
High-performance and
Hardware-aware Computing

Proceedings of the Second International Workshop on
New Frontiers in High-performance and

Hardware-aware Computing (HipHaC‘11)

Rainer Buchty, Jan-Philipp Weiß (eds.)

ISBN 978-3-86644-626-7

High-performance system architectures are increasingly exploiting
heterogeneity: multi- and manycore-based systems are complemented
by coprocessors, accelerators, and reconfigurable units providing huge
computational power. However, applications of scientific interest (e.g.,
in high-performance computing and numerical simulation) are not yet
ready to exploit the available high computing potential. Different pro-
gramming models, non-adjusted interfaces, and bandwidth bottlenecks
complicate holistic programming approaches for heterogeneous archi-
tectures. In modern microprocessors, hierarchical memory layouts and
complex logics obscure predictability of memory transfers or perfor-
mance estimations.

The HipHaC workshop aims at combining new aspects of parallel, hetero-
geneous, and reconfigurable microprocessor technologies with concepts
of high-performance computing and, particularly, numerical solution
methods. Compute- and memory-intensive applications can only benefit
from the full hardware potential if all features on all levels are taken into
account in a holistic approach.

9 783866 446267

ISBN 978-3-86644-626-7

Rainer Buchty, Jan-Philipp Weiß (eds.)

High-performance and Hardware-aware Computing
Proceedings of the Second International Workshop on New Frontiers in
High-performance and Hardware-aware Computing (HipHaC‘11)

San Antonio, Texas, USA, February 2011
(In Conjunction with HPCA-17)

High-performance and
Hardware-aware Computing
Proceedings of the Second International Workshop on New Frontiers
in High-performance and Hardware-aware Computing (HipHaC‘11)

San Antonio, Texas, USA, February 2011
(In Conjunction with HPCA-17)

Rainer Buchty
Jan-Philipp Weiß
(eds.)

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

KIT Scientific Publishing 2011
Print on Demand

ISBN 978-3-86644-626-7

http://www.uvka.de
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Organization

Workshop Organizers:

Rainer Buchty

Eberhard Karls University Tübingen, Germany,

& Karlsruhe Institute of Technology, Germany

Jan-Philipp Weiß

Karlsruhe Institute of Technology, Germany

Steering Committee:

Vincent Heuveline

Karlsruhe Institute of Technology, Germany

Wolfgang Karl

Karlsruhe Institute of Technology, Germany

Program Committee:

David A. Bader

Georgia Tech, Atlanta, USA

Michael Bader

Univ. Stuttgart, Germany

Mladen Berekovic

Univ. Braunschweig, Germany

Alan Berenbaum

SMSC, USA

Martin Bogdan

Univ. Leipzig, Germany

Dominik Göddeke

TU Dortmund, Germany

Georg Hager

Univ. Erlangen, Germany

Vincent Heuveline

Karlsruhe Institute of Technology, Germany

Eric d’Hollander

Ghent University, Belgium

Michael Hübner

Karlsruhe Institute of Technology, Germany

Ben Juurlink

TU Berlin, Germany

Wolfgang Karl

Karlsruhe Institute of Technology, Germany

Rainer Keller

HLRS, Stuttgart, Germany

Hiroaki Kobayashi

Tohoku University, Japan

Harald Köstler

Univ. Erlangen, Germany

Dieter an Mey

RWTH Aachen, Germany

Andy Nisbet

Manchester Metropolitan University, UK

Christian Perez

INRIA, France

Program Committee (continued):

Franz-Josef Pfreundt

ITWM Kaiserslautern, Germany

Wolfgang Rosenstiel

Eberhard Karls University Tübingen, Germany

Olaf Schenk

Basel University, Switzerland

Martin Schulz

LLNL, USA

Masha Sosonkina

Ames Lab, USA

Thomas Steinke

Zuse-Institut Berlin, Germany

Josef Weidendorfer

TU Munich, Germany

Felix Wolf

GRS-SIM Aachen/Jülich, Germany

II

Preface

High-performance system architectures are increasingly exploiting heterogeneity: multi- and manycore-

based systems are complemented by coprocessors, accelerators, and reconfigurable units providing huge

computational power. However, applications of scientific interest (e.g. in high-performance computing

and numerical simulation) are not yet ready to exploit the available high computing potential. Different

programming models, non-adjusted interfaces, and bandwidth bottlenecks complicate holistic program-

ming approaches for heterogeneous architectures. In modern microprocessors, hierarchical memory lay-

outs and complex logics obscure predictability of memory transfers or performance estimations.

