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Abstract
Most defence mechanisms such as a network-based intrusion detection system (NIDS) are often sub-optimal for the detection
of an unseen malicious pattern. In response, a number of studies attempt to empower a machine-learning-based NIDS to
improve the ability to recognize adversarial attacks. Along this line of research, the present work focuses on non-payload
connections at the TCP stack level, which is generalized and applicable to different network applications. As a compliment to
the recently published investigation that searches for themost informative feature space for classifying obfuscated connections,
the problem of class imbalance is examined herein. In particular, a multiple-clustering-based undersampling framework is
proposed to determine the set of cluster centroids that best represent the majority class, whose size is reduced to be on par
with that of the minority. Initially, a pool of centroids is created using the concept of ensemble clustering that aims to obtain
a collection of accurate and diverse clusterings. From that, the final set of representatives is selected from this pool. Three
different objective functions are formed for this optimization driven process, thus leading to three variants of FF-Majority,
FF-Minority and FF-Overall. Based on the thorough evaluation of a published dataset, four classification models and different
settings, these new methods often exhibit better predictive performance than its baseline, the single-clustering undersampling
counterpart and state-of-the-art techniques. Parameter analysis and implication for analyzing an extreme case are also provided
as a guideline for future applications.

Keywords Intrusion detection system · Adversarial attack · Machine learning · Imbalance classification · Data clustering

Introduction

As the world becomes more interconnected, web-based
applications like personalized online banking [2], industrial
control systems [8], Internet of things [18] and wireless
sensor networks [41] are subject to various security vulnera-
bilities, thus raising an urgent need for effective network and
information security measures [35,39]. For this, a number of
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attempts have developed different defence mechanisms such
as a hardware/software firewall and an intrusion detection
system (IDS) to safeguard assets as well as system/device
control in a cyberspace [6,22,67]. Making use of unpatched
services is a common instance of intrusive attacks that remain
one of the crucial threats to both individuals and organi-
zations [73]. This is highly critical to the Internet-based
monitoring of engineering systems in general, especially in
the case of critical national infrastructure such as health-
care, manufacturing, power grid, gas and oil refineries [9].
Recently, a similar approach is proposed to detect an intrusive
attack to an in-vehicle communication system, the controller-
area-network bus protocol in particular [42].

As a response to this challenge, a network-based intrusion
detection system (NIDS) has been continuously invented and
improved to provide security by monitoring network traf-
fics and identifying malicious connections [44]. To support a
timely intervention and useful information for human oper-
ators, an NIDS is required to be resilient to new breeds of
threat like polymorphism, which allows an exploit-code to
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avoid positive signature matching. At large, initial signature-
based systems are ineffective for the detection of mutated
patterns and zero-day attacks, with a common problem of
high false positive rate [10,61]. This lacking leads to a fam-
ily of machine-learning-based NIDS that has proven to be
more effective provided up-to-date connection samples and
corresponding expert-directed labels [52,58]. Over the years,
different classification models have been investigated for
this task that is sometimes referred to as an anomaly-based
approach [36]. These include support vector machine or
SVM[75], k-means clustering [76], artificial neural networks
or ANN [63] and classifier ensemble [23]. Despite their suc-
cesses reported in the literature, the aforementioned methods
are capable of detecting some unknown intrusions that partly
resemble those known to the NIDS, but they are still prone to
adversarial attacks that exploit a variety of new obfuscation
techniques [17,30]. These attacks are branded as adversarial
machine learning, which explores blind spots of a machine
learning-based system [8]. In particular, slight perturbations
are introduced to new connections such that the pre-trained
model may incorrectly justify a decision boundary, thus a
predicted class [68].

Without the knowledge of obfuscationmethods, one has to
developNIDS that ismoreflexible to recognizemodified traf-
fic patterns. One way to achieve this is to constantly update
the underlying classifier with new training instances, while
the other focuses on learning more from the attack class that
is commonly a minority in a training data collection [7,20].
Specific to the latter, a number of studies have made use of
techniques developed within the data science community to
handle this issue, called class imbalance [36]. In general, a
conventional oversampling technique like synthetic minor-
ity oversampling or SMOTE [15] and its variants have been
a common choice to cope with this problem for different
classification algorithms [23,63,75]. However, the resulting
model shows signs of overfitting as it is not generalized to
unseen data [45]. To this extent, an undersampling strategy
has provenmore robust to overfitting across different domain
problems [11,40]. Following the work of [46] that introduces
an initial model of clustering-based undersampling, the mul-
tiple clustering-based approach proposed in this paper aims
to explore a pool of representative candidates, which is richer
than that obtained from one clustering. As such, it may better
preserve useful data patterns presented in the majority class,
hence the improved predictive performance [65].

Assumption Following the initial research of [30], this paper
focuses on classification-based NIDS, which does not ana-
lyze payload data [17]. It considers objects of TCP connec-
tions, not at a lower level of individual packets. It is assumed
that an adversary possesses knowledge about the design of
the victim’s system, but can only mutate inputs to this sys-
tem such that they still conform with the TCP/IP protocol

specification. Based on the report of [28], this is achieved
by designing non-payload-based obfuscation techniques to
work at network and transport layers. These will mutate
samples of known intrusions in an exploit-independent way,
thus making attacks looking similar to a legitimate one. This
approach is on parwith evasions of themeasurement phase of
IDS, defined in the taxonomy of adversarial attacks against
IDS [16].

Problem and Scope: Given the data collection generated
within the study of [30], the current work aims to develop an
effective clustering-based undersampling method, which is
novel as well as more accurate than the baseline [46], other
well-known methods found in the literature [60,66] and the
standard oversampling counterpart [15]. This new approach
selects representative samples from multiple clusterings that
are generated with various settings to promote the diversity
between them. This follows the concept and success reported
for the field of consensus clustering [31,54]. In particular,
this selection is designed as an optimization problem, where
the best alternative is added to the target sampling set iter-
atively. It is applied to reduce the cardinality of instances
belonging to the majority class of the binary classification
problem, i.e., legitimate and attack connections are majority
and minority classes. Following that, a classification model
developed from the balanced training set is employed to cate-
gorize unseen and obfuscated attacks. Intuitively, the chance
of recognizing these modified patterns may be improved, as
the classifier is able to learn more from the smaller class,
while information loss due to undersampling the majority
class is minimized.

Contributions: Main contributions of this paper are summa-
rized below.

• This work extends the previous research of [30] to
develop an accurate classification-based NIDS that is
robust to adversarial attacks. It presents a new multiple
clusterings-based method to handle imbalance classifi-
cation through undersampling the majority class. The
proposed framework allows any classification algorithm
to learn better with the minority class that represents
attack connections.As such, the resultingmodel becomes
more effective in recognizing obfuscated intrusions,
whose appearances partly overlap with those known
direct attacks. In addition, the resulting framework is
generalized to a wider range of non-payload adversar-
ial attacks.

