50 research outputs found

    Age-related differences in the functional topography of the locus coeruleus and their implications for cognitive and affective functions

    Get PDF
    The locus coeruleus (LC) is an important noradrenergic nucleus that has recently attracted a lot of attention because of its emerging role in cognitive and psychiatric disorders. Although previous histological studies have shown that the LC has heterogeneous connections and cellular features, no studies have yet assessed its functional topography in vivo, how this heterogeneity changes over aging, and whether it is associated with cognition and mood. Here, we employ a gradient-based approach to characterize the functional heterogeneity in the organization of the LC over aging using 3T resting-state fMRI in a population-based cohort aged from 18 to 88 years of age (Cambridge Centre for Ageing and Neuroscience cohort, n=618). We show that the LC exhibits a rostro-caudal functional gradient along its longitudinal axis, which was replicated in an independent dataset (Human Connectome Project [HCP] 7T dataset, n=184). Although the main rostro-caudal direction of this gradient was consistent across age groups, its spatial features varied with increasing age, emotional memory, and emotion regulation. More specifically, a loss of rostral-like connectivity, more clustered functional topography, and greater asymmetry between right and left LC gradients was associated with higher age and worse behavioral performance. Furthermore, participants with higher-than-normal Hospital Anxiety and Depression Scale (HADS) ratings exhibited alterations in the gradient as well, which manifested in greater asymmetry. These results provide an in vivo account of how the functional topography of the LC changes over aging, and imply that spatial features of this organization are relevant markers of LC-related behavioral measures and psychopathology

    Atypical Integration of Sensory-to-Transmodal Functional Systems Mediates Symptom Severity in Autism.

    Get PDF
    A notable characteristic of autism spectrum disorder (ASD) is co-occurring deficits in low-level sensory processing and high-order social interaction. While there is evidence indicating detrimental cascading effects of sensory anomalies on the high-order cognitive functions in ASD, the exact pathological mechanism underlying their atypical functional interaction across the cortical hierarchy has not been systematically investigated. To address this gap, here we assessed the functional organisation of sensory and motor areas in ASD, and their relationship with subcortical and high-order trandmodal systems. In a resting-state fMRI data of 107 ASD and 113 neurotypical individuals, we applied advanced connectopic mapping to probe functional organization of primary sensory/motor areas, together with targeted seed-based intrinsic functional connectivity (iFC) analyses. In ASD, the connectopic mapping revealed topological anomalies (i.e., excessively more segregated iFC) in the motor and visual areas, the former of which patterns showed association with the symptom severity of restricted and repetitive behaviors. Moreover, the seed-based analysis found diverging patterns of ASD-related connectopathies: decreased iFCs within the sensory/motor areas but increased iFCs between sensory and subcortical structures. While decreased iFCs were also found within the higher-order functional systems, the overall proportion of this anomaly tends to increase along the level of cortical hierarchy, suggesting more dysconnectivity in the higher-order functional networks. Finally, we demonstrated that the association between low-level sensory/motor iFCs and clinical symptoms in ASD was mediated by the high-order transmodal systems, suggesting pathogenic functional interactions along the cortical hierarchy. Findings were largely replicated in the independent dataset. These results highlight that atypical integration of sensory-to-high-order systems contributes to the complex ASD symptomatology

    Linking functional and structural brain organisation with behaviour in autism: a multimodal EU-AIMS Longitudinal European Autism Project (LEAP) study

    Get PDF
    Neuroimaging analyses of brain structure and function in autism have typically been conducted in isolation, missing the sensitivity gains of linking data across modalities. Here we focus on the integration of structural and functional organisational properties of brain regions. We aim to identify novel brain-organisation phenotypes of autism. We utilised multimodal MRI (T1-, diffusion-weighted and resting state functional), behavioural and clinical data from the EU AIMS Longitudinal European Autism Project (LEAP) from autistic (n = 206) and non-autistic (n = 196) participants. Of these, 97 had data from 2 timepoints resulting in a total scan number of 466. Grey matter density maps, probabilistic tractography connectivity matrices and connectopic maps were extracted from respective MRI modalities and were then integrated with Linked Independent Component Analysis. Linear mixed-effects models were used to evaluate the relationship between components and group while accounting for covariates and non-independence of participants with longitudinal data. Additional models were run to investigate associations with dimensional measures of behaviour. We identified one component that differed significantly between groups (coefficient = 0.33, padj_{adj} = 0.02). This was driven (99%) by variance of the right fusiform gyrus connectopic map 2. While there were multiple nominal (uncorrected p < 0.05) associations with behavioural measures, none were significant following multiple comparison correction. Our analysis considered the relative contributions of both structural and functional brain phenotypes simultaneously, finding that functional phenotypes drive associations with autism. These findings expanded on previous unimodal studies by revealing the topographic organisation of functional connectivity patterns specific to autism and warrant further investigation

