MFC-GAN [53] maps real classes to fake ones to adjust for poorly generated

or discriminated examples with large mismatches between the real and fake classes

incurring a higher loss.

GAN based oversampling methods have also been applied to more specific sub-

problems in imbalanced data. While many of these GAN based methods were de-

signed to deal with high dimensional data, such as images, there has been some work

in imbalanced tabular data using Conditional Wasserstein GANs [54]. The Doping

with Infrequent Normal Generator (DOPING) [55] also uses an adversarial autoen-
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coder (AAE) to train on unlabeled examples for unsupervised anomaly detection.

Synthetic examples can then be generated from the resulting latent space by using

vectors that a far from the mean latent vector norms. Generative Adversarial Net-

works and Markov Random Fields (GANSO) [56] was designed for dealing with very

small training sets by incorporating information about the structure of the training

data. Experiments showed GANSO outperformed SMOTE and performed well even

if only five labeled examples were present during training. This method is a good

candidate for semi-supervised learning and can help alleviate the time required for

manually labeling data.

Although GAN based class balancing methods have shown promising results,

they have several limitations with model complexity. The DeepSMOTE [57] method

combats some of these issues by not needing a discriminator model and being designed

to avoid mode collapse. This method is based on an encode/decoder, SMOTE style

oversampling and uses a dedicated loss function. DeepSMOTE was also able to create

more realistic looking images when compared to the previous methods of BAGAN

and GAMO. In addition, DeepSMOTE was shown to outperform other methods even

with very high levels of class imbalance.

2.3 Ensemble Learning

The previous methods may be further improved by employing ensemble meth-

ods. These ensembles combine multiple simple models to incorporate their individual

strengths to make a single predictor which is more powerful. Bagging [58] is a popular

method for ensemble learning which creates a group of classifiers based on bags of data

sampled from the total dataset. The majority class can be undersampled with the

UnderBagging approach and the minority class can be oversampled with OverBag-

ging. These bagging concepts were extended with SMOTEBagging [59] which uses
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SMOTE to class balance bags for training. Boosting [60] works by training a weak

learning which it strengthened by adjusting weights on training data based on how

hard they were to predict. A popular implementation of this concept is AdaBoost

[61] which dynamically adjusts data samples weights based on classification errors in

order to build an ensemble of weak learners.

The Random Forest classifier [62] has been one of the most popular ensemble

learning algorithms to date. It creates a group of decision trees using bagging and

random features selection and combines the resulting trees with a majority vote. This

approach was found to be as accurate as AdaBoost but faster. It was also robust to

outliers and noise while being easy to run in parallel. This work has lead to other tree

based ensembles such as Gradient Boost Trees [63][64][65] and Extremely Randomized

Trees [66]. The idea of tree ensembles can be extended by including specific trees to

improve the overall ensemble performance. In a recent work, [67] used out-of-bag

examples to determine the best trees to add in the final model.

In addition to traditional machine learning, ensemble methods are now being

applied to neural network based classifiers. Using a CNN architecture, the Hydra

ensemble starts with a coarsely optimized model which is used for generating addi-

tional networks [68]. This base model is then used to generate new fine tuned models

for the ensemble using different data augmentation methods and class weights. The

multi-scale multi-CNN (MSM-CNN) [69] was also created to tackle the problem of

skin legion classification. Similar to Hydra, an ensemble of three CNN models was

created using different image sizing and scaling factors. For robot arm placement,

the random cropping ensemble neural network (RCE-NN) [70] used an ensemble of

cropped regions of the target image area. They found this approach worked better

than considering the entire image at once because weighting the sub-images can help

to mitigate corrupted local information.

12



2.4 Minority Types

An extension to the idea of noisy data and class overlap is to look at the difficulty

of learning from individual examples for data cleaning, clustering or classification.

Traditionally, examples were considered as safe or unsafe but can be further broken

down into four categories: safe, borderline, rare, outlier [71]. For each example in the

dataset, the proportion of k nearest neighbors with the same class label is determined.

From that ratio, a difficulty type is assigned:

• Safe: 0.8 ≤ ratio ≤ 1.0

• Borderline: 0.4 ≤ ratio < 0.8

• Rare: 0.2 ≤ ratio < 0.4

• Outlier: ratio < 0.2

It was shown that error rates increase from the safe to outlier minority types,

suggesting that some examples will be harder to learn from than others. In addition,

minority classes tend to have a higher proportion of the more unsafe types which may

be one of the reasons minority classes often perform worse than the majority class.

Most datasets contain some combination of these difficulty types in the minority

classes but with different ratios [29]. Some minority classes could also be primarily

outlier or rare examples so treating them as noise may not be appropriate. Results

from [29] showed that global imbalance ratios were not as influential as the minority

type for classification. Adjusting the k value for the neighborhood can change the

proportion of minority type ratios for a given dataset.

For each dataset, there may be a combination of minority types that should

be used for class balancing to improve predictive accuracy [11]. Using SMOTE on
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data filtered by some combination of minority types improved results for the C5.0

algorithm compared to using SMOTE on the entire dataset for a number of datasets

[72]. Again, the overall imbalance ratio was shown not to be as significant as the

properties of the data itself.

While most classifiers ignore the difficulty to learn from individual examples, the

boosting with instance difficulty invariance (BIDI) classifier was proposed to address

this issue [73]. Using of an ensemble of classifiers, the difficulty of each example is

determined by the rate it was correctly predicted. Using a [0, 1] scale, examples are

given a difficulty score where 0 is the easiest and 1 is the hardest. At each round of

training, more difficult examples are introduced while still ensuring the easy examples

are correctly classified. This method showed good results with 18 UCI datasets [74],

but the proposed algorithm did not address multi-class or very larger datasets which

provides new opportunities with future research.

2.5 MapReduce

As the rate of data creation has continued to increase, having methods to pro-

cess it effectively has become more critical. Google addressed this issue with their

MapReduce model [8] which has led to the development of the distributed computing

frameworks Hadoop and Spark. In this section, we discuss MapReduce, the Spark

architecture, distributed data management and available machine learning tools.

MapReduce is a distributed computing model for processing data represented as

key/value pairs with three main stages: map, shuffle, and reduce. The map phase

takes the input data and splits it between multiple worker processes which may reside

on different processors, cluster nodes, or distributed computers. Processing is done in

parallel on each worker and the intermediate results are sent to the reduce phase which

completes the task. Intermediate results may need to be shuffled between phases if a
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certain data grouping is required. Multiple map/reduce tasks can be chained together

to form more complicated transformations.

Figure 1: The three phases of the MapReduce model: map, shuffle, reduce.

2.5.1 Apache Spark Architecture

Open source implementations of the MapReduce model includes Hadoop [75]

and Spark [76] that are designed to work with the Hadoop Distributed File System

(HDFS) [77]. HDFS provides redundancy, data streaming support, and the ability

to handle datasets in the order of terabytes. While Hadoop and Spark follows the

MapReduce model and can use HDFS, they differ on how data is managed between

stages. Between each independent map/reduce step, Hadoop stores the results to

HDFS and potentially introducing a significant time penalty.

Spark instead stores the results between map/reduce steps in main memory when

possible. Unlike Hadoop, Spark can look ahead and generate a directed acyclic graph

(DAG) based on the chained map/reduce steps. In this context, individual com-

putational tasks are ordered by dependencies so that redundant operations can be

removed and each operation is performed only when its result is needed for another

calculation.
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From the driver node, a Spark Context object is created which connects to a

cluster manager such as Mesos or YARN. The Spark Context then requests resources

from the cluster manager and acquires executors on the cluster nodes. The executor

processes manage the task computations on one or more CPU threads. In Figure

2, dashed lines shows the Spark job set up with the driver node process acquiring

resources from the cluster manager. The driver node and executor processes pass

data around as tasks are completed, shown in solid lines.

Figure 2: The Spark cluster architecture for resource allocation and data transfer

Spark uses the Resilient Distributed Dataset (RDD) [78] data structure to ab-

stract data for parallel computations. The RDD stores a dataset as partitions that

may be split over one or more cluster nodes. This abstraction allows the user to

perform the same operations regardless how the data is distributed. Functions like

map, filter, and reduce can be run directly on RDDs and SQL-like table operations are

available through the further abstracted data structures of DataFrames and Datasets.

2.5.2 Machine Learning with Apache Spark

The Apache Spark platform comes with its Machine Learning library (MLlib) [79]

that includes a number of tools for data transformation, classification and clustering

with the support for third party algorithms. The resent versions of Apache Spark
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support the DataFrame and DataSets data structures which allow for the use of

SQL-like operations while also utilizing the optimized DAG. However, one potential

downside of this platform is the high main memory usage. Attempting to keep all

operations in memory can greatly reduce run time but can stress the physical limits of

the host system and may require fine tuning of the algorithm in use to work optimally.

Apache Spark can also be used in a truly distributed system such as Amazon Web

Services (AWS) Elastic MapReduce (EMR) which greatly increases the upper limit

of addressing big data problems.

Although the Apache Spark MLlib mostly includes traditional machine learning

algorithms, it does support the multilayer perceptron classifier (MLP). In [80], a cas-

cade learning approach was applied by using linear regression to include additional

information before training a MLP network. More advanced deep learning meth-

ods like Long Short-Term Memory (LSTM) were also implemented within the Spark

framework [81]. Using the Deeplearning4j Java library, a LSTM network was created

that could be called directly from a Spark pipeline. Because Spark uses the Java Vir-

tual Machine (JVM) under the hood, integrating Java based code is straightforward.

Another work [82] illustrated a potential performance bottleneck with some ma-

chine learning algorithms implemented in Apache Spark. The stochastic gradient

descent (SGD) algorithm is used by several other methods including linear regression

and support vector machines (SVM) and can cause excessive communication between

the driver node and the executors. To avoid this communication inefficiency, the

SGD method was improved with model averaging where gradients at each executor

are processed locally and the final results are averaged.
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2.5.3 Specialized Hardware Support

In recent years, a rise of distributed computing cluster architectures has been

observed, especially ones using the MapReduce methodology [83] such as Apache

Hadoop and Spark. They offer high elasticity, reliability, and scalability in an user-

friendly manner. However, this comes at the cost of increased monetary price of

hardware and lack of explicit controlling of scheduling that is available in GPUs.

While CPU clusters seem like a highly attractive solution to imbalanced data, one

must be aware of their potential limitations. A study on effects of different resampling

techniques on Random Forest showed that SMOTE achieves a highly unsatisfactory

performance in the MapReduce environment [84]. This is caused by the lack of control

over data partitioning and in turn creating chunks of data with corrupted spatial rela-

tionships. When SMOTE is used in each map with such an unreliable neighborhood,

it tends to create artificial instances in incorrect regions, leading to increasing over-

lapping among classes and shifting true class distributions. Random oversampling

and undersampling performs significantly better on CPU clusters. Success stories of

MapReduce usage for imbalanced big data include efficient and scalable feature selec-

tion [85], rule induction [86], and data resampling [87]. Even though Apache Spark

was designed for distributed CPU based computing, it can still benefit from other

specialized hardware like GPUs and Field Programmable Gate Arrays (FPGA).

Graphic Processing Units (GPUs) offer a powerful high-performance computing

environment at a fraction of the cost of a traditional cluster [88]. While they are

characterized by an excellent data-level parallelism and unbeatable degree of control

over each aspect of data scheduling and partitioning, they require highly specialized

skills to write efficient and optimized code. Additionally, at the current moment they

are unable to handle terabyte-level datasets, due to limitations on the embedded
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memory.

In the context of imbalanced data, the main success of GPUs lies in a highly

efficient implementation of the popular SMOTE technique. Due to a full control over

data partitioning, one can maintain the meaningful creation of artificial instances in

given neighborhoods - a feat that is unreachable in most of CPU clusters. GPUs have

been successfully applied to skew-insensitive variants of nearest-neighbor classifiers

[89], inducting classification rules using genetic programming [90], as well as efficient

large-scale discretization of imbalanced data [91].

Previous works with joining Spark and GPUs have shown performance improve-

ments with real time data streams [92], k -Means, linear regression, clustering and

single value decomposition [93]. One paper [94] proposed a Spark modification to

support the use of GPUs by invoking CUDA kernels for computationally intensive

tasks. Several caching methods were investigated to reduce network overhead, and ex-

periments using both local and remote GPUs showed significant speed improvements.

The ability of Spark to consume huge amounts of data was also leveraged to partition

and map satellite image data for scheduling GPU processing on worker nodes [95].

The HetSpark [96] framework was developed for extending the Spark architecture to

include heterogeneous executors, including both GPU and FPGA hardware. Some

limited support for GPUs has been included in Apache Spark starting with version

3.0.

Field Programmable Gate Arrays (FPGA) are integrated circuits that can be

programmed to implement algorithms at the hardware level, giving excellent perfor-

mance on specialized tasks. These FPGAs can then be connected to CPU based

computational units providing additional hardware acceleration. As demonstrated

with k -Means [97] and 2-D Fast Fourier Transforms [98], FPGAs can be successfully

integrated in Spark clusters.
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While these hardware acceleration methods have been shown to improve execu-

tion time, they are not officially supported by Apache Spark and so, using non-CPU

based hardware remains a non-trivial task.
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CHAPTER 3

PROPOSED RESEARCH QUESTIONS

In the field of machine learning, there are many difficult and important problems

that still remain as challenging tasks. In this dissertation, I primarily focus on prob-

lems in the areas of class imbalance, instance level difficulty, ensemble learning and

MapReduce based algorithms. Here, I propose the following research questions (RQ):

RQ1: How do oversampling algorithms behave when used within the

MapReduce framework? Oversampling has been a popular method to address

class imbalance and so many such algorithms have been written over the years. How-

ever, many of the well known algorithms, including SMOTE, were originally designed

for small, binary class problems. Today, with datasets getting progressively larger

and multi-class problems showing up more frequently, new learning approaches are

required. In Chapter 4, I introduce the first MapReduce based oversampling meth-

ods written in Scala for Apache Spark. In addition, extensive experimentation was

performed to evaluate how these algorithms work on Spark as well as an in-depth dis-

cussion on what algorithmic features make such methods successful in this distributed

computing framework.

RQ2: What role does instance level difficulty play in the context of

big data classification? The majority of classification problems have treated the

importance of all training examples the same. However, resent research has suggested

that individual examples should be treated differently depending on how hard they are

to correctly label. In Chapter 5, I provide the results from extensive experimentation

on classifier performance when considering different kinds of instance level difficulty
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on five large multi-class datasets.

RQ3: Do traditional bagging methods benefit from instance level dif-

ficulty information? Bagging is an ensemble method of training a group of clas-

sifier with different subsets of the entire training data. Like other machine learning

methods, traditional bagging does not consider how hard it is to classify individual

examples when creating the bags of data. In Chapter 6, I compare results between

multiple bagging techniques, including the proposed approach of using instance level

difficulty, using several base classifiers on Apache Spark.

RQ4: Can KD-trees be effectively implemented using the MapReduce

framework? Tree based algorithms are powerful tools for both supervised and unsu-

pervised learning. While there have been many implementations of these algorithms,

there are very few for Apache Spark. The K-Dimensional (KD) Tree algorithm is

one of the most straightforward methods but had not been implemented on Spark.

Chapter 7 provides an implementation of the KD-tree on Spark, its performance com-

pared to a popular hybrid spill tree implementation and experimentation on the use

of clustering with KD-trees.

RQ5: Can class imbalanced radiotherapy structure set data be ac-

curately classified? The field of Radiation Oncology, which treats cancer with

therapeutic radiation, is now putting more focus on how AI and machine learning

can improve clinical practice. Data standardization is required before large multi-

institutional datasets can be created, which is required for any big data research as

each facility may only treat up to 1,000 patients a year. One of required steps in

radiotherapy is the delineation of anatomical structures which helps to define how

radiation should be delivered. However, the names chosen by physicians are often

not standardized making it difficult to calculate Quality Measures based on the dose

delivered to specific parts of the body. In Chapter 8, I present a method to automate
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the process of standardizing these names and experimental results with some new

class balancing methods.
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CHAPTER 4

IMBALANCED BIG DATA OVERSAMPLING

4.1 Introduction

Learning from imbalanced data poses significant challenge to most of machine

learning algorithms. Standard classifiers were designed to learn from roughly balanced

class distributions. Therefore, if one of the classes becomes a predominant one (i.e.,

majority class), the decision boundary becomes biased towards it. This is rooted

in loss functions that assumes uniform costs among all instances. Thus, the more

frequent and easier majority class will dominate the training procedure, leading to a

poor performance on minority class. This learning difficulty can be further augmented

by various instance-level characteristics, such as overlapping distributions, borderline

examples, small disjuncts, high dimensionality [99] or noisy class labels. When dealing

with more than two classes, relationships among them become much more complex,

leading to even more challenging learning scenarios. Despite over two decades of

progress in this field, imbalanced data problem is as vital as ever. This can be

contributed to its prevalence in emerging real-world applications, as well as novel

problems accompanying class imbalance, such as streaming nature of data, concept

drift, or complex data representations. The emergence of the deep learning paradigm

has only boosted the need for effective ways of handling skewed distributions, while

introducing novel challenges, such as long-tailed recognition, or the need for skew-

insensitive generative models.

Class imbalance, while challenging on its own, is often accompanied by big data

volume. Having skewed and massive datasets calls for dedicated high-performing ar-
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chitectures, such as Apache Spark. While highly efficient, these computing paradigms

require specific ways of implementing algorithms on them that will allow to harness

the power of their distributed processing. Oversampling methods are abundant for

standard imbalanced data sets, but lack effective implementations for big data prob-

lems.

Research goal. To propose the first, self-contained and holistic work on oversam-

pling for learning from imbalanced big data that encapsulates all the crucial aspects

of this domain: (i) taxonomy and details of modern oversampling methods applicable

to massive datasets; (ii) software package encompassing of the most efficient oversam-

pling algorithms implemented for MapReduce and Apache Spark environments; (iii) a

thorough and detailed experimental study on both binary and multi-class imbalanced

big data; and (iv) guidelines and future directions for developing novel oversampling

algorithms for imbalanced big data.

Motivation. While there is a plethora of oversampling algorithms proposed for

single-CPU environments, most of them cannot be directly applied to high-performance

computing environments, such as Spark. Distributed architecture of such systems

poses unique challenges for the design of oversampling algorithms and require specific

solutions tuned to work in the MapReduce environment. There is a need to identify

which specific components of oversampling can be easily transferred to distributed

computing setups and how to do this in an efficient manner. Until this point, there

were no dedicated software packages that offered any oversampling algorithms more

advanced than SMOTE for MapReduce systems. Finally, there is a need to propose

an unified taxonomy for imbalanced big data oversampling, as well as outline the

directions for future research and challenges awaiting researchers in this important

domain.
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Summary. We propose a complete and holistic work on the oversampling of big

imbalanced data, merging both the theoretical, survey-style input with practical,

software and empirically oriented contributions [100]. We propose a thorough taxon-

omy of existing oversampling methods that is designed to identify the most suitable

methods that can work in big data context. Then, we discuss in details the adaptation

of 14 diverse oversampling algorithms to high-performance computing environments,

highlighting their useful properties and implementation difficulties. This is followed

up with a complete software package that can be used by any researcher. We ex-

tend this by a thorough experimental analysis of those oversampling algorithms on

26 binary and multi-class imbalanced big data benchmarks. Finally, we offer design

guidelines for future researchers on how to create efficient oversampling methods for

distributed environments, as well as discuss open challenges and future directions for

learning from imbalanced big data.

Main contributions. This works addresses the discussed challenges in learning from

imbalanced big data with the following research contributions:

• Taxonomy of oversampling algorithms. We propose the first detailed tax-

onomy of oversampling algorithms that analyzes the main groups of methods

based on their instance generation mechanisms and how they utilize inner- and

intra-class information.

• Adaptation of popular oversampling algorithms to MapReduce and

Spark environments. We show a detailed way of adapting 14 popular and

effective oversampling algorithms to Spark environment in a way that leverages

their usefulness and captures the unique demands of high-performance comput-

ing environments.

• Software package for big data oversampling. We propose the first com-
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plete software package written in the Scala language that offers optimized and

efficient implementations of 14 oversampling methods for imbalanced big data.

This will increase the reproducibility of future works in this domain and serve

as a baseline for researchers who will develop their own novel algorithms.

• In-depth experimental study. We present a thorough experimental study

on 26 imbalanced big data benchmarks that capture both binary and multi-class

problems. We investigate performance of oversampling techniques based on 4

popular performance metrics, their relationships with different types of data

and base classifiers, as well as accuracy/computational complexity trade-offs.

• Design guidelines for imbalanced big data oversampling. Based on

our experiences with implementing various oversampling methods for high-

performance distributed environments, we propose a set of guidelines for re-

searches on what should be taken into account when developing novel oversam-

pling methods and what mechanisms works favorably within the MapReduce

framework.

• Open challenges and future directions for imbalanced big data over-

sampling. We outline perspectives and challenges that should be addressed

by the research community while designing novel oversampling algorithms for

imbalanced big data.

4.2 Oversampling Algorithms for Imbalanced Big Data

4.2.1 Taxonomy of Oversampling Algorithms for Big Data

Blind vs guided oversampling is the first-level taxonomy of oversampling algorithms

that is based on using any data-level information to create artificial instances for

minority classes:
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• Blind oversampling. This approach assumes random multiplication of exist-

ing instances by either copying them in order to increase the minority class size,

or by adding noise / jitter (so-called smearing) to create new artificial instances

that are not the exact copies of existing ones.

• Guided oversampling. This approach uses various class-level and instance-

level properties to generate new artificial instances in a way that increases the

size of the minority class. It also decreases the difficulty of learning from this

class by making the decision boundary better aligned towards a balanced recog-

nition of all classes.

Guided oversampling in details is the second-level taxonomy of oversampling algo-

rithms that is based on what and how data-level information is utilized to create

artificial instances for minority classes:

• Using global or local information:

– Basic local information. Guided oversampling aims at targeted in-

jection of artificial instances into the minority class in a way that will

lower the bias, while preserving class characteristics. SMOTE achieved

this by incorporating basic information about the class structure by find-

ing k nearest neighbors for each minority instance and injecting artificial

samples along hyperplanes between them. This idea was later extended

into taking into account the composition of the neighborhood [101] and

ratio between minority and majority instances within them [20, 21].

– Advanced local information. With the success of using local informa-

tion came the observation of non-uniform minority class properties over

the feature space. This showed that not only each neighborhood instance
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may have different importance while using it for oversampling, but also

that the size of neighborhood and the resampling ratio should be adapted

to each locality [102]. More advanced local information can be extracted

in a form of discrete or continuous taxonomy of minority instance types

[11], or by analyzing the strength of each class presence in a given area

[103].

– Basic global information. Alternative approach postulated that one

of the biggest learning difficulties embedded in minority classes may be

their potential for being of a multi-modal nature [104]. Ignoring this fact

would lead to oversampling that increases overlapping between minority

and majority classes, thus effectively further enhancing the bias instead of

alleviating it. Restricting oversampling to individual modalities (e.g., by

clustering or density analysis) will therefore not affect decision boundaries

in a negative way. Another type of popular global information includes

noise [105, 102] and outlier analysis [106] in order to exclude potentially

harmful or incorrect instances from being used as a resamling seed.

– Advanced global information. While modalities and data perturba-

tions are important factors, one can gain even deeper insight into minority

class structure. This is especially important in the case of multi-class prob-

lems, where each individual minority class may have different properties.

Therefore, global information can be used to guide the oversampling for

each class independently, by taking into account such factors as class com-

pactness, presence of substructures, or substructure size and complexity.

– Combining local and global information. Local and global informa-

tion can be effectively combined, to detect minority class properties and
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modalities, and then analyze instance-level difficulty within each modal-

ity in order to offer locally adaptive resampling that follows global class

characteristics [103].

• Using nearest neighbor distances:

– Euclidean-based neighborhood. Most of guided oversampling meth-

ods rely on a neighborhood definition that allows for injecting the artificial

minority instances. This is usually connected with the k-nearest neigh-

borhood that was first utilized by SMOTE and then adapted by other

oversampling algorithms. Eucliudean distance is commonly used for vector

comparison due to its ease of computation and well-understood properties

when dealing with uniform feature types [107].

– Non-Euclidean neighborhood. Euclidean distance is subject to various

limitations, such as its ineffectiveness in handling mixed feature types or a

higher number of dimensions [108]. Therefore, non-Euclidean alternatives

have been used in oversampling, such as Mahalanobis distance (due to its

effective properties for modeling more complex manifolds or class bound-

aries), Hellinger distance [109], other Lk norms with k > 1 and manifolds

[110, 111], kernel density functions [102], or metric learning [112, 113].

• Inter-class vs intra-class relationships:

– Inter-class relationships. This family of methods focuses on extracting

information only from the minority class itself. This can either include local

or global information, aiming at enriching the minority class in such a way

that will empower its presence in the decision space while alleviating its

potential difficulties [114], such as noise or presence of atypical observations
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[72].

– Intra-class relationships. Using only inter-class properties can lead

to improper performance of oversampling methods, as improving the class

itself may harm the remaining classes. To avoid this, modern oversampling

methods take into account not only the target minority class itself, but

also the remaining classes from the dataset [103]. This helps to define

class margins or areas with high probability/potential of belonging to a

certain class [102], allowing for the injection of artificial instances so that

the overlapping between classes [115] will not increase, offering a more

balanced performance on all classes instead of replacing one bias with

another.

• Oversampling ratio:

– Fixed oversampling ratio. The majority of oversampling methods take

as a user input how many artificial instances for the minority class should

be created (i.e., oversampling ratio). Most studies show that oversampling

should aim at balancing minority and majority classes [116]. However,

in the case of extreme class imbalance the combination of minority over-

sampling with majority class undersampling leads to better results [117].

Other resampling methods learn the oversampling ratio on their own, fix-

ing it for each dataset independently [118]. However, they still use this

fixed ratio over the entire feature space.

– Adaptive oversampling ratio. As minority classes may have multi-

modal structure, it may be beneficial to adapt the oversampling ratio to

each modality. Some of them may be easier to analyze, while the remaining

ones require to be more empowered in order to reduce bias imposed on
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Algorithm 1 Transform

Input: DataFrame of instances that needs to be class balanced
Parameters: DF: DataFrame of instances
Output: Oversampled DataFrame

function: transform(DF )
classDFs← DF .groupBy(classLabel)
majorityClassLabel,majorityClassCount←
max(classExamples.map(x→ x.count))

examplesToAdd← classExamples.map(x→
majorityClassCount− x.count())

oversampledClasses← DFs.map(x→
ClassBalance*(x, examplesToAdd(x.label)))

return union(oversampledClassses)

them by a classifier [102, 119]. Furthermore, in multi-class settings, the

oversampling ratio could be adapted dynamically not only for within class

structures, but also for each class independently [103]. Finally, adaptive

oversampling ratios are necessary under non-stationary data properties,

where the resampling algorithm must be able to constantly adapt how

many artificial instances are generated at a given moment [120].

4.2.2 Details of Oversampling Algorithms

In this section, a short description of each sampling method is presented with high

level pseudo code. These algorithms were implemented as described in their original

publications as closely as possible, although some changes were required to work

efficiently within the MapReduce programming model. All of these algorithms were

originally designed for binary class problems so multi-class supported was added by

performing oversampling on all minority classes using a one-vs-all pattern. Algorithm

1 shows the process of oversampling the minority classes, where the ClassBalance*

method is a placeholder for one of the presented sampling methods.

ADASYN [23] begins with kNN applied to the entire dataset and then the nearest

neighbors for each minority example is returned. An imbalance ratio of nearest neigh-
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Algorithm 2 ADASYN

Input: DataFrame of the full dataset
Parameters: DF : DataFrame of all examples in the dataset, minorityLabel : label
of the minority class, totalExamplesToAdd : number of synthetic examples to create,
k : neighbor count for kNN
Output: Synthetic examples

function: ADASYN(DF,minorityLabel, totalExamplesToAdd, k)
minorityDF ← DF.filter(label = minorityLabel)
knn← KNN.fit(DF )
nearestNeighbors← knn.transform(minorityDF )
nearestNeighbors[majorityRatio]← nearestNeighbors

.map(x→ x.neighbors.tail.filter(label 6= minorityLabel).count())
majorityRatioSum← nearestNeighbors[majorityRatio].sum()
nearestNeighbors[examplesToAdd]← nearestNeighbors

.map(x→ (x[majorityRatio] / majorityRatioSum)
∗ totalExamplesToAdd)

return nearestNeighbors.map(x→ createSyntheticExamples(x))

function: createSyntheticExamples(example)
return (0 to example[examplesToAdd]).map(x→createExample(x, k))

function: createExample(example, k)
example← example.neighbors[0]
randomNeighbor ← example.neighbors.tail[randomInt(0, k)]
return Array(example, randomNeighbor).transpose

.map(x→ x[0] + randomDouble() ∗ (x[1]− x[0]))

bors is calculated for each minority example and then all of these ratios are summed.

The number of synthetic examples to be created from each minority example is pro-

portional to the level of its class imbalance. If a minority example has no minority

neighbors, simple example replication is performed, otherwise synthetic examples are

created between a target example and one of its minority class neighbors. ADASYN

was one of the earliest algorithms that attempted to utilize the local instance diffi-

culty factors in order to introduce artificial instances in a more guided manner that

would reduce the complexity of a classifier’s decision boundary.

ANS [121] starts with a 1-NN of the minority class and then counts the number

of majority examples within these radii. Minority examples that are found to have

many majority examples nearby are then removed. From the remaining minority ex-
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amples, the maximum distance between nearest neighbors is determined and used for

the radius limit for distance based nearest neighbor calculation. From these nearest

neighbor results, the number of majority examples close to each minority class exam-

ple is counted. Each majority neighbor count is divided by the total sum to produce

a probability score that is then used for generating SMOTE style synthetic examples.