• The proposed undersampling technique is based on an
iterative and greedy-optimization process of selecting
the best alternative from a pool of centroids that rep-
resent different clustering results or data partitions. This
is inspired by the concept of ensemble or consensus clus-
tering [31,34], which usually provides a more accurate
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data partition than a single clustering. Hence, this idea
is novel and may enhance the effectiveness of an initial
work of [46] that makes use of only one clustering to
guide the sampling procedure. For the aforementioned
selection, it is designed as an optimization problem that
maximizes three different objective functions of: (i) the
maximum distance from the centroid under the question
to other k nearest centroids in the pool, (ii) the maxi-
mum distance from the examined centroid to k nearest
instances from the minority class, and (iii) the average
between functions (i) and (ii), respectively.

• The proposed model is evaluated against the single-
clustering alternative of [46], RUS (Random UnderSam-
pling [60]) as the conventional model of undersampling,
other well-known ensemble-level techniques: RUSBoost
[60] and IRUS (Inverse Random UnderSampling [66]),
the oversampling technique of [15] and its recent exten-
sion [70]. To generalize this experimental investigation, a
range of basic classifiers and classifier ensemble method
are employed. Specific to the line of IDS research, a state-
of-the-artmodel is also included as a comparisonmethod.
Furthermore, parameter analysis specific to the proposed
technique is also included such that the relation between
predictive performance and algorithmic variables is illus-
trated and discussed. Anyone tries to apply this to a future
problem would find it helpful as to tailor the model for
good performance.

The rest of this paper is organized as follows. Sec-
tion2 emphasizes related works and problem definition,
with details of the dataset exploited herein. Besides, Sect. 3
presents the proposed undersampling framework, includ-
ing the underlying optimization process. The performance
evaluation of new and compared methods are included and
discussed in Sect. 4. At the end, the conclusion with direc-
tions of future research are given in Sect. 5. In addition,
Table 1 provides a description of abbreviations used in this
paper.

Table 1 List of abbreviations used throughout this paper

Abbreviation Description

AdaBoost AdaBoost technique for boosting-based ensemble
generation

ANN Artificial neural networks

ASNM Advanced security network metrics

C4.5 A decision tree algorithm

DNN Deep neural networks

DT Decision tree

HTTP Hypertext transfer protocol

IDS Intrusion detection system

Table 1 continued

Abbreviation Description

IP Internet protocol

IRUS Inverse random undersampling

KNN K nearest neighbours

LDA Linear discriminant analysis

LR Logistic regression

MTU Maximum transmission unit

NB Naive Bayes

NIDS Network-based intrusion detection system

PCA Principal component analysis

RF Random forest

RUS Random undersampling

RUSBoost Random undersampling with boosting-based
ensemble generation

SMOTE Synthetic minority oversampling

SVM Support vector machine

TCP Transmission control protocol

TCP FIN TCP finish flag

TCP URG TCP urgent flag

Related works

In this section, background and relatedworks of the proposed
research regarding classification-based NIDS, traffic object
of interest and non-payload-based obfuscations is elaborated
to set a scene for the rest of paper. Then, the definition of
NIDS as a classification problem is given as a basis for the
proposed method, which is fully explained in Sect. 3.

Classification-based NIDS and handling
of imbalance class problem

With an increasing demand for NIDS alongwith the develop-
ment of Internet-of-things and network and wireless sensor
networks [18,25], a series of intelligent agents to cope with
intrusive traffics have been the center of many research
works. In general, these systems rely on either signature
matching to determine misuse and attack patterns that are
largely different from signatures of legal activities [3], or
a pattern recognition modeling normally referred to as
anomaly detection-based intrusion detection [47]. To get over
the problem with a low recall of unseen attacks, most of
NIDS instances have turned to exploit a predictive model
learned from an up-to-date data collection [24,71]. However,
the major limitation is with a high false-positive rate caused
by the difficulty in determining boundary between normal
and abnormal cases [57]. Note that other approaches toNIDS
such as watchdogs and trust models are also presented in the
literature, but are beyond the scope of the current work that
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Table 2 Summarization of related works, with respect to classification-based NIDS & treatment of class imbalance

Proposed work Exploited technique Treatment of class imbalance

Online oversampling PCA for anomaly detection [43] PCA Oversampling

Adaptive ensemble learning model [23] DT, RF, KNN & DNN n/a

Handling of imbalance class in IDS [1] RF and DNN Oversampling & undersampling

Hybrid data mining approach [55] Clustering, feature selection & KNN Oversampling

Information-Gain based feature selection [69] RF & feature selection Oversampling

Filter-based attribute reduction [14] K-means & SVM n/a

Handling of imbalance class in IDS [36] DT, RF, KNN & LDA Oversampling

Determining informative features [19] RF & feature selection n/a

Recursive feature elimination [62] SVM, DT & RF n/a

Feature reduced IDS [4] ANN n/a

Artificial bee colony for improved classifier ensemble [48] DT & AdaBoost n/a

Forwarding feature selection [30] DT, NB, LR & SVM n/a

concentrates solely on machine learning-based implementa-
tions. Within this particular subject, a classification model
has been an effective alternative that blends advantages of
both signature-based and anomaly-based methods.

For instance, in the study of [36], a number of machine
learning algorithms and the oversampling technique of
SMOTE [15] are used to improve the detection rate forminor-
ity attack classes. This recent investigation is among some
in the NIDS field that pay attention to the problem of class
imbalance. It inspires the current research, with the summa-
rization of related works being presented in Table 2 (please
refer to reviews of [41,49] for a boarder scope of NIDS
research).

These representative methods point out major directions
taken to improve the classification performance with the
presence of class imbalance. Some such as the studies of
[1,43] deal with this problem directly by using conventional
oversampling and undersampling methods like SMOTE [15]
and RUS [60] to obtain a desired training dataset. On the
other hand, many techniques get over this burden implicitly
through the determination of feature space [4,14,19,30,62],
and the ensemble methodology that learns from multiple
data perturbations [23,48]. The ability to handling the prob-
lem of class imbalance becomes even more critical as a
classification-based NIDS encounters adversarial attacks,
where known intrusive patterns are mutated to avoid a posi-
tive recognition. In fact, those methods listed in Table 2 are
capable of detecting some unknown intrusions, but it is still
prone to evasion by obfuscation techniques [17,30]. The next
section provides further details on this attack type, especially
the case of non-payload-based obfuscation that is the focus
of the present study.

