12,964 research outputs found

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    A Cyclic Distributed Garbage Collector for Network Objects

    Get PDF
    This paper presents an algorithm for distributed garbage collection and outlines its implementation within the Network Objects system. The algorithm is based on a reference listing scheme, which is augmented by partial tracing in order to collect distributed garbage cycles. Processes may be dynamically organised into groups, according to appropriate heuristics, to reclaim distributed garbage cycles. The algorithm places no overhead on local collectors and suspends local mutators only briefly. Partial tracing of the distributed graph involves only objects thought to be part of a garbage cycle: no collaboration with other processes is required. The algorithm offers considerable flexibility, allowing expediency and fault-tolerance to be traded against completeness

    How well-connected is the surface of the global ocean?

    Get PDF
    The Ekman dynamics of the ocean surface circulation is known to contain attracting regions such as the great oceanic gyres and the associated garbage patches. Less well-known are the extents of the basins of attractions of these regions and how strongly attracting they are. Understanding the shape and extent of the basins of attraction sheds light on the question of the strength of connectivity of different regions of the ocean, which helps in understanding the flow of buoyant material like plastic litter. Using short flow time trajectory data from a global ocean model, we create a Markov chain model of the surface ocean dynamics. The surface ocean is not a conservative dynamical system as water in the ocean follows three-dimensional pathways, with upwelling and downwelling in certain regions. Using our Markov chain model, we easily compute net surface upwelling and downwelling, and verify that it matches observed patterns of upwelling and downwelling in the real ocean. We analyze the Markov chain to determine multiple attracting regions. Finally, using an eigenvector approach, we (i) identify the five major ocean garbage patches, (ii) partition the ocean into basins of attraction for each of the garbage patches, and (iii) partition the ocean into regions that demonstrate transient dynamics modulo the attracting garbage patches

    Customisable Handling of Java References in Prolog Programs

    Full text link
    Integration techniques for combining programs written in distinct language paradigms facilitate the implementation of specialised modules in the best language for their task. In the case of Java-Prolog integration, a known problem is the proper representation of references to Java objects on the Prolog side. To solve it adequately, multiple dimensions should be considered, including reference representation, opacity of the representation, identity preservation, reference life span, and scope of the inter-language conversion policies. This paper presents an approach that addresses all these dimensions, generalising and building on existing representation patterns of foreign references in Prolog, and taking inspiration from similar inter-language representation techniques found in other domains. Our approach maximises portability by making few assumptions about the Prolog engine interacting with Java (e.g., embedded or executed as an external process). We validate our work by extending JPC, an open-source integration library, with features supporting our approach. Our JPC library is currently compatible with three different open source Prolog engines (SWI, YAP} and XSB) by means of drivers. To appear in Theory and Practice of Logic Programming (TPLP).Comment: 10 pages, 2 figure

    Efficient Management of Short-Lived Data

    Full text link
    Motivated by the increasing prominence of loosely-coupled systems, such as mobile and sensor networks, which are characterised by intermittent connectivity and volatile data, we study the tagging of data with so-called expiration times. More specifically, when data are inserted into a database, they may be tagged with time values indicating when they expire, i.e., when they are regarded as stale or invalid and thus are no longer considered part of the database. In a number of applications, expiration times are known and can be assigned at insertion time. We present data structures and algorithms for online management of data tagged with expiration times. The algorithms are based on fully functional, persistent treaps, which are a combination of binary search trees with respect to a primary attribute and heaps with respect to a secondary attribute. The primary attribute implements primary keys, and the secondary attribute stores expiration times in a minimum heap, thus keeping a priority queue of tuples to expire. A detailed and comprehensive experimental study demonstrates the well-behavedness and scalability of the approach as well as its efficiency with respect to a number of competitors.Comment: switched to TimeCenter latex styl

    Creating a Distributed Programming System Using the DSS: A Case Study of OzDSS

    Get PDF
    This technical report describes the integration of the Distribution Subsystem (DSS) to the programming system Mozart. The result, OzDSS, is described in detail. Essential when coupling a programming system to the DSS is how the internal model of threads and language entities are mapped to the abstract entities of the DSS. The model of threads and language entities of Mozart is described at a detailed level to explain the design choices made when developing the code that couples the DSS to Mozart. To show the challenges associated with different thread implementations, the C++DSS system is introduced. C++DSS is a C++ library which uses the DSS to implement different types of distributed language entities in the form of C++ classes. Mozart emulates threads, thus there is no risk of multiple threads accessing the DSS simultaneously. C++DSS, on the other hand, makes use of POSIX threads, thus simultaneous access to the DSS from multiple POSIX threads can happen. The fundamental differences in how threads are treated in a system that emulates threads (Mozart) to a system that make use of native-threads~(C++DSS) is discussed. The paper is concluded by a performance comparison between the OzDSS system and other distributed programming systems. We see that the OzDSS system outperforms ``industry grade'' Java-RMI and Java-CORBA implementations
    • …
    corecore