For efficient implementations and optimal results, underlying algorithms and mathematical solution

methods have to be adapted carefully to architectural constraints like fine-grained parallelism and mem-

ory or bandwidth limitations that require additional communication and synchronization. Currently, a

comprehensive knowledge of underlying hardware is therefore mandatory for application programmers.

Hence, there is strong need for virtualization concepts that free programmers from hardware details, main-

taining best performance and enable deployment in heterogeneous and reconfigurable environments.

The Second International Workshop on New Frontiers in High-performance and Hardware-aware

Computing (HipHaC’11) – held in conjunction with the 17th IEEE International Symposium on High-

Performance Computer Architecture (HPCA-17) – aims at combining new aspects of parallel, hetero-

geneous, and reconfigurable system architectures with concepts of high-performance computing and,

particularly, numerical solution methods. It brings together international researchers of all affected fields

to discuss issues of high-performance computing on emerging hardware architectures, ranging from ar-

chitecture work to programming and tools.

The workshop organizers would therefore like to thank the HPCA-17 Workshop Chair for giving us

the chance to host this workshop in conjunction with one of the world’s finest conferences on high-

performance architectures – and of course all the people who made this workshop finally happen.Thanks

to the many contributors submitting exciting and novel work, HipHaC’11 will reflect a broad range of

issues on architecture design, algorithm implementation, and application optimization.

Karlsruhe, January 2011 Rainer Buchty1,2 & Jan-Philipp Weiß2

1Eberhard Karls University Tübingen
2 Karlsruhe Institute of Technology (KIT)

Table of Content

Architectures

Convey HC-1 Hybrid Core Computer – The Potential of FPGAs in Numerical Simulation 1
Werner Augustin, Jan-Philipp Weiss, and Vincent Heuveline

Optimized Replacement in the Configuration Layers of the Grid Alu Processor 9
Ralf Jahr, Basher Shehan, Sascha Uhrig, and Theo Ungerer

Performance Measurement, Modeling, and Engineering

Performance Engineering of an Orthogonal Matching Pursuit Algorithm for
Sparse Representation of Signals on Different Architectures . 17

Markus Stürmer, Florian Rathgeber, and Harald Köstler

Impact of Data Sharing on CMP design: A study based on Analytical Modeling 25
Anil Krishna, Ahmad Samih, and Yan Solihin

Traffic Prediction for NoCs using Fuzzy Logic . 33
Gervin Thomas, Ben Juurlink, and Dietmar Tutsch

GPU Acceleration of the Assembly Process in Isogeometric Analysis . 41
Nathan Collier, Hyoseop Lee, Aron Ahmadia, Craig C. Douglas, and Victor M. Calo

GPU Accelerated Scientific Computing: Evaluation of the NVIDIA Fermi Architecture;
Elementary Kernels and Linear Solvers . 47

Hartwig Anzt, Tobias Hahn, Björn Rocker, and Vincent Heuveline

List of Authors . 55

V

Convey HC-1 Hybrid Core Computer –
The Potential of FPGAs in Numerical Simulation

Werner Augustin, Jan-Philipp Weiss
Engineering Mathematics and Computing Lab (EMCL)
SRG New Frontiers in High Performance Computing

Exploiting Multicore and Coprocessor Technology
Karlsruhe Institute of Technology, Germany

werner.augustin@kit.edu, jan-philipp.weiss@kit.edu

Vincent Heuveline
Engineering Mathematics and Computing Lab (EMCL)