Adversarial attack and non-payload-based
obfuscation

Based on the taxonomy of evasion against machine learn-
ing models [10], two major categories of evasive adversarial
attacks against IDS can be highlighted, payload-based and
non-payload-based approaches. As an initial investigation
into the former, the Whisker tool is developed to mutate
HTTP requests such that IDS becomes confused and inac-
curate [17]. Similar works have been introduced to bypass
the detection of IDS through changing the payload [16,72],
using obfuscation techniques such as malware morphism
[50,51,78]. However, those methods that are able to evade
payload-based IDS mainly by morphing the payload may
not be efficient for non-payload-based counterpart. Provided
this, it is also necessary to recover defected patterns associat-
ing to the attack morphing at network and transport layers of
the TCP/IP stack [30]. As non-payload-based IDS is usually
more cost-effective as well as generalized to network and
application settings than the other, it motivates a large num-
ber of research works, such as Protocol Scrubbing [74] and
AGENT [59], for instance. Recently, another series of inves-
tigations [28,30] on non-payload-based intrusion detection
and obfuscation-based adversarial evasion has been reported.
These assess the robustness of different ML models, based
on experiments with the dataset that implements obfusca-
tion techniques to simulate adversarial non-payload attacks.
Note that a thorough feature engineering process, i.e., awrap-
per method [13], is designed to deliver a set of informative
features to train a classifier with both original samples and
mutated ones. Despite the good result reported therein, the
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issue of imbalance classification has not been clarified and
handled.

As mentioned earlier, the current work investigates
instances of TCP connection, not network packets, which
represent application data exchanges between client and
server on the TCP/IP stack up to the transport layer. Of
course, these are subject to connection-orientedprotocolTCP
at Layer 4, Internet protocol IP at Layer 3 and Ethernet proto-
col at Layer 2, respectively. In particular, a TCP connection
γ can be presented by start and end timestamps, ports/IP
addresses of the client and the server, sets of packets inter-
changed between the two ends. Given this assumption, a
connection γ can be explained with its network connection
features, thus allowing the following extraction function to
map γ to the feature space Λ of d dimensions [30].

f (γ ) �→ Λ, Λ = (λ1, λ2, . . . , λd) (1)

Each function fi (γ )maps the connection to the i th dimension
as follows.

fi (γ ) �→ λi , i = {1, 2, . . . , d}, (2)

According to [28,30], examples of these features include the
standard deviation of outbound (client to server) packet sizes,
modus of TCP header lengths in all traffic, the number of
TCP URG flags occurred in inbound traffic, and the number
of TCP FIN flags occurred in inbound traffic.

Having specified those, the next part describes the concept
of non-payload-based obfuscation, which aims to modify
connection characteristics or features for a remote attack.
For a connection γa representing a remote attack without any
obfuscation, it can be represented by the following equation.

f (γa) �→ Λa, Λa = (λa1, λ
a
2, . . . , λ

a
d) (3)

Then, let turn to the connection γa′ that corresponds to
an intrusive communication γa to which non-payload-based
obfuscations are applied. These modifications make changes
to packet sets of the original connection γa by insertion,
removal and transformation of the packets. As such, the pre-
vious feature space Λa is transformed to Λa′

.

f (γa′) �→ Λa′
, Λa′ = (λa

′
1 , λa

′
2 , . . . , λa

′
d ) (4)

As a result, a classifier trained without knowledge of
obfuscated or modified patterns may not perform as well as
it does against intrusive connections with original features.
According to the study of [29], a set of techniques have been
initiated as part of developing an obfuscation tool in the Unix
environment. Examples of functions f (γa′) are listed below.

• Spread out packets in time: constant delay of 1 and 8s.,
as well as the normal distribution of delay with 5 s. mean
with 2.5 s. standard deviation (25% correlation)

• Packets loss: 25% of packets
• Unreliable network channel simulation: 25% of packets
damaged, 35% of packets damaged, and 35% of packets
damaged with 25% correlation

• Packets duplication: 5% of packets
• Packets order modifications: reordering of 25% and 50%
packets; reordered packets are sent with 10ms. delay and
50% correlation

• Fragmentation: MTU 1000, MTU 750, MTU 500 and
MTU 250

• Combinations of the aforementioned techniques

In accordance with previous studies of classification-
based NIDS [63,75,76], let a training dataset X = V × Y be
the space of labeled connection instances, where V denotes
the feature space of n instances (V ∈ Rn×d ), Y represents
the corresponding label space of size n × 1, and each entry
xi ∈ V is classified as yi ∈ Y with the value of yi being
drawn from the domain of class DX . For a classifier that is
trained on the dataset X using the algorithm α, the resulting
model CFα

X estimates the class yo ∈ DX of a new instance
xo ∈ R1×d , i.e., CFα

X (xo) = yo.
Specific to the context of NIDS as a binary classification

problem, the predicted class yγa of a connection γa whose
feature vector is defined as f (γa), can be defined by the
following [30].

yγa = CFα
X ( f (γa)) (5)

where yγa ∈ {Intrusion, Legitimate}. Now with a connec-
tion yγa′ whose features are modified through obfuscation
functions, the quality of prediction yγa′ is the subject worth
investigating.

yγa′ = CFα
X ( f (γa′)) (6)

Without any prior knowledge regarding mutated patterns
or model adjustment, any classifier CFα

X can often be sub-
optimal. To this extent, the original work of [30] overcomes
this difficulty through a feature selection approach, which
iteratively add highly informative features to the desired set.
This leads to an improvement towards a robust classification
of adversarial intrusions but lacks an appropriate handling of
the class imbalance problem. Henceforth, a new undersam-
pling method is proposed in the next section to attend to this
issue.
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Proposedmethod

The proposed undersampling framework can be considered
as an extension to the initial work of [46], which employs
a single clustering to determine representative instances of
original samples belonging to the majority class. At the same
time, it demonstrates an organic application of consensus
clustering concept [31,32] to provide a pool of multiple clus-
tering results from which better cluster-wise representatives
can be extracted. This section provides details of different
stages developed for this new method, including the creation
of multiple clustering results, the selection of representatives
from those data partitions, and the use of data after under-
sampling to train a classifier.

Generating a Pool of Multiple Clusterings. Provided the
dataset X , let X0 and X1 (where X0 ∪ X1 = X ) be the set
of samples belonging to the majority class and that of the
minority class, respectively. An undersampling technique χ

is applied to X0 to extract the set of representative samples
χ(X0) = X∗

0 , where |X∗
0 | � |X0| and |B| denotes the size

of set B. Then, the target data X∗ that can be formed as
X∗ = X1 ∪ X∗

0 is used to create a classifier CFα
X∗ using the

classification algorithm α (previously, this is CFα
X without

the undersampling process). Figure 1 illustrates the overall
process of undersampling the training data set. Based on the
study presented by [46], the function χ is simply represented
by a set of centroids Z obtained from a clustering of X0,
where the k-means technique is a common alternative for
this analysis. In other words, representative samples are cen-
troids z1, z2, . . . , zρ from clustering X0 using k-means and

the preferred number of clusters as ρ. Note that ρ is set to
the desired size of the majority class, which normally is the
same as that of the other, i.e., ρ = |X1|.

