13 research outputs found

    Round Robin based Arbitration Mechanism for Signaling Approach based Router Architecture

    Get PDF
    In Network-on-Chip the effectiveness of the network resource allocation is demonstrated by the flow control mechanism. There are two types of flow control mechanisms: buffered and bufferless. Compared to buffered flow control methods, buffer less flow control mechanisms are easier to use, need less power, and take up less space. When there are congestion and resource conflicts, it experiences higher packet loss and packet misrouting inside the network. A good buffered control mechanism useful as it overcomes the limitations of buffer less mechanism. There are numerous buffered and bufferless flow control methods available. In this paper, signaling-based Virtual Output Queue Router Arbiter Mechanism is used to explore credit-based flow control. This mechanism worked on new concept that is “stress value”. This information is generated in the form of credit whenever any input buffer has free space. Then, using this credit data, the node's stress value is determined. Free buffer space takes precedence over stress value if it is bigger. The stress value will increase if there is less available buffer space. To handle the congestion problem, the signaling block then sends this stress value to a neighboring router. To help the arbitrator make a more accurate decision, the crediting system constantly operates in tandem with arbitration

    Traffic Prediction for NoCs using Fuzzy Logic

    Get PDF
    Proceedings DOI: 10.5445/KSP/1000021732 (https://doi.org/10.5445/KSP/1000021732)Networks on Chip provide faster communication and higher throughput for chip multiprocessor systems than conventional bus systems. Having multiple processing elements on one chip, however, leads to a large number of message transfers in the NoC. The consequence is that more blocking occurs and time and power is wasted with waiting until the congestion is dissolved. With knowledge of future communication patterns, blocking could be avoided. Therefore, in this paper a model is introduced to predict future communication patterns to avoid network congestion. Our model uses a fuzzy based algorithm to predict end-to-end communication. The presented model accurately predictions for up to 10 time intervals for continuous patterns. Communication patterns with non-continuous behaviors, such as fast changes from peak to zero, can also be predicted accurately for the next 1 to 2 time intervals to come. The model is a first step to predict future communication patterns. In addition, some limitations are identified that must be solved in order to improve the model

    MPSoCs Run-Time Monitoring through Networks-on-Chip

    Get PDF
    Abstract-Networks-on-Chip (NoCs) have appeared as design strategy to overcome the limitations, in terms of scalability, efficiency, and power consumption of current buses. In this paper, we discuss the idea of using NoCs to monitor system behaviour at run-time by tracing activities at initiators and targets. Main goal of the monitoring system is to retrieve information useful for run-time optimization and resources allocation in adaptive systems. Information detected by probes embedded within NIs is sent to a central unit, in charge of collecting and elaborating the data. We detail the design of the basic blocks and analyse the overhead associated with the ASIC implementation of the monitoring system, as well as discussing implications in terms of the additional traffic generated in the NoC 1

    Monitoring-aware network-on-chip design

    Get PDF

    High-performance and hardware-aware computing: proceedings of the second International Workshop on New Frontiers in High-performance and Hardware-aware Computing (HipHaC\u2711), San Antonio, Texas, USA, February 2011 ; (in conjunction with HPCA-17)

    Get PDF
    High-performance system architectures are increasingly exploiting heterogeneity. The HipHaC workshop aims at combining new aspects of parallel, heterogeneous, and reconfigurable microprocessor technologies with concepts of high-performance computing and, particularly, numerical solution methods. Compute- and memory-intensive applications can only benefit from the full hardware potential if all features on all levels are taken into account in a holistic approach