Karlsruhe Institute of Technology, Germany
vincent.heuveline@kit.edu

Abstract—The Convey HC-1 Hybrid Core Computer brings
FPGA technologies closer to numerical simulation. It combines
two types of processor architectures in a single system. Highly
capable FPGAs are closely connected to a host CPU and
the accelerator-to-memory bandwidth has remarkable values.
Reconfigurability by means of pre-defined application-specific
instruction sets called personalities have the appeal of opti-
mized hardware configuration with respect to application char-
acteristics. Moreover, Convey’s solution eases the programming
effort considerably. In contrast to hardware-centric and time-
consuming classical coding of FPGAs, a dual-target compiler
interprets pragma-extended C/C++ or Fortran code and produces
implementations running on both, host and accelerator. In
addition, a global view of host and device memory is provided
by means of a cache-coherent shared virtual memory space.

In this work we analyze Convey’s programming paradigm
and the associated programming effort, and we present practical
results on the HC-1. We consider vectorization strategies for the
single and double precision vector personalities and a suite of
basic numerical routines. Furthermore, we assess the viability
of the Convey HC-1 Hybrid Core Computer for numerical
simulation.

Keywords-FPGA, Convey HC-1, reconfigurable architectures,
high-performance heterogeneous computing, coherent memory
system, performance analysis, BLAS

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have their main
pillar and standing in the domain of embedded computing.
Application-specific designs implemented by hardware de-
scription languages (HDL) like VHDL and Verilog [1], [2]
make them a perfect fit for specific tasks. From a software-
oriented programmer’s point of view FPGA’s capabilities are
hidden behind an alien hardware design development cycle.
Although there are some C-to-HDL tools like ROCCC, Im-
pulse C or Handle-C [3] available, viability and translation
efficiency for realistic code scenarios still have to be proven.

For several years, FPGAs have not been interesting for
numerical simulations due to their limited capabilities and
resource requirements for double precision floating point arith-
metics. But following Moore’s law and with increased FPGA
sizes more and more area is becoming available for computing.
Moreover, further rates of increase are expected to outpace
those of common multicore CPUs. For a general deployment

and in particular for numerical simulation FPGAs are very
attractive from further points of view: run-time configurability
is an interesting topic for applications with several phases of
communication and computation and might be considered for
adaptive numerical methods. In addition, energy efficiency is
a great concern in high performance computing and FPGA
technology is a possible solution approach. The main idea
of FPGAs is to build one’s own parallel fixed-function units
according to the special needs of the underlying application.

Currently, numerical simulation adopts all kinds of emerg-
ing technologies. In this context, a trend towards heteroge-
neous platforms has become apparent [4]. Systems accelerated
by graphics processing units (GPUs) offer unrivaled comput-
ing power but often suffer from slow interconnection via PCIe
links. The idea to connect FPGAs via socket replacements
closer to CPUs is nothing new (cf. technologies from Nallat-
ech, DRC, XtremeData) – but the software concept offered
by Convey is revolutionary [5]. A related FPGA platform is
Intel’s Atom reconfigurable processor – an embedded single
board computer based on the Intel Atom E600C processor
paired with an Altera FPGA in a single package. Here, both
entities communicate via PCIe-x1 links. Former hybrid CPU-
FPGA machines were the Cray XD1 [6] and the SGI RC100.

In this work we outline the hardware and software architec-
ture of the Convey HC-1 Hybrid Core Computer. We analyze
Convey’s programming concept and assess the functionalities
and capabilities of Convey’s single and double precision vector
personalities. Furthermore, we evaluate the viability of the
Convey HC-1 Hybrid Core Computer for numerical simulation
by means of selected numerical kernels that are well-known
building blocks for higher-level numerical schemes, solvers,
and applications. Some performance results on the HC-1 can
be found in [7]. Our work puts more emphasis on floating point
kernels relevant for numerical simulation. Stencil applications
on the HC-1 are also considered in [8].