ANS is an extension of SMOTE-based oversampling that adds a data cleaning step

in order to reduce the number of irrelevant or noisy instances that will be used as

SMOTE input.
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Algorithm 3 ANS

Input: DataFrame of the full dataset
Parameters: DF : DataFrame of all examples in the dataset, minorityLabel : label
of the minority class, totalExamplesToAdd : number of synthetic examples to create,
k : neighbor count for kNN, CMaxRatio: ratio value for outcast detection
Output: Synthetic examples

function: ANS(DF,minorityLabel, totalExamplesToAdd, k, CMaxRatio)
minorityDF ← DF .filter(x→ x.label = minorityLabel)
majorityDF ← DF .filter(x→ x.label 6= minorityLabel)
CMax← DF.count() ∗ cMaxRatio
minorityKnn←KNN.fit(minorityDF, returnDistances = True)
minorityNeighbors← minorityKNN .transform(minorityDF )
minorityNeighbors[closestMinorityDistance]← minorityNeighbors

.map(x→ x.neighbors.filter(y → y.label = minorityLabel)[0].distance)
outBorderKnn←KNN.fit(majorityDF )
outBorderNeighbors← outBorderKnn.transform(minorityNeighbors)
outBorderExamples← outBorderNeighbors

.map(x← x.neighbors.filter(closestMinorityDistance < x.radius))
outBorderExamples[outBorder]← outBorderExamples

.map(x→ x.neighbor.count())
outBorderCounts← outBorderExamples.select(outBorder)

previousOutcasts← −1
for c = 1 to CMax do
numOfOutcasts← outBorderCounts.filter(x→ x ≥ c).sum()
if |numOfOutcasts− previousOutcasts| = 0 then
C ← c
if outBorderExamples.filter(outborder < C).count() > 0 then

break
end if

end if
previousOutcasts← numOfOutcasts

end for

Pused← outBorderExamples.filter(outBorder < C)
maxClosestMinorityExample← Pused.select(closestMinorityDistance).max()
PusedKnn←KNN.fit(Pused,
searchRadius = maxClosestMinorityExample)

PusedDistances← PusedKnn.transform(Pused)
Pused[neighborCount]← PusedDistance

.map(x→ x.neighbors.count())
neighborCountSum← Pused[neighborCount].sum()
Pused[examplesToAdd]← Pused.map(x→

(x[neighborCount] / neighborCountSum) ∗ totalExamplesToAdd
return Pused.map(x→generateExamples(x, x[examplesToAdd, k]))

function: generateExamples(example, samplingRatio, k)
return (0 to samplingRatio)

.map( → generateSingleExample(example, k))

function: generateSingleExample(example, k)
example← example.neighbors[0]
randomNeighbor ← example.neighbors.tail[randomInt(0, k)]
return Array(example, randomNeighbor)

.map(x→ x[0] + randomDouble() ∗ (x[1]− x[0]))
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Borderline SMOTE [20] performs oversampling from minority class examples that

have multiple majority class neighbors. kNN is performed and the minority class data

is filtered to only include examples that share m/2 to m-1 majority neighbors (labeled

as danger), where m is the number of nearest neighbors. kNN is performed again,

but only on the minority class and the nearest neighbors for the danger examples are

returned. Each danger example is used to create synthetic examples as in standard

SMOTE. Borderline SMOTE utilizes the concept of introducing artificial instances in

the uncertainty area between classes, thus aggressively countering the bias towards

majority class.
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Algorithm 4 Borderline SMOTE

Input: DataFrame of the full dataset
Parameters: DF : DataFrame of all examples in the dataset, minorityLabel : label
of the minority class, totalExamplesToAdd : number of synthetic examples to create,
k : neighbor count for kNN
Output: Synthetic examples

function: BorderlineSMOTE(DF,minorityLabel, totalExamplesToAdd, k)
knnModel← KNN.fit(DF, k)
nearestNeigbors← knnModel.transform(minorityDF )
dangerDF ← nearestNeighbors.filter(isDanger(nearestNeighbors[neighbors.labels], k))

samplingRate← totalExamplesToAdd / dangerDF .count()
dangeKnnModel← KNN.fit(minorityDF, k)
dangerNeigbors← dangerKnnModel.transform(dangerDF )
return (0 to examplesToAdd)

.map(x→ generateExample(dangerNeigbors[x], samplingRate))

function: isDanger(labels, k)
label← labels[0]
majorityNeighbors← labels.tail

.map(x→ if x = label : 0; else : 1).sum()
if k/2 ≤ majorityNeighbors < k then

return True
else

return False
end if

function: generateExamples(dangerExample, samplingRate)
example← dangerExample.neighbors[0]
randomNeighbors← (0 to samplingRate)

.map(x→ example.neighbors.tail[randomInt(0, k)]
return randomNeighbors.map(x→ generateSingleExample(example, x))

function: generateSingleExample(example, neighbor)
return Array(example, neighbor).transpose

.map (x→ x[0] + randomDouble() * (x[1] - x[0])))
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CCR [117] has two phases for class balancing: cleaning the minority class regions from

majority class examples and oversampling in the cleaned regions. First, an energy

budget is set and a radius is expanded iteratively until the budget has been spent.

Majority class examples in that region are pushed out the distance of the radius.

Synthetic examples are created in the cleaned minority class regions proportionally to

favor original minority class examples within small radii, thus creating more examples

in the most difficult regions. CCR combines data cleaning with oversampling, but

instead of removing instances it relocates them. That allows for creating safe regions

for oversampling without discarding useful information about majority class.



Algorithm 5 CCR

Input: DataFrame of the full dataset
Parameters: DF : DataFrame of all examples in the dataset, minorityLabel : label
of the minority class, totalExamplesToAdd : number of synthetic examples to create,
engeryBudget : amount of energy to expend when finding the minority class radii
Output: Synthetic examples

function: CCR(DF,minorityLabel, totalExamplesToAdd, energyBudget)
minorityDF ← DF.filter(x→ x.label = minorityLabel)
majorityDF ← DF.filter(x→ x.label 6= minorityLabel)
minorityDF [radius]← minorityDF .map(x→findRadius(x, energyBudget))
movedMajorityExamples← minorityDF
.map(x→moveMajorityExamples(x,majorityDF ))

uniqueMajorityExamples← movedMajorityExamples.groupBy(minorityDF.index)
.map(x→ x[randomInt(0, x.count())]))

minorityDF [inverseRadius]← 1 / minorityDF [radius]
inverseRadiusSum← minorityDF [inverseRadius].sum()
return minorityDF .map(x→generateExamples(x, inverseRadiusSum, totalExamplesToAdd))

fu nction: generateExamples(example, inverseRadiusSum, totalExamplesToAdd)

gi← (example[inverseRadius] / inverseRadiusSum)
∗ totalExamplesToAdd

syntheticExamples← (0 to gi).map( → (0 to example.transpose
.map( x→ randomChoice(-1, 1) ∗ randomDouble()
∗ example[radius]) + x)

return syntheticExamples

function: moveMajorityExamples(example,minorityLabel)
majorityNeighbors← example.neighbors.tail

.filter(label 6= minorityLabel)
majorityNeighbors[withinRadius]← majorityNeighbors

.map(x→withinRadius(example, x, example[radius]))
majorityNeighbors← majorityNeighbors.filter(withinRadius = 1)
majorityNeighbors[distance]← majorityNeighbors

.map(x→Array(examples, x).transpose.map(x→abs(x[0]− x[1]))
return majorityNeighbors.map(x→ shiftMajorityExample(x)))

function: shiftMajorityExample(majorityExample,minorityExample)
distance← majorityExample[distance]
radius← minorityExample[radius]
return Array(majorityExample,minorityExample).transpose.map(x → x[0] +
((radius− distance) / distance) ∗ (x[1]− x[0]))

function: findRadius(example, energyBudget)
energy ← energyBudget
radius← 0
while energy > 0 do
movedMajorityExamples← minorityWithRadius
.map(x→moveMajorityExamples(x,majorityDF ))

uniqueMajorityExamples← movedMajorityExamples.groupBy(index)
.map(x→randomChoice(x))

deltaR← energy / NoP(example, radius)
if NoP(example, radius+ deltaR) >NoP(example, radius) then
deltaR← distance to nearest majority example outside of radius

end if
radius← radius+ deltaR
energy ← engery − deltaR ∗ NoP(example, radius)

end while
return radius

function: NoP(example, radius,minorityLabel)
movedMajorityExamples← minorityWithRadius
.map(x→moveMajorityExamples(x,majorityDF ))

uniqueMajorityExamples← movedMajorityExamples.groupby(index)
.map(x→randomChoice(x))

majorityNeighbors← examples.neighbors.tail
.filter(label 6= minorityLabel)

return majorityNeighbors.map(x→withinRadius(x)).sum() + 1

function: withinRadius(example, neighbor, radius)
distance ← Array(example, neighbor).transpose.map(x → (x[0] − x[1]) ∗ (x[0] −
x[1])).sum()
if distance ≤ radius then

return 1
else

return 0
end if
return
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Cluster SMOTE [122] is a straightforward method that utilizes clustering when

generating synthetic examples. The minority class is clustered using k -Means and

kNN is performed on each cluster. For each synthetic example to be created, a

random cluster is selected and then a random example within that cluster is selected.

A new synthetic example is then created on a random point between the selected

examples and one of its nearest neighbors. Cluster SMOTE was one of the first

solutions addressing a major SMOTE drawback – poor performance on multi-modal

data, where artificial instances should not be introduced between modalities.

Algorithm 6 Cluster SMOTE

Input: DataFrame of the full dataset
Parameters: DF : DataFrame of all examples in the dataset, minorityLabel : label
of the minority class, totalExamplesToAdd : number of synthetic examples to create,
k : number of nearest neighbors to consider, clusterK : number of clusters to create
Output: Synthetic examples

function: ClusterSMOTE(DF,minorityLabel, totalExamplesToAdd, k, clusterK)
minorityDF ← DF.filter(label = minorityLabel)
kMeans← KMeans.fit(minorityDF )
minorityDF [clusterId]← kMeans.transform(minorityDF )
clusters← minorityDF.groupBy(clusterId)
clusterKNNs← clusters.map(x→KNN.fit(x))
clusterNearestNeighbors← (0 to clusterK)

.map(x→ clusterKNNs[x].transform(clusters[x]))
randomClusterIds← (0 to totalExamplesToAdd)

.map(x→randomInt(0, clusterK))
return randomClusterIds.map(x←generateExample(clusterNearestNeighbors[x]))

function: generateExample(cluster)
example← cluster[randomInt(0, cluster.count())]
randomNeighbor ← example.neighbors.tail[randomInt(0, k)]
return Array(example, randomNeighbor)

.map(x→ x[0] + randomDouble() ∗ (x[1]− x[0]))

Gaussian SMOTE [123] works very similar to standard SMOTE but uses a Gaussian

instead of a uniform distribution when picking a point between two minority class

examples. Gaussian SMOTE aims at enriching the representation of the minority

class by introducing more spread within the artificial instances. This helps to avoid
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the patterns introduced with the original SMOTE algorithm where synthetic examples

were only placed on the hyperplanes between existing examples.

Algorithm 7 Gaussian SMOTE

Input: DataFrame of the full dataset
Parameters: DF : DataFrame of all examples in the dataset, minorityLabel : label
of the minority class, totalExamplesToAdd : number of synthetic examples to create,
k : number of nearest neighbors to consider, sigma: standard deviation for Gaussian
sampling
Output: Synthetic examples

function: GaussianSMOTE(DF,minorityLabel, totalExamplesToAdd, k, sigma)
minorityDF ← DF.filter(label = minorityLabel)
knnModel← KNN.fit(minorityDF, k)
nearestNeigbors← knnModel.transform(minorityDF )
randomIndexes← (0 to nearestNeigbors.count())

.map(x→ randomInt(0, totalExamplesToAdd))
return randomIndexes.map(x→ createSyntheticExample(nearestNeigbors[x], k))

function: createSyntheticExample(example, k)
example← nearestNeighbors[0]
randomNeighbor ← example.neighbors.tail(randomInt(0, k))
gap← nextGaussian(0, sigma)
return Array(example, randomNeighbor).map(x→ x[0]

+ gap ∗ (x[1]− x[0]))

k-Means SMOTE [124] starts by performing k -Means and keeps clusters that have

more minority than majority examples. For each cluster, the density of the minority

examples is calculated to create a sampling weight. Proportional to the weight of

each cluster, SMOTE is used to create synthetic examples. This is a direct exten-

sion of Cluster SMOTE, where additional information regarding the minority class

distribution in each cluster is used to control the SMOTE oversampling.
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Algorithm 8 k -Means SMOTE

Input: DataFrame of the full dataset
Parameters: DF : DataFrame of all examples in the dataset, minorityLabel : label
of the minority class, totalExamplesToAdd : number of synthetic examples to create,
k : number of nearest neighbors to consider, clusterK : number of clusters to create
Output: Synthetic examples

function: kMeansSMOTE(DF,minorityLabel, totalExamplesToAdd, k, clusterK)

minorityDF ← DF.filter(x← x.label = minorityLabel)
majorityDF ← DF.filter(x← x.label 6= minorityLabel)
kMeans← KMeans.fit(DF )
DF [clusterId]← kMeans.transform(DF )
clusters← predictions.groupBy(DF [clusterId]))
clusters[imbalancedRatio]← clusters.map(x→getImbalancedRatio(x))
filteredClusters← clusters.filter(imbalancedRatio < irt)
filteredClusters[averageDistance]← filteredClusters

.map(x→getAverageDistance(x))
filteredClusters[densityFactor]← filteredClusters

.map(x→ x.count() / pow(x[averageDistance], de))
filteredClusters[sparsityFactor]← filteredClusters

.map(x→ 1/x[densityFactor])
sparsitySum← filteredClusters.map(x→ x[sparsityFactor]).sum()
filteredClusters[samplingWeight]← filteredClusters

.map(x→ x[sparsityFactor] / sparsitySum)
clusterKNNs← filteredClusters.map(x→KNN.fit(x))
clusterNearestNeighbors← (0 to clusterK)

.map(x→ clusterKNNs[x].transform(filteredClusters[x]))
return clusterNearestNeighbors.map(x→generateExamples(x))

function: getImbalancedRatio(clusterDF )
minorityCount← clusterDF

.filter(x← x.label = minorityLabel).count()
majorityCount← clusterDF

.filter(x← x.label 6= minorityLabel).count()
return (majorityCount+ 1) / (minorityCount+ 1)

function: getAverageDistance(clusterDF )
return clusterDF .map(x← clusterDF .map(y ←getDistance(x, y)).sum()).sum()

/ (clusterDF .count() * clusterDF .count())

function: getDistance(x, y)
return Array(x, y).transpose.map(x→ (x[0]− x[1]) ∗ (x[0]− x[1])).sum()

function: generateExamples(cluster, totalExamplesToAdd)
examplesToAdd← cluster[samplingWeight] ∗ totalExamplesToAdd
return (0 to examplesToAdd).map(x→ generateSingleExample(x))

function: generateSingleExample(neighbors, k)
example← neighbors.neighbors[0]
randomNeighbor ← example.neighbors.tail[randomInt(0, k)]
return Array(example, randomNeighbor)

.map(x→ x[0] + randomDouble() ∗ (x[1]− x[0]))
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MWMOTE [125] has three main phases: identify the most difficult minority class

examples to learn from, assign a weight to each example based on its importance, and

create synthetic examples. In the first phase, 1-NN is performed on the dataset and

minority class examples with at least one other minority neighbor is kept. MWMOTE

follows the idea that difficult instances are the ones that pose highest challenge to

a classifier and are most likely to introduce errors during training. Therefore, MW-

MOTE focuses on decreasing the difficulty of such instances by creating a uniform

minority class regions around them.
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Algorithm 9 MWMOTE

Input: DataFrame of the full dataset
Parameters: DF : DataFrame of all examples in the dataset, minorityLabel : label
of the minority class, totalExamplesToAdd : number of synthetic examples to create,
k1, k2, k3 : number of nearest neighbors to consider,
Output: Synthetic examples

function: MWMOTE(DF,minorityLabel, totalExamplesToAdd, k1, k2, k3)
Smin← DF.filter(label = minorityLabel)
Smaj ← DF.filter(label 6= minorityLabel)
knn1← KNN.fit(DF, k1)
SminNN ← knn1.transform(Smin)
Sminf ← SminNN.filter(hasMinorityNeighbors() > 0)
SmajNN ←KNN.fit(Smaj, k2)
Nmaj ← SmajNN.transform(Sminf)
Sbmaj ← Nmaj.map(x→ x.neighbors).distinct()
SminNN ←KNN.fit(Smin, k3)
Nmin← SminNN.transform(Sbmaj)
Simin← Nmin.map(x→ x.neighbors).distinct()
Iw ← Sbmaj.map(y → y.map(x→Cf(y, x) ∗ Df(y, x))
Sw ← Simin.map(x→ Sbmaj.map(y →Iw(y, x)).sum())
Sp← Sw.map(x→ x / Sw.sum())
kMeans← KMeans.fit(Smin)
Smin[clusterId]← kMeans.transform(Smin)
return (0 to examplesToAdd).map( → generateExample(Smin))

function: generateExample(Smin)
example← chooseByProbability(Smin)
clusterExamples← Smin.filter(clusterId = example.clusterId)
neighbor ← clusterExamples[randomInt(0, clusterExamples.count()))]
return Array(example, neighbors)

.transpose.map(x→ x + randomDouble() ∗ (y − x))

function: hasMinorityNeighbors(example)
label← example.neighbors[0].label
return example.neighbors

.map(x→if x.label = label: 1; else: 0).sum()

function: Df(y, x, Simin)
cf ← Cf(y, x)
denominator ← Simin.map(q → Cf(y, q)).sum()
return distance / denominator

function: Cf(y, x)
featureLength← y.length()
distance← Array(y, x).transpose.map(x→ (x[0]− x[1]) ∗ (x[0]− x[1]))

/ featureLength
if 1/distance ≤ CfThreshold then
cutoff ← 1 / difference

else
cutoff ← CfThreshold

end if
return (cutoff / CfThrehold) ∗ CMAX
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NRAS [126] works be removing noisy minority examples before creating SMOTE

style synthetic examples. Using linear regression, the probability that each example

in the dataset belongs to the minority class is determined. All minority class examples

that have a membership probability less a threshold parameter value are removed

from the dataset and SMOTE style oversampling is performed using the remaining

minority class examples. NRAS was designed to handle highly noisy datasets that

may be subject to various types of noise (both affecting class labels and features).

A potential drawback may lie in forcefully trying to find noise even when it is not

present in the training data.

Algorithm 10 NRAS

Input: DataFrame of the full dataset
Parameters: DF : DataFrame of all examples in the dataset, minorityLabel : label
of the minority class, totalExamplesToAdd : number of synthetic examples to create,
k : neighbor count for kNN, threshold : minimum number of minority neighbors
needed to keep an example
Output: Synthetic examples

function: NRAS(DF,minorityLabel, totalExamplesToAdd, k, threshold)
minorityDF ← DF.filter(x→ x.label = minorityLabel)
minorityDF ← DF.filter(x→ x.label 6= minorityLabel)
DF [propensityScore]← LinearRegression(DF )
knn←KNN.fit(DF, k)
nearestNeighbors← knn.transform(minorityDF )
samplingRatio← nearestNeighbors.count() / totalExamplesToAdd
keepMinority ← nearestNeighbors.filter(neighbors.tail

.map(x→ if x.label = minorityLabel: 1; else: 0).sum() ≥ threshold))
return keepMinority.map(x→generateExamples(x, samplingRatio, k))

function: generateExamples(example, samplingRatio, k)
return (0 to samplingRatio)

.map( → generateSingleExample(example, k))

function: generateSingleExample(example, k)
example← example.neighbors[0]
randomNeighbor ← example.neighbors.tail[randomInt(0, k)]
return Array(example, randomNeighbor)

.map(x→ x[0] + randomDouble() ∗ (x[1]− x[0]))

Random Oversampling duplicates existing examples instead of creating synthetic
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ones. For each minority class, random examples are duplicated until the desired level

of class balance is achieved.

Algorithm 11 Random Oversample

Input: DataFrame of the full dataset STATE Parameters: DF : DataFrame of all
examples in the dataset minorityLabel : label of the minority class, examplesToAdd :
number of synthetic examples to create
Output: Synthetic examples

function: RandomOversample(DF,minorityLabel, examplesToAdd)
minorityDF ← DF.filter(x→ x.label = minorityLabel)
samplingRate← examplesToAdd / minorityDF.count()
return minorityDF.sample(withReplacement = True, samplingRate)

RBO [102] begins by picking a random minority example for each synthetic example

to be created. Next, a randomized translation vector is created and applied to a copy

of the picked example. The phi function is run on both examples and if the result

corresponding to the translated example is smaller, the translation vector is applied to

the original example. This process is repeated until the maximum number of iterations

have completed or a random stopping probability condition has been met. Finally,

the translated point is added as a new synthetic example. RBO offers a powerful

alternative to SMOTE-based oversampling that is free of nearest neighbor search.

Additionally, RBO automatically identifies difficult regions within each minority class

and adjusts its local oversampling ratio accordingly.

Safe Level SMOTE [21] performs kNN and the nearest neighbors for each minority

example is returned. For each of these examples (p), a random neighbor (n) is selected

and the number of neighboring minority examples are counted. A safe level ratio is

created by dividing the p minority nearest neighbor count by the n minority nearest

neighbor count. Based on this ratio, different explicit rules are applied to generate

new synthetic examples. Safe Level SMOTE aims at avoiding the enhancement of

noisy or difficult instances. However, very often those difficult instances are the core
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Algorithm 12 RBO

Input: DataFrame of the full dataset
Parameters: DF : DataFrame of all examples in the dataset, minorityLabel : label
of the minority class, examplesToAdd : number of synthetic examples to create,
gamma: spread of radial basis function, stepSize: step size for point translation,
iterations : number of iterations per synthetic sample, probability : probability of
stopping early
Output: Synthetic examples

function: RBO(DF,minorityLabel, examplesToAdd, gamma, stepSize, iterations, probability)
minorityDF ← DF.filter(x→ x.label = minorityLabel)
majorityDF ← DF.filter(x→ x.label 6= minorityLabel)
return (0 to examplesToAdd)

.map( →createdExample(minorityDF,majorityDF, gamma,
stepSize, iterations, probability))

function: createExample(majorityDF,minorityDF, gamma,
stepSize, iterations, probability)

point← minortyDF.getRandomExample()
pointPhi← calculatePhi(point,majorityDF,minorityDF, gamma)
randomStopIndex←getRandomStopIndex(iterations, probability)
for i = 0 to randomStopIndex do
randomDirection← features.indicies.map(x→randomChoice(−1, 1))
randomV ector ← features.indicies.map(x→randomDouble())
translated← point+ randomDirection ∗ randomV ector ∗ stepSize
if |calculatePhi(translated,majorityDF,minorityDF, gamma)| <
|calculatePhi(point,majorityDF,minorityDF, gamma)| then
point← translated

end if
end for
return point

function: getRandomStopIndex(iterations, probability)
if probability = 1.0 then

return iterations
else

return iterations ∗ probability + randomGaussian() ∗ iterations ∗
probability)

end if

function: calculatePhi(x,K, k, gamma)
majorityV alue← K.map(Ki→

exp(-power(pointDifference(Ki, x)/gamma, 2))).collect().sum()
minorityV alue← k.map(ki→

exp(-power(pointDifference(ki, x)/gamma, 2))).collect().sum()
return majorityV alue−minorityV alue

function: pointDifference(x, y)
return (x, y).transpose.map(x→||x[0]− x[1]||).sum()
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concepts of the minority class and therefore avoiding their oversampling may lead to

a drop of performance on test sets.

SMOTE [127] performs kNN on the minority class and then randomly chooses ex-

isting examples as the basis for new synthetic examples. Each synthetic example is

created on a random point between the previously chosen example and one of its

random nearest neighbors.

SMOTE-D [128] is designed to be a deterministic version of the standard SMOTE

algorithm. kNN is performed on the minority examples and the standard deviation

between their nearest neighbors is calculated. Each minority class examples is over-

sampled proportional to its standard deviation divided by the sum of all standard

deviations. For each of these minority examples, synthetic examples are evenly cre-

ated between itself and each nearest neighbor such that neighbors further away are

used to generate the most examples.

4.3 Software Package

The proposed library (https://github.com/fsleeman/spark-class-balancing) was

developed to both compare the original oversampling methods and provide the first

Spark implementation written in Scala. These oversampling algorithms include:

ADASYN, ANS, Borderline SMOTE, CCR, Cluster SMOTE, Gaussian SMOTE,

k -Means SMOTE, MWMOTE, NRAS, Random Oversampling, RBO, Safe Level

SMOTE, SMOTE, SMOTE-D. Since each of these algorithms were designed for bi-

nary class problems, this Spark implementation has added multi-class support. Each

minority class is processed separately but for algorithms that take in account the

majority class, a one-vs-all approach was used. In this case, all examples not part

of the minority class was treated as if they were part of a single majority class. The

sampling methods were developed in the style of the Spark Machine Learning Library
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Algorithm 13 Safe Level SMOTE

Input: DataFrame of the full dataset
Parameters: DF : DataFrame of all examples in the dataset, minorityLabel : label
of the minority class, examplesToAdd : number of synthetic examples to create, k :
neighbor count for kNN
Output: Synthetic examples

function: SafeLevelSMOTE(DF,minorityLabel, examplesToAdd, k)
minorityDF ← DF .filter(x→ x.label = minorityLabel)
knn← KNN.fit(DF, k)
minorityNearestNeighbors← knn.transform(minorityDF )
randomIndexes← (0 to examplesToAdd)

.map(x→ randomInt(0,minorityNearestNeighbors.count()))
return randomIndexes.map(x→generateExample(minorityNearestNeighbors[x]))

function: generateExample(nearestNeighbors)
example← nearestNeighbors.head
randomNeighbor ← nearestNeighbors.tail(randomInt(0, k))
safeLevelp ← example.neighbors
.filter(label = minorityLabel).count()

safeLeveln ← randomNeighbor.neighbors
.filter(x→ label = minorityLabel).count()

safeLevelRatio← 0
if safeLeveln 6= 0 then
safeLevelRatio = safeLevelp / safeLeveln

else
safeLevelRatio←∞

end if
if safeLevelRatio =∞ and saveLevelp = 0 then

return ∅
else

if safeLevelRatio =∞ and safeLevelp 6= 0 then
gap← 0

else if safeLevelRatio = 1 then
gap←randomDouble(0, 1)

else if safeLevelRatio > 1 then
gap←randomDouble(0, 1 / safeLevelRatio)

else if safeLeveRatio < 1 then
gap←randomDouble(1 − safeLevelRatio, 1))

end if
end if
return features.map(x→ x[0] + gap ∗ (x[1]− x[0]))
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Algorithm 14 SMOTE

Input: DataFrame of the full dataset
Parameters: DF : DataFrame of all examples in the dataset, minorityLabel : label
of the minority class, examplesToAdd : number of synthetic examples to create, k :
neighbor count for kNN
Output: Synthetic examples

function: SMOTE(DF,minorityDF, examplesToAdd, k)
knnModel← KNN.fit(minorityDF, k)
nearestNeigbors← knnModel.transform(minorityDF )
randomIndexes← (0 to examplesToAdd).map(x→ randomInt(0, k))
return randomIndexes.map(x→ createSmoteStyleExample(nearestNeighbors[x], k))

function: createSmoteStyleExample(nearestNeighbors, k)
example← nearestNeighbors.head
randomNeighbor ← nearestNeighbors.tail(randomInt(0, k))
gap← randomDouble()
features←Array(example.features, randomNeighbor.features)
return features.map(x→ x[0] + gap ∗ (x[1]− x[0]))

(MLlib) methods using the fit and transform pattern.

Each of these oversampling methods were originally presented as serial algorithms

which required some modifications when implemented for Spark. However, we have

kept these implementation as close to the original as possible and have not made

major improvements on performance or accuracy. In Section 4.5, we discuss some

ways the running time of these algorithms could be improved and a discussion on the

types of components that are most appropriate for the Spark platform.

4.3.1 Dependencies

The spark-class-balancing library was developed using Spark 3.0.1 with Scala

2.12.1 and currently has following dependencies: spark-core, spark-sql, spark-mllib,

breeze-natives, breeze, spark-knn (from the fsleeman fork). The original spark-knn

implementation was based on Spark 2 and so the forked version was updated to be

compatible with Spark 3.
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Algorithm 15 SMOTE-D

Input: DataFrame of the full dataset
Parameters: DF : DataFrame of all examples in the dataset, minorityLabel : label
of the minority class, examplesToAdd : number of synthetic examples to create, k :
neighbor count for kNN
Output: Synthetic examples

function: getSmoteSamples(DF,minorityLabel, examplesToAdd, k)
knn← KNN.fit(minorityDF, k)
nearestNeighbors← knn.transform(minorityDF )
nearestNeighbors[std]← minorityNeighbors

.map(x→ getDistanceSTD(x))
nearestNeighbors[stdWeights]← neighborDistanceSTDs

.map(x→ x[std]/neighborNeighbors[std].sum)
nearestNeighbors[examplesToAdd]←
nearestNeighbors[stdWeights] ∗ examplesToAdd

return nearestNeighbors.map(x→ sampleCurrentExample(x))

function: sampleCurrentExample(example)
neighbors← example.neighbors
neighbors[distances]← neighbors

.map(x→distance(example, x))
neighbors[examplesToAdd]← neighbors[distances]

.map(x→ (x ∗ example[examplesToAdd]) / distances.sum)
return neighbors.map(x→createExamples(example, x))

function: createExamples(example, neighbor)
examplesToAdd← neighbor[examplesToAdd]
syntheticExamples← (0 to neighbor[examplesToAdd])

.map(x→ example+ (neighbor − examples)
∗ (x+ 1)/neighbor[examplesToAdd])

return syntheticExamples
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Figure 3: Shown with black borders, synthetic examples from each sampling method

are combined with the original data. The upper left plot shows the original data

without oversampling.
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4.3.2 spark-knn

Many of these sampling algorithms, such as SMOTE variants, include a k -Nearest

Neighbors search. Instead of creating that method from scratch, an efficient imple-

mentation from spark-knn (https://github.com/saurfang/spark-knn) [129] was used.

However, the spark-knn implementation did not support nearest neighbor search

by distance radius which was required by ANS and CCR. To address this limita-

tion, spark-knn was forked (https://github.com/fsleeman/spark-knn) and the dis-

tance search feature was added.