Specific to the current work, the concept ensemble or
consensus clustering [31] is exploited to create a pool of
multiple clusterings, from which a collection of ρ clusters
are selected to generate X∗

0 . Let V0 = {x1, x2, . . . , xn0} be
the matrix in the normalized domain [0, 1]n0×d of n0 legit-
imate connection instances with respect to d features. It is
noteworthy that the label space Y0 from a training dataset
X0 = V0 × Y0 will not be exploited here as a clustering pro-
cess is an unsupervisedmodel, which develop a data partition
(i.e., a set of clusters) without the knowledge of class infor-
mation. In addition, each sample xi ∈ V0 is represented as a
vector of d feature dimensions or xi = (xi1, . . . , xid),∀i ∈
{1, 2, . . . , n0}. Also let Π = {π1, π2, . . . , πM } be a cluster
ensemble with M base clusterings, i.e., a clustering result
or ensemble member. In particular, the gth member deliv-
ers a collection of clusters πg = {Cg

1 ,Cg
2 , . . . ,Cg

kg
}, where

⋃kg
t=1 C

g
t = X0,

⋂kg
t=1 C

g
t = ∅, and kg is the number of

clusters in partition πg . To ensure the diversity withinΠ , the
following ensemble generation strategies are used together.

• Random-k method: these clusterings are generated using
k-means with a cluster number that is randomly cho-
sen from the range {2, . . . √|X0|} or {2, . . . 50} when√|X0| > 50 (see the report of [32] for relevant details).

• Random-subspace method: each base clustering can
be generated from a random feature subspace V ′

0 ∈
[0, 1]n0×d ′

of the feature space V0. Each of the data

Fig. 1 Overview of the
undersampling process
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subspaces is created with respect to the following
interval d ′.

d ′ = d ′
min + �ε(d ′

max − d ′
min), (7)

provided that ε ∈ [0, 1] is a uniform random variable,
while d ′

min and d
′
max denote the lower and upper bounds

of the generated subspace V ′
0. Following the initial work

of [33], d ′
min and d

′
max are set to 0.75d and 0.85d, respec-

tively.With this being decided, one of d features is picked
up at a time to form the desired subspace of d ′ non-
duplicated features is obtained. For that, the index of each
randomly selected feature is determined by the following.

h = �1 + ηD, (8)

where h denotes the hth feature in the pool of d attributes
and η ∈ [0, 1) is another uniform random variable. As a

working example, Fig. 2 summarizes the process of gen-
erating a set of representatives from a clustering of two
clusters, while Fig. 3 extends this procedure to a selection
of representatives from a pool of centroids generated by
multiple clusterings. Note that the underlying selection
process will be explained next.

Selecting Cluster-Wise Representatives. Having obtained
the ensemble Π , a pool of centroids ZΠ is created such
that each centroid za ∈ ZΠ represents a particular clus-
ter Ca in the set {C1

1 ,C
1
2 , . . . ,C

1
k1

} ∪ {C2
1 ,C

2
2 , . . . ,C

2
k2

} ∪
. . . {CM

1 ,CM
2 , . . . ,CM

kM
}. Note that every centroid in this col-

lection is represented by the original space of d features, i.e.,
za ∈ [0, 1]1×d ,∀za ∈ ZΠ . This processing stage is to select
ρ of these centroids to form the target set of representative
samples Z = {z1, z2, . . . , zρ}. It can be summarized by the
following steps.

Fig. 2 The process of
generating a set of
representative centroids z1 and
z2 from a single clustering with
k = 2 and X0 = x1, x2, x3, x4

Fig. 3 The process of
generating a set of representative
centroids from two clusterings
with k = 2 and k = 3
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• Step 1: To start with, the first member z1 of Z is selected
from the ZΠ , provided that z1 maximizes the average
distance to other centroids in ZΠ .

z1 = argmax
∀za∈ZΠ

∑
∀zb∈ZΠ,zb �=za d(za, zb)

|ZΠ | − 1
(9)

where d(xi , x j ) denotes the distance between two sam-
ples xi and x j . Note that theEuclideanmetric is employed
in this research to estimate the distance measurement. In
addition, |A| represents the size of set A. At the end of
this step, |Z | is 1, while that of ZΠ is reduced by 1 as
well, i.e., ZΠ = ZΠ − z1.

• Step 2: Next, a new member is iteratively chosen from
ZΠ and moved to Z . To be exact, in each iteration, a
greedy optimization is exploited to determine the best
centroid zc ∈ ZΠ using one of three different objec-
tive functions defined below. As a result, the two sets are
updated by Z = Z ∪ zc and ZΠ = ZΠ − zc, respectively.
This is repeated until all ρ members are obtained, i.e.,
|Z | = ρ. The following equation describes the first objec-
tive function, calledFurthest-First-Majority or shortly as
FF-Majority(Z , ZΠ). This is to find a centroid represent-
ing a unique feature space that is minimally overlapping
with those of others in ZΠ . It is leveraged with a similar
assessment to existing members of Z , which is the first
term in this function.

zc = argmax
∀za∈ZΠ

(∑
∀ze∈Z d(za, ze)

|Z | +
∑

∀zb∈ZΠ,zb �=za d(za, zb)

|ZΠ | − 1

)

(10)

The second objective function, called Furthest-First-
Minority or shortly as FF-Minority(Z , ZΠ, X1). It finds
a centroid in ZΠ that is largely different from samples of
the minority class X1. This can be formally specified as
follows.

zc = argmax
∀za∈ZΠ

(∑
∀ze∈Z d(za, ze)

|Z | +
∑

∀xi∈X1
d(za, xi )

|X1|
)

(11)

And the third alternative of objective function, called
Furthest-First-Overall or shortly as FF-Overall(Z , ZΠ,

X1), combines the two previous functions to gain the
overall justification based on samples belong to both
majority and minority classes. In particular, zc is any
za ∈ ZΠ that miximize the following measurement.

(∑
∀ze∈Z d(za, ze)

|Z | + 1

2

(∑
∀zb∈ZΠ,zb �=za d(za, zb)

|ZΠ | − 1

+
∑

∀xi∈X1
d(za, xi )

|X1|
))

(12)

Application to Training a Classifier. The set of sample
representatives Z acquired from the last phase corresponds
to the features space V ∗

0 ∈ [0, 1]ρ×d of the majority class
Y ∗
0 = {1}ρ×1, i.e., X∗

0 = V ∗
0 × Y ∗

0 . The resulting training set
is to aggregate this with the set of samples assigned to the
minority class, or X∗ = X1 ∪ X∗

0 . Consequently, a classifier
CFα

X∗ can be trained with the balanced data X∗ using the
choice of classification algorithm α. As such, the prediction
yγa′ of a connection instance whose features are altered by
different obfuscation techniques is determined by the follow-
ing definition.

yγa′ = CFα
X∗ ( f (γa′)) (13)

It is noteworthy that other methods to handle the class imbal-
ance problem can also be used in this way to generate the data
X∗. These will be included in the empirical study reported
next.

Performance evaluation

Having defined the problem under examination and the pro-
posed method in the past two sections, this paper continues
with an empirical study in which the new undersampling
framework is assessed against the results published in the
original work and other methods to handle the problem of
imbalance class. In particular, details of the dataset, exper-
imental design, results and discussion are included in this
section.

