3,226 research outputs found

    Infrastructure network vulnerability

    Get PDF
    The work presented in this paper aims to propose a methodology of analyzing infrastructure network vulnerability in the field of prevention or reduction of the natural disaster consequences. After a state of the art on vulnerability models in the academic literature, the various vulnerability factors are classified and discussed. Eventually, a general model of vulnerability analysis including societal parameters is presented

    Cascading failures in spatially-embedded random networks

    Get PDF
    Cascading failures constitute an important vulnerability of interconnected systems. Here we focus on the study of such failures on networks in which the connectivity of nodes is constrained by geographical distance. Specifically, we use random geometric graphs as representative examples of such spatial networks, and study the properties of cascading failures on them in the presence of distributed flow. The key finding of this study is that the process of cascading failures is non-self-averaging on spatial networks, and thus, aggregate inferences made from analyzing an ensemble of such networks lead to incorrect conclusions when applied to a single network, no matter how large the network is. We demonstrate that this lack of self-averaging disappears with the introduction of a small fraction of long-range links into the network. We simulate the well studied preemptive node removal strategy for cascade mitigation and show that it is largely ineffective in the case of spatial networks. We introduce an altruistic strategy designed to limit the loss of network nodes in the event of a cascade triggering failure and show that it performs better than the preemptive strategy. Finally, we consider a real-world spatial network viz. a European power transmission network and validate that our findings from the study of random geometric graphs are also borne out by simulations of cascading failures on the empirical network.Comment: 13 pages, 15 figure

    Inhomogeneous percolation models for spreading phenomena in random graphs

    Full text link
    Percolation theory has been largely used in the study of structural properties of complex networks such as the robustness, with remarkable results. Nevertheless, a purely topological description is not sufficient for a correct characterization of networks behaviour in relation with physical flows and spreading phenomena taking place on them. The functionality of real networks also depends on the ability of the nodes and the edges in bearing and handling loads of flows, energy, information and other physical quantities. We propose to study these properties introducing a process of inhomogeneous percolation, in which both the nodes and the edges spread out the flows with a given probability. Generating functions approach is exploited in order to get a generalization of the Molloy-Reed Criterion for inhomogeneous joint site bond percolation in correlated random graphs. A series of simple assumptions allows the analysis of more realistic situations, for which a number of new results are presented. In particular, for the site percolation with inhomogeneous edge transmission, we obtain the explicit expressions of the percolation threshold for many interesting cases, that are analyzed by means of simple examples and numerical simulations. Some possible applications are debated.Comment: 28 pages, 11 figure

    Efficiency of Scale-Free Networks: Error and Attack Tolerance

    Full text link
    The concept of network efficiency, recently proposed to characterize the properties of small-world networks, is here used to study the effects of errors and attacks on scale-free networks. Two different kinds of scale-free networks, i.e. networks with power law P(k), are considered: 1) scale-free networks with no local clustering produced by the Barabasi-Albert model and 2) scale-free networks with high clustering properties as in the model by Klemm and Eguiluz, and their properties are compared to the properties of random graphs (exponential graphs). By using as mathematical measures the global and the local efficiency we investigate the effects of errors and attacks both on the global and the local properties of the network. We show that the global efficiency is a better measure than the characteristic path length to describe the response of complex networks to external factors. We find that, at variance with random graphs, scale-free networks display, both on a global and on a local scale, a high degree of error tolerance and an extreme vulnerability to attacks. In fact, the global and the local efficiency are unaffected by the failure of some randomly chosen nodes, though they are extremely sensititive to the removal of the few nodes which play a crucial role in maintaining the network's connectivity.Comment: 23 pages, 10 figure

    Robustness of Random Graphs Based on Natural Connectivity

    Full text link
    Recently, it has been proposed that the natural connectivity can be used to efficiently characterise the robustness of complex networks. Natural connectivity quantifies the redundancy of alternative routes in a network by evaluating the weighted number of closed walks of all lengths and can be regarded as the average eigenvalue obtained from the graph spectrum. In this article, we explore the natural connectivity of random graphs both analytically and numerically and show that it increases linearly with the average degree. By comparing with regular ring lattices and random regular graphs, we show that random graphs are more robust than random regular graphs; however, the relationship between random graphs and regular ring lattices depends on the average degree and graph size. We derive the critical graph size as a function of the average degree, which can be predicted by our analytical results. When the graph size is less than the critical value, random graphs are more robust than regular ring lattices, whereas regular ring lattices are more robust than random graphs when the graph size is greater than the critical value.Comment: 12 pages, 4 figure

    Effect of edge removal on topological and functional robustness of complex networks

    Full text link
    We study the robustness of complex networks subject to edge removal. Several network models and removing strategies are simulated. Rather than the existence of the giant component, we use total connectedness as the criterion of breakdown. The network topologies are introduced a simple traffic dynamics and the total connectedness is interpreted not only in the sense of topology but also in the sense of function. We define the topological robustness and the functional robustness, investigate their combined effect and compare their relative importance to each other. The results of our study provide an alternative view of the overall robustness and highlight efficient ways to improve the robustness of the network models.Comment: 21 pages, 9 figure

    The Price of Anarchy for Network Formation in an Adversary Model

    Full text link
    We study network formation with n players and link cost \alpha > 0. After the network is built, an adversary randomly deletes one link according to a certain probability distribution. Cost for player v incorporates the expected number of players to which v will become disconnected. We show existence of equilibria and a price of stability of 1+o(1) under moderate assumptions on the adversary and n \geq 9. As the main result, we prove bounds on the price of anarchy for two special adversaries: one removes a link chosen uniformly at random, while the other removes a link that causes a maximum number of player pairs to be separated. For unilateral link formation we show a bound of O(1) on the price of anarchy for both adversaries, the constant being bounded by 10+o(1) and 8+o(1), respectively. For bilateral link formation we show O(1+\sqrt{n/\alpha}) for one adversary (if \alpha > 1/2), and \Theta(n) for the other (if \alpha > 2 considered constant and n \geq 9). The latter is the worst that can happen for any adversary in this model (if \alpha = \Omega(1)). This points out substantial differences between unilateral and bilateral link formation
    • …
    corecore