    An evaluation of how connectopic mapping reveals visual field maps in V1

    Get PDF
    Functional gradients, in which response properties change gradually across the cortical surface, have been proposed as a key organising principle of the brain. However, the presence of these gradients remains undetermined in many brain regions. Resting-state neuroimaging studies have suggested these gradients can be reconstructed from patterns of functional connectivity. Here we investigate the accuracy of these reconstructions and establish whether it is connectivity or the functional properties within a region that determine these "connectopic maps". Different manifold learning techniques were used to recover visual field maps while participants were at rest or engaged in natural viewing. We benchmarked these reconstructions against maps measured by traditional visual field mapping. We report an initial exploratory experiment of a publicly available naturalistic imaging dataset, followed by a preregistered replication using larger resting-state and naturalistic imaging datasets from the Human Connectome Project. Connectopic mapping accurately predicted visual field maps in primary visual cortex, with better predictions for eccentricity than polar angle maps. Non-linear manifold learning methods outperformed simpler linear embeddings. We also found more accurate predictions during natural viewing compared to resting-state. Varying the source of the connectivity estimates had minimal impact on the connectopic maps, suggesting the key factor is the functional topography within a brain region. The application of these standardised methods for connectopic mapping will allow the discovery of functional gradients across the brain. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 19 April 2022. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.19771717

    Age-related differences in the functional topography of the locus coeruleus and their implications for cognitive and affective functions

    Get PDF
    The locus coeruleus (LC) is an important noradrenergic nucleus that has recently attracted a lot of attention because of its emerging role in cognitive and psychiatric disorders. Although previous histological studies have shown that the LC has heterogeneous connections and cellular features, no studies have yet assessed its functional topography in vivo, how this heterogeneity changes over aging, and whether it is associated with cognition and mood. Here, we employ a gradient-based approach to characterize the functional heterogeneity in the organization of the LC over aging using 3T resting-state fMRI in a population-based cohort aged from 18 to 88 years of age (Cambridge Centre for Ageing and Neuroscience cohort, n=618). We show that the LC exhibits a rostro-caudal functional gradient along its longitudinal axis, which was replicated in an independent dataset (Human Connectome Project [HCP] 7T dataset, n=184). Although the main rostrocaudal direction of this gradient was consistent across age groups, its spatial features varied with increasing age, emotional memory, and emotion regulation. More specifically, a loss of rostral-like connectivity, more clustered functional topography, and greater asymmetry between right and left LC gradients was associated with higher age and worse behavioral performance. Furthermore, participants with higher-than-normal Hospital Anxiety and Depression Scale (HADS) ratings exhibited alterations in the gradient as well, which manifested in greater asymmetry. These results provide an in vivo account of how the functional topography of the LC changes over aging, and imply that spatial features of this organization are relevant markers of LC-related behavioral measures and psychopathology. © Veréb et al

    The human egomotion network.

    Get PDF
    All volitional movement in a three-dimensional space requires multisensory integration, in particular of visual and vestibular signals. Where and how the human brain processes and integrates self-motion signals remains enigmatic. Here, we applied visual and vestibular self-motion stimulation using fast and precise whole-brain neuroimaging to delineate and characterize the entire cortical and subcortical egomotion network in a substantial cohort (n=131). Our results identify a core egomotion network consisting of areas in the cingulate sulcus (CSv, PcM/pCi), the cerebellum (uvula), and the temporo-parietal cortex including area VPS and an unnamed region in the supramarginal gyrus. Based on its cerebral connectivity pattern and anatomical localization, we propose that this region represents the human homologue of macaque area 7a. Whole-brain connectivity and gradient analyses imply an essential role of the connections between the cingulate sulcus and the cerebellar uvula in egomotion perception. This could be via feedback loops involved updating visuo-spatial and vestibular information. The unique functional connectivity patterns of PcM/pCi hint at central role in multisensory integration essential for the perception of self-referential spatial awareness. All cortical egomotion hubs showed modular functional connectivity with other visual, vestibular, somatosensory and higher order motor areas, underlining their mutual function in general sensorimotor integration

    Connectopic mapping techniques do not reflect functional gradients in the brain

    Get PDF
    Functional gradients, in which response properties change gradually across a brain region, have been proposed as a key organising principle of the brain. Recent studies using both resting-state and natural viewing paradigms have indicated that these gradients may be reconstructed from functional connectivity patterns via “connectopic mapping” analyses. However, local connectivity patterns may be confounded by spatial autocorrelations artificially introduced during data analysis, for instance by spatial smoothing or interpolation between coordinate spaces. Here, we investigate whether such confounds can produce illusory connectopic gradients. We generated datasets comprising random white noise in subjects’ functional volume spaces, then optionally applied spatial smoothing and/or interpolated the data to a different volume or surface space. Both smoothing and interpolation induced spatial autocorrelations sufficient for connectopic mapping to produce both volume- and surface-based local gradients in numerous brain regions. Furthermore, these gradients appeared highly similar to those obtained from real natural viewing data, although gradients generated from real and random data were statistically different in certain scenarios. We also reconstructed global gradients across the whole-brain – while these appeared less susceptible to artificial spatial autocorrelations, the ability to reproduce previously reported gradients was closely linked to specific features of the analysis pipeline. These results indicate that previously reported gradients identified by connectopic mapping techniques may be confounded by artificial spatial autocorrelations introduced during the analysis, and in some cases may reproduce poorly across different analysis pipelines. These findings imply that connectopic gradients need to be interpreted with caution