II. HARDWARE CONFIGURATION OF THE CONVEY HC-1

The Convey HC-1 Hybrid Core Computer is an example
of a heterogeneous computing platform. By its hybrid setup,
specific application needs can either be handled by an x86-
64 dual-core CPU or by the application-adapted FPGAs. All

1

2

algorithms. The user only has to treat an integrated instruction
set controlled by pragmas and compiler settings. Convey
offers a set of pre-defined personalities for single and double
precision floating point arithmetics that turn the FPGAs into
a soft-core vector processor. Furthermore, personalities for
financial analytics and for proteomics are available. Currently,
a finite difference personality for stencil computations is
under development. The choice for a requested personality
is specified at compile time by setting compiler flags. With
Convey’s personality development kit custom personalities
can be developed by following the typical FPGA hardware
design tool chain (requiring considerable effort and additional
knowledge). Convey’s Software Performance Analysis Tool
(SPAT) gives insight into the system’s actual runtime behavior
and feedback on possible optimizations. The Convey Math
Library (CML) provides tuned basic mathematical kernels.
For our experiments we used the Convey64 Compiler Suite,
Version 2.0.0.

IV. THE POTENTIAL OF FPGAS

FPGAs have been considered to be non-optimal for floating
point number crunching. But FPGAs show particular benefits
for specific workloads like processing complex mathematical
expressions (logs, exponentials, transcendentals), performing
bit operations (shifts, manipulations), and performing sort
operations (string comparison, pattern recognition). Further
benefits can be achieved for variable bit length of data
types with reduced or increased precision, or for treating
non-standard number formats (e.g. decimal representation).
The latter points are exploited within Convey’s personalities
for financial applications and proteomics. Recently, Convey
reported a remarkable speedup of 172 for the Smith-Waterman
algorithm [9].

Pure floating point-based algorithms in numerical simu-
lation are often limited by bandwidth constraints and low
arithmetic intensity (ratio of flop per byte). The theoretical
peak bandwidth of 80 GB/s on the Convey FPGA device goes
along with a specific appeal in this context. However, memory
accesses on the device are not cached. Hence, particular bene-
fits are expected for kernels with limited data reuse like vector
updates (SAXPY/DAXPY), scalar products (SDOT/DDOT)
and sparse matrix-vector multiplications (SpMV). Convey’s
special Scatter-Gather DIMMs are well adapted to applications
with irregular data access patterns where CPUs and GPUs
typically show tremendous performance breakdowns.

V. PERFORMANCE EVALUATION

In order to assess the performance potential of Convey’s
FPGA platform for floating point-based computations in nu-
merical simulation we analyze some basic numerical kernels
and their performance behavior. In particular, we consider
library-based kernels provided by the CML and hand-written,
optimized kernels. By comparing both results we draw some
conclusion on the capability of Convey’s compiler. In all cases,
vectorization of the code and NUMA-aware placement of data
is crucial for performance. Without vectorization there is a

dramatic performance loss since scalar code for the accelerator
is executed on the slow application engine hub (AEH) that
builds the interface between host and accelerator device. If
data is not located in the accelerator memory but is accessed
in the host memory over the FSB, bandwidth and hence
performance also drop considerably.

For our numerical experiments we consider some basic
building blocks for high-level solvers, namely vector updates
z = ax+ y (SAXPY/DAXPY in single and double precision),
vector product α = x · y (SDOT/DDOT), dense matrix-vector
multiplication y = Ax (SGEMV/DGEMV), dense matrix-matrix
multiplication C = AB (DGEMM/SGEMM), sparse matrix
vector multiplication (SpMV), and stencil operations.

VI. VECTORIZATION AND OPTIMIZATION OF CODE

In order to exploit the full capabilities of the FPGA ac-
celerator specific measures are necessary for code creation,
for organizing data accesses, and to support the compiler for
vectorizing code. Due to its nature as a low frequency, highly
parallel vector architecture, performance on the Convey HC-1
heavily depends on the ability of the compiler to vectorize the
code. One of the examples where this did not work out-of-the-
box is dense matrix-vector multiplication SGEMV. The code
snippet in Figure 2 shows a straightforward implementation.
Here, the pragma cny no_loop_dep gives a hint to the
compiler for vectorization that there are no data dependencies
in the corresponding arrays.

void gemv(int length, float A[], float x[],
float y[]){

for(int i = 0; i < length; i++) {
float sum = 0;

#pragma cny no_loop_dep(A, x, y)
for(int j = 0; j < length; j++)

sum += A[i*length+j] * x[j];
y[i] = sum;

}
}

Fig. 2. Straightforward implementation of dense matrix-vector multiplication
(SGEMV)

Although the compiler claims to vectorize the inner loop,
performance is only approx. 2 GFlop/s and by a factor of
7 below the performance of the CML math library version.
The coprocessor instruction set supports vector reduction
operations, but these seem to have a pretty high startup
latency. The outer loop is not unrolled. Attempts to do that
manually improved the performance somewhat, but introduced
new performance degradations for certain vector lengths.