Investigated dataset and experimental design

The dataset under investigation is acquired from the original
study of [30], where it is used for evaluating the robustness of
machine-learning-basedNIDS to obfuscated attacks. In order
to obtain this data collection, connections representing both
legitimate and intrusive attacks are created across vulnerable
network services. Note that obfuscated intrusions are also
generated by applying obfuscation techniques to some direct
attacks, such that their appearances partly resemble the orig-
inals. Then, the TCP-level feature extractor called ASNM:
Advanced Security Network Metrics [26] is deployed to
generate the corresponding feature space. After normaliz-
ing value domains, the resulting dataset X = V ×Y consists
of a normalized feature space V ∈ [0, 1]11,445×194, where
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a class of an instance vi ∈ V is drawn from the domain of
3 possible connection categories, i.e., yi ∈ Y , yi ∈ {Legit-
imate, Direct attack, Obfuscated attack}. In Table 3, details
of this dataset are presented with respect to number of class-
specific samples that are generated using different network
services. In addition, Table 4 illustrates ASNM feature cate-
gories and those 14 ones that have been selected in the report
of [30] for classifying instances of legitimate connections
and direct attacks (please consult [26] for a full list of 194
features). The current research focuses on this selection as
not to bias a predictive model with features that are highly
associated with obfuscated cases, thus reducing the feature

space to V ∈ [0, 1]11,445×14. Please consult the original data
publication [27] for details of simulation and related settings.

For a thorough evaluation, a rich collection of compared
methods are included in this empirical study, in addition to the
proposed frameworkwith three different objective functions:
FF-Majority, FF-Minority and FF-Overall, respectively. The
‘Baseline’ of these newmodels is that initially introduced by
[30], i.e., a classifier is developed from the original dataset X
with the presence of imbalance class problem. Another basic
competitor is the single clustering technique proposed by
[46],whichwill be referred to as ‘SingleClus’ hereafter.Also,
other undersampling algorithms are investigated, including

Table 3 Details of connections
collected from different
vulnerable network services

Network service Legitimate Direct attack Obfuscated attack Total

Apache Tomcat 809 61 163 1033

DistCC 100 12 23 135

MSSQL 532 31 103 666

PostgreSQL 737 13 45 795

Samba 4641 19 44 4704

Server 3339 26 100 3465

Other legitimate traffics 647 n/a n/a 647

All services 10,805 162 478 11,445

Table 4 ASNM feature categories (with a full list available in the work of [26]) and those 14 features chosen by the study of [30]. Note that FFT
denotes Fast Fourier Transformation

Category (total number: selected number) & Feature name; Description

Statistical (total 77: selected 4)

SigPktLenOut; standard deviation of outbound packet lengths

MeanPktLenIn; mean of packet sizes in inbound traffic of a connection

ConTcpFinCntIn; number of inbound packets of a connection with FIN flag set

ConTcpPshCntIn; number of inbound packets of a connection with PSH flag set

Localization (total 8: selected 0)

Distributed (total 34: selected 0)

Dynamic (total 32: selected 0)

Behavioral (total 43: selected 10)

CntOfOldFlows; no. of mutual flows between client/server hosts of analyzed connection 5 mins before it started

CntOfNewFlows; no. of mutual flows between client/server hosts of analyzed connection 5 mins after it finished

FourGonModulIn[1]; the module of 2nd coefficient of the FFT in goniometric representation

FourGonModulOut[1]; same as the previous one, but for outbound traffic

FourGonAngleN[9]; the angle of 10th coefficient of the FFT in goniometric representation

FourGonModulN[0]; same as the previous, but it represents the module of 1st coefficient of FFT

PolyInd3ordOut[3]; same as the previous, but it represents 4th coefficient of the approximation

GaussProds8Out[7]; same as the previous, but computed above outbound packets and represents a product of 8th slice of packets with

Gaussian function that fits to interval of packets’ slice

OutPktLen32s10i[3]; same as the previous, but computed above the first 32 secs of a connection.It is totaled outbound packet

lengths of 4th interval

OutPktLen4s10i[2]; same as the previous, but computed above the first 4 secs of a connection.It is totaled outbound packet

lengths of 3rd interval
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RUS or Random UnderSampling [60] and its extensions to
an ensemble approach. These include RUSBoost [60] and
IRUS or Inverse Random UnderSampling [66], with their
hyper-parameters being set according to the comparative
study of [53]. Note that the target size of the majority class
after an undersampling process is the number of samples
belonging to the minority one. Besides those undersam-
pling and ensemble models, this assessment also explores
the oversampling counterpart that increase the cardinality of
X1 such that |X1| = |X0|. Specific to this work, the bench-
mark SMOTE technique [15] and its recent variant named
‘Outlier-SMOTE’ are employed, using the parameter setting
recommended in the original report of [70]. This extension
is picked up as it employs a similar intuition to FF-Majority,
where samples that are largely different from others will be
considered more important. Other settings are summarized
as follows.

• For the proposed framework, the target size of multiple-
clusteringpool orM is set to 150, and each specific setting
of these models is repeated for 30 trials to achieve a reli-
able conclusion from non-deterministic processes, based
on averages across multiple runs.

• For the classification algorithm α, four techniques are
included here. These include decision tree (C4.5) with
the maximum depth of 15, Naive Bayes (NB) with the
Gaussian kernel function, support vectormachine (SVM)
with the Radial kernel function, and Logistic Regression
(LR), respectively. These are employed with the dataset
generated by those filter andwrapper techniques to create
a classifier.

• Since the current research focuses on robustness of
machine-learning-based NIDS to obfuscated intrusions,
a classifier is to be trained with instances representing
legitimate connections and direct attacks only. Without
the knowledge of those obfuscated instances, it is the aim
of this study to see how well different methods recog-
nize unseen threats. As such, the stratified 10-fold cross
validation is firstly applied to the task of classifying legit-
imate connections and direct attacks, i.e., the examined
data is the combination of instances belonging to these
two classes only. The corresponding results illustrate the
quality of classifiers to capture usual patterns. On top
of that, the classifier trained in each fold will be used
to predict 478 obfuscated intrusions, as either a legiti-
mate or attack one. The latter experiment leads to the
comparison of robustness as a classifier encounters truly
new intrusive connections. At last, metrics used to assess
predictive performance are TPR (True Positive Rate),
FPR (False Positive Rate) and F1, respectively. Note that
results with respect to Precision and Recall metrics are

Fig. 4 Comparison of F1 and TPR scores obtained by examined meth-
ods, as averages across classification models and 30 trials of 10-fold
cross validation

also provided in the Supplementary.1 However, TPR is
the only appropriate alternative for the second experi-
ment, as all examined samples belong to the same class,
i.e., obfuscated intrusion.