4.3.3 Using the spark-class-balancing Library

The spark-class-balancing library is designed to build a fat jar using the sbt tool,

with the following commands:

sbt compile

sbt assembly

Since the spark-knn (fsleeman fork) library is a dependency of spark-class-balancing,

it must also be built as far jar using a similar method and the build.sbt file must be

updated to include that generated file. The resulting spark-class-balancing jar file

can then be used for running a Spark job, both in the local or cluster mode.

4.3.4 Invoking Sampling Methods

Invoking one of the oversampling methods is straightforward as shown below in

this example using standard SMOTE.

val method = new SMOTE

val model = method.fit(trainData).setK(5)

val sampledData = model.transform(trainData)
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Using the fit/transform pattern, a new SMOTE estimator is instantiated and

then a model is created with the fit function. The resulting model is set with pre-

diction parameters, in this case setting the k value to 5, and finally the trainData

DataFrame is transformed to produce oversampled data. The same process is done

for every other oversampling methods, although available parameters may differ.

4.3.5 Limitations and Future Extensions

These algorithms were implemented in the spirit of their original design to better

assess how they translate to the Spark platform in terms of performance and accuracy.

While some of these implementations have limitations in efficiency, they can now be

updated based on the algorithm design guidelines presented in Section 4.5. While

this initial version of spark-class-balancing included 14 oversampling methods, it can

be extended to include other types of sampling methods including undersampling,

hybrid methods and ensembles.

The kNN algorithm from the spark-knn package can run into errors depending

on the settings used and properties of the data. The spark-knn implementation uses a

hybrid spill tree which switches between spill and metric trees based on data metrics

at each node split. If data is not well balanced between the two child notes, the tree

generation may fail. However, this can be avoided by forcing the use of metric trees

at all nodes. Other issues can occur with small datasets or few examples for a given

class, but in that case spark-class-balancing includes a fallback to use the brute force

kNN mode.

In the future, this library can be built as a Spark package with a better integration

with the custom fork of the spark-knn package. The spark-class-balancing library

can also be updated to the newest versions of Spark as they come out. These Spark

updates can include new built-in machine learning tools or general features which can
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be utilized in future sampling methods.

4.3.6 Adding New Algorithms

A Scala class named samplingTemplate has been added as blank slate for de-

veloping new algorithms. After this class is copied to a new file, the placeholder

names can be replaced and the core code can be added, using the other algorithms

as example code.

4.4 Experimental Study

We have designed the experimental study to answer the following research ques-

tions:

RQ1: Which of the proposed big data oversampling approaches adapted to Spark

architecture offers the best predictive performance?

RQ2: What is the computational cost of the proposed big data oversampling ap-

proaches?

RQ3: Which of the proposed big data oversampling approaches offers the best trade-

off between predictive accuracy and computational complexity?

RQ4: How does the examined algorithms handle binary and multi-class problems, as

well as different types of features?

RQ5: How well does the examined oversampling methods scale with the size of the

data and which algorithms become prohibitively expensive to be used efficiently?

4.4.1 Setup

Hardware. All experiments were performed using 32 threads on a large shared

machine with Intel Xeon E7-8894 cores.

55



Datasets. We have chosen twenty six datasets that include two-classes with binary

features, two-classes with continuous features and multi-class with continuous fea-

tures. These datasets provide a wide range of features and class imbalance ratios

which gives some insight on how different oversampling-classifier combinations per-

form on these types of data. Initial tests showed that using the full datasets was not

feasible with the time required for each test, so we decided to select a sub-section of

100,000 examples from each dataset which is still significantly more than used in the

original algorithm publications. In addition to making the running time achievable,

it also allows for the direct time comparisons between each dataset. Table 1 shows

high level properties of these datasets.

Classifiers. We have used three popular classifiers that are available in the Spark

Machine Learning Library (MLlib) - Random Forest, Support Vector Machines (SVM)

and Naive Bayes. Since each classifier uses a different base algorithm, our experiments

give some insight on how sampling methods may affect classifiers from different fam-

ilies.

Parameters of classifier. Table 2 shows the hyperparameters used for each clas-

sifier. These values were chosen by a manual search that provided good accuracy

compared to running time on several datasets.

Oversampling methods. We have implemented the fourteen oversampling detailed

in Section 4.2 and were used with all combinations of classifiers and datasets. How-

ever, the sampling algorithms ANS, MWMOTE and RBO were significantly slower

and full experiments were not feasible. Section 4.5 provides a discussion on properties

of these algorithms which prevented scalability.

Parameters of oversampling methods. Table 3 shows the list of hyperparame-

ters used for each oversampling algorithm. Since the following experiments included

combination of datasets, classifier and oversampling methods, an exhaustive hyperpa-
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Table 1: High level properties of the twenty six datasets included in the following

experiments.

Dataset Descriptions

Dataset Class Count Feature Count Feature Type Max Imbalanced Ratio

Bitcoin 2 8 Continuous 69.42
Cover Type 7 54 Continuous 103.08
Fuzzing 2 115 Continuous 4.19
HIGGS: Imbalanced Ratio 16:1 2 28 Continuous 16.00
HIGGS: Imbalanced Ratio 4:1 2 28 Continuous 4.00
HIGGS: Imbalanced Ratio 8:1 2 28 Continuous 8.00
IoT 11 115 Continuous 4.82
MIRAI 2 116 Continuous 5.28
Poker: 0 vs 2 2 85 Discrete 10.53
Poker: 0 vs 3 2 85 Discrete 23.73
Poker: 0 vs 4 2 85 Discrete 129.04
Poker: 0 vs 5 2 85 Discrete 251.53
Poker: 0 vs 6 2 85 Discrete 352.36
Poker: 1 vs 2 2 85 Discrete 8.87
Poker: 1 vs 3 2 85 Discrete 20.00
Poker: 1 vs 4 2 85 Discrete 108.77
Poker: 1 vs 5 2 85 Discrete 211.77
Poker: 1 vs 6 2 85 Discrete 296.62
SEER 10 11 Continuous 5.69
SSL Renegotiation 2 115 Continuous 22.83
SUSY: Imbalanced Ratio 16:1 2 18 Continuous 16.00
SUSY: Imbalanced Ratio 4:1 2 18 Continuous 4.00
SUSY: Imbalanced Ratio 8:1 2 18 Continuous 8.00
SYN DOS 2 115 Continuous 392.70
Traffic 7 26 Continuous 7.60
Video Injection 2 115 Continuous 23.12

Table 2: Classifier hyperparameters used in the sampling experiments.

Algorithm Hyperparameters

Support Vector Machine
number of iterations = 100
regularization parameter (C) = 10.0

Random Forest
number of trees = 100
maximum depth = 20

Naive Bayes None

rameter search was not practical and so we have chosen a single set of hyperparameters

for each oversampling method. These values were chosen from the original papers and

a limited manual search was performed if no values were presented. As the value of 5
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is often used for k, including the original SMOTE algorithm, we have chosen to use

that value as well. The hyperparameters for RBO were set in such a way that only a

single iteration per synthetic example to be created which deviates from the experi-

ments in the original paper. These values were chosen in an attempt to compensate

for the slow running time which is further discussed in Section 4.5.

Table 3: Hyperparameters used for each sampling method.

Algorithm Hyperparameters

ADASYN k = 5

ANS

k = 5

C max ratio = 0.25

distance neighbor limit = 100

Borderline SMOTE k = 5

CCR
k = 5

energy = 1.0

distance neighbor limit = 100

Cluster SMOTE
k = 5

cluster k = 5

Gaussian SMOTE
k = 5

sigma = 0.5

k -Means SMOTE

k = 5

cluster k = 5

imbalancedThreshold = 10.0

MWMOTE

k1 = 5

k2 = 5

k3 = 5

cluster k = 10

C max = 3.0

Cf(th) = 50.0

NRAS
k = 5

threshold = 3

Random Oversampling None

RBO

gamma = 1.0

iterations = 1

step size = 0.01

stopping probability = 1.0

Safe Level SMOTE
k = 5

sampling correction rate = 0.05

SMOTE k = 5

SMOTE-D k = 5
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AvAcc =
C∑
i=1

tpi + tni
tpi + tni + fpi + fni

MAvG = C

√√√√ C∏
i=0

recalli

AvFβ =
1

C

C∑
i=1

(1 + β2) · precisioni · recalli
β2 · precisioni + recalli

CBA =
C∑
i=1

mati,i

max(
C∑
j=1

mati,j,
C∑
j=1

matj,i)

Figure 4: Formulas for the metrics used to evaluate the classifier and sampling com-

binations.

Adaptation to multi-class problems. Each minority class was oversampled to

the size of the majority class individually, resulting in a fully balanced dataset.

Training and testing. We have used a stratified 5-fold cross validation in order to

maintain the original class distribution among the folds.

Evaluation metrics. In order to properly evaluate the performance of classifiers on

imbalanced domains, skew-insensitive metrics are required. As multi-class imbalanced

problems were not popular until recently among researchers, there is a lack of uniform

approach to which measures should be considered as a standard. In order to gain

an in-depth insight into the performance of the analyzed classifiers, Figure 4 shows

four popular metrics for multi-class imbalanced data used to evaluate the presented

oversampling algorithms.

Experiments. The experiments performed include all of the combinations of datasets,

classifier and sampling method with 5-fold cross validation. The ANS, MWMOTE

and RBO algorithms were not included in the full experiments because of the excessive
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Table 4: Classifier hyperparameters used in the sampling experiments.

Algorithm Hyperparameters

Support Vector Machine
number of iterations = 100
regularization parameter (C) = 10.0

Random Forest
number of trees = 100
maximum depth = 20

Naive Bayes None

run time and this limitation is further discussed in Section 4.5.
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Table 5: Comparison of 11 oversampling methods using four different metrics with Random Forest as the base classifier.

ADASYN Borderline SMOTE CCR Cluster SMOTE Gaussian SMOTE k -Means SMOTE NRAS Random Oversample Safe Level SMOTE SMOTE SMOTE-D

Bitcoin AvAcc 98.08 98.56 98.60 96.02 95.32 97.88 98.59 96.35 97.42 96.32 96.74

MAvG 48.69 68.14 75.80 40.51 38.52 43.86 71.02 42.07 38.28 41.16 40.29

AvFb 58.03 55.22 53.53 65.26 65.14 57.60 53.09 65.64 57.75 64.81 62.32

CBA 57.28 53.89 52.36 56.66 55.47 57.15 52.00 57.49 56.78 57.11 57.04

Cover Type AvAcc 95.00 95.21 93.54 94.86 94.34 94.69 94.87 94.78 94.40 94.74 94.76

MAvG 67.87 81.76 35.15 67.62 61.40 61.76 67.84 66.39 61.40 65.78 65.94

AvFb 81.39 77.21 41.31 81.03 79.06 70.40 78.17 80.69 77.78 80.69 80.94

CBA 68.84 73.28 36.19 68.82 63.29 64.10 68.74 67.85 63.21 67.33 67.49

Fuzzing AvAcc 99.99 99.98 99.87 99.98 99.99 99.99 99.87 99.99 99.94 100.00 99.99

MAvG 99.97 99.96 99.68 99.95 99.99 99.99 99.67 99.99 99.83 99.99 99.99

AvFb 99.99 99.97 99.86 99.98 99.99 99.98 99.87 99.98 99.93 99.99 99.99

CBA 99.96 99.95 99.61 99.94 99.98 99.97 99.59 99.97 99.79 99.99 99.98

HIGGS: 4:1 AvAcc 77.53 74.38 80.58 77.64 79.68 77.50 78.63 82.21 72.02 76.35 74.83

MAvG 62.68 60.14 76.93 62.86 65.70 60.82 63.54 70.90 57.42 61.61 59.88

AvFb 67.81 67.66 50.79 67.87 68.88 63.63 66.65 65.95 65.30 67.85 66.80

CBA 64.21 59.16 43.13 64.41 68.02 61.35 66.37 61.39 56.30 62.19 60.03

HIGGS: 8:1 AvAcc 84.91 86.69 88.99 82.64 85.05 83.29 87.81 89.06 76.46 80.97 79.02

MAvG 56.03 59.89 81.16 53.63 57.73 48.99 60.32 68.65 46.00 52.01 49.81

AvFb 64.19 64.31 49.70 65.04 66.39 59.00 58.33 61.18 60.64 64.90 63.72

CBA 62.40 63.47 45.27 59.12 63.05 57.55 54.92 57.29 51.51 56.98 54.61

HIGGS: 16:1 AvAcc 91.56 94.01 94.13 86.93 89.21 88.73 93.92 93.82 85.42 85.08 83.48

MAvG 49.53 66.11 33.56 43.38 47.89 38.45 47.54 63.71 36.99 41.54 39.66

AvFb 59.66 55.34 49.51 61.91 63.60 56.39 50.43 57.48 57.25 61.46 60.35

CBA 59.17 52.58 47.17 54.76 58.15 54.28 48.06 54.84 51.64 52.83 51.16

IoT AvAcc 99.68 99.78 99.77 99.85 99.74 99.83 99.71 99.64 99.78 99.67 99.69

MAvG 98.86 99.14 99.01 99.42 98.98 99.33 98.93 98.63 99.13 98.78 98.93

AvFb 98.66 99.15 98.95 99.40 98.96 99.29 98.82 98.57 99.15 98.68 98.74

CBA 97.61 98.37 98.11 98.86 98.03 98.69 97.84 97.34 98.36 97.57 97.74

MIRAI AvAcc 99.91 99.83 99.62 99.87 99.87 99.81 99.84 99.90 99.87 99.86 99.85

MAvG 99.72 99.60 98.90 99.74 99.68 99.67 99.60 99.79 99.60 99.71 99.70

AvFb 99.89 99.75 99.55 99.76 99.81 99.61 99.77 99.82 99.84 99.76 99.72

CBA 99.67 99.55 98.72 99.70 99.64 99.55 99.55 99.78 99.53 99.70 99.64

Poker: 0 vs 2 AvAcc 97.41 92.60 91.50 97.15 91.32 94.33 95.62 99.87 99.37 97.56 96.92

MAvG 98.61 96.18 95.65 96.38 0.00 84.69 97.67 99.93 99.66 98.69 98.36

AvFb 87.00 58.01 50.38 86.33 49.07 72.98 76.89 99.37 97.00 87.77 84.24

CBA 83.71 53.59 46.78 83.45 45.66 69.29 72.45 99.16 96.05 84.64 80.60

Poker: 0 vs 3 AvAcc 96.35 96.10 96.01 96.76 95.96 95.71 97.04 99.27 98.96 96.06 96.14

MAvG 98.15 98.03 78.39 93.61 0.00 60.11 98.35 99.62 99.46 98.01 98.05

AvFb 55.59 51.72 50.37 61.76 49.58 51.85 65.38 92.37 89.04 51.16 52.42

CBA 53.08 49.76 48.63 58.71 47.98 50.06 61.98 90.53 86.61 49.30 50.37

Poker: 0 vs 4 AvAcc 99.23 99.23 99.23 99.03 99.23 99.22 96.65 95.86 98.90 99.23 99.23

MAvG 0.00 0.00 0.00 63.96 0.00 5.14 9.64 32.87 41.41 34.01 0.00

AvFb 49.92 49.92 49.92 56.21 49.92 50.00 52.91 64.21 51.10 50.16 49.92

CBA 49.62 49.62 49.62 54.08 49.62 49.68 49.55 53.49 50.34 49.81 49.62

Poker: 0 vs 5 AvAcc 99.60 99.60 99.87 99.60 99.60 99.57 99.76 99.96 99.93 99.56 99.61

MAvG 39.92 0.00 99.94 90.94 0.00 42.75 99.54 99.98 99.97 23.00 39.92

AvFb 50.27 49.96 86.18 57.08 49.96 51.92 71.04 96.34 92.64 50.24 50.28

CBA 50.06 49.80 84.14 55.84 49.80 51.45 69.45 95.56 91.26 50.05 50.06

Poker: 0 vs 6 AvAcc 99.72 99.73 99.72 99.72 99.72 99.72 99.91 99.78 99.74 99.72 99.72

MAvG 19.97 99.87 0.00 39.95 0.00 39.95 79.98 99.89 98.13 39.94 19.97

AvFb 50.19 53.44 49.97 51.06 49.97 50.85 85.05 63.55 55.33 50.41 50.19

CBA 50.03 52.69 49.86 50.74 49.86 50.57 83.97 61.39 54.28 50.21 50.04

Poker: 1 vs 2 AvAcc 89.88 89.87 89.87 89.89 89.87 87.60 89.86 91.00 89.92 89.87 89.88

MAvG 71.57 0.00 0.00 80.00 0.00 29.94 55.25 87.05 92.92 56.88 89.25

AvFb 48.95 48.90 48.90 49.46 48.90 50.48 48.93 57.27 49.25 48.92 48.94

CBA 44.98 44.94 44.94 45.44 44.94 47.47 44.97 52.52 45.24 44.95 44.97

Poker: 1 vs 3 AvAcc 95.26 95.24 95.24 95.20 95.24 94.84 95.26 96.10 95.66 95.24 95.24

MAvG 78.08 19.52 0.00 83.61 0.00 32.38 94.99 96.14 97.80 19.52 19.52

AvFb 49.74 49.52 49.51 50.22 49.51 50.02 49.81 60.76 55.00 49.52 49.53

CBA 47.82 47.63 47.62 48.25 47.62 48.23 47.87 57.44 52.29 47.63 47.64

Poker: 1 vs 4 AvAcc 99.09 99.09 99.09 98.77 99.09 99.05 99.09 96.24 99.06 99.08 99.09

MAvG 0.00 0.00 0.00 52.58 0.00 19.46 0.00 38.34 54.83 28.81 28.81

AvFb 49.91 49.91 49.91 58.61 49.91 50.15 49.91 67.69 51.30 50.11 50.04

CBA 49.54 49.54 49.54 57.32 49.54 49.77 49.54 55.72 50.71 49.71 49.66

Poker: 1 vs 5 AvAcc 99.53 99.53 99.94 99.59 99.53 99.53 99.56 99.94 99.53 99.53 99.53

MAvG 0.00 0.00 99.97 96.13 0.00 0.00 59.87 99.97 19.95 0.00 0.00

AvFb 49.95 49.95 94.78 56.68 49.95 49.95 53.85 94.42 50.09 49.95 49.95

CBA 49.77 49.77 93.69 55.75 49.77 49.76 53.08 93.27 49.87 49.77 49.77

Poker: 1 vs 6 AvAcc 99.66 99.66 99.66 99.66 99.66 99.65 99.67 99.66 99.66 99.66 99.66

MAvG 0.00 0.00 0.00 0.00 0.00 0.00 74.02 39.93 0.00 0.00 0.00

AvFb 49.97 49.97 49.97 49.97 49.97 49.96 51.07 50.52 49.97 49.97 49.97

CBA 49.83 49.83 49.83 49.83 49.83 49.83 50.73 50.28 49.83 49.83 49.83

SEER AvAcc 93.71 93.76 92.18 93.77 93.73 93.88 94.30 93.94 93.94 93.74 93.99

MAvG 55.73 56.50 0.00 56.43 55.98 57.58 60.83 57.12 57.58 55.90 57.30

AvFb 61.30 60.55 37.32 61.09 61.66 58.27 61.35 62.29 62.08 61.48 60.59

CBA 57.09 57.51 30.72 56.62 56.82 53.47 57.51 58.13 58.65 56.94 55.64

SSL Renegotiation AvAcc 100.00 100.00 99.99 100.00 100.00 99.99 99.98 100.00 99.95 100.00 100.00

MAvG 99.96 99.96 99.94 99.98 99.96 99.97 99.73 99.98 99.43 99.98 99.96

AvFb 99.98 99.98 99.98 99.98 99.98 99.97 99.93 99.98 99.86 99.98 99.99

CBA 99.95 99.95 99.93 99.96 99.95 99.94 99.72 99.96 99.41 99.96 99.96

SUSY: 4:1 AvAcc 85.12 84.24 84.87 84.31 86.24 84.39 86.75 87.01 83.45 83.96 83.25

MAvG 75.22 73.68 85.96 73.80 77.53 74.08 79.03 80.01 72.46 73.24 72.17

AvFb 78.09 78.10 64.40 77.78 78.19 76.24 77.68 77.26 77.56 77.70 77.44

CBA 75.63 73.34 56.72 73.74 77.87 75.11 76.01 74.80 71.80 72.93 71.42

SUSY: 8:1 AvAcc 90.34 90.92 90.91 87.52 89.81 87.92 91.50 91.70 86.81 86.92 86.20

MAvG 73.09 75.11 89.38 66.00 71.41 66.56 77.95 79.46 64.67 64.85 63.68

AvFb 75.74 76.15 61.37 75.62 76.41 74.41 75.13 74.27 75.27 75.26 75.13

CBA 75.41 75.63 56.11 68.00 73.57 69.07 73.21 71.65 66.61 66.82 65.46

SUSY: 16:1 AvAcc 94.25 94.95 94.95 90.41 92.36 91.61 95.08 94.80 91.03 89.70 89.08

MAvG 70.36 75.86 91.77 56.65 62.25 59.12 77.46 74.87 57.96 55.13 53.93

AvFb 72.99 72.13 59.10 72.62 74.21 71.38 71.26 70.79 72.68 72.22 71.83

CBA 72.60 70.29 55.60 62.60 67.16 65.07 68.99 68.83 63.79 61.30 60.26

SYN DOS AvAcc 100.00 99.99 99.99 99.99 99.98 99.99 99.99 100.00 99.01 100.00 100.00

MAvG 99.61 99.42 99.21 99.42 95.81 98.48 99.60 99.61 45.08 99.81 100.00

AvFb 99.76 99.25 98.41 99.41 98.95 99.22 99.12 99.61 77.41 99.49 99.84

CBA 99.42 98.64 98.03 98.84 95.91 98.50 98.82 99.41 59.68 99.22 99.80

Traffic AvAcc 84.87 84.85 80.06 84.70 84.75 84.36 84.68 85.10 84.82 84.81 84.79

MAvG 45.07 45.94 14.89 43.07 42.83 42.20 46.62 45.28 44.11 43.34 43.27

AvFb 43.55 43.19 18.03 44.26 44.36 41.08 41.39 45.64 43.37 44.34 44.34

CBA 40.20 39.58 12.86 40.96 40.75 37.81 37.77 42.12 40.20 41.33 41.42

Video Injection AvAcc 99.99 99.99 100.00 99.99 99.98 99.99 99.99 99.99 99.97 99.99 99.99

MAvG 99.93 99.93 99.97 99.88 99.81 99.93 99.95 99.91 99.63 99.88 99.89

AvFb 99.96 99.94 99.97 99.95 99.95 99.93 99.97 99.96 99.90 99.94 99.95

CBA 99.90 99.91 99.96 99.87 99.80 99.87 99.92 99.90 99.61 99.86 99.87



Table 6: Comparison of 11 oversampling methods using four different metrics with SVM as the base classifier.

ADASYN Borderline SMOTE CCR Cluster SMOTE Gaussian SMOTE k -Means SMOTE NRAS Random Oversample Safe Level SMOTE SMOTE SMOTE-D

Bitcoin AvAcc 20.85 98.58 98.58 9.79 98.58 98.58 80.16 59.72 98.58 41.34 98.58

MAvG 2.38 0.00 0.00 12.33 0.00 0.00 13.07 2.38 0.00 13.59 0.00

AvFb 12.66 49.86 49.86 8.62 49.86 49.86 45.23 31.26 49.86 27.37 49.86

CBA 10.43 49.29 49.29 5.03 49.29 49.29 41.36 29.86 49.29 21.34 49.29

Cover Type AvAcc 81.40 89.35 85.36 83.95 83.27 83.98 83.27 82.87 83.62 83.11 83.04

MAvG 22.76 4.75 0.00 25.58 26.43 18.26 24.56 25.07 25.93 24.26 24.65

AvFb 33.03 32.25 11.80 38.85 40.52 31.73 38.72 38.19 39.80 37.88 37.45

CBA 20.25 25.53 6.97 25.70 26.54 22.95 24.68 24.13 25.49 24.64 24.22

Fuzzing AvAcc 60.55 80.99 80.72 80.94 71.80 80.90 58.78 59.19 62.19 62.79 43.98

MAvG 57.43 83.86 0.00 78.45 63.66 74.49 56.46 56.64 58.07 58.42 50.62

AvFb 63.77 48.79 47.72 50.48 73.59 48.82 62.24 62.60 65.19 65.73 49.38

CBA 42.15 41.33 40.36 43.21 52.87 41.41 40.46 40.82 43.49 44.07 28.11

HIGGS: 4:1 AvAcc 20.00 80.00 80.00 79.77 80.00 79.15 80.00 44.00 80.00 80.00 80.00

MAvG 0.00 0.00 0.00 17.43 0.00 20.56 30.61 0.00 0.00 0.00 0.00

AvFb 27.78 47.62 47.62 47.83 47.62 48.27 47.64 35.71 47.62 47.62 47.62

CBA 10.00 40.00 40.00 40.32 40.00 41.13 40.02 22.00 40.00 40.00 40.00

HIGGS: 8:1 AvAcc 11.11 88.89 88.89 88.77 88.89 86.66 88.40 73.33 88.89 88.89 88.89

MAvG 0.00 0.00 0.00 25.31 0.00 23.47 54.21 0.00 0.00 0.00 0.00

AvFb 19.23 48.78 48.78 48.96 48.78 50.08 49.90 42.87 48.78 48.78 48.78

CBA 5.56 44.44 44.44 44.65 44.44 46.76 45.71 36.67 44.44 44.44 44.44

HIGGS: 16:1 AvAcc 76.47 94.12 94.12 94.09 94.12 90.62 71.04 41.18 94.12 94.12 94.12

MAvG 0.00 0.00 0.00 24.37 0.00 30.08 32.74 0.00 0.00 0.00 0.00

AvFb 41.89 49.38 49.38 49.44 49.38 49.85 44.05 26.90 49.38 49.38 49.38

CBA 38.24 47.06 47.06 47.12 47.06 47.12 39.52 20.59 47.06 47.06 47.06

IoT AvAcc 89.93 92.91 88.49 93.60 90.26 92.76 90.39 91.39 91.71 91.06 93.69

MAvG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.78

AvFb 39.99 54.87 27.24 62.68 45.55 53.46 47.19 52.24 55.30 51.55 62.71

CBA 29.25 45.74 19.24 52.27 35.75 42.45 37.28 41.92 45.35 41.65 52.70

MIRAI AvAcc 89.79 84.60 84.29 89.72 90.89 87.21 89.73 89.72 89.73 89.73 89.72

MAvG 78.05 75.74 72.98 77.95 81.52 77.87 77.97 77.95 77.96 77.96 77.94

AvFb 89.33 51.88 49.83 89.27 84.26 69.99 89.28 89.27 89.27 89.27 89.26

CBA 74.38 45.56 43.60 74.26 81.74 60.80 74.29 74.27 74.28 74.28 74.26

Poker: 0 vs 2 AvAcc 91.32 91.32 91.32 56.19 91.32 91.32 54.33 74.79 91.32 51.51 91.32

MAvG 0.00 0.00 0.00 27.90 0.00 0.00 27.96 0.00 0.00 28.14 0.00

AvFb 49.07 49.07 49.07 42.73 49.07 49.07 42.06 42.47 49.07 40.97 49.07

CBA 45.66 45.66 45.66 33.05 45.66 45.66 31.93 37.40 45.66 30.25 45.66

Poker: 0 vs 3 AvAcc 40.81 95.96 95.96 54.22 95.96 95.96 57.90 59.19 95.96 52.03 95.96

MAvG 0.00 0.00 0.00 19.45 0.00 0.00 19.76 0.00 0.00 19.09 0.00

AvFb 25.06 49.58 49.58 37.15 49.58 49.58 39.08 33.23 49.58 35.88 49.58

CBA 20.40 47.98 47.98 29.29 47.98 47.98 31.33 29.60 47.98 28.07 47.98

Poker: 0 vs 4 AvAcc 20.46 99.23 99.23 67.24 99.23 99.23 82.66 59.85 99.23 66.67 99.23

MAvG 0.00 0.00 0.00 12.06 0.00 0.00 9.63 0.00 0.00 11.89 0.00

AvFb 11.48 49.92 49.92 39.31 49.92 49.92 44.62 30.70 49.92 38.96 49.92

CBA 10.23 49.62 49.62 34.37 49.62 49.62 42.06 29.92 49.62 34.06 49.62

Poker: 0 vs 5 AvAcc 59.92 99.60 79.76 62.00 99.60 99.60 66.87 40.08 99.60 59.04 99.60

MAvG 0.00 0.00 0.00 6.32 0.00 0.00 7.12 0.00 0.00 6.97 0.00

AvFb 30.36 49.96 40.16 34.53 49.96 49.96 37.07 20.57 49.96 33.33 49.96

CBA 29.96 49.80 39.88 31.25 49.80 49.80 33.74 20.04 49.80 29.78 49.80

Poker: 0 vs 6 AvAcc 40.06 99.72 99.72 63.10 99.72 99.72 64.57 59.94 99.72 59.75 99.72

MAvG 0.00 0.00 0.00 5.38 0.00 0.00 5.86 0.00 0.00 5.17 0.00

AvFb 20.41 49.97 49.97 34.78 49.97 49.97 35.17 30.26 49.97 33.16 49.97

CBA 20.03 49.86 49.86 31.73 49.86 49.86 32.51 29.97 49.86 30.04 49.86

Poker: 1 vs 2 AvAcc 26.08 89.87 89.87 52.24 89.87 89.87 56.10 73.92 89.87 51.54 89.87

MAvG 0.00 0.00 0.00 30.05 0.00 0.00 30.10 0.00 0.00 30.31 0.00

AvFb 24.20 48.90 48.90 42.30 48.90 48.90 43.94 42.72 48.90 42.21 48.90

CBA 13.04 44.94 44.94 31.46 44.94 44.94 33.88 36.96 44.94 31.05 44.94

Poker: 1 vs 3 AvAcc 22.86 95.24 95.24 54.68 95.24 95.24 60.66 40.95 95.24 52.50 95.24

MAvG 0.00 0.00 0.00 21.50 0.00 0.00 21.79 0.00 0.00 21.28 0.00

AvFb 17.90 49.51 49.51 38.60 49.51 49.51 41.50 25.80 49.51 37.44 49.51

CBA 11.43 47.62 47.62 29.99 47.62 47.62 33.33 20.48 47.62 28.76 47.62

Poker: 1 vs 4 AvAcc 40.18 99.09 99.09 60.92 99.09 99.09 92.53 40.18 99.09 60.21 99.09