The solution lies in exploiting Convey’s scatter-gather mem-
ory which allows for fast strided memory reads and therefore
allows to change the loop ordering (see Figure 3). This
gives considerably better results; performance improvements
by loop reordering are detailed in Figure 4. For the reordered
loops we consider three different memory allocation scenarios:
dynamic memory allocated on the host and migrated with

3

Convey’s pragma cny migrate_coproc, dynamic mem-
ory allocated on the device, and static memory allocated on
the host and migrated to the device with the pragma mentioned
above. Performance increases with vector length but has some
oscillations. These results even outperform the CML CBLAS
library implementation from Convey (cf. Figure 13).

void optimized_gemv(int length, float A[],
float x[], float y[]){

for(int i = 0; i < length; i++)
y[i] = 0.0;

for(int j = 0; j < length; j++)
#pragma cny no_loop_dep(A, x, y)

for(int i = 0; i < length; i++)
y[i] += A[i*length+j] * x[j];

}

Fig. 3. Dense matrix-vector multiplication (SGEMV) optimized by loop
reordering

26 27 28 29 210 211 212 213 214

vector size

0

5

10

15

G
Fl

o
p
/s

reordered loop device malloc
reordered loop host malloc
reordered loop host static
without reordering

Fig. 4. Performance results and optimization for single precision dense
matrix-vector multiplication (SGEMV) with and without loop reordering and
for different memory allocation schemes; cf. Fig. 2 and Fig. 3

VII. PERFORMANCE RESULTS AND ANALYSIS

A. Device Memory Bandwidth for Different Access Patterns

Performance of numerical kernels is often influenced by
the corresponding memory bandwidth for loading and storing
data. For our memory bandwidth measurements we use the
following memory access patterns that are characteristic of
diverse kernels:

Sequential Read (SeRd): d[i] = s[i]
Sequential Read Indexed (SeRdI): d[i] = s[seq[i]]
Scattered Read Indexed (ScaRdI): d[i] = s[rnd[i]]
Sequential Write (SeWr): d[i] = s[i]
Sequential Write Indexed (SeWrI): d[seq[i]] = s[i]
Scattered Write Indexed (ScaWrI): d[rnd[i]] = s[i]

Here, seq[i] = i, i = 1, . . . , N , is a sequential but
indirect addressing and rnd[i] is an indirect addressing by an
arbitrary permutation of [1, . . . , N]. Performance results for
the described memory access patterns in single and double
precision on the Convey HC-1, on a 2-way 2.53 GHz Intel
Nehalem processor using 8 threads on 8 cores, on a single
GPU of a NVIDIA Tesla S1070 system, and on a GTX 480
consumer GPU with the latest Fermi architecture are presented
in Figure 5.

SeRd

d[i]=s[i] SeRdI

d[i]=s[seq[i]] ScaRdI

d[i]=s[rnd[i]] SeWr

d[i]=s[i] SeWrI

d[seq[i]]=
s[i] ScaWrI

d[rnd[i]]=
s[i]

0

50

100

150

200

G
B

/s

SP Convey HC-1
DP Convey HC-1
SP Intel Nehalem
DP Intel Nehalem

SP NVIDIA Tesla S1070
DP NVIDIA Tesla S1070
SP NVIDIA GTX480
DP NVIDIA GTX480

Fig. 5. Memory bandwidth for different memory access patterns on the
Convey HC-1, on a 2-way 2.53 GHz Intel Nehalem system processor with
8 cores, on a single GPU of an NVIDIA Tesla S1070 system, and on an
NVIDIA GTX480 consumer GPU