Experimental results

To start with, the overview of results obtained for the classifi-
cation of legitimate and direct attack instances are provided
in Figs. 4 and 5. In particular, the former presents F1 and
TPR scores for different methods investigated herein. Note
that these are averages across 30 trials of tenfold cross vali-
dation and four classification algorithms. This figure shows
that the proposed methods of FF-Majority, FF-Minority and
FF-Overall are able to improve the F1 metric of 89.00%
achieved by the Baseline, with scores of 90.40%, 89.48% and
91.52%, respectively. Of course, these outperform the main
competitor of SingleClus that receives a lower F1 measure
of 87.31%. This suggests the more effective use of multi-
ple clusterings for undersampling the majority class than the
initial model that exploits only a single clustering. Nonethe-
less, SingleClus delivers more accurate classifiers than the
random selection of representative samples, with RUS and
its best ensemble extension getting the score of 84.17% and
86.60%. In addition to these compared methods that belong
to the undersampling category, other oversampling alterna-
tives of SMOTE and Outlier-SMOTE are also included in
this experiment, where their F1 values are higher than that
of the Baseline model and comparable to FF-Majority and
FF-Minority. Only the FF-Overall technique performs better
than these, where the highest score of 89.97% is obtained by
Outlier-SMOTE. A similar trend can be observed with TPR
scores acquired by those techniques, with the highest and

1 https://drive.google.com/drive/folders/1V2wp7gReowaX3ZS6M8w
GfA7uGnFjwSep?usp=sharing.

123

https://drive.google.com/drive/folders/1V2wp7gReowaX3ZS6M8wGfA7uGnFjwSep?usp=sharing
https://drive.google.com/drive/folders/1V2wp7gReowaX3ZS6M8wGfA7uGnFjwSep?usp=sharing


Complex & Intelligent Systems (2022) 8:4863–4880 4873

Fig. 5 Comparison of FPR scores obtained by examined methods, as
averages across classification models and 30 trials of 10-fold cross val-
idation

the lowest scores of 89.35% and 81.48% are reported with
FF-Overall and RUS.

In Fig. 5, FPR measures of Baseline, proposed methods
and those two oversampling models appear to be compara-
ble, with the two lowest scores of 0.08% and 0.09% being
seen with FF-Overall and Baseline, respectively. Despite this
positive observation, oversampling algorithms may lead to
overfitting, which can be witnessed later as a classification
model is applied to unseen cases of obfuscated attacks. Sim-
ilar to the previous results of F1 and TPR, RUS leads to the
worst FPR score of 0.17%, where an improvement can be
made by its extensions of RUSBoost and IRUS, i.e., lower
measures of 0.14%. It is noteworthy that all three new meth-
ods of FF-Majority, FF-Minority and FF-Overall perform
better than SingleClus that the score of 0.13%. Given the
results depicted in bothFigs. 4 and5, the proposed framework
can support a development of an accurate classifier, in addi-
tion to the application of feature subset selection employed
by Baseline (further results with Precision and Recall met-
rics can be found in the Supplementary). However, the result
discussed thus far is based on classify only legitimate connec-
tions and direct attacks, without the knowledge of obfuscated
intrusions. Next, it is crucial to see predictive performance of
these classification models to recognize obfuscated attacks,
whose patterns are only partly represented in training sam-
ples of direct attacks.

As mentioned above, Fig. 6 provides the report of TPR
scores each of which is acquired by one of investigated
methods for classifying 478 obfuscated intrusions (as either
legitimate or direct attack). These measures are presented as
averages across classifiers and 30 runs of 10-fold cross vali-
dation. The purpose of this empirical study is to investigate
predictive performance of different couplings of methods to
handle the imbalance class problem and benchmark classi-
fication algorithms, with respect to the amount of unseen
obfuscated attacks each of the resulting models can iden-
tify as direct attacks. Ideally, the target TPR score expected

Fig. 6 Comparison of TPR scores obtained by different methods for
classifying obfuscated instances. These are averages across classifica-
tion models and 30 trials of tenfold cross validation

from those should be higher than 49.111% that is seen with
Baseline. In particular, the clustering-based undersampling
approach is apparently more effective than the random coun-
terpart. This is concluded from the 50.0% score achieved
by SingleClus, which is higher than those of RUS, RUS-
Boost and IRUS, i.e., 48.326%, 48.092% and 49.006%.
Along this trend of improvement, all three new methods
perform better than the single-clustering competitor, where
average TPR measures summarized across different classi-
fiers are 51.360%, 51.151% and 52.197% for FF-Majority,
FF-Minority and FF-Overall, respectively. Note that the best
result is somewhat 3.086% higher than the benchmark set
by Baseline. Besides these reports, it is important to point
out that oversampling techniques of SMOTE and Outlier-
SMOTE become less effective to classify unseen samples
than Baseline, with TPR scores of 47.908% and 48.431%.
These are in par with the speculation regarding the over-
fitting effect caused by learning from an oversampled data
set. Further details are presented in Table 5, in which TPR
scores have been recorded for each coupling of classifiers and
those examined techniques.According to this, the three varia-
tions of proposed undersampling framework usually exhibit
predictive performance superior than Baseline, SingleClus
and other compared methods. In particular, the best accurate
alternative among these combinations is the exploitation of
FF-Overall with NB classifier, which delivers an averaged
TPR score of 85.146%. This tendency is similarly observed
across four classification techniques examined herein. These
results suggest that the robustness of classifiers to obfuscated
intrusions can well be enhanced using the clustering based
undersampling scheme, especially the multiple-clustering
approach introduced in this work. This observation is due
to other data-level methods included in this empirical study
either add new samples of the minority class or reduce those
of the majority class, using the general concept of near-
est neighbors. Provided that a clear border exists between
classes, its application would be rather effective. However,
an inter-class overlap may dampen the quality of this local

123



4874 Complex & Intelligent Systems (2022) 8:4863–4880

Table 5 TPR scores as averages
across from 30 trials of 10-fold
cross validation, categorized by
a combination of classifier and
examined method. Note that
corresponding values of
standard deviation are given in
(brackets)

Examined Method NB C4.5 SVM LR

Baseline 81.172 (4.182) 36.402 (2.891) 15.690 (3.446) 63.180 (3.852)

SingleClus 82.636 (5.376) 38.494 (3.784) 17.782 (4.103) 65.272 (3.448)

FF-Majority 83.891 (3.842) 39.540 (3.019) 19.038 (3.211) 66.946 (2.562)

FF-Minority 84.100 (2.871) 39.540 (2.995) 18.619 (3.103) 66.527 (2.383)

FF-Overall 85.146 (3.004) 40.377 (2.981) 19.665 (3.164) 67.782 (2.410)

RUS 80.753 (5.122) 35.983 (4.721) 16.946 (5.673) 63.808 (6.714)

RUSBoost 81.172 (4.219) 36.402 (4.016) 17.573 (4.862) 64.644 (4.673)

IRUS 81.381 (5.134) 36.611 (3.673) 17.782 (4.523) 64.435 (4.381)

SMOTE 79.079 (4.873) 35.565 (4.822) 16.318 (3.749) 64.854 (4.006)

Outlier-SMOTE 79.498 (4.027) 36.192 (3.760) 16.946 (3.662) 65.272 (3.885)

approach, as compared to the clustering-oriented technique
such as SingleClus. The same problem is also witnessed for
the task of imputing missing values, where clustering infor-
mation can be exploited to improve the accuracy of estimates
of those missing ones [37,38]. Nonetheless, the use of a sin-
gle clustering seen with SingleClus may overlook patterns
exhibited in data under examination. Intuitively, multiple
clusterings might fill in this gap well, which is observed here
as well as within the line of research called ensemble clus-
tering [12].