MAvG 0.00 0.00 0.00 12.11 0.00 0.00 11.40 0.00 0.00 12.01 0.00

AvFb 21.28 49.91 49.91 36.38 49.91 49.91 48.97 21.28 49.91 35.99 49.91

CBA 20.09 49.54 49.54 31.19 49.54 49.54 47.29 20.09 49.54 30.81 49.54

Poker: 1 vs 5 AvAcc 59.91 99.53 99.53 57.71 99.53 99.53 59.03 59.91 99.53 57.32 99.53

MAvG 0.00 0.00 0.00 6.06 0.00 0.00 7.21 0.00 0.00 6.62 0.00

AvFb 30.43 49.95 49.95 32.43 49.95 49.95 33.41 30.43 49.95 32.41 49.95

CBA 29.95 49.77 49.77 29.10 49.77 49.77 29.81 29.95 49.77 28.92 49.77

Poker: 1 vs 6 AvAcc 59.93 99.66 99.66 59.86 99.66 99.66 55.57 40.07 99.66 57.40 99.66

MAvG 0.00 0.00 0.00 5.41 0.00 0.00 5.31 0.00 0.00 5.45 0.00

AvFb 30.31 49.97 49.97 33.28 49.97 49.97 31.20 20.48 49.97 32.12 49.97

CBA 29.97 49.83 49.83 30.12 49.83 49.83 27.96 20.03 49.83 28.88 49.83

SEER AvAcc 89.00 90.01 89.21 88.92 89.01 89.26 89.20 88.24 89.28 89.24 89.37

MAvG 32.82 33.75 0.00 31.09 34.42 26.12 37.15 31.57 35.23 33.45 32.20

AvFb 38.57 39.91 18.53 37.63 40.01 32.48 42.33 37.45 41.07 39.90 37.87

CBA 31.26 35.54 11.39 31.56 32.36 27.11 33.47 29.98 33.96 32.92 31.47

SSL Renegotiation AvAcc 90.08 95.80 95.80 83.51 90.12 89.35 90.10 90.08 90.11 90.10 83.51

MAvG 54.04 0.00 0.00 45.04 54.11 16.13 54.08 54.06 54.10 54.08 45.04

AvFb 78.83 49.57 49.57 70.87 78.87 48.79 78.85 78.84 78.87 78.85 70.87

CBA 59.53 47.90 47.90 51.54 59.60 47.92 59.57 59.54 59.59 59.56 51.54

SUSY: 4:1 AvAcc 81.12 80.27 80.00 80.32 80.07 80.06 80.63 80.97 80.19 80.36 80.31

MAvG 78.28 79.26 0.00 78.27 78.82 69.25 79.22 77.91 79.06 78.09 78.46

AvFb 53.06 48.76 47.62 49.03 47.90 48.18 50.32 52.70 48.44 49.22 48.97

CBA 45.79 41.06 40.00 41.32 40.26 40.55 42.54 45.55 40.76 41.50 41.26

SUSY: 8:1 AvAcc 89.11 88.89 88.89 89.04 88.90 88.97 89.17 73.99 88.96 89.05 89.04

MAvG 77.98 37.71 0.00 76.89 70.77 69.15 76.78 68.78 76.83 76.29 77.42

AvFb 51.08 48.79 48.78 50.40 48.95 50.05 51.89 46.24 49.51 50.60 50.35

CBA 46.53 44.45 44.44 45.91 44.60 45.60 47.28 39.78 45.10 46.09 45.86

SUSY: 16:1 AvAcc 94.15 94.12 94.12 94.11 94.11 94.09 94.09 88.84 94.11 94.11 94.11

MAvG 70.10 0.00 0.00 66.97 57.65 59.90 67.21 57.18 66.20 67.79 68.03

AvFb 52.64 49.38 49.38 51.05 49.51 51.08 52.91 56.24 49.96 51.28 51.10

CBA 49.96 47.06 47.06 48.53 47.17 48.58 50.23 49.73 47.57 48.74 48.57

SYN DOS AvAcc 79.35 99.75 99.75 77.33 79.35 99.71 99.62 72.19 70.44 71.46 99.62

MAvG 9.92 0.00 0.00 17.54 9.82 52.10 47.77 9.56 9.23 9.39 47.66

AvFb 43.73 49.97 49.97 44.79 43.68 59.08 60.67 40.39 39.46 39.99 60.50

CBA 40.17 49.87 49.87 41.51 40.16 58.16 60.27 36.52 35.61 36.13 60.08

Traffic AvAcc 78.10 78.99 78.78 77.74 79.13 77.68 78.13 78.29 78.91 78.37 78.77

MAvG 20.40 20.79 7.67 18.35 20.68 17.89 19.85 19.91 20.40 19.46 20.37

AvFb 20.84 21.90 14.03 19.71 21.27 19.31 21.38 20.90 21.83 21.03 20.95

CBA 16.67 18.33 9.05 16.12 16.65 16.11 18.36 17.13 18.22 17.61 16.48

Video Injection AvAcc 31.77 95.85 95.85 54.22 54.69 75.50 54.41 53.11 54.30 42.63 71.12

MAvG 18.45 0.00 0.00 34.18 20.81 19.04 20.68 20.47 20.65 25.60 24.62

AvFb 27.18 49.57 49.57 40.02 39.57 47.83 39.31 38.45 39.23 35.79 50.40

CBA 17.27 47.93 47.93 29.70 29.14 40.00 28.97 28.23 28.91 23.42 39.11



Table 7: Comparison of 11 oversampling methods using four different metrics with Naive Bayes as the base classifier.

ADASYN Borderline SMOTE CCR Cluster SMOTE Gaussian SMOTE k -Means SMOTE NRAS Random Oversample Safe Level SMOTE SMOTE SMOTE-D

Bitcoin AvAcc 50.83 98.58 98.58 55.62 98.58 70.90 61.26 50.74 63.35 49.58 68.48

MAvG 13.60 0.00 0.00 12.09 0.00 11.44 12.95 13.49 14.19 13.37 11.29

AvFb 32.24 49.86 49.86 33.39 49.86 40.61 36.88 32.14 38.60 31.49 39.46

CBA 26.24 49.29 49.29 28.61 49.29 36.43 31.58 26.19 32.77 25.58 35.18

Cover Type AvAcc 83.99 89.57 89.14 85.78 86.14 83.40 86.48 86.15 86.27 86.09 85.64

MAvG 28.59 37.62 0.00 31.59 31.43 18.51 34.95 31.42 32.11 31.36 30.49

AvFb 42.35 43.71 29.06 44.82 46.63 30.62 49.94 46.59 47.46 46.54 45.52

CBA 28.38 38.64 23.56 31.56 32.90 24.37 36.93 32.87 33.67 32.79 31.38

Fuzzing AvAcc 66.17 81.14 80.99 77.95 75.43 80.60 71.06 70.63 72.22 70.80 73.75

MAvG 60.21 66.44 89.83 52.12 64.68 61.54 62.89 62.67 63.50 62.76 64.04

AvFb 68.57 57.26 48.65 57.04 74.78 48.67 72.67 72.36 73.51 72.48 74.21

CBA 47.35 50.86 41.19 49.07 57.75 41.38 52.21 51.75 53.52 51.93 55.47

HIGGS: 4:1 AvAcc 47.40 54.18 80.00 52.78 80.00 57.95 53.64 53.73 60.76 53.93 54.93

MAvG 42.67 43.22 0.00 41.54 0.00 41.75 42.48 43.35 43.25 43.44 43.16

AvFb 47.06 50.19 47.62 48.30 47.62 49.77 49.40 50.14 51.82 50.29 50.39

CBA 32.62 38.50 40.00 37.34 40.00 41.81 38.06 38.10 44.34 38.27 39.17

HIGGS: 8:1 AvAcc 51.73 88.89 88.89 55.34 88.89 57.64 55.79 56.14 67.08 54.98 56.45

MAvG 33.88 0.00 0.00 32.42 0.00 32.21 33.60 34.36 33.78 34.17 33.89

AvFb 44.70 48.78 48.78 45.03 48.78 45.55 46.07 46.90 49.80 46.30 46.65

CBA 31.89 44.44 44.44 34.10 44.44 35.57 34.56 34.85 42.01 34.06 35.00

HIGGS: 16:1 AvAcc 57.67 94.12 94.12 57.24 94.12 61.44 60.88 53.16 71.95 54.55 55.13

MAvG 25.20 0.00 0.00 24.21 0.00 23.78 23.93 25.57 26.18 25.64 25.54

AvFb 42.30 49.38 49.38 41.37 49.38 42.81 42.57 40.57 48.36 41.27 41.46

CBA 32.49 47.06 47.06 32.12 47.06 34.47 34.17 29.95 40.85 30.75 31.08

IoT AvAcc 92.30 92.34 92.83 90.91 92.25 90.59 91.35 91.88 91.82 91.88 92.41

MAvG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AvFb 54.18 54.62 54.14 49.80 55.87 41.82 54.87 56.86 56.67 56.88 56.32

CBA 42.18 44.31 42.08 35.41 43.48 29.54 40.91 43.27 42.93 43.26 46.25

MIRAI AvAcc 89.88 89.89 89.89 89.87 89.89 90.38 89.88 89.88 89.88 89.88 89.86

MAvG 78.19 78.20 78.20 78.18 78.20 79.77 78.19 78.18 78.19 78.19 78.16

AvFb 89.43 89.44 89.44 89.42 89.44 87.16 89.42 89.42 89.42 89.42 89.41

CBA 74.55 74.57 74.57 74.54 74.57 77.83 74.55 74.54 74.55 74.55 74.52

Poker: 0 vs 2 AvAcc 56.38 91.32 91.32 57.05 91.32 53.57 55.49 51.67 57.26 51.81 52.25

MAvG 28.58 0.00 0.00 28.02 0.00 28.27 27.93 28.18 28.40 28.15 28.02

AvFb 43.38 49.07 49.07 43.17 49.07 41.36 42.54 41.07 43.61 41.11 41.21

CBA 33.25 45.66 45.66 33.59 45.66 31.53 32.64 30.35 33.77 30.43 30.68

Poker: 0 vs 3 AvAcc 53.34 95.96 95.96 55.17 95.96 64.65 59.76 51.78 56.91 52.53 53.83

MAvG 19.36 0.00 0.00 19.41 0.00 19.13 19.84 19.01 19.41 19.09 19.24

AvFb 36.68 49.58 49.58 37.57 49.58 41.47 39.98 35.71 38.40 36.12 36.84

CBA 28.81 47.98 47.98 29.81 47.98 34.92 32.35 27.93 30.75 28.34 29.06

Poker: 0 vs 4 AvAcc 73.05 99.23 99.23 70.75 99.23 80.08 84.94 69.03 66.73 70.16 69.53

MAvG 12.28 0.00 0.00 12.64 0.00 9.55 8.49 12.39 10.56 12.46 12.28

AvFb 42.04 49.92 49.92 41.21 49.92 44.26 45.21 40.30 38.35 40.85 40.47

CBA 37.36 49.62 49.62 36.21 49.62 40.71 43.13 35.31 34.00 35.90 35.56

Poker: 0 vs 5 AvAcc 61.16 99.60 99.60 64.46 99.60 71.16 71.43 59.90 62.31 61.08 63.18

MAvG 6.80 0.00 0.00 6.50 11.52 5.10 7.45 7.01 7.38 6.97 6.98

AvFb 34.28 49.96 49.96 35.71 50.11 38.40 39.25 33.75 35.01 34.30 35.29

CBA 30.85 49.80 49.80 32.49 49.93 35.79 36.06 30.21 31.45 30.81 31.87

Poker: 0 vs 6 AvAcc 78.69 99.72 99.72 65.91 99.72 75.05 66.05 59.91 70.06 61.88 63.69

MAvG 5.79 0.00 0.00 5.40 0.00 5.43 4.25 5.25 5.14 5.19 5.39

AvFb 41.94 49.97 49.97 36.09 49.97 40.24 35.74 33.26 37.94 34.17 35.07

CBA 39.59 49.86 49.86 33.14 49.86 37.74 33.16 30.12 35.22 31.11 32.03

Poker: 1 vs 2 AvAcc 51.13 89.87 89.87 53.05 89.87 61.23 57.24 52.16 60.17 51.78 52.36

MAvG 30.24 0.00 0.00 29.97 0.00 30.20 30.04 30.18 30.55 30.34 30.39

AvFb 41.96 48.90 48.90 42.59 48.90 45.72 44.34 42.37 45.79 42.33 42.62

CBA 30.78 44.94 44.94 31.95 44.94 37.12 34.58 31.42 36.50 31.20 31.57

Poker: 1 vs 3 AvAcc 53.38 95.24 95.24 55.58 95.24 59.98 62.62 52.58 59.94 53.00 53.45

MAvG 21.40 0.00 0.00 21.50 0.00 21.36 21.87 21.40 21.60 21.34 21.28

AvFb 37.94 49.51 49.51 39.01 49.51 40.67 42.39 37.56 41.07 37.72 37.88

CBA 29.26 47.62 47.62 30.48 47.62 32.90 34.43 28.82 32.91 29.04 29.28

Poker: 1 vs 4 AvAcc 68.29 99.09 99.09 63.78 99.09 69.98 98.25 61.60 64.87 62.69 63.53

MAvG 12.48 0.00 0.00 12.43 0.00 11.94 7.61 12.19 12.08 12.30 12.41

AvFb 39.99 49.91 49.91 37.89 49.91 40.43 50.22 36.75 38.22 37.31 37.77

CBA 34.99 49.54 49.54 32.67 49.54 35.81 49.63 31.54 33.21 32.11 32.54

Poker: 1 vs 5 AvAcc 57.04 99.53 99.53 59.41 99.53 61.85 60.94 57.00 58.39 58.71 59.58

MAvG 6.42 0.00 0.00 6.15 0.00 7.54 7.21 6.65 6.57 6.62 6.61

AvFb 32.22 49.95 49.95 33.25 49.95 34.86 34.32 32.27 32.91 33.08 33.49

CBA 28.77 49.77 49.77 29.96 49.77 31.25 30.77 28.76 29.46 29.62 30.06

Poker: 1 vs 6 AvAcc 81.85 99.66 99.66 61.75 99.66 72.01 56.74 57.65 76.20 59.10 60.42

MAvG 5.97 0.00 0.00 5.36 0.00 5.70 5.41 5.43 5.51 5.46 5.41

AvFb 43.37 49.97 49.97 34.16 49.97 38.95 31.79 32.23 40.78 32.93 33.54

CBA 41.21 49.83 49.83 31.07 49.83 36.24 28.55 29.01 38.34 29.74 30.40

SEER AvAcc 88.63 90.90 89.47 90.05 89.96 88.46 89.26 89.54 90.75 89.50 90.17

MAvG 34.56 0.00 0.00 34.84 38.99 21.18 37.49 38.21 41.09 38.12 36.85

AvFb 34.90 31.56 19.48 35.71 38.88 26.51 37.96 38.29 39.56 38.17 36.21

CBA 29.26 25.75 12.58 31.24 33.37 22.33 32.75 32.26 33.73 32.16 31.29

SSL Renegotiation AvAcc 83.45 83.46 83.46 83.49 83.46 92.47 83.46 83.46 83.46 83.46 83.47

MAvG 44.61 44.41 44.41 44.85 44.66 24.03 44.67 44.67 44.67 44.67 44.75

AvFb 70.30 70.02 70.01 70.61 70.35 50.08 70.37 70.37 70.37 70.37 70.47

CBA 51.38 51.33 51.33 51.48 51.40 49.31 51.40 51.40 51.40 51.40 51.43

SUSY: 4:1 AvAcc 73.41 79.15 80.00 73.84 82.86 70.92 77.25 74.38 77.62 73.79 74.29

MAvG 59.83 65.02 17.89 60.28 75.34 53.61 62.61 60.55 63.15 60.10 60.44

AvFb 67.89 69.00 47.62 68.30 62.66 61.03 68.29 68.30 68.71 68.07 68.22

CBA 57.69 66.89 40.00 58.21 56.00 55.28 63.59 59.01 64.11 58.19 58.90

SUSY: 8:1 AvAcc 77.05 88.94 88.89 74.30 89.31 73.79 81.28 74.43 81.39 74.16 74.91

MAvG 49.78 79.68 0.00 48.32 70.47 44.69 52.66 48.44 52.93 48.24 48.64

AvFb 64.60 49.18 48.78 63.69 60.77 59.98 65.41 63.80 65.65 63.62 63.94

CBA 52.83 44.79 44.44 50.15 56.62 49.05 57.46 50.27 57.64 50.01 50.72

SUSY: 16:1 AvAcc 78.56 94.12 94.12 74.92 93.82 76.22 84.98 75.52 84.74 74.71 75.37

MAvG 38.78 19.40 0.00 37.01 64.66 33.59 42.98 37.49 42.81 37.03 37.34

AvFb 60.31 49.40 49.38 58.31 59.44 55.38 62.99 58.86 62.95 58.31 58.70

CBA 47.63 47.08 47.06 44.85 56.87 44.94 53.22 45.35 52.99 44.72 45.21

SYN DOS AvAcc 70.49 79.39 79.39 83.63 70.51 95.65 99.70 70.46 70.46 70.46 99.63

MAvG 8.93 10.93 10.97 18.58 9.22 58.71 60.21 9.22 9.23 9.22 48.78

AvFb 39.36 44.23 44.25 48.08 39.49 58.11 61.29 39.46 39.47 39.46 60.58

CBA 35.62 40.27 40.27 44.75 35.64 56.23 60.32 35.62 35.62 35.62 60.08

Traffic AvAcc 76.86 78.77 78.56 76.43 79.10 77.04 77.84 76.91 78.99 76.79 77.04

MAvG 20.10 22.06 0.00 17.66 20.85 16.31 19.61 20.72 20.71 20.58 20.25

AvFb 18.06 21.64 9.14 15.77 21.14 16.10 20.07 18.66 19.54 18.46 16.89

CBA 14.52 17.67 3.77 13.32 18.49 13.21 17.32 14.77 15.54 14.51 12.98

Video Injection AvAcc 43.72 95.85 95.85 75.78 84.64 86.31 95.00 82.59 88.51 82.71 94.60

MAvG 16.25 0.00 0.00 37.80 41.77 48.68 66.13 40.04 47.86 40.17 64.62

AvFb 30.01 49.57 49.57 56.03 66.34 55.54 81.39 64.77 71.57 64.94 79.86

CBA 23.40 47.93 47.93 45.52 51.39 50.72 70.06 49.53 56.11 49.65 69.07
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Figure 5: The Bonferroni–Dunn test for comparison among examined oversampling

methods with respect to evaluation metric and used classifier.

4.4.2 Experiment 1: Oversampling Algorithms for Binary Big Imbal-

anced Data

Overview of learning difficulties. Binary big imbalanced data has well-defined

class roles, hence the learning difficulty comes from the imbalanced ratio combined

with the volume of each class and potential presence of instance-level difficulties, such

as borderline instances, subconcepts, multiple modalities, or class overlap. Further-

more, due to the distributed nature of the Spark system, an additional challenge may

arise when the minority class is significantly smaller (i.e., extreme imbalance ratio)

than the majority class. In such a case, the minority class will be further limited

in size by being distributed among multiple nodes, leading to potential problem of

learning from a small sample size. Therefore, oversampling methods are a natural

choice for tackling such problems, by overcoming limitations in minority class size in

each Spark node.

Informed vs standard oversampling. As discussed in previous sections, all the
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Figure 6: The relative run times and AvAvg scores for the different dataset groups,

classifiers and sampling methods.

proposed oversampling methods for Spark can be analyzed from the point of how

much information regarding class/instance distribution they use. Random Oversam-

pling is the extreme example of using no such information, SMOTE uses only the

neighborhood information in a basic way, while methods like CCR or RBO rely on

an extensive analysis of instance-level properties. While intuition suggests that in-

formed oversampling will always outperform standard approaches, our results show

that this is not always the case. Random oversampling is capable of outperforming

multiple informed variants, such as all SMOTE modifications based on clustering

or Gaussian spread data. This shows that not all of information about instances is

equally important when utilized on the Spark architecture. As Spark uses its own

data partitioning algorithm when creating data subsets for each node, the spatial

relationship among instances is affected. Thus, oversampling methods based on in-
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Figure 7: The relative run times and MAvG scores for the different dataset groups,

classifiers and sampling methods.

troducing instances within each cluster / Gaussian mode cannot work efficiently and

random oversampling can outperform them. However, oversampling methods that

use more advanced information regarding neighborhood of each instance display the

best possible performance. This proves that local information is much more useful to

big data oversampling than modality-based information for each class.

Comparison among informed oversampling methods. The four best perform-

ing informed oversampling methods, regardless of analyzed metric, are Borderline

SMOTE, Safe-level SMOTE, ADASYN, and CCR. All those methods use informa-

tion about local data difficulty factors, such as class overlapping or homogeneity of

neighborhood, to introduce new artificial instances. Differences in performance of

these algorithms on big binary datasets are small and depend on specific character-

istics of the considered data set. Borderline SMOTE performs best in cases when
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Figure 8: The relative run times and AvFb scores for the different dataset groups,

classifiers and sampling methods.

there is a high class overlapping and minority class needs to be reinforced around

the uncertainty region (i.e., decision boundary). Safe-level SMOTE performs best for

datasets where the disproportion between classes is the main source of learning dif-

ficulty. Safe-level SMOTE reinforces homogeneous regions of minority class, leading

to balancing in the instance quantity without affecting uncertainty regions (as new

instances are introduced in highly certain regions of minority class). ADASYN and

CCR offer excellent mechanisms for dealing with rare instances and outliers, hence

performing best on difficult datasets with high number of small subconcepts or atypi-

cal observations. CCR further augments its performance by cleaning the overlapping

regions from majority class observations, leading to excellent performance on small

disjuncts.

Impact of base classifier selection. Interestingly, all three base classifiers (Ran-
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Figure 9: The relative run times and CBA scores for the different dataset groups,

classifiers and sampling methods.

dom Forest, SVM, and Näıve Bayes) offer similar correlations on which oversampling

methods work the best. Random Forest can utilize random oversampling more effi-

ciently, as it can be combined with its ensemble structure to offer improved diversity.

Single-model classifiers (SVM and Näıve Bayes) benefit from using guided oversam-

pling much more significantly, as this leads to better separation margins or class

probability estimations. In summary, four guided oversampling methods highlighted

in the previous point (Borderline-SMOTE, Safe-level SMOTE, ADASYN, and CCR)

offer excellent and robust performance regardless of with which classifier they are

being paired.
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Figure 10: The distribution of metric scores for each sampling method and classifier

using the Binary Datasets with Discrete Features.

4.4.3 Experiment 2: Oversampling Algorithms for Multi-class Big Im-

balanced Data

Differences between binary and multi-class problems. Multi-class imbalanced

problems pose a variety of unique challenges to oversampling algorithms. Our software

package offers universal implementations of the discussed oversampling methods that

can work with binary and multi-class massive datasets. While there are oversampling

solutions dedicated specifically to multi-class problems, they usually are character-

ized by a prohibitive computational cost when dealing with big data (e.g., MC-RBO,

extension of RBO). All proposed algorithms have been adapted with one-vs-all ap-

proach, allowing them to leverage global and local data properties, without intra-class

relationships becoming a choking point. We can observe similar trends with binary

data, where informed oversampling approaches significantly outperformed other so-
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Figure 11: The distribution of metric scores for each sampling method and classifier

using the Binary Datasets with Continuous Features.

lutions, although the differences are even more pronounced. This shows that the

importance of guided oversampling becomes even more crucial when dealing with

multiple classes.

Role of informative oversampling. While most of the examined oversampling

algorithms behave similarly to their binary counterparts, we can see improvement in

the performance of Cluster SMOTE. This is the only global informative oversampling

that returns predictive accuracy like its local informative counterparts. We can ex-

plain this by the fact that in the case of multiple classes we are more likely to deal

with more complex problems, where modalities in each class are more pronounced.

Additionally, by using the one-vs-all approach, we create a super-class of majority in-

stances that consists of multiple joint classes. This scenario allows Cluster SMOTE to

create pairwise oversampling areas, detecting multiple potential decision boundaries.
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Figure 12: The distribution of metric scores for each sampling method and classifier

using the Mutli-class Datasets with Continuous Features.

While its performance is significantly better than in the binary case, local methods

such as Borderline SMOTE, ADASYN, and CCR are still the best performing ones.

This shows that the importance of local instance-level information is as important in

multi-class scenarios as it is in binary ones.

Behavior of base classifiers in multi-class problems. While in binary scenar-

ios, all three classifiers returned similar synergies with oversampling methods and we

can see that Random Forest and SVM behave differently from Naive Bayes. This

is because Random Forest is an explicit ensemble and SVM is an implicit ensem-

ble for multi-class problems (as we train them in one-vs-all mode). Therefore, those

compound classifiers are capable of better generalization over multiple skewed distri-

butions, leveraging the additional information provided by oversampling algorithms.

71



4.4.4 Experiment 3: Investigating Oversampling Trade-off Between Ac-

curacy and Time Complexity

When selecting an oversampling algorithm for a given big data problem, it is

important to realize the existence of a trade-off between accuracy and run time. We

believe that the end user should be able to chose any of the oversampling algorithms

present in our software package based on their needs and available resources. To

this end, we present the visualizations of the relationships between the analyzed

oversampling method accuracy (according to four metrics) and computational time

in Figures 6 - 9.

As shown in these results, the combination of data properties and the target

classifier may by the deciding factor when choosing a class balancing algorithm. For

example, Random Oversampling produced some of the best trade-offs for the Two-

Class datasets with the Random Forest classifier but did not perform as well for the

Multi-class datasets. In addition, it often performed quite poorly with the SVM and

Naive Bayes classifiers on all three dataset groups. Algorithms such as Borderline

SMOTE, Cluster SMOTE, Gaussian SMOTE and NRAS showed to have some of the

best accuracy and time trade-offs for certain dataset and classifier combinations but

no algorithm was the clear overall winner.

4.4.5 Experiment 4: Scalability of Oversampling Algorithms

In addition to the twelve methods presented so far, three other sampling al-

gorithms were also implemented: ANS, MWMOTE, RBO. As these methods have

shown competitive results in their original publications and received interested from

other researchers, they were added to our slate of oversampling methods. However,

during the implementation and initial testing of these methods, it became apparent
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Figure 13: Sampling times for increasing dataset sizes with five sampling methods on

the Covertype dataset.
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that their lack of scalability made them unsuitable for our main experiments.

To illustrate this issue, Figure 13 shows the running times for several small

subsets of the Covertype dataset with ANS, MWMOTE, RBO and two reference

methods of SMOTE and Safe Level SMOTE. Like our main experiments, these were

performed with 5-fold cross validation so in each run only 80% of the data was used for

oversampling. The three slower method took significantly longer than the reference

methods and required a log scale for the time axis in order to reasonably present

these results.

Using linear regression, the sampling times were estimated for using a dataset of

100,000 examples as shown in Table 8. Compared to standard SMOTE, the others

methods were significantly slower with the following approximate time increases: ANS

(15x), MWMOTE (40x), RBO (400x). While ANS and MWMOTE may be feasible

for 100,000 example datasets, it was not practicable for this projects as we used 5-fold

cross validation and 26 different datasets, resulting in 130 individual experiments per

sampling method/classifier combination.

Projected Sampling Times

SMOTE Safe Level SMOTE ANS MWMOTE RBO

116 359 1,718 4,744 44,540

Table 8: Projected sampling times in seconds for oversampling the Covtype dataset

with 100k examples.

74



4.5 Guidelines for Designing Oversampling Algorithms for Imbalanced

Big Data

4.5.1 Insight into Commonly Used Algorithmic Components

Each of the implemented oversampling methods were based on one or more com-

monly used algorithmic components. In this section, we provide guidelines on the

appropriateness of these components in distributed algorithms designed for process-

ing large datasets. Table 9 shows a list of the components present in each oversampling

method, sorted by approximate run time (fastest to slowest).

k-NN. Although the k -NN algorithm is included in many machine learning libraries,

it is not currently part of the official Spark MLlib package. For this reason, we have

used the efficient distributed implementation from spark-knn which is based on a

hybrid spill tree. Since k -NN has an approximate asymptotic complexly of O(n log n),

it is practical to be used for large datasets as shown in our results. However, including

multiple k -NN models can noticeably increase run time and should only be done when

truly necessary. In some cases, it may be possible to avoid multiple k -NNs by using

one model with a larger k value and filter the results for use in different sub-tasks.

k-Means. The k -Means clustering algorithm is part of Spark MLlib and is optimized

for distributed tasks making it straightforward to use. While k -Means has a higher

theoretical asymptotic complexity then k -NN, our results confirm that the Spark

MLlib implementation can run effectively in practice. When using k -Means as part

of an oversampling method, the optimal results and run time may be dependent on the

number of clusters and total iterations. Discovering these exact values may require

an expensive hyperparameter search.

Dependent Loop. A dependent loop occurs when each iteration requires results
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from a previous iteration, preventing trivial parallelism. While this approach can

work well in serial algorithms, it becomes problematic with distributed computing

and is incompatible with the MapReduce design. Ideally, MapReduce decomposes

tasks so that all independent work can be done in parallel. By adding a dependency

in a loop, MapReduce cannot break down these tasks further and so each loop must

be run in a serial manner. In cases where there are more CPUs than loops, a number

of these CPUs will go idle. If these loops are being run per training example, as it

is the case for a number of the presented algorithms, there is no guarantee that each

loop will take the same amount of time, potentially leading to significant bottlenecks.

These dependent loops should be avoided whenever possible as they limit scalability

and make run time less predictable.

Probability. Oversampling methods that use probability select examples based on

rank ordering. Like dependent loops, this method does not translate well from serial

to distributed environments. Probabilistic sampling requires the calculation of a

probability/likelihood score, sorting the values and indexing the resulting list for

example selection. With MapReduce, data is distributed across multiple computation

nodes and the probability based methods require collecting all of the results back to

the driver to ensure correct results which requires an expensive serial step.