For the sequential indirect access, the CPU and GPU have
built-in hardware mechanisms (caches for the CPU and mem-
ory coalescing for the GPU) to detect the access locality and
therefore the performance does not decrease much while the
HC-1 bandwidth already drops considerably. For the scattered
read and write access, Convey’s memory configuration gives
better values than the Nehalem system and even outpaces the
GTX 480 for scattered write in double precision. The Convey
HC-1 not only has an about 60% percent higher peak memory
bandwidth than the Nehalem system, but it really shows
the potential of its scatter-gather capability when accessing
random locations in memory. Here, traditional cache-based
architectures typically perform poorly and at least the older
generation of GPU systems has a breakdown by an order of
magnitude. Newer GPU systems represented by the GTX 480
on the other hand have improved considerably.

B. Data-Transfers Between Host and Device

Because of the strong asymmetric NUMA-architecture of
the HC-1 there are different methods to use main memory.
Three of them are used in the following examples:

• dynamically allocate (malloc) and initialize on the host;
use migration pragmas

4

• dynamically allocate (cny cp malloc) and initialize on
the device

• statically allocate and initialize on the host; use migration
pragmas

By initialization we mean the first touch of the data in mem-
ory. Because the Convey HC-1 is based on Intel’s precedent
technology of using the front-side bus (FSB) to connect mem-
ory to processors a major bottleneck is the data connection
between host memory and device memory. Figure 6 shows
a comparison between read bandwidth on the host and the
device and the migration bandwidth over the HC-1’s front side
bus in GB/s. While read bandwidth on the device memory
reaches almost 33 GB/s, the transfer over the FSB achieves
only about 700 MB/s. This impedes fast switching between
parts of an algorithm which perform well on the coprocessor
and its vector units and other parts relying on the flexibility
of high-clocked general purpose CPU. Compared to GPUs
attached via PCIe, the FSB represents an even more narrow
bottleneck.

26 28 210 212 214 216 218 220 222 224 226

vector size

0

5

10

15

20

25

30

35

G
Fl

o
p
/s

 o
r

G
B

/s

host malloc fp performance
device malloc fp performance
device static fp performance
device read bandwidth
host read bandwidth
FSB migrate bandwidth

Fig. 6. Read bandwidth on host and device and migration bandwidth in GB/s
on the Convey HC-1; Performance results in GFlop/s for the SAXPY vector
update for different memory allocation schemes

Furthermore, Figure 6 depicts performance of the SAXPY
in terms of GFlop/s (the unit on the y-axis has to be chosen
correspondingly). For data originally allocated on the host and
migrated to the device we observe some oscillations in the
performance.

C. Avoiding Bank Conflicts with 31-31 Interleave

The scatter-gather memory configuration of the Convey HC-
1 can be used in two different mapping modes:

• Binary interleave: traditional approach, parts of the ad-
dress bitmap are mapped round-robin to different memory
banks

• 31-31 interleave: modulo 31 mapping of parts of the
address bitmap

Because in the 31-31 interleave mode the memory is divided
into 31 groups of 31 banks, memory strides of powers of
two and many other strides hit different banks and therefore
do not suffer from memory bandwidth degradation. But to
integrate this prime number scheme into a power of two
dominated world, one of 32 groups and every 32th bank are
not used resulting in a loss of some addressable memory and
approximately 6% of peak memory bandwidth. In Figure 7
performance results for the SAXPY vector update are shown
for both interleave options. For the SAXPY, binary memory
interleave is slightly worse. Performance results for the CML
DGEMM routine in Figure 8 show larger variations with 31-31
interleave. The DGEMM routine achieves about 36 GFlop/s
and the SGEMM routine yields about 72 GFlop/s on our
machine. In both cases this is roughly 90% of the estimated
machine peak performance.