    On Dynamic Monitoring Methods for Networks-on-Chip

    Get PDF
    Rapid ongoing evolution of multiprocessors will lead to systems with hundreds of processing cores integrated in a single chip. An emerging challenge is the implementation of reliable and efficient interconnection between these cores as well as other components in the systems. Network-on-Chip is an interconnection approach which is intended to solve the performance bottleneck caused by traditional, poorly scalable communication structures such as buses. However, a large on-chip network involves issues related to congestion problems and system control, for instance. Additionally, faults can cause problems in multiprocessor systems. These faults can be transient faults, permanent manufacturing faults, or they can appear due to aging. To solve the emerging traffic management, controllability issues and to maintain system operation regardless of faults a monitoring system is needed. The monitoring system should be dynamically applicable to various purposes and it should fully cover the system under observation. In a large multiprocessor the distances between components can be relatively long. Therefore, the system should be designed so that the amount of energy-inefficient long-distance communication is minimized. This thesis presents a dynamically clustered distributed monitoring structure. The monitoring is distributed so that no centralized control is required for basic tasks such as traffic management and task mapping. To enable extensive analysis of different Network-on-Chip architectures, an in-house SystemC based simulation environment was implemented. It allows transaction level analysis without time consuming circuit level implementations during early design phases of novel architectures and features. The presented analysis shows that the dynamically clustered monitoring structure can be efficiently utilized for traffic management in faulty and congested Network-on-Chip-based multiprocessor systems. The monitoring structure can be also successfully applied for task mapping purposes. Furthermore, the analysis shows that the presented in-house simulation environment is flexible and practical tool for extensive Network-on-Chip architecture analysis.Siirretty Doriast

    High-level services for networks-on-chip

    Get PDF
    Future technology trends envision that next-generation Multiprocessors Systems-on- Chip (MPSoCs) will be composed of a combination of a large number of processing and storage elements interconnected by complex communication architectures. Communication and interconnection between these basic blocks play a role of crucial importance when the number of these elements increases. Enabling reliable communication channels between cores becomes therefore a challenge for system designers. Networks-on-Chip (NoCs) appeared as a strategy for connecting and managing the communication between several design elements and IP blocks, as required in complex Systems-on-Chip (SoCs). The topic can be considered as a multidisciplinary synthesis of multiprocessing, parallel computing, networking, and on- chip communication domains. Networks-on-Chip, in addition to standard communication services, can be employed for providing support for the implementation of system-level services. This dissertation will demonstrate how high-level services can be added to an MPSoC platform by embedding appropriate hardware/software support in the network interfaces (NIs) of the NoC. In this dissertation, the implementation of innovative modules acting in parallel with protocol translation and data transmission in NIs is proposed and evaluated. The modules can support the execution of the high-level services in the NoC at a relatively low cost in terms of area and energy consumption. Three types of services will be addressed and discussed: security, monitoring, and fault tolerance. With respect to the security aspect, this dissertation will discuss the implementation of an innovative data protection mechanism for detecting and preventing illegal accesses to protected memory blocks and/or memory mapped peripherals. The second aspect will be addressed by proposing the implementation of a monitoring system based on programmable multipurpose monitoring probes aimed at detecting NoC internal events and run-time characteristics. As last topic, new architectural solutions for the design of fault tolerant network interfaces will be presented and discussed

    Congestion-controlled best-effort communication for networks-on-chip

    No full text
    Abstract. Congestion has negative effects on network performance. In this paper, a novel congestion control strategy is presented for Networks-on-Chip (NoC). For this purpose we introduce a new communication service, congestioncontrolled best-effort (CCBE). The load offered to a CCBE connection is controlled based on congestion measurements in the NoC. Link utilization is monitored as a congestion measure, and transported to a Model Predictive Controller (MPC). Guaranteed bandwidth and latency connections in the NoC are used for this, to assure progress of link utilization data in a congested NoC. We also present a simple but effective model for link utilization for the model-based predictions. Experimental results show that the presented strategy is effective and has reaction speeds of several microseconds which is considered acceptable for realtime embedded systems. 1

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. MĂ€rz 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen UniversitĂ€t Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform fĂŒr den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur KnĂŒpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und AnsĂ€tze einem breiten Publikum aus Wissenschaft und Wirtschaft zu prĂ€sentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjĂ€hriges Bestehen hat ihn zu einer festen GrĂ¶ĂŸe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium fĂŒr Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu prĂ€sentieren. Vertreter der Projekte Generische Plattform fĂŒr SystemzuverlĂ€ssigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwĂ€rtigen Arbeiten vor. Dies bereichert denWorkshop durch zusĂ€tzliche Themenschwerpunkte und bietet eine wertvolle ErgĂ€nzung zu den BeitrĂ€gen der Autoren. [... aus dem Vorwort
    corecore