Linear Regression. Like k -Means, Spark MLlib includes linear regression so its use

in oversampling methods is trivial. Although it is not prohibitively slow, including

linear regression does add to the execution time and is one of the reasons NRAS is

slower than similar algorithms.

Neighbors by Radius. Many of the neighborhood calculations done with over-

sampling algorithms only consider a fixed number of neighbors as done with a k -NN

search. However, several of the presented algorithms instead need to find neighbors
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Algorithmic Components Present in Oversampling Methods

Sampling Method kNN Count k-Means Dependent Loop Probability Linear Regression Neighbors by Radius ≥O(n2)

ADASYN 1 5 5 5 5 5 5

SMOTE 1 5 5 5 5 5 5

Gaussian SMOTE 1 5 5 5 5 5 5

SMOTE-D 1 5 5 3 5 5 5

NRAS 1 5 5 5 3 5 5

Cluster SMOTE 1 3 5 5 5 5 5

k -Means SMOTE 1 3 5 5 5 5 3

CCR 1 5 3 5 5 3 5

Safe Level SMOTE 2 5 5 5 5 5 5

Borderline SMOTE 2 5 5 5 5 5 5

ANS 3 5 3 5 5 3 5

MWMOTE 3 3 5 3 5 5 3

RBO 0 5 3 5 5 5 3

Table 9: A listing of high level algorithmic components present in each oversampling

method. The list is sorted by approximate running time, fastest to slowest.

within a radius. One downside of using a radius based search is that there is no limit

of how many neighbors may be returned. This can lead to potential bottlenecks with

computational time and memory use as each computational node may be processing

different amounts of data depending on the density of these radius based neighbor-

hoods. This approach should be avoided if possible but could be somewhat mitigated

by setting a hard limit on the number of neighbors to return.

O(n2) Complexity. Using any sub-components that have an asymptotic complexity

of O(n2) or worse should be avoided at all costs. While such methods may work for

small datasets, the lack of scalability makes them unsuitable for big data problems.

4.5.2 Design Choices and Future Directions for Big Data Oversampling

Algorithms.

Local over global data characteristics. Informative oversampling methods can

be divided into two groups: (i) ones utilizing global data characteristics; and (ii)

ones utilizing local data characteristics. Global oversampling algorithms are usually

based on finding modalities in data, such as subconcepts or underlying clusters. Lo-
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cal oversampling algorithms rely on analysis of the neighborhood of each minority

instance and using this information to guide the artificial instance generation and

placement. From our experimental study, we can see that global methods (such as

Cluster SMOTE) returned highly unsatisfactory performance, while local methods

were constantly among the best performing ones. We contribute this fact to the

way Spark architecture creates data subsets for each node, leading to decreased im-

portance of global and spatial data characteristics, while the local ones still hold.

Therefore, we recommend to focus on local instance-level difficulties when designing

novel oversampling algorithms for imbalanced big data.

Trade-off on instance-level characteristics analysis. While local instance-level

characteristics can be highly beneficial to the design of oversampling methods, there is

a plethora of information that can be considered here. The more detailed information

on instance neighborhoods, region homogeneity, or class overlap that is taken into con-

sideration, leading to a higher potential for effective generation of artificial instances.

However, extraction of such information over big data comes at the expense of a sig-

nificant computational cost. This can be seen with RBO that uses advanced analysis

of binary and multi-class potential generated by instances and classes to optimize

the oversampling process. While RBO returns excellent performance, its complexity

leads to a lack of scalability to big data, making it an unfeasible algorithm for Spark.

Therefore, we recommend utilizing low-complexity analysis of local data properties.

Even simple small neighborhood analysis or sketching of local distributions will lead

to better predictive accuracy, while still being scalable to massive datasets.

Potential in hybrid solutions. The experimental study presented in this paper,

as well as our previous works and other findings from the literature, point to the

superiority of oversampling to undersampling when handling imbalanced big data on
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the Spark architecture. These findings point to the fact that undersampling tends to

remove important instances (especially for multi-class problems) and that the con-

solidation of node-based undersampled data does not lead to good generalization

capabilities. However, one of the best performing methods considered in this study

(CCR) employs a form of undersampling / data cleaning by translating majority

observations. This allows us to conclude that while undersampling on its own may

deliver underwhelming results, it potentially should be considered as a component

for enhancing oversampling methods. Several works on small-scale datasets point out

to the usefulness of oversampling for cleaning uncertainty regions and this approach

can be effectively translated to big data scenarios. We recommend exploring the di-

rection of hybrid oversampling that leverages undersampling / data cleaning steps to

improve the empowerment of the minority classes. At the same time, we recommend

using undersampling that considers local data characteristics, as it returns much more

favorable results for the Spark architecture than random approach.

Challenging hyperparameter tuning. Another potential bottleneck for oversam-

pling methods lies in the difficulty of hyperparameter tuning for massive datasets.

While using either grid search or one of dedicated parameter tuning methods is possi-

ble on Spark, it relates to significant computational resource consumption. This can

be prohibitive, especially with on-demand computing using commercially available

Spark hardware. Let us again use RBO as an example – apart from its high com-

putational complexity, it has a significant number of hyperparameters to be tuned.

This is another potential choke point for deploying such an algorithm in real-world

applications. Other oversampling methods presented in this study use much fewer

parameters, making their tuning a more feasible task. We recommend designing over-

sampling algorithms for imbalanced big data with the smallest possible number of pa-

rameters (ideally non-parametric) or enhancing them with self-tuning solutions that
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can automatically adapt to the provided data without needing tedious user-guided

tuning.

4.6 Conclusions

In this work, we have presented a holistic view on imbalanced big data over-

sampling. We have shown that the problem of learning from binary and multi-class

skewed problems is highly pervasive in the big data domain, posing unique learning

difficulties for machine learning systems. Existing oversampling methods cannot be

directly utilized for high-performance architectures due to their specific computing

requirements. We have shown how to adapt 14 popular oversampling algorithms

to Spark architecture, making them suitable for high-performance distributed com-

puting. Even with these adaptations, we have observed that not all oversampling

methods translate well to big data problems and the complexity of some of them

becomes prohibitive and does not scale well with data set size. We identified cru-

cial components of modern oversampling algorithms and shown their impact on the

classification performance and time complexity. This allowed us to identify specific

oversampling components that translate well to high-performance distributed archi-

tectures and that have desired properties from the predictive performance viewpoint.

We have also created guidelines and future directions for designing novel oversampling

algorithms for imbalanced big data that can be adopted by the research community.

To facilitate future research and reproducibility in this domain, we have prepared

an efficient library for Spark with implementations of the discussed oversampling

methods.
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CHAPTER 5

MINORITY TYPE CONSIDERATIONS

Despite more than two decades of progress, learning from imbalanced data is still

considered as one of the contemporary challenges in machine learning. This has been

further complicated by the advent of the big data era, where popular algorithms ded-

icated to alleviating the class skew impact are no longer feasible due to the volume

of datasets. Additionally, most of existing algorithms focus on binary imbalanced

problems, where majority and minority classes are well-defined. Multi-class imbal-

anced data poses further challenges as the relationship between classes is much more

complex and simple decomposition into a number of binary problems leads to a sig-

nificant loss of information. In this paper, we propose the first compound framework

for dealing with multi-class big data problems, addressing at the same time the ex-

istence of multiple classes and high volumes of data. We propose to analyze the

instance-level difficulties in each class, leading to understanding what causes learning

difficulties. We embed this information in popular sampling algorithms which allows

for informative balancing of multiple classes. We propose an efficient implementation

of the discussed algorithm on Apache Spark, including a novel version of SMOTE

that overcomes spatial limitations in distributed environments of its predecessor. Ex-

tensive experimental study shows that using instance-level information significantly

improves learning from multi-class imbalanced big data [130].
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5.1 Oversampling for Multi-class Imbalanced Data on Spark

A popular approach to address class imbalanced is to either over or undersample

the dataset. Examples can be added or removed to make the size of minority classes

closer to the majority class. The simplest method is to undersample the majority

class as shown in Algorithm 17. Two popular methods of oversampling are Synthetic

Minority Over-sampling Technique (SMOTE) [127] and simple oversampling as shown

in Algorithms 16 and 18. Simple oversampling is performed by duplicating randomly

selected instances and adding them to the current dataset. In Spark, this is achieved

by using the sample method on a DataFrame, with or without replacement. Sampling

with replacement may be necessary to balance the classes if a minority class needs to

be more than doubled in size. The sampled instances are then joined to the existing

DataFrame to form the balanced dataset.

SMOTE is a more advance method of oversampling that creates new instances

from existing ones rather than simply adding duplicates. To create a new instance,

five random existing instances are chosen and their features are averaged creating

a new synthetic instance. Algorithm 16 shows a method in Spark to create a new

SMOTE instance.

Algorithm 16 Generate SMOTE instance

Ensure: Instances in DF belong to the same class
procedure: SMOTE(DF,ClassLabel)
fvs = Array[5]
for i = 1 to 5 do
index← Random.nextInt(DF.count)
instance← DF [index]
fvs[i]← instance.filter(featureV ector)

end for
transposed← fvsT

averages← transposed.map(rowSum/5)
smoteFeatureV ector ← averagesT

smoteInstance← {smoteFeatureV ector, ClassLabel}
EMIT smoteInstance
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5.2 Instance-level Difficulty in Multi-class Imbalanced Big Data

In this section, we discuss the importance of analyzing instance-level properties of

the minority class, the taxonomy behind evaluating the difficulty of a given instance,

and how to extend this taxonomy to multi-class problems. We also give details on

our proposal to directly incorporate the given taxonomy of instance-level difficulty

into previously discussed sampling methods for imbalanced big data.

5.2.1 Local Data Characteristics

While the disproportion in the number of instances among classes (imbalance

ratio) is often considered as the main challenge to be faced, it is actually not the

sole factor behind learning difficulties. Recent works showed that if one would have

well-separated classes, then even extreme imbalance ratio would not lead to a skewed

classifier [27]. This leads to a conclusion that other factors must be in play. The

new trend in imbalanced data lies in analyzing the instance-level difficulties [131] (or

instance hardness [132]) as a way of understanding what may cause classifiers to fail

[42]. Specific instances may pose a much higher challenge for a classifier and thus

hinder significantly the training procedure. Popular taxonomy divides instances that

may be present in a class into four distinct types [29]:

• Safe. These instances lie far away from the potential decision boundary and

usually form one or more dense clusters. They pose low difficulty to most of

classifiers and thus often can be omitted during preprocessing.

• Borderline. These instances lie close to the decision boundary and may overlap

to some degree with another class. They pose a significant difficulty, as incor-

rect sampling may lead to either increase in overlapping or removing minority

instances from important part of the decision space.
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• Rare. These instances form small disjuncts, often overlapping with another

class. They pose high difficulty, as one must deal with both class overlap and

small sample size, usually not sufficient to properly represent minority class in

this part of the decision space.

• Outliers. These instances are singular objects located far from the main dis-

tribution of the minority class. They may be either rare and atypical cases,

or noisy instances. Determining their nature requires a background knowledge

about the classification problem. In case of noisy instances, they should be

filtered out. In case of rare instances, they should be preserved and enhanced

in order to allow a classifier to capture this specific part of the minority class

distribution.

Example visualization of this taxonomy over a real-world dataset is presented in

Figure 14.

Safe Instances Borderline Instances

Rare Instances Instances

Figure 14: Instances of the first two labels in the UCI Wine dataset [74], using features

Magnesium and Color intensity. Minority type specific instances have black borders.

This taxonomy can be extended to a multi-class imbalanced scenario [11]. Using
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instance-level information can further improve the sampling approaches dedicated to

multi-class imbalanced data, especially when dealing with multiple classes overlap-

ping or multi-modal classes. Example visualization of multi-class extension of this

taxonomy is presented in Figure 15.

This taxonomy has not been used for imbalanced big data so far. We propose

to incorporate this approach into various data-level algorithms dedicated to Spark

architecture and multi-class problems. Using CPU clusters will allow us to analyze

the instance-level difficulty of very large datasets in significantly reduced amount of

time. Due to the nature of imbalanced big data, we envision that this additional

information will be highly useful to deal with class bias when dealing with millions

of instances.

5.2.2 Incorporating Local Data Characteristics into Oversampling

Correcting for class imbalance is often done by under- or oversampling but the

standard approaches do not take in account the quality of the instances to be sampled.

Here we propose a Spark implementation for class balancing using instance minority

types.

To calculate the minority class status of each existing instance we must first

perform All k -Nearest Neighbors (AkNN) with k set to five. The AkNN algorithm

performs k -NN on all instances while excluding the query points themselves from the

returned neighbors. Each instance is given a minority type label based on the number

of neighboring instances that belong to its own class. The resulting minority type

labels for each instance is stored as a DataFrame which can also be saved to disk

so it can be reused for future use. The AkNN calculations were generated using the

spark-knn Spark package [129].

Data preprocessing starts with the dataset filtered using a user specified combi-
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nation of minority types. There are fifteen valid combinations of the safe, borderline,

rare, and outlier types. For example, if the safe and rare types are chosen only

instances sharing those properties will be used and so the borderline and outlier in-

stances will be dropped. Choosing all types would not remove any instances leaving

the original dataset. Figure 15 shows an example of the UCI Wine dataset [74] filtered

using minority types and the resulting SMOTE oversampling.

After the filtering, each class is then oversampled to match the number of in-

stances of the majority class. The new oversampled instances are then unioned with

the filtered dataset which results in

number of classes ∗majority class count

total instances in the preprocessed dataset. This procedure is detailed in Algorithm

18.

5.3 Leveraging SMOTE for MapReduce Environments

Clustering can also be introduced to further tune instance selection for oversam-

pling. Even if minority types are used in oversampling, the indiscriminately sampled

instances could fall almost anywhere in the total feature space. This raises an issue

when using a method like SMOTE as a combination of disparate instances may result

in a synthetic instance that do not represent any original instances in the dataset.

First, all instances in a given class are clustered using k -Means. Then for each

new instance to be added, one of the clusters is randomly selected and SMOTE is

performed on that subset of the dataset. Unlike standard SMOTE, the instances

created are only based on localized regions of the dataset. This procedure is detailed

in Algorithm 19.

This approach also addresses the challenge of using SMOTE on distributed data.
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All Instances
All

 Instances Oversampled

Safe Instances
Safe

 Instances Oversampled

Safe and Borderline
Instances

Safe and Borderline
 Instances Oversampled

Borderline and Rare
Instances

Borderline and Rare
 Instances Oversampled

Figure 15: UCI Wine dataset [74], using features Alcohol and Malic acid, filtered by

minority class types.

As Spark partitions data over its processing nodes, there is no guarantee that each

partition preserves any spatial relationships. These resulting partitions may result

in new synthetic examples that are not representative of the global population and

perform much worse than non-distributed SMOTE. In addition, the quality of the

synthetic examples may very greatly between different runs and thus making the
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Random

Split

Clustering

Split

SMOTE

Examples

Figure 16: The impact of using clustering-based partitioning for SMOTE to maintain

spatial coherency among instances in each class for each node in Spark.

Algorithm 17 Perform majority class undersampling

procedure: MajorityClassUndersample(DF,NumberOfClasses, TargetCount)
sampledDataFrames← DataFrame[1 to NumberOfClasses]
for c = 1 to NumberOfClasses do
DF c ← DF.filter(x→ x.class == c)
if DF c.count > TargetCount then
sampledDataFrames[c]← DF c.sample(TargetCount)

else
sampledDataFrames[c]← DF c

end if
end for
EMIT sampledDataFrames.union()

final results dependent on how the data was distributed. Clustering with k -Means

forces the data to be partitioned spatially resulting in SMOTE using only localized

examples. The cluster variability is also lower when using k -Means compared to

random partitioning.
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Algorithm 18 Perform minority class oversampling

procedure: MinorityTypeResample(DF,MinorityTypes,
NumberOfClasses,MajorityClassCount)

DFmt ← DF.filter(x.minorityType ∈MinorityTypes)
for c = 1 to NumberOfClasses do
DF class ← DFmt.f ilter(x→ x.class == c)
instancesToAdd← (1 to MajorityClassCount − DF class.count)
DF smote ← instancesToAdd.map(x→SMOTE(DF class, c))
DFmt ← DFmt.join(DF smote)

end for
EMIT DFmt

Algorithm 19 Perform minority class type SMOTE oversampling within clusters

procedure: MinorityTypeSMOTEClusters(DF, k,
MinorityTypes,NumberOfClasses,
MajorityClassCount)

DFmt ← DF.filter(x.instanceType ∈MinorityTypes)
for c = 1 to NumberOfClasses do
DF class ← DFmt.f ilter(x→ x.class == c)
classClusters < clusterID,DF clusterID >← kMeans(DF class, k)
instancesToAdd← (1 to MajorityClassCount − DF class.count)
DF smote ← instancesToAdd.map(x→SMOTE(classClusters[randomID], c))
DFmt ← DFmt.join(DF smote)

end for
EMIT DFmt

5.4 Experimental Study

This experimental study was carefully designed in order to answer the following

research questions:

• RQ1: What is the most effective sampling solution for multi-class imbalanced

big data when used in the Spark environment?

• RQ2: Does modifying sampling methods to take into account the instance-level

difficulty types leads to a significant improvement in achieved predictive power?

• RQ3: Does the proposed clustering-based partitioning of data in each Spark

node improve the performance of the SMOTE algorithm?
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In the following section, we present the details of the used benchmarks, experi-

mental set-up, as well as show obtained results and their discussion.

5.4.1 Dataset Benchmarks

In order to evaluate our proposed framework for handling multi-class imbalanced

big data with Spark, we have selected five diverse real-world benchmark datasets.

They are characterized by a large volume (500k - 3M instances), varied size of feature

space (5 - 115 features), and high number of classes (7-55). Details of used datasets,

together with their composition with respect to four instance difficulty levels, are

depicted in Table 10.

5.4.2 Set-up

Classifiers. We have used two popular classifiers that are provided in Spark en-

vironment - Random Forest and Naive Bayes. This allows us to evaluate behavior

of examined sampling methods with both single and ensemble classifiers, giving us

insight on their areas of usefulness for such families of models.

Parameters of methods. Random Forest used 100 trees with maximum depth =

20.

Adaptation to multi-class problems. This is the first effort to propose algorithms

for multi-class imbalanced big data on Spark. Both of the considered classifiers (Ran-

dom Forest and Naive Bayes) are capable of handling multi-class problems. Addi-

tionally, we propose our multi-class adaptations of SMOTE, under- and oversampling,

where each class is treated individually and sampled to a given size.

Training and testing. We have used a stratified 10-fold cross validation in order

to maintain the original class distribution among the folds.

Evaluation metrics. In order to properly evaluate the performance of classifiers on
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Table 10: Details about multi-class imbalanced big datasets used in experimental

Dataset Instances Features Classes Class distribution Safe[%] Borderline[%] Rare[%] Outliers[%]

covtype 581,012 54 7 Class 1 211840 84.97 10.43 3.03 1.57
Class 2 283301 87.62 9.33 2.08 0.97
Class 3 35754 80.81 13.96 3.41 1.82
Class 4 2747 56.86 25.48 9.79 7.86
Class 5 9493 60.32 25.18 8.57 5.93
Class 6 17367 65.80 23.40 6.85 3.94
Class 7 20510 87.25 8.37 2.85 1.54

traffic 1,378,663 26 7 Class 1 163473 22.35 32.59 22.96 22.10
Class 2 214173 25.47 31.73 21.93 20.88
Class 3 275622 34.96 32.68 17.81 14.55
Class 4 343133 39.47 33.74 16.05 10.74
Class 5 157710 24.75 32.21 21.87 21.17
Class 6 179367 27.08 35.69 20.68 16.55
Class 7 45185 22.85 19.79 19.33 38.03

seer 2,532,629 11 10 Class 1 396140 50.53 26.83 9.90 12.75
Class 2 567055 79.01 14.12 4.07 2.80
Class 3 241330 17.91 31.69 23.15 27.25
Class 4 528648 60.71 28.71 6.11 4.48
Class 5 135436 37.15 18.31 16.56 27.98
Class 6 137908 58.65 29.12 6.16 6.06
Class 7 100481 1.25 15.92 28.22 54.60
Class 8 110411 26.39 20.59 23.27 29.75
Class 9 166217 46.04 30.77 11.81 11.38
Class 10 149003 33.03 38.15 16.50 12.33

sensors 2,219,803 5 55 Class 1 43039 53.47 28.28 11.15 7.10
Class 2 46915 71.04 19.21 5.95 3.80
Class 3 46631 55.52 29.91 9.43 5.14
Class 4 43790 65.86 23.22 6.97 3.95
Class 6 35654 62.37 21.71 9.07 6.85
Class 7 55302 64.51 21.62 8.70 5.17
Class 8 15810 32.68 37.25 17.45 12.61
Class 9 45210 63.11 23.23 8.25 5.42
Class 10 47120 54.23 27.79 10.76 7.22
Class 11 41832 51.37 28.90 11.78 7.95

... ... ... ... ... ...
Class 47 56848 59.47 22.17 11.62 6.75
Class 48 58210 64.88 20.22 8.96 5.94
Class 49 34800 55.86 25.49 10.57 8.08
Class 50 15737 35.75 35.21 16.56 12.48
Class 51 42285 50.17 27.39 12.91 9.52
Class 52 34058 52.81 26.84 12.43 7.92
Class 53 25582 27.89 36.90 19.12 16.10
Class 54 28748 33.06 36.84 17.07 13.03
Class 55 2850 72.39 12.35 6.49 8.77
Class 56 2372 81.58 11.68 4.30 2.45
Class 58 4497 89.53 7.69 1.71 1.07

iot 3,000,000 115 11 Class 1 215643 99.90 0.06 0.02 0.02
Class 2 275258 99.25 0.56 0.14 0.05
Class 3 230494 99.96 0.02 0.01 0.00
Class 4 313359 99.97 0.01 0.01 0.01
Class 5 527165 99.69 0.24 0.05 0.02
Class 6 224499 99.84 0.11 0.04 0.02
Class 7 219925 99.96 0.03 0.01 0.00
Class 8 111940 99.93 0.06 0.01 0.00
Class 9 109278 99.95 0.03 0.01 0.01
Class 10 367388 99.99 0.01 0.00 0.00
Class 11 405051 99.98 0.02 0.00 0.00

imbalanced domains, skew-insensitive metrics are required. As multi-class imbalanced

problems were not popular until recently among researchers, there is a lack of uniform
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approach to which measures should be considered as a standard. In order to gain an

in-depth insight into the performance of analyzed classifiers we have used the following

nine popular metrics for multi-class imbalanced data:

AvAcc =
1

C

C∑
i=1

tpi + tni
tpi + tni + fpi + fni

RecM =
1

C

C∑
i=1

recalli

PrecM =
1

C

C∑
i=1

precisioni

RecU =
C∑
i=1

tpi

/ C∑
i=1

ti

PrecU =
C∑
i=1

tpi

/ C∑
i=1

pi

FβM =
(1 + β)2 · PrecM ·RecM
β2 · PrecM +RecM

Fβµ =
(1 + β)2 · Precµ ·Recµ
β2 · Precµ +Recµ

AvFβ =
1

C

C∑
i=1

(1 + β2) · precisioni · recalli
β2 · precisioni + recalli

CBA =
1

C

C∑
i=1

mati,i

max(
C∑
j=1

mati,j,
C∑
j=1

matj,i)

Statistical analysis of results. We have used a 10-fold cross validation F-test with

confidence threshold α = 0.05 to check if the obtained differences between algorithms

are statistically significant.

Used Spark architecture. All experiments were performed in Spark environment

with 32 computing nodes provided by Amazon Web Services.
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5.4.3 Results and Discussion

What multi-class sampling method is most effective one for Spark (RQ1)?

Tables 11 and 12 present obtained results for three evaluated multi-class sampling

methods for Random Forest and Naive Bayes classifiers respectively. For both of

these classifiers we can see similar trends - random oversampling performs better

than random undersampling and SMOTE. This confirms the observations for binary

imbalanced data on Spark reported in [84], where authors discussed the superiority

of random oversampling. It is very interesting to see that SMOTE returns inferior

performance, which is not typical for smaller-scale imbalanced datasets [27]. There-

fore, there must be some additional factors specific only to the Spark environment

that negatively impacts SMOTE. We will discuss this further when answering RQ3.

Does incorporating information about instance-level difficulties improve

sampling (RQ2)? Tables 11 and 12 present results for enhanced versions of exam-

ined sampling methods (denoted with ”+”) that incorporate the information about

instance types in each class. Furthermore, Figure ?? depicts the number of times

when the enhanced sampling method was statistically significantly better than its

basic counterpart according to 10 fold CV F-test. We can see that for vast major-

ity of cases including the instance-level information leads to a significantly better

sampling of multi-class imbalanced big data, regardless of the sampling method em-

ployed. This is proof that imbalance ratio is not the sole reason behind learning

difficulties in multi-class imbalanced big data. When dealing with such large-scale

and difficult problems additional information regarding properties of each class leads

to a significantly better alleviation of skewed distributions.

Figures 18 and 19 depict relationships between sampling various combinations

of instance types in each class and performance of the proposed informed sampling
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to standard sampling and no sampling. Here we can clearly see that practically for

every dataset there exist at least one combination of instance types that leads to

improvements over uniformly sampling all instances. Random Forest benefits more

from using our informed sampling than Naive Bayes which can be explained because

the informed sampling can be an efficient tool for creating more diverse ensembles.

This can then lead to creating more accurate base trees within Random Forest without

sacrificing diversity or robustness of the ensemble.

Does clustering-based partitioning in Spark nodes improve SMOTE per-

formance (RQ3)? As mentioned in RQ1, SMOTE returned highly unsatisfactory

performance in the Spark environment. This is proof to our claims that SMOTE is not

designed for MapReduce environments, as they do not maintain the spatial coherence

of instances in each node. Tables 11 and 12 present results of our improved version of

SMOTE that uses clustering-based partitioning of each class within each computing

node. This way we ensure that new instances are created within spatially coherent

subconcepts of each class and adapt to new distributions of classes in each Spark

node. Our experiments conform that this approach leads to significant improvements

to SMOTE algorithm, allowing it to outperform both random under- and oversam-

pling. Furthermore, when combined with instance-level difficulty information, this

variation of SMOTE is single best sampling method for multi-class imbalanced big

data on Spark.
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Table 11: Random Forest classification results using nine multi-class metrics.

Dataset None Undersample Undersample+ Oversample Oversample+ SMOTE SMOTE+ SMOTE Clusters SMOTE Clusters+

Random Forest - AvAcc

covtype 62.95 65.11 68.99 68.67 69.51 66.99 70.12 66.86 68.25
traffic 80.34 80.00 80.72 80.05 80.60 80.35 80.71 80.50 81.06
seer 92.46 91.09 92.55 91.08 92.33 92.41 92.49 92.52 92.83

sensors 94.90 94.92 94.94 94.93 94.98 94.93 94.97 94.92 94.97
iot 98.52 99.24 99.31 98.38 99.21 98.01 98.34 99.42 99.41

Random Forest - RecM

covtype 7.53 17.55 21.88 16.63 21.93 14.36 19.67 14.92 19.48
traffic 31.66 31.20 32.33 31.58 33.09 26.96 28.57 29.24 30.20
seer 57.52 53.41 56.67 53.40 59.32 54.59 56.83 55.31 58.41

sensors 1.03 1.81 2.62 1.55 2.80 1.48 2.71 1.79 2.45
iot 94.83 94.56 95.40 91.98 94.79 91.48 92.83 95.73 96.36

Random Forest - Recu

covtype 0.00 0.00 0.00 0.00 0.00 8.73 10.61 8.27 9.23
traffic 21.92 30.47 32.44 30.56 32.12 25.55 27.76 28.68 30.41
seer 42.66 51.91 52.87 51.85 52.80 45.43 47.58 52.87 53.73

sensors 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
iot 88.79 95.17 95.97 90.27 95.00 87.79 89.82 96.11 96.09

Random Forest - PrecM

covtype 24.47 10.08 16.20 9.44 14.81 23.34 27.72 19.15 22.77
traffic 31.18 30.01 32.54 30.18 32.10 31.24 32.49 31.74 33.72
seer 62.32 55.44 62.76 55.39 61.67 62.03 62.45 62.62 64.14

sensors 1.79 2.62 2.57 2.74 2.84 2.33 2.56 2.62 3.11
iot 91.84 95.83 96.20 91.09 95.65 89.08 90.87 96.82 96.77

Random Forest - Precu

covtype 18.09 6.47 12.50 6.39 12.33 15.68 17.67 11.60 15.28
traffic 31.18 30.01 32.54 30.18 32.10 31.24 32.49 31.74 33.72
seer 62.32 55.44 62.76 55.39 61.67 62.03 62.45 62.62 64.14

sensors 1.79 2.62 2.55 2.75 2.76 2.31 2.57 2.63 3.12
iot 91.84 95.83 96.20 91.09 95.65 89.08 90.87 96.82 96.77

Random Forest - FbM

covtype 2.25 3.62 6.23 4.11 5.75 9.46 11.27 9.08 10.00
traffic 23.35 30.61 32.41 30.76 32.17 25.82 27.91 28.70 30.09
seer 44.99 52.20 53.29 52.15 53.04 47.00 48.53 53.15 54.24

sensors 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
iot 89.94 95.05 95.86 90.60 94.93 88.51 89.93 96.03 96.07

Random Forest - Fbu

covtype 18.90 6.95 12.83 6.75 12.72 16.77 18.94 12.59 16.33
traffic 31.18 30.01 32.54 30.18 32.10 31.24 32.49 31.74 33.72
seer 62.32 55.44 62.76 55.39 61.67 62.03 62.45 62.62 64.14

sensors 1.79 2.62 2.56 2.75 2.78 2.32 2.57 2.63 3.12
iot 91.84 95.83 96.20 91.09 95.65 89.08 90.87 96.82 96.77

Random Forest - AvFb

covtype 5.38 6.18 9.37 6.87 9.73 8.78 10.79 8.67 9.41
traffic 19.76 28.87 31.28 29.00 30.76 24.95 26.91 28.02 29.44
seer 41.96 49.35 52.30 49.28 50.74 45.12 47.05 51.42 52.58

sensors 1.13 1.65 1.74 1.65 1.69 1.55 1.90 1.63 1.80
iot 89.13 94.82 95.65 89.71 94.81 87.38 89.58 95.95 95.98

Random Forest - CBA

covtype 3.33 5.56 7.60 6.24 7.93 7.23 9.55 7.76 8.42
traffic 13.86 22.86 26.63 22.74 26.69 20.52 23.18 23.43 26.16
seer 34.39 41.37 47.60 41.31 45.92 38.54 41.67 44.38 45.67

sensors 0.78 1.09 1.09 1.00 0.99 1.00 1.41 0.82 1.09
iot 84.31 91.12 91.90 84.02 91.81 80.64 86.65 93.54 94.19
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Table 12: Naive Bayes classification results using nine multi-class metrics.