For the interpretation of experimental results thus far, aver-
ages across multiple trials are exploited for simplicity. This
initial assessment follows the central limit theorem suggest-
ing that the observed statistics in a controlled experiment
may well be justified to the normal distribution. However, to
obtain a more robust comparison between proposed models
and other compared methods, the number of times that one is
‘significantly better’ and ‘significantly worse’ (of 95% confi-
dence level) than the others are investigated next. Following
the work of [33], let μ(i, t) be the average of TPR scores,
across the t-th run of n-fold cross validation (n is 10 for the
current research) for a model i ∈ TC (TC consists of pro-
posed and compared methods). Note that the TPR metric is
the most appropriate with this second task of classifying a set
of samples belonging to the same class of obfuscated attack.
Formally, μ(i, t) can be defined as follows:

μ(i, t) = 1

n

n∑

η=1

T PRη(i, t), (14)

where T PRη(i, t) denotes the TPR score obtained from the
η-th fold within the t-th run of method i . The comparison of
means obtained from a single trial of cross validation may
be misleading, as the difference between means may not be
statistically significant at times. As such, it is more reliable to
make a decision based on the 95% confidence interval for the

mean μ(i, t). Such an interval is defined by the following.

[

μ(i, t) − 1.96
Std(i, t)√

n
, μ(i, t) + 1.96

Std(i, t)√
n

]

, (15)

where Std(i, t) denotes the standard deviation of T PR mea-
sures across n-folds cross validation of the t-th trial, for
a technique i . The statistical significance of the difference
between any two methods i, i ′ ∈ TC is found if there is no
intersection between their confidence intervals ofμ(i, t) and
μ(i ′, t). In particular, a model i is significantly better than
the other model i ′ when
(

μ(i, t) − 1.96
Std(i, t)√

n

)

>

(

μ(i ′, t) + 1.96
Std(i ′, t)√

n

)

(16)

Following that, the frequency that one method i ∈ TC is
significantly better than others across all experimented trials,
i.e., B(i), is calculated by the next equation.

B(i) =
∑

∀t=1...30

∑

∀i ′∈TC,i ′ �=i

better(i, i ′, t), (17)

where

better(i, i ′, t)

=
{
1 if

(
μ(i, t) − 1.96 Std(i,t)√

n

)
>

(
μ(i ′, t) + 1.96 Std(i ′,t)√

n

)

0 otherwise

(18)

Likewise, the frequency that one technique i ∈ TC is signif-
icantly worse than others, i.e.,W (i), is estimated as follows.

W (i) =
∑

∀t=1...30

∑

∀i ′∈TC,i ′ �=i

worse(i, i ′, t), (19)
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Table 6 Statistical assessment
of TPR scores reported in
Table 5 for the classification of
unseen obfuscated instances.
Note that, both better and worse
metrics are reported for all
combinations of compared
methods and classification
algorithms

Examined Method NB C4.5 SVM LR
better/worse better/worse better/worse better/worse

Baseline 24/45 38/43 8/70 13/82

SingleClus 50/31 46/37 41/31 47/38

FF-Majority 73/23 70/30 55/18 74/28

FF-Minority 87/20 69/28 49/23 67/32

FF-Overall 101/12 93/19 80/14 90/13

RUS 20/54 13/64 21/52 20/69

RUSBoost 26/41 36/42 36/36 34/52

IRUS 30/37 38/40 39/29 31/58

SMOTE 8/96 5/69 16/58 36/49

Outlier-SMOTE 16/76 19/55 32/46 49/40

where

worse j (i, i
′, t)

=
{
1 if

(
μ(i, t) + 1.96 Std(i,t)√

n

)
<

(
μ(i ′, t) − 1.96 Std(i ′,t)√

n

)

0 otherwise

(20)

Given this assessment framework, the results reported in
Table 5 is further analyzed, with the corresponding statistics
being shown in Table 6. These suggest that the three varia-
tions of proposed method appear to be more accurate than
other compared methods. In particular, they possess higher
‘better’ and lower ‘worse’ measures than the baseline and
the state-of-the-art oversampling model of Outlier-SMOTE.
Hence, the new framework can be a competitive alternative
to previous works that focus on handling the class imbal-
ance problem through data sampling and feature engineering.
In addition to the evaluation against Outlier-SMOTE, two
other recent methods identified earlier in the related work
are also investigated, i.e., Recursive feature elimination [62]
and Adaptive ensemble learning [23]. The next comparison
shown in Fig. 7 depicts TPR scores of the three best mod-
els reported in Table 5, against those of the abovementioned
state-of-the-art techniques. Based on this illustration, the pre-
dictive performance of proposed models are comparable to
those of both Recursive feature elimination and Adaptive
ensemble learning, thus putting the new method as another
benchmark for developing a classifier to recognize unseen
and mutated intrusive attacks.

Discussion and implication of proposed framework

In addition to the comparative assessment presented pre-
viously, this section continues with a discussion regarding
parameter analysis specific to the proposed framework and
its implication as a general method for handling the class
imbalance problem. At first, there are two algorithmic vari-

ables that may influence predictive performance of all three
variations of FF-Majority, FF-Minority and FF-Overall. One
is the size of clustering results M , which determines the
number of centroids in the pool and has been initially
set to 150 for the results reported thus far. To disclose
the association between this particular parameter and the
accuracy of classifying those obfuscated intrusions, the
experiment explained above is repeated for different values of
M ∈ {100, 150, 200, 250, 300, 350}. Provided that Fig. 8A
summarizes the corresponding results across four different
classifiers, a bigger M usually leads to improved TPR scores
witnessed with all three new techniques. In particular to FF-
Overall, the highest measures around 54% is obtained as
the ensemble size grows above 250. In other words, adding
more clustering results to the pool will not yield any fur-
ther significant improvement. This is similarly seen with the
other two models, where FF-Majority performs slightly bet-
ter FF-Minority across different values of M . Besides, the