    Linking functional and structural brain organisation with behaviour in autism: a multimodal EU-AIMS Longitudinal European Autism Project (LEAP) study

    Get PDF
    Neuroimaging analyses of brain structure and function in autism have typically been conducted in isolation, missing the sensitivity gains of linking data across modalities. Here we focus on the integration of structural and functional organisational properties of brain regions. We aim to identify novel brain-organisation phenotypes of autism. We utilised multimodal MRI (T1-, diffusion-weighted and resting state functional), behavioural and clinical data from the EU AIMS Longitudinal European Autism Project (LEAP) from autistic (n = 206) and non-autistic (n = 196) participants. Of these, 97 had data from 2 timepoints resulting in a total scan number of 466. Grey matter density maps, probabilistic tractography connectivity matrices and connectopic maps were extracted from respective MRI modalities and were then integrated with Linked Independent Component Analysis. Linear mixed-effects models were used to evaluate the relationship between components and group while accounting for covariates and non-independence of participants with longitudinal data. Additional models were run to investigate associations with dimensional measures of behaviour. We identified one component that differed significantly between groups (coefficient = 0.33, padj = 0.02). This was driven (99%) by variance of the right fusiform gyrus connectopic map 2. While there were multiple nominal (uncorrected p < 0.05) associations with behavioural measures, none were significant following multiple comparison correction. Our analysis considered the relative contributions of both structural and functional brain phenotypes simultaneously, finding that functional phenotypes drive associations with autism. These findings expanded on previous unimodal studies by revealing the topographic organisation of functional connectivity patterns specific to autism and warrant further investigation

    Studying Cortical Plasticity in Ophthalmic and Neurological Disorders:From Stimulus-Driven to Cortical Circuitry Modeling Approaches

    Get PDF
    Unsolved questions in computational visual neuroscience research are whether and how neurons and their connecting cortical networks can adapt when normal vision is compromised by a neurodevelopmental disorder or damage to the visual system. This question on neuroplasticity is particularly relevant in the context of rehabilitation therapies that attempt to overcome limitations or damage, through either perceptual training or retinal and cortical implants. Studies on cortical neuroplasticity have generally made the assumption that neuronal population properties and the resulting visual field maps are stable in healthy observers. Consequently, differences in the estimates of these properties between patients and healthy observers have been taken as a straightforward indication for neuroplasticity. However, recent studies imply that the modeled neuronal properties and the cortical visual maps vary substantially within healthy participants, e.g., in response to specific stimuli or under the influence of cognitive factors such as attention. Although notable advances have been made to improve the reliability of stimulus-driven approaches, the reliance on the visual input remains a challenge for the interpretability of the obtained results. Therefore, we argue that there is an important role in the study of cortical neuroplasticity for approaches that assess intracortical signal processing and circuitry models that can link visual cortex anatomy, function, and dynamics

    Functional connectivity of the hippocampus and its subfields in resting-state networks

    Get PDF
    First published: 30 March 2021Many neuroimaging studies have shown that the hippocampus participates in a resting-state network called the default mode network. However, how the hippocampus connects to the default mode network, whether the hippocampus connects to other resting-state networks and how the different hippocampal subfields take part in resting-state networks remains poorly understood. Here, we examined these issues using the high spatial-resolution 7T resting-state fMRI dataset from the Human Connectome Project. We used data-driven techniques that relied on spatially-restricted Independent Component Analysis, Dual Regression and linear mixed-effect group-analyses based on participant-specific brain morphology. The results revealed two main activity hotspots inside the hippocampus. The first hotspot was located in an anterior location and was correlated with the somatomotor network. This network was subserved by co-activity in the CA1, CA3, CA4 and Dentate Gyrus fields. In addition, there was an activity hotspot that extended from middle to posterior locations along the hippocampal long-axis and correlated with the default mode network. This network reflected activity in the Subiculum, CA4 and Dentate Gyrus fields. These results show how different sections of the hippocampus participate in two known resting-state networks and how these two resting-state networks depend on different configurations of hippocampal subfield co-activity.Agencia Canaria de Investigación, Innovación y Sociedad de la Información; Ministerio de Ciencia, Innovación y Universidades, Grant/Award Number: PSI2017-84933- P, PSI2017-91955- EXP and TEC2016-80063- C3- 2- R; NIH Blueprint for Neuroscience Research, Grant/Award Number: 1U54MH091657; McDonnell Center for Systems Neuroscience; European Social Fund (ESF
    corecore