Dataset None Undersample Undersample+ Oversample Oversample+ SMOTE SMOTE+ SMOTE Clusters SMOTE Clusters+

Naive Bayes - AvAcc

covtype 69.08 64.77 65.15 64.92 65.45 64.94 65.45 65.11 65.29
traffic 78.97 75.24 75.48 75.32 75.60 75.39 75.67 77.54 78.00
seer 91.04 89.16 89.57 89.22 89.57 89.23 89.58 89.78 89.84

sensors 94.88 94.88 94.90 94.89 94.92 94.88 94.91 94.91 95.16
iot 92.93 91.95 92.03 92.06 92.11 92.09 92.09 92.33 92.34

Naive Bayes - RecM

covtype 3.16 1.52 2.19 1.52 2.27 1.52 2.46 1.79 2.23
traffic 27.23 23.55 23.07 23.03 23.44 23.04 23.33 22.97 23.45
seer 39.65 45.17 45.52 45.33 45.59 45.36 45.56 45.63 46.01

sensors 0.04 0.58 0.91 1.33 1.54 1.39 2.51 2.69 3.71
iot 61.44 60.13 60.15 60.20 60.21 60.21 60.20 60.49 61.73

Naive Bayes - Recu

covtype 1.65 2.02 5.92 2.07 4.74 2.09 4.73 2.60 3.06
traffic 14.79 19.36 19.58 19.32 19.46 19.36 19.43 21.57 22.03
seer 32.37 39.52 39.58 39.59 39.78 39.62 39.74 40.17 40.41

sensors 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
iot 58.47 62.38 62.61 62.68 62.82 62.77 62.77 60.72 60.76

Naive Bayes - PrecM

covtype 1.05 1.67 3.21 1.76 2.53 1.77 2.81 2.27 3.35
traffic 26.40 13.34 14.17 13.61 14.59 13.87 14.86 21.39 23.01
seer 55.22 45.80 47.84 46.11 47.86 46.16 47.92 48.88 49.20

sensors 1.46 1.46 2.02 1.84 2.05 1.55 1.74 2.20 2.39
iot 61.11 55.73 56.19 56.31 56.60 56.50 56.50 57.83 57.86

Naive Bayes - Precu

covtype 0.22 0.92 2.78 0.95 2.13 0.95 2.40 1.33 2.88
traffic 26.40 13.34 14.17 13.61 14.59 13.87 14.86 21.39 23.01
seer 55.22 45.80 47.84 46.11 47.86 46.16 47.92 48.88 49.20

sensors 1.46 1.47 2.02 1.84 2.05 1.56 1.74 2.21 2.39
iot 61.11 55.73 56.19 56.31 56.60 56.50 56.50 57.83 57.86

Naive Bayes - FbM

covtype 1.76 1.82 4.22 1.85 3.41 1.88 3.53 2.31 2.60
traffic 16.27 20.07 20.09 19.96 19.95 20.00 19.91 21.83 22.10
seer 33.61 40.53 40.56 40.62 40.82 40.65 40.78 41.16 41.37

sensors 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
iot 59.04 61.92 62.10 62.17 62.27 62.24 62.24 59.72 59.79

Naive Bayes - Fbu

covtype 0.26 1.01 2.85 1.04 2.20 1.04 2.48 1.45 2.93
traffic 26.40 13.34 14.17 13.61 14.59 13.87 14.86 21.39 23.01
seer 55.22 45.80 47.84 46.11 47.86 46.16 47.92 48.88 49.20

sensors 1.46 1.47 2.02 1.84 2.05 1.55 1.74 2.21 2.39
iot 61.11 55.73 56.19 56.31 56.60 56.50 56.50 57.83 57.86

Naive Bayes - AvFb

covtype 1.58 1.12 2.57 1.15 2.02 1.16 2.29 1.43 1.97
traffic 10.47 12.32 13.24 12.44 13.17 12.62 13.23 19.30 20.51
seer 30.81 37.83 38.52 37.93 38.55 37.98 38.52 38.75 39.22

sensors 0.17 0.68 0.89 0.89 1.16 0.82 1.07 1.09 1.36
iot 54.40 57.32 57.66 57.73 57.94 57.86 57.87 56.27 56.32

Naive Bayes - CBA

covtype 1.41 0.56 1.08 0.57 1.03 0.58 1.17 0.71 1.07
traffic 5.05 9.87 10.67 10.02 10.40 10.23 10.46 15.69 17.31
seer 23.44 31.85 33.80 32.02 33.72 32.06 33.65 33.50 34.35

sensors 0.04 0.35 0.44 0.49 0.61 0.52 0.65 0.66 0.82
iot 42.25 43.60 44.04 44.09 44.37 44.26 44.28 45.03 45.08
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Figure 18: Relationship between various combinations of class instance types and the

performance of sampling algorithms working on these combinations. Random Forest

used as a base classifiers and results presented with the respect to CBA [%] metric.
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Figure 19: Relationship between various combinations of class instance types and

the performance of sampling algorithms working on these combinations. Naive Bayes

used as a base classifiers and results presented with the respect to CBA [%] metric.

5.5 Conclusion

Multi-class imbalance presents significant challenges extending beyond problems

encountered in two-class skewed problems. When further combined with a mas-

sive volume of data, we encounter a highly demanding area that has not yet been

properly addressed by the research community. In this paper we have proposed the

first comprehensive framework for learning from multi-class imbalanced big data on

Spark. Not only we proposed efficient implementations of multi-class sampling meth-

ods (SMOTE, under- and oversampling) in Scala language, but further augmented

them with two important extension: (i) informative sampling; and (ii) novel par-

titioning for SMOTE in Spark nodes. The former included a thorough analysis of
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instance-level difficulties and using a taxonomy of four difficulty types to label in-

stances in each class. This was used to perform a selective sampling that focused on

chosen types of instances, enhancing their presence in balanced datasets. The latter

proposed a clustering-based data partitioning in each Spark node that alleviated the

problem of a lack of spatial coherence among instances from each class due to random

data splitting among nodes. This way we were able to leverage SMOTE in Spark,

reducing its chances to create erroneous artificial instances.

Extensive experimental study showed that using information about instance-level

difficulties leads to a significant improvement for all considered sampling methods, as

they can focus on enhancing the presence of most relevant instances for each class.

The proposed clustering-based improvement to SMOTE also led to significant gains

in predictive power, making it more suitable for distributed environments.

In our future works, we plan to investigate meta-learning approaches for auto-

matic selection of which combinations of instance types should be chosen for sampling

for each class.
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CHAPTER 6

BAGGING USING INSTANCE-LEVEL DIFFICULTY FOR

MULTI-CLASS IMBALANCED BIG DATA CLASSIFICATION ON

SPARK

Most machine learning methods work under the assumption that classes have a

roughly balanced number of instances. However, in many real-life problems we may

have some types of instances appearing predominantly more frequently than the oth-

ers which causes a bias towards the majority class during classifier training. This

becomes even more challenging when dealing with multiple classes, where relation-

ships between them are not easily defined. Learning from multi-class imbalanced data

has not been widely considered in the context of big data mining, despite the fact

that this is a learning difficulty frequently appearing in this domain. In this paper,

we address this challenge by proposing a comprehensive ensemble-based framework.

We propose to analyze each class to extract instance-level characteristics describing

their difficulty levels. We embed this information into the existing UnderBagging

framework. Our ensemble samples instances with probabilities proportional to their

difficulty levels. This allows us to focus the learning process on the most difficult

instances, better capturing the properties of multi-class imbalanced problems. We

implemented our framework on Apache Spark to allow for high-performance comput-

ing over big data sets. This experimental study shows that taking into account the

instance-level difficulty leads to training of significantly more accurate ensembles.
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6.1 Bagging with Instance-level Difficulty

In this section, we will present the details of our proposed ensemble framework

for multi-class imbalanced big data classification. In the following sections, we will de-

scribe details on how to combine ensemble learning with information about instance-

level difficulty to form our proposed algorithm UnderBagging+, as well as how to

implement our framework on Apache Spark for high-performance computing.

6.1.1 Combining UnderBagging with Instance-level Difficulty

Bagging-based algorithms are very popular in imbalanced domains. Many studies

show that they are especially efficient when combined with undersampling in each

bag, for both two-class [133] and multi-class [36] problems. However, all existing

algorithms based on the idea of UnderBagging assume that all instances in each

class are equally important. We propose to include information about instance-level

characteristics into the undersampling process conducted in each bag. So in order to

do so, we need a way of calculating the difficulty of each instance. This is usually

done by analyzing the instance neighborhood and assigning a given level based on

its uniformness [134]. The more contaminated the neighborhood with instances from

other classes, the higher difficulty level is assigned to analyzed instance. One of four

labels (safe / borderline / rare / outlier) is selected and this information is further

used by sampling or the learning algorithm.

Calculating instance-level difficulty. Previous works used a discrete approach by

either selecting or removing all instances with a given difficulty label from the training

set. This required a time-consuming manual tuning of all possible combinations of

instance types. In this work, we propose to use a probabilistic approach, where the

difficulty of each instance will affect the chances of it being selected for a given bag. In
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order to do so, let us define the function for calculating the difficulty of each instance

based on the number of neighbors from the same class:

ID(x, k) =

∑k
i=1 xi ∈ kNN(x) ∧ label(xi) 6= label(x)

k
, (6.1)

where k is the number of neighbors used for the difficulty analysis and kNN stands

for k nearest neighbors. This function takes values in [0, 1] and assigns higher values

to instances that are in a more contaminated neighborhood (i.e., higher number of

neighbors originating from another classes).

Modification of instance selection probability for UnderBagging. Having

established a way to calculate the instance difficulty, we must utilize it in a form of a

selection likelihood during the undersampling in each bag. As we deal with a multi-

class problem, we must calculate the likelihood of each m-th class independently,

in order to conduct our proposed instance difficulty-based undersampling on each

of them. The higher the difficulty of a given instance, the more valuable it is to a

classifier, as it represents a region where bias towards the majority class may occur.

Therefore, we want to enhance the importance of difficult instances during the training

phase. We achieve this by having a higher likelihood of difficult instances to be

selected in each bag:

fm(x) =
1

nm
+ ID(x, k), (6.2)

where nm is the number of instances in m-th class. Using this approach, we increase

the likeliness of preserving difficult instances in each bag. At the same time, we give

chance for safe instances to be selected, achieving a mix of different types of instances.

This should lead to the creation of a more diverse set of classifiers as compared to

previous works that suggested to discard the entire set of a given instance type.
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The likelihood is then transformed into a normalized probability function for

selecting a given instance in m-th class:

pm(x) =
fm(x)∑nm

i=1 fm(x)
. (6.3)

This normalization ensures that the proposed probability function pm is a proper

probabilistic distribution. This is necessary for using it during Bagging instance

selection when choosing with replacement.

Other characteristics of UnderBagging+. The proposed model differs from ex-

isting Bagging-based solutions for imbalanced data by modifying its sampling prob-

ability according to instance difficulty level and by working directly on multi-class

problems. The size of each bag is defined as a user-based parameter, as there ex-

ists two approaches to this issue: (i) selecting the bag size equal to the size of the

class with lowest number of instances; and (ii) selecting the bag size smaller than

the size of the class with lowest number of instances. As for the prediction phase,

UnderBagging+ uses a standard majority voting scheme.

6.1.2 Implementation on Apache Spark

UnderBagging+ was developed to use in-depth information about instances in

each class. In order to make it applicable to massive imbalanced datasets, we propose

an efficient implementation in the Apache Spark environment.

Undersampling on Spark. The proposed modified undersampling that takes into

account the instance-level difficulty is the backbone of our system. It will be exe-

cuted by each worker on each node multiple times to form base classifiers for the

UnderBagging+ ensemble. Additionally, it must work on each class independently

and take as an input parameter the size of each class after undersampling procedure.
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Algorithm 20 Perform target class undersampling

procedure: TargetClassUndersample(DF,NumOfClasses, TargetCount)
sampledDataFrames← DataFrame[0 to c]
for c = 1 to NumberOfClasses do
DF c ← DF.filter(x→ x.class == c)
if DF c.count() > TargetCount then
sampledDataFramesc ← DF c.sample(TargetCount)

else
sampledDataFramesc ← DF c

end if
end for
return sampledDataFrames.union()

We have written an efficient undersampling code in Scala that takes advantage of

the Spark architecture, in order to offer scalability to massive datasets. Additionally,

as UnderBagging+ uses sampling with replacement, we join the selected instances

into a DataFrame structure to form a balanced dataset. Details of the proposed

undersampling implementation are given in a pseudocode form in Algorithm 1.

UnderBagging+ on Spark. A separate UnderBagging+ ensemble is constructed in

each node of the Spark cluster and then intermediate results from each ensemble are

combined during reduce phase to give a final model. Each node will already obtain

a subset of data from a given map. Therefore, the calculation of instance difficulties

according to Eq. 6.1 is done in each node independently, in order to capture local data

characteristics. This leads to the creation of locally specialized classifiers in each node

and benefits the overall diversity of the proposed UnderBagging+ architecture. As

the instance difficulty calculation requires an analysis of the neighborhood of each

instance, we use an efficient k-NN implementation from spark-knn package.

6.2 Experimental Study

In order to evaluate the effectiveness of UnderBagging+, we have designed an

in-depth experimental study that aims at answering the following research questions:
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• RQ1: Does UnderBagging+ display better performance than existing methods

for multi-class imbalanced big data available in Spark?

• RQ2: Does modification of sampling used in UnderBagging+ lead to improved

results over standard Bagging?

• RQ3: How does the improved sampling method influence the size and diversity

of UnderBagging+?

In the following section, we will present the experimental set-up, obtained results,

as well as discuss them.

6.2.1 Data Benchmarks

Learning from imbalanced big data suffers from the lack of proper benchmark

repositories. While there are a couple of popularly used large-scale two-class imbal-

anced datasets [135], multi-class imbalanced big datasets are still not standardized

or widely available. For the purpose of this study we have selected and prepared five

real-world datasets that have the following important properties: (i) are originally

multi-class; (ii) have a large volume; and (iii) are characterized by a significant im-

balance among classes and various data-level difficulties. Their details are given in

Table 10. Please note that we have calculated the ratios of different types of instances

in each class using all data. However, during actual experiments the instance-level

difficulty is calculated only using the training data and independently in each com-

putational node of the Spark cluster. Therefore, we report global properties of each

benchmark, but runtime local characteristics may differ.
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6.2.2 Set-up

In this section we give details regarding the experimental study set-up and pa-

rameters.

Reference methods. As there is practically no work done on multi-class imbalanced

data classification with Spark (see [27]), we adapted existing methods dedicated to

two-class problems. We compare UnderBagging+ with the standard version of Un-

derBagging, as well as Random Forest with both under- and oversampling, adapted

from [84]. Finally, we use standard CART tree with both under- and oversampling

as a counterpart to ensemble methods.

Adaptation to multi-class problems. As mentioned above, there are no available

methods for learning from multi-class imbalanced data on Spark. However, both

Random Forest and CART are capable of handling multi-class problems. We extended

them with our multi-class adaptations of under- and oversampling, where each class

is treated individually and sampled to a given size.

Parameters. We perform parameter selection for each classifier using internal 3-

fold cross-validation on training data. Each ensemble uses CART as a base classi-

fier. Each ensemble size is chosen from {20, 40, · · · , 200}. Oversampling ratios are in

{0.5nmax, nmax, 1.5nmax, 2nmax}, where nmax is the size of the biggest class in the ana-

lyzed dataset. Undersampling ratios are in {1.5nmin, 1.5nmin, nmin, 0.5nmin, 0.25nmin},

where nmin is the size of the smallest class.

Training and testing. We have used a stratified 10-fold cross validation in order

to maintain the original class distribution among the folds.

Evaluation metrics. In order to properly evaluate the performance of classifiers on

imbalanced domains, nine skew-insensitive metrics were used which can be found in

Section 5.4.2.
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Additionally, we use an Entropy measure for diversity analysis among ensemble mem-

bers.

Statistical analysis. We analyze the significance of obtained results using Bayesian

sign-rank test [136] with its visualization capabilities for pairwise comparison of clas-

sifiers.

High-performance computing environment. All experiments were performed in

Spark environment with 32 computing nodes provided by Amazon Web Services.

6.2.3 Results and Discussion

Results of our computational experiments with respect to nine selected skew-

insensitive performance metrics are given in Table 13, while the outcomes of Bayesian

sign-rank test of statistical significance are depicted in Figure 20. We will discuss the

obtained results from the perspective of the three research questions stated at the

beginning of this section.

Comparison with reference classifiers. Let us firstly compare UnderBagging+

with the single CART classifier. Unsurprisingly, UnderBagging+ always achieves

significantly better results, as further verified by Bayesian statistical tests. Regardless

of the used type of sampling, CART always offered significantly lower predictive

power. This verifies a natural assumption that multi-class big imbalanced data are

too complex to be effectively modelled by a single classifier, even when augmented

with data-level balancing. Therefore, ensembles are shown to be the most promising

direction for future research on big imbalanced data. Random Forest offers much

more interesting observations. When combined with sampling for each base tree,

Random Forest is considered as the best performing ensemble for imbalanced big data.

Standard UnderBagging performs significantly below both versions of Random Forest.

However, the proposed UnderBagging+ is capable of outperforming both versions of
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Table 13: Results for UnderBagging+ and reference methods according to nine per-

formance metrics on five multi-class big imbalanced datasets.

Dataset UnBag+ UnBag RandFun RandFov CARTun CARTov

AvAcc

covtype 71.18 61.45 65.11 68.67 52.10 51.04
traffic 84.33 78.39 80.00 80.05 71.03 70.13
seer 92.18 90.03 91.09 91.08 82.78 81.99
sensors 95.72 94.01 94.92 94.93 86.44 86.52
iot 99.66 98.38 99.24 98.38 95.36 95.12

RecM

covtype 33.12 14.87 17.55 16.63 10.34 10.07
traffic 36.43 30.11 31.20 31.58 26.56 26.01
seer 55.88 53.28 53.41 53.40 50.02 49.84
sensors 1.75 1.17 1.81 1.55 0.87 0.82
iot 96.88 91.48 94.56 91.98 88.27 88.44

RecU

covtype 5.46 3.18 0.00 0.00 0.00 0.00
traffic 35.18 28.42 30.47 30.56 21.67 22.15
seer 51.82 49.75 51.91 51.85 43.19 44.01
sensors 6.78 4.11 0.00 0.00 0.00 0.00
iot 96.82 93.88 95.17 90.27 87.56 82.99

PrecM

covtype 17.99 12.74 10.08 9.44 7.52 7.33
traffic 36.19 29.87 30.01 30.18 25.04 25.17
seer 60.07 53.84 55.44 55.39 51.99 50.79
sensors 12.99 8.99 2.62 2.74 1.17 1.43
iot 96.77 94.02 95.83 91.09 88.32 87.61

PrecU

covtype 12.97 8.05 6.47 6.39 4.99 5.28
traffic 37.92 34.09 30.01 30.18 26.62 27.01
seer 55.10 51.92 55.44 55.39 47.81 48.04
sensors 13.01 7.28 2.62 2.55 0.91 0.93
iot 95.83 92.48 95.83 91.09 87.71 81.98

FbM

covtype 18.37 11.94 3.62 4.11 2.07 2.11
traffic 35.61 29.99 30.61 30.76 27.82 28.03
seer 54.82 51.04 52.50 52.15 47.86 46.94
sensors 6.07 3.98 0.00 0.00 0.00 0.00
iot 96.11 94.86 95.05 90.60 87.19 83.48

FbU

covtype 24.81 19.63 6.95 6.75 2.98 2.88
traffic 36.17 32.10 30.01 30.18 23.98 24.83
seer 57.98 54.19 55.44 55.39 49.82 49.75
sensors 4.82 2.97 2.62 2.75 0.99 1.01
iot 97.82 93.99 95.83 91.09 88.49 88.72

AvFb

covtype 20.76 17.84 6.18 6.87 3.98 4.04
traffic 34.17 30.82 28.87 29.00 24.27 23.99
seer 51.88 50.37 49.35 49.28 44.88 44.64
sensors 5.15 2.99 1.65 1.65 0.63 0.64
iot 95.69 92.88 94.82 89.71 84.56 84.60

CBA

covtype 21.28 15.92 5.56 6.24 3.82 3.46
traffic 30.03 23.88 22.86 22.74 17.23 15.62
seer 50.99 43.72 41.37 41.31 30.18 29.08
sensors 12.84 6.98 1.09 1.00 0.17 0.19
iot 93.56 90.36 91.12 84.02 78.23 69.62
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Random Forest in a statistically significant way. Additionally, as seen in Figure 21, it

is capable of doing so while maintaining a much smaller pool of classifiers. This shows

the importance of incorporating instance-level information into the ensemble training

procedure and how much can be gained by careful understanding of the underlying

data properties in multi-class imbalanced big data.

Figure 20: Visualizations of Bayesian sign-rank tests for pairwise statistical compar-

ison between UnderBagging+ and reference methods

Role of improved undersampling with instance-level difficulty. The major

difference between standard UnderBagging and the proposed UnderBagging+ lies in

utilized sampling function. UnderBagging assumes a uniform probability of sampling

every single instance, while UnderBagging+ correlates the probability of instance se-
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lection with its difficulty level. Therefore, any differences in results between these

two methods originate from this sampling part. UnderBagging+ is statistically sig-

nificantly better than its counterpart, sometimes achieving gains of up to 10% on

some metrics (which considering the size of datasets is a non-trivial gain). Therefore,

we can see that forming bags that preserve difficult instances leads to more locally

specialized classifiers and thus to improved ensemble predictive power. Additionally,

as the instance difficulty calculation is done independently in each computing node of

Spark, we are able to overcome the potential unfavourable distribution of instances

and adapt to local data partitioning.
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Figure 21: Relationship between ensemble size and CBA performance metric

Analysis of ensemble size and diversity of UnderBagging+. When analyz-

ing the performance of ensemble classifiers, it is important to verify how the size
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Figure 22: Analysis of ensemble diversity of UnderBagging+ with the respect to

ensemble size

of the ensemble influences its predictive power and diversity. In the context of big

data analytics it is desirable to create smaller ensembles that can perform similarly

to their larger counterparts. Smaller ensembles are faster to compute and require

less space in memory. Figure 21 shows that UnderBagging+ achieves its best per-

formance with much smaller ensemble size than Random Forest, while displaying

better performance. This can be explained by creating a more meaningful and less

random bootstrap samples for base classifiers, thus being able to cover the decision

space sufficiently with lower number of base models. Interestingly, diversity analysis

shown in Figure 22 points to the fact that base classifiers in UnderBagging+ are less

randomized. We can see a small drop in diversity compared to UnderBagging, which
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can be explained by the fact that UnderBagging+ forces its base classifiers to focus

on difficult instances. This reduced diversity can actually be seen as a positive factor,

as it leads to more stable classifiers. Both of these factors further augment the high

usability of UnderBagging+ for learning from multi-class imbalanced big data.

6.3 Conclusions and Future Works

In this paper we have addressed the contemporary issue of learning from big data

under multi-class imbalance. We have discussed various challenges related with this

domain and pointed to a lack of dedicated solutions for such problems. To bridge this

gap, we have proposed UnderBagging+ with efficient implementation on the Apache

Spark architecture that is able to learn from large-scale skewed datasets with multiple

classes.

UnderBagging+ uses the idea of incorporating the instance-level difficulty into

the instance selection process. For each training instance, we analyze its neighbor-

hood. Based on the number of nearest neighbors not belonging to the same class for

as given instance, we assign it a difficulty level. Then UnderBagging+ transforms

this into a probability metric and uses it to guide the sampling process for creating

training bags. This way difficult instances from each class are more likely to be se-

lected, leading to focusing base classifiers on these challenging cases. Experimental

study demonstrated that this approach allows for UnderBagging+ to significantly

outperform reference methods, while maintaining a smaller ensemble size.

Our future works will concentrate on further improvements in the sampling pro-

cedures and adding new steps dedicated to alleviating other difficulties of multi-class

imbalanced big data, such as class overlapping and extreme class imbalance.
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CHAPTER 7

IMPROVED KD-TREE BASED IMBALANCED BIG DATA

CLASSIFICATION AND OVERSAMPLING FOR MAPREDUCE

PLATFORMS

In the era of big data, it is necessary to provide novel and efficient platforms for

training machine learning models over large volumes of data. The MapReduce ap-

proach and its Apache Spark implementation are among the most popular methods

that provide high-performance computing for classification algorithms. However, they

require dedicated implementations that will take advantage of such architectures. Ad-

ditionally, many real-world big data problems are plagued by class imbalance, posing

challenges to the classifier training step. Existing solutions for alleviating skewed dis-

tributions do not work well in the MapReduce environment. In this paper, we propose

a novel KD-tree based classifier, together with a variation of the SMOTE algorithm

dedicated to the Spark platform. Our algorithms offer excellent predictive power and

can work simultaneously with binary and multi-class imbalanced data. Exhaustive

experiments conducted using the Amazon Web Service platform showcase the high

efficiency and flexibility of our proposed algorithms.

7.1 Proposed Algorithms

In this section, we present two different KD-tree based implementations for the

Apache Spark framework: a classifier and a novel method for addressing class imbal-

ance.
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7.1.1 KD-Tree Classifier

While the KD-tree classifier has been implemented in several other languages

and frameworks [137, 138], we are unaware of any publicly available implementations

in Scala for Apache Spark. Our KD-tree implementation is based on the existing

Apache Spark hybrid-spill tree implementation [139] and since it fits the same machine

learning pipelineing model the two methods are interchangeable. The top level metric-

tree partitioning presented in the hybrd-spill tree was also used for the KD-tree to

allow for a direct comparison.

The KD-tree classifier works as an approximate nearest neighbor algorithm by

creating a KD-tree and performing DFS to find a leaf node. Examples present in

a leaf node are tested to find the k -nearest neighbors. Like the spill-tree, a buffer

region was used to help with the query examples near the median splits. A static

buffer size of 25% of the node data size was chosen empirically, as it seemed to have a

good balance between speed and performance while not introducing more complexity

into this simple algorithm. Future work will be needed to determine if that value

is universally appropriate or if there is another computationally inexpensive method

for discovering an optimal value for a given dataset. Although training this KD-

tree requires O(n log2 n) time compared to O(n log n) for the hybrid-spill tree, its

partitioning approach is independent to the number of dimensions. Like the hybrid-

spill tree, querying for the nearest neighbor is also O(m log n).

Algorithm 21 shows the pseudo code for the Apache Spark implementation for

the KD-tree training phase. As with the hybrid-tree method, the query is performed

by iterating through the trained tree. However, instead of a pivot point, the branch

selection is based on the median value of the axis specified for that level in the tree.

Once a leaf node is reached, all of the present examples are examined to find the
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k -nearest neighbors using the brute force approach; majority voting is performed to

pick the predicted class. To improve the run time of this algorithm, backtracking was

not performed, but could be easily added if required.

Algorithm 21 Generate KD-Tree

KD-TREE Data Structure:
pivot: vector
median: Double
axis: Int
radius: Double
leftChild: Tree
rightChild: Tree

procedure: BUILD-KD-TREE(data : vector, leafSize : Int, axis : Int)

if data.size == 0 then
return Leaf(Empty)

else if data.size <= leafSize then
return Leaf(data)

else
sorted← sortByAxis(data)
medIdx← sorted.size/2
medExample← sorted[medIdx]
radius← max(data.map(x→ dist(x, data[medIdx]))
left← data[0,medIdx ∗ 1.25]
right← data[medIdx−medIdx ∗ 0.25, data.size]
axis← axis+ 1
return KD-TREE(medExample,medIdx, axis, radius,

end if

7.1.2 KD-Tree Based SMOTE

Challenges can arise when attempting to classify datasets that are class imbal-

anced. Classifiers tend to favor majority classes when presented with imbalanced

data which can negatively impact performance, especially with the minority classes

[140]. One solution is to balance the classes by oversampling the minority classes with

methods such as random oversampling or SMOTE.

The SMOTE algorithm creates new examples for the minority classes to alleviate

the class imbalance in the dataset. For each class to be oversampled, five examples
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Algorithm 22 Generate SMOTE Example DataFrame

Ensure: Examples in DataFrame belong to the same class
procedure: SMOTE(DF,ClassLabel)
fvs = Array[5]
for i = 1 to 5 do
index← Random.nextInt(DF.count)
example← DF [index]
fvs[i]← example.filter(featureV ector)

end for
transposed← fvsT

averages← transposed.map(rowSum/5)
smoteFeatureV ector ← averagesT

smoteExample← {smoteFeatureV ector, ClassLabel}
return smoteExample

are randomly selected and the average of their feature values are used to create a new

example. These synthetic examples are added to the dataset until the given minority

class has the desired size. While these examples were not part of the original dataset,

the idea is that they will occupy underrepresented regions of the true class space which

will then improve classifier accuracy. Algorithm 22 shows our Scala based Apache

Spark implementation of SMOTE.

However, this approach may result in synthetic examples that do not well repre-

sent the true feature space for the given class. Figure 23 shows an example dataset

with the classes represented by green triangles and blue circles. If the blue class needs

to be oversampled with SMOTE, the traditional approach will sample from all pos-

sible examples in that class to create new synthetic examples. Shown in red crosses,

we can see that the examples created by SMOTE often fall within the feature space

of the wrong class and likely will negatively affect classification accuracy.

Instead of having SMOTE sample from all possible class examples, we present

a method that only uses examples that are close together. This can be achieved by

clustering the training dataset using the leaves of a KD-tree. In our implementation,

one KD-tree is created per class and each new SMOTE example is generated with
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Figure 23: Example dataset showing over sampling the blue circle class with SMOTE

(red crosses) and with SMOTE based on KD-trees (black stars). The KD-tree parti-

tioning of the blue circle class is overlaid with black lines.

five random examples from a single KD-tree leaf.