Fig. 7 TPR scores obtained by FF-Majority, FF-Minority and FF-
Overall for the classification of unseen obfuscated instances using the
NB model. These are compared with those achieved by Recursive
feature elimination [62] and Adaptive ensemble learning [23], where
parameter settings are based on original studies
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Fig. 8 TPR scores obtained by FF-Majority, FF-Minority and FF-Overall, with different ensemble sizes of M ∈ {100, 150, 200, 250, 300, 350}.
These are summarized from 30 trials of 10-fold cross validation: A across four classifiers and B specific to NB

same comparison specific to the NB classifier is illustrated
in Fig. 8B, where the score of FF-Overall increases from
85.146 to 86.673% by enlarging the ensemble size from 150
to 250. Alike trends are also observed for both FF-Majority
and FF-Minority. Despite these, a tradeoff between gain in
classification performance and a higher complexity is a real
concern for resource-constrained applications. It is notewor-
thy that the complexity of generating a single base clustering
is approximated to O(n) and O(nM) for an ensemble of M
members. In fact, the overall complexity of a new method is
the combination of O(nkM) and O(ρ2) for the generation
of multiple clusterings and the selection of representatives,
where ρ denotes the final size of the majority class and k is
the averaged number of clusters in a clustering result. Since ρ

tends to be much smaller than n, this complexity may usually
converges to O(n). However, it is more expensive than (to
the a factor of M) the baseline of clustering whose complex-
ity is commonly O(nk). It is noteworthy that the complexity
analyzed herein focuses on the data preprocessing phase as
a prior to training a classification model. As such, a predic-
tion time would not be affected by the proposed procedure
but depending on a choice of algorithm used to develop the
target classifier. The resulting module can be embedded in a
software solution to perform an automated NIDS. A timely
response may be expected from such a setting; however, its
efficiency is up to hardware support. Of course, to gain a rig-
orous body of knowledge, matching the new undersampling
framework to big training data may well require a great deal
of time. In such a case, the exploitation of distributed com-
puting might be sensible.

As mentioned above, another important parameter to be
studied is the size ρ of reduced majority class X0, where
it is set initially as the same as that of the minority coun-
terpart X1. With the process of tenfold cross validation, it

is automatically configured to be around 146 samples that
will be referred to as Q hereafter. The next investigation is
to discover the relation between overall as well as classifier-
specific TPR scores and different values of Q: Q, 2Q and 3Q
that correspond to target numbers of representative samples
of the majority class being 146, 292 and 438, respectively.
Based on the experiment of classifying obfuscated connec-
tions using M = 250, the results summarized from all four
classifiers are depicted in Fig. 9A, where the case of 2Q
generally delivers a more accurate classification model. For
instance, TPR scores of FF-Overall inclines from 54.079%
to 54.813%, as the size of reducedmajority class grows twice
larger from Q to 2Q. This suggests a loss of majority-class
information encountered along with the procedure of select-
ing a small number of representative samples. Nonetheless,
having too many of these in the case of 3Q may not be
as effective since the cause of imbalance problem has been
re-visited. A similar tendency can be seen in Fig. 9B that
illustrates the result specific to NB. In particular, FF-Overall
a higher TPR of 87.246% with 2Q, compared to 86.673%
with the initial setting of Q.

The issue to be clarified next regards the implication of
proposed methods to an extreme case of class imbalance, in
which the size ofminority class gets extremely small. For this
experiment, the whole training data collection, i.e., sizes of
majority andminority classes are 10.805 and162, is exploited
to determine classes of those unseen obfuscated instance.
Note that the experiment is repeated from30 trialswith differ-
ent sizes of |X1| ∈ {162, 122, 81, 41}, whileM is 250 and the
target size of majority class is 2Q, i.e., twice that of the other
class. According to Fig. 10A that shows TPR scores obtained
by the NB classifier, the tendency of predictive performance
constantly declines as |X1| drops from162 to 41. This is com-
monly observed with different methods examined here, with
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Fig. 9 TPR scores obtained by FF-Majority, FF-Minority and FF-Overall, with different sizes of the majority class, Q, 2Q and 3Q. These are
summarized from 30 trials of tenfold cross validation: A across four classifiers and B specific to NB

Fig. 10 TPR scores obtained by FF-Majority, FF-Minority and FF-Overall, with different sizes of the minority class X1 ∈ {162, 122, 81, 41}.
These are summarized from 30 trials for two specific classifiers: A NB and B C4.5

FF-Majority, FF-Minority and FF-Overall providing the best
set of measures and outperforming both Baseline and Sin-
gleClus. This is also observedwith the C4.5 technique whose
results are given in Fig. 10B.With these, it is possible to infer
that the proposed framework can be a robust alternative to
develop a classification model for a highly imbalance prob-
lem found in many real-world domains, e.g., fraud detection
and cancer diagnosis. Furthermore, the application of FF-
Minority tends to be less effective as |X1| decreases, which
is sensible given the fact that the underlying objective func-
tion makes use of distances from a centroid of interest to
members of X1. As such, the performance of FF-Overall is
also affected by this estimation,where its TPR scores become
lower than those of FF-Majority as |X1| getting to the small-
est size of 41. For such a case, FF-Majority is preferred to the
others, but it should be noted that accuracy of the resulting
model will still be largely lower than that achieved with a
bigger |X1|. To this end, it may be better to collect additional
samples of the minority classes.

Conclusion

This paper has presented a new approach to handle the prob-
lem of imbalance class for machine-learning-based NIDS
with adversarial attacks, where legitimate, direct attacks and
obfuscated intrusions can be more accurately classified. As a
compliment to an initial attempt of seeking a feature subset
that is optimal for this classification task, the current work
focuses on solving the aforementioned difficulty by extend-
ing the concept of clustering based undersampling. Instead
of making a reference out of a single data partition, the tar-
get set of representative centroids is selected from a pool of
multiple clustering results, which has been generated using
the concept of ensemble clustering. This ensures the diver-
sity of data partitions, hence the resulting centroids, from
which some can well be chosen to represent the original set
ofmajority class. Three variations of the proposed framework
are introduced based on different objective functions used for
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this iterative and greedy process: FF-Majority, FF-Minority
and FF-Overall.

Based on the evaluation with four different classifiers and
the published dataset, those newmethods usually outperform
the baseline (i.e., the use of selected feature subset without
handling the class imbalance problem) and the single-
clustering-based undersampling. They also demonstrate the
predictive performance that is in par with state-of-the-art
methods included in this study. In fact, the proposed frame-
work is generalized such that it can be coupled with any
common classification model. Likewise, this applies to the
exploitation of other objective functions to differentiate the
goodness of a centroid as a representative of the majority
class. However, the proposed models may be less effective
if a more sophisticated obfuscation technique is exploited to
mutate known patterns. Yet, they are more expensive than
their baseline, which may not be appropriate for analyzing
big data. Enriching a training set with modified instances
[77] using new obfuscation methods can partly resolve the
former, while applying the concept of federated learningmay
scale the application of proposed models up to a big security
data collection [5]. Besides, another future work is to explore
optimization techniques found in the literature [56] that may
lead to a better selection of centroids from a pool of mul-
tiple clusterings. This is similar to the attempt to improve
a greedy optimization to discretization of feature domains
[64]. Finally, an introduction of fuzzy sets and vocabularies
is able to support the explainability of predictionprocess [21].
This final remark draws a great deal of attention provided the
emerging trend of explainable AI for modern applications.
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