Algorithm 23’s KD-CLUSTER-FIT method starts by filtering the dataset by

class and calculates the size of the majority class. In our experiments, the minority

classes were oversampled to match the size of the majority class. For each class,

the CREATE-TREE method first determines which features to use for future tree

splitting. Using these selected features, the BUILD-TREE method is started but

returns an array of the resulting leaves instead of a complete KD-tree. Each of these

leaves represent a cluster of approximate nearest neighbors.

Features that have less than three unique values will not be used. If a splitting

feature contains only one unique value, there is no way to tell where to place the
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median splitting point and it would be unlikely that the partitioning would provide

any information gain. While a median point could be easily found if two unique values

exist for a splitting feature, the resulting branches could be highly imbalanced, which

may negatively affect speed and accuracy.

After the features are selected, the specific feature to be used for each split

can be adjusted. The SMOTE based class balancing did not work well in initial tests

when features were used in the same order as presented in the training data. However,

results improved when the feature with the smallest standard deviation at the current

node was used. Future work will be required to determine what considerations are

needed when addressing binary features and choosing the optimal feature at each

split.

Once the training data has been clustered using the KD-tree leaves, oversampling

can be performed with Algorithm 24. For each class, a corresponding leaf cluster is

randomly chosen and five examples in that collection are used to generate a new

SMOTE example. This process is continued until each class has as many examples

as the majority class.

7.2 Experimental Study

This experimental study was designed to answer the following research questions

(RQs):

• RQ1: Does the proposed KD-tree implementation outperform the existing

state-of-the-art Hybrid-Spill Tree in both predictive power and computational

efficiency?

• RQ2: Is the proposed SMOTE variant for the MapReduce platform capable of

efficiently combating class imbalance, while avoiding the MapReduce pitfall of
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Algorithm 23 Fitting KD-Tree model using SMOTE

procedure: KD-CLUSTER-FIT(DF )
labels← DF.select(“label”).distinct()
classDFs← labels.map(x→ DF.filter“label” == x))
maxClassCount← max(classDFs.map(x→ x.size)))
return labels.map(classDF → CREATE-TREE(classDF ))

procedure: CREATE-TREE(label,DF )
for index from 0 until DF.numberOfFeatures do

if DF [index].distinct() > 2 then
axisToUse.append(index)

end if
end for
return BUILD-TREE(DF, splitMethod, leafSize,axisToUse, axisToUse[0])

procedure: BUILD-TREE(data, splitMethod, leafSize,
axisToUse, currentAxis)

if data.size == 0 then
return EMPTY

else if data.size <= leafSize then
return data

else
nextAxis← min(axisToUse.map(axis→ STD(data[axis]), splitMethod))
sortedData← data.sortedBy(nextAxis)
leftData← sortedData[0, sortedData.median]
rightData← sortedData[sortedData.median, sortedData.size]
leftResults← BUILD-TREE(leftData, splitMethod, leafSize,
axisToUse, nextAxis)

rightResults← BUILD-TREE(rightData, splitMethod, leafSize,
axisToUse, nextAxis)

return leftResult+ rightResults
end if

local data partitioning?

• RQ3: Is our method flexible enough to work with both binary and multi-class

imbalanced problems, without a need for any changes in its structure?

7.2.1 Performance Metrics

The average accuracy (AvAcc) and class balance accuracy (CBA) metrics were

used for the model accuracy metrics because most of the presented datasets are multi-

class and imbalanced. As shown in Formula 7.1, the basic accuracy only considers
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Algorithm 24 Oversampling with SMOTE

procedure: SMOTE-OVERSAMPLE(DF )
labels← DF.select(”label”).distinct()
classDFs← labels.map(x→ DF.filter(label == x))
maxClassCount← max(classDFs.map(x→ x.count))
if usingStandardSMOTE then
sampledClassDFs← classDFs.map(classDF →

STANDARD-SMOTE-OVERSAMPLE(classDF,maxClassCount))
else if usingKDTrees then
classClusterArrays← KD-CLUSTER-FIT(DF )

end if

procedure: KD-CLUSTER-SMOTE-OVERSAMPLE(classDF,
targetSampleCount, trees)

samplesToAdd← targetSampleCount - classDF.count()
sampledData← trees.map(label→

(0 to samplesToAdd).map(x→SMOTE(x.randomCluster, label))
return union(sampledData)

procedure: STANDARD-SMOTE-OVERSAMPLE(classDF,
targetSampleCount)

if classDF.count() < targetSampleCount then
samplesToAdd← targetSampleCount - classDF.count()
newSamples← (0 to samplesToAdd)
.map(x← SMOTE (classDF, classDF.label))

return union(classDF, newSamples)
else

return classDF
end if

the global accuracy and may be biased towards to the majority classes. Both AvAcc

and CBA take in account performance per class and introduce a higher penalty for

predicting the minority class examples incorrectly.

accuracy =
tp+ tn

tp+ tn+ fp+ fn

AvAcc =
C∑
i=1

tpi + tni
tpi + tni + fpi + fni

CBA =
C∑
i=1

mati,i

max(
C∑
j=1

mati,j,
C∑
j=1

matj,i)

(7.1)
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Table 14: Number of features, classes and maximum class balance ratio for each test

dataset.

Dataset Instances Features Classes Imb. Ratio

Cover Type 581,012 54 7 104.4

Traffic Violations 1,378,663 26 7 10.5

SEER 2,532,629 11 10 5.7

Intel Sensors 2,219,803 5 58 31.2

IoT 3,000,000 115 11 4.9

SUSY 5,000,000 18 2 1.2

HIGGS 11,000,000 28 2 1.1

7.2.2 Datasets

To evaluate these algorithms, we have chosen seven datasets [141, 142, 143, 144,

145, 146] with varying properties. As shown in Table 14, there is a wide variation

in the number of classes and features for each dataset allowing us to see how the

proposed methods behave when presented with these combinations. Also shown is

the imbalance ratio of the largest class size over the smallest.

7.2.3 Experiments on AWS

To perform our experiments, we have chosen the Amazon Web Service (AWS)

platform with Elastic MapReduce (EMR). The EMR platform allows for easy de-

ployment of cluster based applications, such as Hadoop and Spark, in a distributed

environment. All experiments were performed using 1, 2, 4, and 6 c5.2xlarge instances

for the computational work with each c5.2xlarge virtual instance providing 8 vCores,

or threads, and 16 GB of RAM. For both classification and KD-tree based SMOTE,

we have allocated 10 GB of memory to each executor and used one executor per
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instance.

Our first experiments compare the run time performance and classifier accuracy

of the proposed KD-tree and the existing hybrid-spill tree classifiers. For each dataset,

both algorithms are run with a combination of leaf sizes (10, 100, 500, 1000, 2500)

and number of computational threads (8, 16, 32, 48). The second round of experi-

ments compares the standard SMOTE algorithm against the proposed KD-tree based

SMOTE modified algorithm. These experiments were run on all datasets with same

number of threads as with the classifier experiments.

7.3 Results

This section presents the results of the KD-tree classifier and SMOTE experi-

ments.

7.3.1 Classifiers

For the classifier experiments, we compared the running time and model accuracy

between the existing Hybrid-Spill tree against our proposed KD-tree implementation.

Two significant parameters for both algorithms are the leaf size of the tree and the k

value for the number of examples to use for class prediction. Figures 24, 25 and 26

show running times for various leaf sizes against the number of threads used and the

value k=5 was used for all experiments.

In almost all presented cases, the KD-tree was faster than the Hybrid-Spill tree

for both training and prediction phases. Thread level scaling was also shown to be

dependent on the leaf size for both algorithms. Figure 24 shows that adding more

threads consistently improves running times but this effect is diminished as the leaf

size increases. Using a leaf size of 500 still shows some scaling but the improvements

do not continue beyond 16 or 32 threads and performance starts to degrade when the
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Figure 24: Classification running times for leaf size 10

leaf size is 2500.

Increasing the leaf size improves training times for both algorithms, but the KD-

tree can be almost two times faster than the Hybrid-Spill tree for small leaf sizes.

However, this performance difference decreases as the leaf size increases and at leaf

size 2500 the times are almost identical. The running time between the two methods
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Figure 25: Classification running times for leaf size 500

is much more noticeable for making predictions. As the leaf size increases, the gap

between the KD-tree and Hybrid-Spill tree performance widens with many cases

where the KD-tree is two to three times faster (RQ1 answered). This is apparent in

Figure 27, where the KD-tree performance is mostly flat as leaf size increases but the

Hybrid-Spill tree starts slowing down.
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Figure 26: Classification running times for leaf size 2500

The Hybrid tree tends to be more accurate than the KD-tree for both metrics,

but the AvAcc differences are minimal. However, the KD-tree performs best for two

datasets including Covtype, where its CBA result is two times better than that with

the Hybrid-Spill tree (RQ1 answered).

The Hybrid-Spill tree CBA results were not largely affected by increasing leaf
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Figure 27: Classification running times with 48 threads for each leaf size

sizes, but this generally had a negative impact on the KD-tree classifier, although

this is opposite for the Covtype dataset. Additionally, the AvAcc and CBA metrics

were not significantly influenced by the thread count for either the KD-tree or the

Hybrid-Spill tree.
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Figure 28: CBA results for each leaf size using 48 threads

7.3.2 SMOTE

To test the impact of KD-trees on SMOTE, the Spark ML Random Forest clas-

sifier was used with 5-fold cross validation and the KD-tree leaf size was set to 64

as it seemed to work well across all datasets. We observed that the class prediction

accuracy largely varies depending on the individual dataset. Figure 29 shows the
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Table 15: AvAcc accuracy ratio between SMOTE and SMOTE with KD-trees

Dataset 8 Threads 16 Threads 32 Threads 48 Threads Max Difference Absolute Difference

Cover Type 64.35 64.36 64.34 64.36 3.11 0.02

Traffic Violations 81.08 81.20 81.08 81.16 15.05 0.12

SEER 93.32 93.37 93.33 93.38 5.57 0.05

Intel Sensors 94.90 94.91 94.90 94.90 0.42 0.01

IoT 99.61 99.54 99.52 99.39 22.14 0.22

SUSY 77.60 77.56 77.66 77.59 13.67 0.11

HIGGS 66.87 67.16 67.00 67.16 44.26 0.30

accuracy ratios between standard SMOTE and SMOTE with KD-Tree example se-

lection. Using standard SMOTE as a baseline, we can see that the tree method is

best in five of the seven cases. The new method does worse on the SUSY dataset, but

this only has a relative difference of 3%. The best result was with the Sensors dataset,

where the KD-tree method had a 12% percent improvement on CBA accuracy. The

average improvement across all seven datasets was 0.14% for AvAcc and 3.4% for

CBA. While the KD-tree based method had little influence on AvAcc compared to

standard SMOTE, it had a much larger effect on the CBA results. This may be be-

cause the more discerning KD-tree based oversampling method mostly benefits small

and difficult to classify classes. Another observation is that the KD-tree clustering

method shows the largest improvements on datasets with high class imbalance which

may be the main strength of this approach (RQ2 answered).

Tables 15 and 16 show the AvAcc and CBA values for the number of threads used.

As shown in Table 15, there was very little difference for the AvAcc metric relative

to the number of threads used with all maximum ranges under 0.5%. However, there

was a larger range of CBA values for all datasets with the largest being over 7% for

the Intel Sensors dataset. This dataset has a high number of classes, 58, which may

be a contributing factor to this result. The changes in the minority class accuracy
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Table 16: CBA accuracy ratio between SMOTE and SMOTE with KD-trees

Dataset 8 Threads 16 Threads 32 Threads 48 Threads Max Difference Absolute Difference

Cover Type 4.67 4.69 4.78 4.61 3.77 0.17

Traffic Violations 21.72 22.13 21.65 21.64 2.28 0.49

SEER 44.80 45.20 45.06 44.77 1.16 0.52

Intel Sensors 0.94 0.92 0.88 0.95 7.47 0.07

IoT 96.61 96.25 95.99 95.10 1.58 1.50

SUSY 73.46 73.48 73.48 73.38 13.90 0.10

HIGGS 64.44 65.28 64.99 65.85 2.19 1.42
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Figure 29: Accuracy results between standard SMOTE and SMOTE with KD-trees

can have a significant effect on the CBA metric such that any perturbations in the

class balancing may be more pronounced (RQ3 answered).
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Figure 30: Running times for SMOTE and SMOTE with KD-trees

7.4 Conclusions and Future Works

We have presented a new KD-tree classifier and a novel class balancing method,

both implemented in Scala for the Apache Spark framework. Our comparisons be-

tween KD and hybrid-spill tree algorithms on the AWS distributed computing plat-

form has given some insight on the strengths and weaknesses of these two methods.
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In this paper, we also demonstrated that the quality of oversampling with SMOTE

can be improved using the leaves of trained KD-trees. These implementations are

available on Github at https://github.com/fsleeman/spark-knn.

While the hybrid-spill classifier often provided the highest accuracy, it was slower

than the KD-tree implementation. For two datasets, the KD-tree had the best clas-

sification accuracy showing that in some cases the KD-tree is both faster and more

accurate. Our experiments showed that the leaf size played a significant role in run-

ning time of both methods, but was more significant for the hybrid-spill tree as the

leaf sizes increased. Large leaves mean that the resulting tree will not be as tall, so

more work will be required to perform nearest neighbor on the leaf examples. The

hybrid-spill tree is at risk of getting penalized multiple times when backtracking on

metric-trees, something that the KD-tree avoids. The number of threads did not have

a significant effect on classification accuracy, but run time performance increased until

approximately 16 to 32 threads and this trend was exhibited for both algorithms.

For class balancing, our KD-tree clustering method showed classifier improve-

ments for five out of seven datasets. The cluster based oversampling method showed

the biggest difference when applied to the most class imbalanced datasets, highlight-

ing a potential application for this method. Standard SMOTE oversampling ran faster

except for the sensors dataset which has many classes, illustrating another potential

use for the KD-tree clustering method. Like with the classification experiments, run

time performance increased until 16 to 32 threads. The datasets used in these exper-

iments were larger, but the size of the generated KD-trees were proportional to the

number of examples in each class, significantly smaller than the original datasets.
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CHAPTER 8

A MACHINE LEARNING METHOD FOR RELABELING

ARBITRARY DICOM STRUCTURE SETS TO TG-263 DEFINED

LABELS

In recent years, the field of Radiation Oncology has shown an increased interest in ap-

plying Artificial Intelligence (AI) and Machine Learning (ML) methods to its domain

specific problems. The inherent digital nature of radiotherapy provides an unique

opportunity for investigating new methods to improve outcomes and overall patient

care quality. Advances in algorithms and decreasing costs of computer hardware have

now opened the door for addressing larger problems in oncology but fully utilizing

these large data sets requires both data aggregation and standardization [147, 148].

An important step in the Radiation Oncology treatment planning is to delineate

anatomical volumes, referred to as structures, which includes organs-at-risk (OAR)

and target volumes. These structures are differentiated with a descriptive label given

by the physician such as Bladder, Rectum, or Heart. Other medical domains also

utilize delineated anatomical structures such as radiology [149, 150], cardiology [151,

152] and forensic science [153].

The labels given to these anatomical structures are completely up to the physician

and naming conventions may differ between individuals, treatment facilities or could

be influenced by the treatment planning software used. Physician specified structure

set labels for three different prostate patients, shown below, illustrates the variability

of labels even for the same disease site.

Patient 1: 1-PTV 45, BODY, PTV NODES, CTV, BOWEL, Prostate, Nodes,
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PENILE BULB, markers, SEM VES, FEMUR RT, 2-PTV-75.6, FEMUR.LT, BLAD-

DER, RECTUM

Patient 2: gtv, nodes + .5, Trigone, sem ves, PTV1-45, Pelvic LN, CTV,

BODY, Penile Bulb, markers, Prostate, SV + MARG, Femur R, Bowel, A2-PTV2-

34.2, Femur L, bladder, rectum, Sigmoid

Patient 3: External, Prostate, CTV 4500, PTV 4500, bone, gtv, Fiducials,

CTV 7920, rectosigmoid, SemVes Prox, PenileBulb, SeminalVesicle, SEMVES MAG

PTV1, PROX MARG PTV2, Femur R, PTV 7920, Femur L, Bladder, Rectum, Sig-

moid

Although these three patients were treated for the same disease, the anatomical

regions delineated and the given labels are not consistent. For example, the “Right

Femur” anatomical region was given labels FEMUR.LT, Femur L, and Femur L.

Other inconsistencies in labels are shown for structures such the Recum, PTV and

Seminal Vesicles.

The lack of a standard taxonomy and data dictionary in oncology can negatively

affect both patient safety [154] and the ability to perform data analysis [155]. Stan-

dardizing the labels given to anatomical structures will enhance the safety and quality

efforts within and between clinics for streamlining the clinical practice, data pooling

for outcome research, registries and clinical trials. In order to define a standard for

structure labels [156], the American Association of Physicists in Medicine (AAPM)

Task Group 263 (TG-263) [157] proposed a comprehensive naming schema. Since

this report has been published recently, its recommendations have not yet been uni-

versally adopted. Furthermore, global adherence to the TG-263 report in itself will

not address historical data that have used non-standard labels. Manually relabeling

these data sets at an individual clinic may not be feasible as this process is very time

consuming and requires expert knowledge.
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To aid in the standardization of structure labels, a few recent projects have

proposed automated or semi-automated methods. Stature [158] is a system that

allows human experts to identify structure label synonyms which can be used to

help standardize the previously chosen labels. Although this method was shown to

decrease the required time to manually edit structure set labels, it was designed

to work with a single institution and the relabeling process may not work as well

when presented with external data. Using the Stature system on data from other

institutions would likely require additional expert input as there is no guarantee the

same synonyms exist. Two other projects [159] and [160] uses neural networks to

automatically relabel OAR structures with high accuracy for head and neck patients.

Both of those works used selected (curated) data of OAR structures rather than all

delineated structures present in the original clinical treatment plans.

Here we provide definitions of the type of data used in this work:

VA Data: This data set contains patient data from over 1,200 Veteran Affairs

(VA) lung and prostate cases and was used for training and validation.

VCU Data: This data set contains patient data from 50 lung and 50 prostate

patients from Virginia Commonwealth University (VCU) and was used for testing the

models trained on VA data.

Curated Structures: The delineated OAR and target structures of interest

which have been manually annotated after data collection to correctly associate physi-

cian specific labels to TG-263 defined labels. We have assigned the following struc-

tures for each disease site as curated: Lung: Esophagus, Heart, PTV, SpinalCord,

Brachial Plexus Prostate: Rectum, Bladder, Femur L, Femur R, PTV, Bowel Large,

Bowel Small

Non-Annotated Structures: All structures not given one of the curated labels

by the manual annotation process are identified as non-annotated. These structures
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can include expansion margins of the target/tumor region, sub-regions of an OAR

(i.e. lobes of the lung), anatomical structures not commonly delineated for the disease

site in question and non-anatomical regions delineated to help guide the treatment

planning system (TPS) to meet a dose delivery optimization goal. For the purpose

of classification, all of these structures are given the non-annotated label.

Curated Data Set: A subset of the original clinical data which only includes

structures that were given the previously defined curated labels. This means only

one structure of the same anatomical region can exist per patient. Curated data sets

were created by filtering the original VA and VCU data sets.

Non-Curated Data Set: This includes all structures present in the original

clinical Radiation Oncology treatment plans from the VA and VCU. The non-curated

data represents what is likely to be found at an arbitrary Radiation Oncology treat-

ment facility.

An important factor not previously investigated is how to standardize structure

labels in the the non-curated data found in clinical practices. Relabeling structures

can be relatively straightforward if the potential options are limited and represent

anatomically distinct objects. Since the non-annotated structures can represent a

near infinite number of permutations, relabeling all structures in a clinical data set

becomes a harder problem.

We propose an approach based on volumetric bitmap representations of the struc-

tures as well as the corresponding bony anatomy to build predictive models for re-

labeling clinically specified structure set labels to the TG-263 proposed labels [161].

Experiments were performed with five machine learning algorithms on the Apache

Spark platform Machine Learning library.

Our proposed pipeline for structure set relabeling revealed the following obser-

vations:
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• The best F1 scores for lung was 98.77 and 95.06 for prostate; anatomical prop-

erties of prostate data may make it harder to classify.

• Classifying real world clinical (non-curated) data sets, which includes arbitrary

structures, remains a challenging problem but F1 scores above 90 are still achiev-

able.

• Including bony anatomy data and treating structures as patient dependent im-

proved classifier accuracy for both lung and prostate data.

• Using k -Means based undersampling on non-annotated structures can improve

classifier predictive performance and run time.

• A significant percentage of structure labels unique to the test data was not

present in the training data and highlights the limitations of simple text map-

pings.

8.1 Methods and Materials

8.1.1 Creation of Structure Sets

Once a patient has been diagnosed with cancer and radiotherapy is prescribed as

part of the treatment, a patient model needs to be created to determine the radiation

dose to the target volume, OARs and the coverage volume. Imaging of the patient

is a necessary step and is often performed with Computed Tomography (CT) that

provides tissue density information rendering the patient’s anatomy. A physician will

delineate the target/tumor region, OARs and any other structures deemed necessary

for the current case. This delineation is usually done within the TPS software which

will then allow for the creation of the dose delivery treatment plan.

Figure 31 shows the axial, coronal and sagital cut sections of a prostate cancer

CT, overlaid with several delineated structures. The imaging and structure set infor-
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Figure 31: Planning CT from a prostate cancer patient with the following delineated

structures: Bladder (yellow), Rectum (blue), Left and Right Femurs (orange), Small

Bowel (aqua), PTV (green).

mation is in the Digital Imaging and Communications in Medicine (DICOM) format

which is the industry standard for the storage and transmission of medical imaging

data. This data is traditionally stored as slices on the axial axis but can be rendered

on any axis. A physician will delineate any necessary structures using the delineation

tool-sets in the TPS software; often by adding individual points or by using a free-

hand drawing tool to create a closed polygon. For a given structure, this process is

performed on each imaging slice until the delineation is complete.

For the same patient, Figure 32 shows the planning target volume (PTV) (green)
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Figure 32: The PTV (green) as drawn by the physician and multiple other treatment

planning related structures (red) delineated on a CT image. These planning structures

include rings, implanted seeds, and several interpretations of the target volume by

adding uniform or non-uniform expansions.

and multiple planning related structures (red). The PTV represents the region that

will be receiving the prescribed radiation dose. It is also common to have other struc-

tures that are very similar to the PTV as presented here and may include a clinical

target volume (CTV), gross tumor volume (GTV) or expansions of the PTV. Also

presented in this figure are rings, used for helping to guide the TPS dose optimization

process, and implanted marker seeds.

8.1.2 Datasets

The training and validation data set included a total of 709 lung and 752 prostate

patients from the 40 VA hospitals which perform radiotherapy in-house and this data

was originally collected as part of the Radiation Oncology Quality Surveillance Pro-

gram (VA-ROQS) [162]. The de-identified data for each patient included the DICOM
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Table 17: Number of individual structures and unique labels in the VA and VCU

lung data sets.

Standard Label VA Lung Data Set VCU Lung Data Set

Structure Count Unique Labels Structure Count Unique Labels

Non-Annotated 10,292 3,639 775 317

Esophagus 613 26 47 3

Heart 670 20 45 2

PTV 680 286 36 4

SpinalCord 681 37 48 6

Brachial Plexus 108 44 4 4

Total 13,044 4,052 955 336

structure set files representing anatomical structures of interest and the correspond-

ing treatment planning DICOM CT image. From the VCU Department of Radiation

Oncology’s TPS, 50 prostate and 50 lung patients were extracted to build an external

test data set. Like the VA data, each of these patients were manually annotated to

provide a correct TG-263 labeling for the listed structure types.

Tables 17 and 18 show the distribution of structures in the data sets and the num-

ber of distinct labels used for each structure type. The average number of structures

for each patient in this data set is approximately 18 for lung and 20 for prostate which

results in a high proportion of non-annotated structures. There is also a significant

number of unique lables per structure type which illustrates why a comprehensive

text mapping system has not yet been proposed. For all data sets, there is a high

level of class imbalance especially between the non-annotated structures and the indi-

vidual curated structures. The VCU prostate data did not include any Bowel Large

structures because they were not delineated in the patients included; a number of VA

facilities also did not delineate bowel structures resulting in the lower numbers.
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Table 18: Number of individual structures and unique labels in the VA and VA

prostate data sets.

Standard Label VA Prostate Data Set VCU Prostate Data Set

Structure Count Unique Labels Structure Count Unique Labels

Non-Annotated 11,038 2,799 980 434

Rectum 719 14 50 3

Bladder 609 10 50 3

Femur L 694 59 29 14

Femur R 700 62 29 13

PTV 714 236 38 16

Bowel Large 341 34 0 0

Bowel Small 250 40 49 10

Total 15,065 3,254 1,225 493

8.1.3 Data Preparation

The following process, shown in Figure 33, takes the DICOM structure set and

imaging data and converts it into features vectors to be used as input for the classi-

fication algorithms. Figure 33(a) shows an original DICOM planning image and its

associated structure set. The bladder structure delineation is shown in yellow.

Since the planning images available in our data set did not have consistent voxel

count, voxel resolution or origins, a standard grid was needed so that all structure sets

could be stored in a consistent manner. The standard grid chosen for this purpose

was 96 x 96 x 48 voxels and with a voxel resolution of 2mm x 2mm x 3mm. These

parameters were chosen by manually inspecting a number of bitmap examples from

each structure type to verify that the bounding box was large enough to cover the

structures of interest. It should be noted that this manual step is needed only once

considering all the structures of interest and a large enough bounding box will lead to

accurate results albeit needing slightly more execution time than the minimal bound-

ing box, which is a computationally hard problem since some of the structure sizes
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considered here demonstrate high variability. Future work is required to determine if

such a one-size-fits-all based solution is sufficient, especially considering large struc-

tures like the entire lungs. In addition, each original planning image and structure

set was shifted such that the geometric center of the given structure was aligned to

the geometric center of this standardized grid.

The workflow for creating feature vectors from the imaging and structure set

data is demonstrated using one prostate patient as shown in Figure 33(a). For each

individual structure in the data set, an empty three-dimensional bitmap object was

created with the standard grid dimensions as previously defined. Each polygon point

in the DICOM structure set is mapped to its corresponding voxel in the new bitmap

with a value of 1 as shown in Figure 33(b). Then for each transverse slice of the

bitmap, the sequential points were connected with new line segments which results in

one or more closed polygons per slice as shown in Figure 33(c). A flood fill algorithm

[163] was then run on each closed polygon to set all interior values to 1 resulting in

a solid bitmap structure shown in Figure 33(d). Voxels belonging to the structure

in question would then have the value of 1 and all other voxels would remain as

0. The procedure used for generating these bitmaps was derived from the Research

Computing Framework package [164].

In addition to the structure set data, imaging data was also used to add some

spatial context to the location of each structure in the human anatomy. A density

threshold was applied to each planning image such that voxels with Hounsfield units

(HU) above 1,300 were set to 1 and all others set to 0, leaving only the bony anatomy.

While bone density starts around 1,050 HU [165], we have chosen a slightly higher

value to focus on the gross skeletal structure and reduce noise from borderline tissue.

The resulting bony image was then interpolated to the same standardized grid used

by the structures so that both data types were properly aligned. Figure 33(e) shows
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just the bony anatomy and Figure 33(f) shows the bony anatomy and structure set

data combined.

To create features vectors, the 96 x 96 x 48 bitmap object was stretched out into

a 442,368 x 1 vector by simply creating an array of each voxel value with increasing

x, y, z axis indices. From this bitmap creation process, two data sets per disease site

were created: Without Bones and With Bones.

• Without Bones : The feature vectors were created with only structure set data

as shown in Figure 33(d). The total length of the feature vector is 442,368.

• With Bones : The feature were created by appending the No Bones feature

vectors with the bony anatomy data as shown in Figure 33(f). The total length

of the feature vector is 884,736.

Very long feature vectors make the model training phase slow and susceptible to

the Curse of Dimensionality [166]. One popular solution to this problem is to per-

form feature reduction by either removing features that are not strongly influencing

predictions or condensing multiple features in such a way that still preserves impor-

tance. We have chosen to use truncated singular value decomposition (SVD) as it

uses much smaller matrix multiplications when compared to methods like principal

component analysis (PCA) or standard SVD [167]. This approach can approximate

the input m×n matrix as [m×k]× [k×n] where k is the numerical rank [168]. When

testing both methods, the truncated SVD ran faster and required less memory while

still producing an explained variance within 0.1% of the result from PCA.

Figure 34 shows the explained variance of the disease sites for the Without Bones

and With Bones data sets. All cases show a similar pattern and the cumulative

variance curves start to flatten out around 100 features. For that reason, we have

chosen 100 as the number of SVD features to use in our experiments as increasing
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(a) A transverse slice of
the original planning image
with the bladder structure
shown in yellow.

(b) Polygon points from the
DICOM bladder structure
set delineation. These in-
dividual points are interpo-
lated on to the standardized
bitmap volume.

(c) Each sequential point is
connected to form a close
polygon.

(d) The closed polygon is
flood filled to create a solid
structure.

(e) A density threshold is
applied to the planning im-
age such that only vox-
els that belonged to bony
anatomy remain.

(f) Structure set (white)
and bony anatomy (grey)
data shown together with
the same frame of reference.

Figure 33: Workflow for creating structure set and bony anatomy bitmaps for feature

vector creation.
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the explained variance by more than a few percent would require at least doubling

the total number of features. Initial tests using up to 1,000 SVD features did not

improve classifier accuracies (data not shown).
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Figure 34: Cumulative explained variance from the number of features created by the

SVD process. We have chosen the top 100 features in all models.

The anonymized patient identifier, physician specified label, and the TG-263

standardized label for each structure were added as features, not for model training,

but for patient filtering and assessing the model accuracy.

8.1.4 Proposed Experiments

To train, validate and test our models, we have used five different classifier algo-

rithms from the Apache Spark machine learning library [79]: Naive Bayes (NB)[169],

Random Forest (RF)[62], Gradient-Boost Trees (GBT)[63], Multilayer Perceptron

(MLP)[170], Support Vector Machine (SVM)[171]. Table 19 shows the hyperparam-
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Table 19: Classifier hyperparameters used in the following experiments.

Algorithm Hyperparameters

Support Vector Machine
maxIter = 25

regParam (C) = 0.001

Random Forest
numTrees = 50

maxDepth = 20

Gradient-Boost Trees
maxIter (trees) = 75

maxDepth = 5

Multilayer Perceptron

maxIter = 1000

blockSize = 64

one hidden layer with 70 neurons

Naive Bayes None

eters used in these experiments which were discovered by a grid search.

In these experiments, we also investigate the contribution of treating structures

patient dependent or independent. If structures are treated patient independent,

the class with the highest predicted probability is chosen as done traditionally with

classifiers. However, if structures are treated as patient dependent, their predicted

class label is influenced by the predictions of other structures belonging to the same

patient. In that case, the validation or test structures are grouped by the initial

predicted label and then sorted by the raw probability values provided by the classifier.

For each predicted label, the structure with the highest probability is given that label

and all other structures are labeled as non-annotated. Structures predicted as non-

annotated are also given that label. Our underlying assumption is that there can

only be one type of structure per curated label for a given patient.

Table 20 shows an example of classified structures for a single patient. Each

structure that truly belongs to one of the curated structures types is shown in bold.
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Table 20: Example classification treating structures as patient dependent. Structures

are grouped by predicted label and the one with the highest probability is relabeled.

The highlighted structures are the ones truly being to one of the curated structure

types.

Predicted Raw Original

Label Probability Label

Not-Annotated 50 MarkedISO

50 FinalISO

50 BoostISO

49 Seeds

38 SVs

38 1cmproxSV

38 1700

32 penile bulb

28 PostRectum

23 4900 (InitialIMRT)

22 extless2cm

22 External

22 2cmstrip

18 PTV nodes

16 Nodes

15 PTV45Gy

14 RingPTVBoost

12 RingPTV45

Predicted Raw Original

Label Probability Label

Rectum 13 Prostate

11 CTVBoost

Bladder 21 Bladder

Femur L 21 Lt Femur

Femur R 25 Rt Femur

13 rectum

12 ptv5mm

9 PTV prostate + SV initial

PTV 14 Target

12 PTVBoost

11 BoostPTVMod

SmallBowel 22 SmallBowel

17 Pelvis

16 ptv4cm

The Bladder, LT Femur, Rt Femur and SmallBowel were given the correct label but

the PTV (shown as PTV45Gy) and Rectum were mislabeled. Only one structure was

predicted as being the Bladder and Femur L so the assignment is automatic. The

raw probability values in this example were the number of trees in the RF algorithm

that chose the predicted class.

Classifiers can be biased towards the majority class, especially if the level of

imbalance is high, and one strategy is to balance the classes before the training phase.

To address this issue, the non-annotated structures were randomly under-sampled to

the size of the largest curated structure class. All curated structure classes were then
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randomly over-sampled to the size of the largest curated class so that all classes were

balanced. The same oversampling was performed for both curated and non-curated

data sets.

In summary, the following combinations of experiments were run:

• Algorithm: RF, GBT, MLP, SVM, NB

• Disease site: lung, prostate

• Data set type: curated, clinical

• Bones: without bones, with bones

• Patient Dependence: independent, dependent

Using the best data set combinations from those experiments, we then investi-

gated the potential benefit of using k -Means clustering to aid undersampling. Each

experiment used the VA data with 5-fold cross-validation [172, 173] and a majority

vote ensemble of the resulting five models were used on the VCU test data set.

8.2 Results

The results are broken into four sections: curated data results, non-curated data

results, investigating k -Means for undersampling, and run time analysis.

8.2.1 Curated Data Results

Table 21 shows the F1 scores for each algorithm and data set using only curated

structures. Except for Naive Bayes, all classifiers on the VA training data produced

scores above 90 and best overall results for lung and prostate were 98.77 and 95.06

respectively. Including the bony anatomy data increased scores in all cases, most
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significantly for Naive Bayes. Although treating structures as patient dependent did

improve results in the majority of cases, the benefits were minimal.

Previous works published on this topic showed very high accuracies on head

neck patient data sets [159, 160]. Our best result for lung, 98.77, is comparable to

results from the HN MAIA data set which reported an F1 score of 98.90 [160]. The

prostate scores were not as high but this may highlight a challenge with classifying

prostate structures. Abdominal structures such as the rectum, bladder and bowels

can have variable sizes and shapes as they are filled and emptied. In addition, different

regions of the the digestive tract may be associated with the same structure type. For

example, one physician may delineate the entire anatomical rectum while another will

only delineate the region closest to the prostate as it is most needed for treatment

planning. Even with these challenges, our model was still able to achieve an F1 score

of 95.06. For both disease sites, most of the best results came from the RF algorithm

followed by MLP.

These models were then tested on the external VCU data sets using majority

voting with the models created from the five folds of training. Table 21 shows results

were not as high as with training but the best results still achieved scores above 95

for lung and 91 for prostate. Unlike during training, MLP outperformed RF in the

majority of the tests.

8.2.2 Non-Curated Data Results

As expected, classifier accuracies dropped for all five algorithms when trained on

the non-curated data sets as shown in Table 22. Using the bony anatomy informa-

tion improved results but treating structures as patient dependence provided a more

significant boost. The RF algorithm outperformed all other methods in both lung

and prostate data sets and Naive Bayes again performed the worst.

149



Table 21: Classifier results for the Curated VA and VCU data sets.

Curated Data F1 Scores

Data Parameters VA VCU

Lung GBT NB SVM RF MLP GBT NB SVM RF MLP

Without Bones, Patient Independent 93.10 76.71 89.65 93.10 93.96 84.33 15.96 79.13 83.27 90.52

Without Bones, Patient Dependent 93.02 77.59 89.94 93.68 94.39 82.69 17.05 81.27 83.26 91.02

With Bones, Patient Independent 97.75 94.91 97.42 98.73 98.48 93.96 79.14 92.23 95.24 95.57

With Bones, Patient Dependent 97.81 94.92 97.45 98.77 98.70 94.49 78.44 92.69 95.67 95.10

Prostate GBT NB SVM RF MLP GBT NB SVM RF MLP

Without Bones, Patient Independent 91.82 88.31 91.76 92.94 92.17 84.98 34.13 81.55 85.89 87.50

Without Bones, Patient Dependent 91.53 87.15 91.58 92.63 92.74 87.44 32.98 81.45 85.96 86.65

With Bones, Patient Independent 93.41 89.95 95.02 94.87 94.22 85.58 65.32 88.95 89.13 91.06

With Bones, Patient Dependent 93.44 89.86 95.02 95.06 94.68 86.14 65.16 87.55 88.13 90.22

The results from the VCU non-curated test data scores were similar between the

training and testing for lung but were higher for prostate. Like with training, the RF

algorithm consistently outperformed all other algorithms on both test data sets.

8.2.3 Clustering-based Undersampling with k-Means

In our previous experiments for both lung and prostate data, the best results

came from using bony anatomy with patient dependence with the RF classifier. These

experiments used random undersampling which is a popular method for addressing

class imbalance but may not lead to the best possible classification results if the

sampled data is not representative of the global population [27]. While random

undersampling tend to work well when combined with instance selection and ensemble

architecture [43], on its own may remove highly useful observations from the training

set. The structures belonging to the non-annotated class actually represent multiple

sub-concepts so clustering may improve the undersampling process [42]. These sub-

concepts represent specific anatomical regions present in some of the patients. For

example, the motorized table on which a patient lays on during treatment is often
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Table 22: Classifier results for the Non-Curated VA and VCU data sets.

Non-Curated Data F1 Scores

Data Parameters VA VCU

Lung GBT NB SVM RF MLP GBT NB SVM RF MLP

Without Bones, Patient Independent 79.01 51.42 53.88 80.09 77.79 79.83 23.27 40.54 82.50 80.21

Without Bones, Patient Dependent 88.43 76.13 80.32 89.11 88.29 88.39 73.62 75.19 88.70 86.52

With Bones, Patient Independent 80.26 54.13 62.47 82.02 79.45 81.26 37.97 58.65 82.99 80.29

With Bones, Patient Dependent 89.81 78.05 87.00 90.89 89.78 90.23 80.53 81.07 90.74 88.69

Prostate GBT NB SVM RF MLP GBT NB SVM RF MLP

Without Bones, Patient Independent 76.54 44.89 68.69 77.21 74.13 79.84 45.83 71.54 79.78 77.69

Without Bones, Patient Dependent 85.03 78.14 83.81 86.48 83.41 88.63 72.46 86.34 88.73 90.10

With Bones, Patient Independent 76.53 63.11 74.43 78.47 76.61 81.06 53.91 78.05 81.22 80.78

With Bones, Patient Dependent 86.14 78.82 86.90 87.38 85.48 89.43 81.86 89.18 91.22 90.95

delineated. Using clustering, structures belonging to the treatment table sub-concept

could be grouped so that those structures would be undersampled proportional to its

rate of occurrence.

To evaluate this approach, the k -Means algorithm was used with cluster counts of

10, 25, and 50 on the non-annotated structures. Each resulting cluster was undersam-

pled proportional to its size so that the total number of remaining structures equaled

the size of the largest curated class. Table 23 shows the F1 scores of different non-

annotated structure undersampling methods using the previous best combination of

the RF algorithm using bony anatomy and treating structures as patient dependent.

Table 23 shows that F1 scores with clustering is similar to random undersampling

for both lung and prostate data. While the undersampling methods with prostate

data provided higher scores than not undersampling, it was not the case for lung. To

get a more complete picture of the effect of undersampling, Tables 24 and 25 show

results for each structure type. Not undersampling the lung data provided the best

result for the non-annotated class but at the cost of poor performance for a number of

other structures, especially the PTV which had a score of only 1.16. All of structures
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Table 23: F1 scores for the best previous RF models with different undersampling

methods.

Undersampling Method Lung Prostate

No Undersampling 91.97 86.55

Random Undersampling 90.89 87.38

10 Clusters 90.80 87.45

25 Clusters 90.86 87.31

50 Clusters 90.95 87.61

Table 24: Structure specific results for VA lung data using RF with random under-

sampling, k -Means cluster undersampling and no undersampling.

Structure None Random k=10 k=25 k=50

Non-Annotated 95.10 94.12 94.16 94.19 94.26

Esophagus 89.60 92.95 92.60 93.22 93.78

Heart 93.36 95.56 95.34 95.94 94.82

PTV 1.16 33.21 37.25 36.38 36.80

SpinalCord 94.54 96.23 96.16 95.59 95.73

Brachial Plexus 53.72 61.04 51.75 53.79 56.09

from the prostate data set had the highest scores with some form of undersampling.

The Rectum, Bladder and PTV structures performed significantly worse compared to

any of the included undersampling methods. Overall, balancing the classes improved

the F1 scores for the most difficulty classes, although there was not a significant

difference between random undersamping and k -Means clustering with varying sizes

of k.
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Table 25: Structure specific results for VA prostate data using RF with random

undersampling, k -Means cluster undersampling and no undersampling.

Structure None Random k=10 k=25 k=50

Non-Annotated 91.42 91.03 91.53 91.48 91.67

Rectum 70.13 81.70 80.36 80.50 80.34

Bladder 60.55 79.66 75.74 76.93 75.02

Femur L 94.13 93.85 96.01 96.17 95.95

Femur R 94.21 92.76 96.41 96.48 96.34

PTV 18.11 53.98 53.39 51.42 54.97

Bowel Large 59.51 54.97 64.89 63.03 64.60

Bowel Small 44.84 45.39 54.99 53.50 56.45

8.2.4 Run Time Analysis

Table 26 shows the average run time per training fold using random undersam-

pling, no undersampling and k -Means based undersampling with cluster counts of 10,

25, and 50 performed on the non-annotated structures. The GBT and MLP algo-

rithms were significantly slower than the other three algorithms and NB was by far

the fastest, although it consistently produced the worst F1 scores. Not undersampling

was faster than random undersampling, but as previously mentioned it comes with a

cost of poor performance for certain structure types. Random undersampling was the

slowest sampling method for all algorithms and was significantly worse for all except

for MLP. Clustering provided the best run times for the RF and MLP algorithms

which also had the highest classification accuracies shown in Tables 21 and 22.

8.3 Including Radiomic and Dosiomic Features

To extend the initial work on structure set standardization, the potential benefit

of using radiomic [174] and dosiomic [175] information was also investigated. While

the term -omics was originally used with molecular biology, it is now being applied
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Table 26: Run time for the VA prostate data with random undersampling, k -Means

cluster undersampling and no undersampling.

Algorithm None Random k=10 k=25 k=50

GBT 9,113 81,277 14,498 15,066 14,602

NB 99 222 115 124 126

SVM 995 6,610 1,771 1,553 1,538

RF 452 929 308 289 297

MLP 7,630 10,077 10,538 8,759 6,905

to other high-dimensional data used in the field of medicine [176]. In this context,

radiomics and dosiomics refers to the use of extracted features from imaging and

dosimetric data.

8.3.1 Manual Feature Extraction

With the matching image and dose files, 27 high-level radiomic and dosiomic fea-

tures were manually chosen [177], such as median, skew, kurtosis, signal-to-noise ratio,

and uniformity [178]. Using the region that overlapped with the existing structure set

bitmaps, these -omic features were extracted and concatenated to the existing 100

features from the singular value decomposition data which resulted in a new input

vector.

Like before, the Random Forest classifier with 5-fold cross-validation was used

with the Apache Spark platform. Because the dataset had a high level of class imbal-

ance, the majority class (non-curated structures) was randomly undersampled and

the minority classes (curated structured) were randomly oversampled to the size of

the largest minority class.

In these experiments, it was shown that including soft tissue and dose related

radiomic features can be used to improve the predictive power of a structure name
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Comparing Structure Set Models

Structures Features With Radiomic and

Only Dosiomic Features

Non-Curated 91.08 93.09

Rectum 77.61 88.22

Bladder 74.87 80.46

Femur L 95.97 96.82

Femur R 95.41 95.21

PTV 54.04 62.63

Bowel Large 66.33 75.43

Bowel Small 51.56 53.14

Table 27: F1 scores for the base model using only structure set data and the model

using structure set, image, and dose information.

relabeling system. Most structures saw at least several percents of improvements of

labeling accuracy but some, like the PTV Recum, and Bowel Large, saw gains close

to 10%. However, the overall performance for the PTV and the Bowels remained low.

8.3.2 Deep Learning Feature Extraction

While the manual feature extraction method showed improved results, it may

be difficult always pick the most important features when learning from a specific

dataset. Instead, a deep learning architecture can automate the feature engineering

process and can potentially discover complicated features that would be difficult for

a human practioner discern.

In these experiments [179], we used 9,750 structures from 550 prostate patients
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to automatically label the same structures as the previous experiments. A bounding

box was centered on each structure in the dataset and a bitmap was extracted. The

same bounding box was used to extract the imaging and dose data. Four CNN models

were tested: structure only, structure plus image, structure plus dose, structure plus

image plus dose.

Using Keras, a network of three CNN layers, two dense layers and a softmax

classifier was created. The CNN layers have 32, 64 to 128 filters, all using max 3D

pooling, dropout of 0.2 and batch normalization. The first CNN layer used a kernel

size of 7x7, while the next two used 3x3. The dense layers also use 0.2 dropout and

use ReLU for an activation function, with the final class predictions performed by

softmax.

8.3.2.1 Dynamic Undersampling for Deep Learning

While random undersampling is a common method for class balancing, it may not

be optimal because the importance of the selected examples are not considered. This

may result in examples that do not accurately represent the underlying distribution

of the given class. The examples most useful for discovering decision boundaries may

be very specific, as demonstrated in level difficulty problems [11], and the most useful

examples may be excluded when sampling at random.

In order to address this issue, a dynamic undersampling method was employed.

By overloading the standard Keras data loader with a custom method, the undersam-

pling of the majority class was performed at the start at each epoch. While random

undersampling permanently removes examples at the beginning of the training pro-

cess, this dynamic approach provides a different subset of the majority class at each

epoch. This means all of the majority examples will be seen at some point during

training. The shuffling of data and the presentation of more diverse training exam-
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ples can lead to more stable models and reduce overfitting. While this method was

used for a single dataset and without directed experimentation, initial results shows

improved performance over random undersampling and would benefit from future

investigation.

8.3.2.2 Results

Table 28 shows that using all three data types usually gave the best results,

with each of the other models providing the best result for a single structure. When

compared to the previous experiments in Table 27, the results are mixed as some the

CNN model performed better on some structures and worse on others. However, the

CNN model performed better on the Bowel Large and Bowel Small structures which

were among the most difficult to classify. In Table 29, the similar aggregate results

between the VA training and VCU test data provided similar results show that the

CNN models were not overfitting.

8.4 Conclusions

8.4.1 Future Work

While this work shows promise for automatic structure relabeling, there still

may be room for improvement. Other classifiers may also provide better results

individually or as part of a larger ensemble. Clustering was also shown to potentially

improve classifier and run time performance but additional investigation is needed to

maximize its benefits.

Including aspects of natural language processing (NLP) may add value as many

of the structures can be logically relabeled to TG-263 standardized labels if they have

permutations such as different capitalization, spacing or special character separators.
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Comparing Model Performance for Each Structure

Structure With Image With Dose All Three

Non-Curated 86.62 80.90 87.08 88.22

Rectum 81.66 70.34 78.74 83.81

Bladder 77.55 73.68 79.21 78.62

Femur L 96.07 94.63 95.04 97.11

Femur R 93.77 93.33 94.44 96.22

PTV 53.29 48.41 58.61 60.72

Bowel Large 72.56 77.47 69.64 76.36

Bowel Small 57.50 52.87 51.16 54.34

Table 28: F1 scores comparing the results for individual structure type using four

different models.

Test Set Results

Dataset and Model Weighed F1 Scores Weighed F1 Scores

VA Validation Set VCU External Test Set

Structures Only 84.17 82.92

With Image 79.07 80.05

With Dose 84.52 83.13

All Three 86.08 85.70

Table 29: A comparision of results between the VA validation and the VCU external

test set which shows similar weighted F1 scores.
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However, NLP in itself may not be sufficient to correctly label structures in all cases.

As shown in Tables 17 and 18, we have observed that some structures have several

hundred different label permutations. There were also 220 lung and 378 prostate

structure labels present in the VCU data sets that were not found in the larger,

multi-facility VA data illustrating that different clinical data sets may have a high

level of structure label variability.

Another major challenge is to correctly label target related structures. We have

observed that these labels are often appended with text related to margins, dose

values, physician initials or plan names. For a given patient, there can be structures

such as GTV, ITV, and PTV as well as multiple permutations of each. When using

the PTV structure for Quality Measure analysis, the correct related structure must

be distinguished from other structures that appear similar geometrically and by their

entered labels. If the geometry based classifier and label matching is not enough

to relabel those target structures, using soft tissue, dose or plan information may

help. Having more data for training often improves results but this kind of radiation

oncology data can be difficult to obtain and the manual annotation process is very

time intensive.

8.4.2 Summary

In this chapter, we showed that DICOM structure sets can be relabeled to selected

TG-263 specified labels with high accuracy when considering curated structures only.

While the accuracies are not as high when considering all arbitrary clinical struc-

tures, our approach still shows success for most structure types and these results

may be further improved with the proposed future solutions. This also illustrates

the difficulties of classifying data sets with non-annotated structures as it introduces

the complexities of noise and class imbalance. The average number of structures per
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patient from the VA and VCU is approximately 20, so it is likely that there will be a

high number of these non-annotated structures in other clinical data sets.

We achieved similar results compared to previous works [159] and [160] (that

used some variants of MLP that was implemented here) for curated data sets. In

addition, we also investigated the challenges and opportunities when presented with

large, clinical data sets. Even with including non-annotated structures, we were still

able to achieve F1 scores above 90 for both lung and prostate. In almost all cases,

using bony anatomy and treating structures as patient dependent improved classifier

results. With these parameters, the RF algorithm outperformed the other algorithms

for all non-curated training experiments and six out of eight testing experiments.

Using the best data combinations, the effects of undersampling the majority class

of non-annotated structures was further investigated. While not undersampling can

provide competitive overall F1 scores, it tends to come at the cost of poor performance

on one or more of the other structure classes. The popular method of random under-

sampling resulted in significantly slower run times for all five algorithms compared to

not undersampling or clustered based undersampling. While the k -Means clustering

F1 scores were comparable to the standard random understampling, it resulted in

significantly faster run times for all five algorithms tested.

The main methodological contribution is the proposed pipeline for structure clas-

sification. Our pipeline incorporates image-based features (using volumetric bitmaps

computed on a bounding box with feature reduction using SVD), standard machine

learning classifiers and undersampling techniques (e.g., random and K-means cluster-

ing) to alleviate data bias. Prior work has only considered a subset of these compo-

nents using cleaned data sets but we have investigated how our entire workflow could

be used on real clinical datasets. Additionally, our pipeline allows for influencing the

label given to a structure based on other structures for the same patient which has
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not been previously investigated to the best of our knowledge.

The ultimate goal of this work is to allow for the development of an automated

software system that will take arbitrary DICOM structure sets and accurately relabel

them to TG-263 standardized labels. This would allow for efficient preprocessing of

large radiation oncology data sets for various types of analysis but we also illustrate

that this is a difficult problem. Correctly identifying the PTV within all possible

tumor related structures proved to be a major challenge that will require future

work.

If it turns out to be impractical to fully automate the relabeling process, a triage

step may provide the best possible results. If a predictive model has high confidence

that a given structure should be assigned a label, that label can be automatically

applied. If not, those structures can be flagged for expert human review which hope-

fully would be a small portion of the total data. While using the standardized labels

as defined by TG-263 is the best option going forward, we have shown some promise

in automating the structure set relabeling in existing clinical data sets.
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CHAPTER 9

FUTURE DIRECTIONS

The work presented in this dissertation has included novel experimentation, insights

and solutions for the domain of imbalanced learning with Apache Spark. However,

this only scratches the surface of what may be possible and so there are many oppor-

tunities for continued research.

9.1 Sampling with Apache Spark

The sampling methods mentioned in Chapter 2 were not designed specifically for

big data problems or parallel execution. While many of these algorithms performed

well on the smaller training datasets, it was not guaranteed they would perform the

same when presented with larger datasets. The results shown in Chapter 4 highlighted

a number of issues with using class balancing algorithms designed for serial execution.

Although a number of algorithms were successfully implemented for Apache Spark,

they could be further improved if redesigned with the MapReduce framework as part

of the inherent design.

At this time, developing instance level difficulty based algorithms for Apache

Spark is not trivial. Although the spark-knn package is available, it is not part of the

official MLlib software and neither is any other unsupervised tree algorithm, includ-

ing any implementation of kNN. Including these kinds of methods in the standard

libraries will greatly increase the accessibility of developing algorithms dependent on

tree structures. There are also no class balancing algorithms in MLlib which also

hinders related research.
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There is also limited work on how to best employ sampling based algorithm on

distributed systems. One benefit of Apache Spark is that it does the data distribution

under the hood making development and deployment easier. However, this can lead

to data being distributed in a way harmful for the target algorithm. Future work

will be needed to determine what rules should be followed when distributing data

between cluster nodes and new algorithms should be designed to explicitly address

this potential issue.

9.2 Minority Type Based Ensembles

As shown in [43], there can be a benefit using ensembles that take in account

the difficulty of certain examples. Further expanding on this idea, such as ensembles

from multiple values of k, may lead to better results. While considering instance level

difficulty was shown to improve classification results, there are currently no methods

to determine what combination of instance types should be included at training.

Embedding such a feature in a class balancing algorithm would allow for an end-to-

end solution. There is also a need to investigate if instance level difficulties should be

treated independently for each class rather than the entire training dataset at once.

9.3 Multimodal Learning

While the majority of machine learning research has focused on data representing

a single view, real world data can include information from multiple perspectives, also

referred to as multimodal. These datasets can contain any number of combinations

or multiple instances of tabular, image, text and signal data. For example, a dataset

may include a photo with a caption, video with an audio track, or multiple types of

satellite imagery for the same land feature.

Learning from this kind of data is more complicated because the inter- and intra-
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relationships that must be understood. Although there have been a number of re-

cent surveys on multimodal learning [180] [181] [182], there is almost no mention of

issues related to class imbalance or instance level difficulty. However, there have been

domain specific works that addressed multimodal class imbalance with random un-

dersampling [183], random oversampling [184], cost-sensitive learning [185], weighted

backpropagation, categorical cross entropy loss [186] and manual data pre-balancing

[187]. The lack of more advanced class balancing techniques like SMOTE provides

the opportunity for future work in this untapped area.

9.4 Cluster, Tree and Graph Based Sampling

Chapters 7 and 8 showed the benefits of both tree and cluster based methods

on predictive power and run time. Since only two tree algorithms have been imple-

mented for Apache Spark, hybrid spill and KD-trees, it would be beneficial if more

were implemented. Chapter 4 also reported that k -Means on Apache Spark was a run

time appropriate method and therefore could be considered for big data applications.

Clustering could also be a valuable component in new versions of these classic algo-

rithms as it could contribute in more explicit data partitioning. While not directly

investigated in this dissertation, graph based methods may also be useful with big

data imbalance problems, such as multimodal learning.

9.5 Class Imbalance with Deep Learning

Deep learning has become increasingly popular with the affordability of GPU

hardware and the plug-and-play ability of modern software architectures. However,

work on imbalanced data in this area has not caught up with the decades of research

focusing on traditional machine learning and shallow neural networks. Many topics

like instance level difficulty, the ordering of examples during training, class imbalance
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aware networks and custom loss functions have not been fully explored. While AEs,

AAEs and GANs have all shown potential in addressing class imbalance issues, it is

not yet clear if the best solutions are algorithm based, data based or a combination

of both.
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CHAPTER 10

SUMMARY

This work has primarily focused on the MapReduce framework with Apache Spark,

ensembles, class imbalance and instance level difficulty. The contributions of this dis-

sertation includes novel Apache Spark implementation of class imbalance solutions,

unique observations on how existing algorithms behave when used with the MapRe-

duce model and additional evidence that instance level difficulty can significantly

affect machine learning performance. In conclusion, the original proposed research

questions from Chapter 3 are answered here:

RQ1: How do oversampling algorithms behave when used within the

MapReduce framework? As shown in Chapter 4, the results illustrate a significant

variation between classification accuracy and run time performance with the presented

oversampling methods. Although some algorithms tended to work better than others,

there was some dependence on the underlying classifier and the type of data used.

These results provide some insight on what combination of the oversampling method

and classifier might work well for a given problem. This work also provided a unique

perspective on what kind of algorithmic components are likely to be appropriate for

MapReduce based platforms. Any sub-component requiring O(n2) or worse become

intractable very quickly but kNN and k -Means are feasible if not overused. It was also

observed while implementing these algorithms on Apache Spark that the simplicity of

algorithms developed for single CPU machines should not be taken for granted. While

they all can technically be written for Spark, features like adjusting examples from

multiple class at once, rank ordering and probabilistic sampling can be inefficient to
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run and are a nightmare to write. In addition, this was the first implementation of

oversampling methods for Apache Spark written in Scala.

RQ2: What role does instance level difficulty play in the context of big

data classification? The results in Chapter 5 showed that instance level difficulty

can have a significant impact on classifier performance on large datasets. While

Naive Bayes performed best without any oversampling in a significant number of

experiments, it also gave poor overall scores on the nine multi-class metrics used.

However, Random Forest performed much better across the board and did even better

when considering instance level difficulty. This was true for random undersampling,

random oversampling and SMOTE. A version of SMOTE with clustering was also

used which provided many of the best overall results. In these experiments, the fifteen

combinations of safe, borderline, rare and outliers were tested. In almost every case, at

least one of these combinations provided a better result than the traditional approach

of considering all examples when sampling. Future work is required to detect a priori

which instance level difficulties should be used at training, but this work showed that

an optimal combination likely exists.

RQ3: Do traditional bagging methods benefit from instance level dif-

ficulty information? The UnderBagging+ method, which favors more difficult ex-

amples when creating bags, outperformed all other tested methods on the large test

datasets as shown in Chapter 6. It was also significantly better than standard Un-

derBagging, further showing the importance of choosing the right examples during

training. Another observation is that UnderBagging+ provided its maximal result

with fewer ensemble bags compared to the other tested methods. By focusing on

the more difficult examples, UnderBagging+ also created less randomized ensembles

which should lead to more model stability. In this work, UnderBagging+ was shown

to have state-of-the-art performance and was the first such implementation on Apache
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Spark.

RQ4: Can KD-trees be effectively implemented using the MapReduce

framework? Chapter 7 showed that while the hybrid spill tree method often pro-

vided the most accurate results, the KD-tree implementation was close behind and

in some cases ran three time faster. For some of the datasets, KD-tree outperformed

the hybrid method showing that it may be the superior tree algorithm to use in some

cases. Novel to this work was the extensive experimentation on performance based

on leaf size and the number of threads when running on an AWS cluster. From these

tests, it was shown that the chosen leaf size can significantly affect run time per-

formance. Making the leaves larger decreases the tree depth but also increases the

brute force cost when searching all examples in a target leaf. This means the best

performance will come when these forces are balanced. The KD-tree was also used

with a custom version of SMOTE with clustering which gave better results than the

base SMOTE in most cases and was significantly better on some of the datasets.

RQ5: Can class imbalanced radiotherapy structure set data be accu-

rately classified? In Chapter 8, it was shown that individual structures types can be

classified with accuracies above 95 percent. Unique to prior works, these experiments

focused the hardest problem of real clinical data which included a large amount of

unwanted examples. The major challenge presented was how to deal with the large

majority class which dwarfed multiple minority classes. After the initial experiments

were performed with structure set data only, manually extracted image and dose fea-

tures were also incorporated in the models which significantly improved performance

for several of the minority classes. The same data was then tested with a CNN based

model that provided similar results without the needed to perform manual feature

extraction. While the first two experiments used random under and oversampling for

class balancing, the CNN model tried a new approach of randomly undersampling
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the majority class at each epoch instead of once at the beginning of training. While

limited experiments were performed, these sampling results looked promising and

suggest further investigation.
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