26 28 210 212 214 216 218 220 222 224 226

vector size

0

1

2

3

4

5

6

7

8

G
Fl

o
p
/s

saxpy with 31-31 interleave
saxpy with binary interleave

Fig. 7. Performance of SAXPY vector updates with 31-31 and binary
interleave

D. BLAS Operations

Basic Linear Algebra Subprograms (BLAS) [10] are a
collection and interface for basic numerical linear algebra
routines. We use these routines for assessment of the HC-
1 FPGA platform. We compare our own, straightforward
implementations of BLAS-routines with those provided by
Convey’s Math Library (CML). Loop reordering techniques
are applied for performance improvements. In the following
examples we use the three different memory usage schemes
detailed in Section VII-B. In all three cases initialization and
migration costs are not considered in our measurements.

Data allocation on the host followed by migration routines
or pragmas is not really a controllable and reliable procedure.
From time to time considerable drops in performance are
observed. So far, we could not identify a reasonable pattern or
a satisfactory explanation for these effects. Our measurements
are made using separate program calls for a set of parameters.
When trying to measure by looping over different vector

5

26 27 28 29 210 211 212 213 214

vector size

0

5

10

15

20

25

30

35

40

G
Fl

o
p
/s

cblas_dgemm with binary interleave

cblas_dgemm with 31-31 interleave

Fig. 8. Performance of the cblas dgemm matrix-matrix multiplication
provided by the CML with 31-31 and binary interleave

lengths, allocating and freeing memory on the host and using
migration calls in between, the results are even less reliable.

We observe that our own implementations are usually faster
for short vector lengths – probably due to lower call over-
head and less parameter checking. For longer vector lengths
the CML library implementations usually give better results.
Results for the SAXPY/DAXPY vector updates are depicted
in Figure 9 and in Figure 10. Performance data for the
SDOT/DDOT scalar products are shown in Figure 11 and in
Figure 12, and for the SGEMV/DGEMV dense matrix-vector
multiplication in Figure 13 and in Figure 14.

23 25 27 29 211 213 215 217 219 221 223 225

vector size

0

1

2

3

4

5

6

7

8

G
Fl

o
p
/s

saxpy host malloc
saxpy device malloc
saxpy host static
cblas_saxpy host malloc

cblas_saxpy device malloc

cblas_saxpy host static

Fig. 9. SAXPY vector update using different implementations and different
memory allocation strategies

26 28 210 212 214 216 218 220 222 224 226

vector size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
Fl

o
p
/s

daxpy host malloc
daxpy device malloc
daxpy host static
cblas_daxpy host malloc

cblas_daxpy device malloc

cblas_daxpy host static

Fig. 10. DAXPY vector update using different implementations and different
memory allocation strategies

26 28 210 212 214 216 218 220 222 224 226

vector size

0

2

4

6

8

10

12

14

16

G
Fl

o
p
/s

sdot host malloc
sdot device malloc
sdot host static
cblas_sdot host malloc

cblas_sdot device malloc

cblas_sdot host static

Fig. 11. SDOT scalar product using different implementations and different
memory allocation strategies

E. Sparse Matrix-Vector Multiplication

Many numerical discretization schemes for scientific prob-
lems result in sparse system matrices. Typically, iterative meth-
ods are used for solving these sparse systems. On top of scalar
products and vector updates, the efficiency of sparse matrix-
vector multiplications is very important for these scenarios.
When using the algorithm for the compressed sparse row
(CSR) storage format [11] presented in Figure 15, loops and
reduction operations are vectorized by the compiler. However,
the performance results are very disappointing – being in the
range of a few MFlop/s. Although the memory bandwidth
for indexed access as presented in Figure 5 is very good, the
relatively short vector length and the overhead of the vector
reduction in the inner loop seem to slow down computations

6

26 28 210 212 214 216 218 220 222 224 226

vector size

0

1

2

3

4

5

6

7

8

G
Fl

o
p
/s

ddot host malloc
ddot device malloc
ddot host static
cblas_ddot host malloc

cblas_ddot device malloc

cblas_ddot host static

Fig. 12. DDOT scalar product using different implementations and different
memory allocation strategies

26 27 28 29 210 211 212 213 214

vector size

0

2

4

6

8

10

12

14

16

G
Fl

o
p
/s

sgemv host malloc
sgemv device malloc
sgemv host static
cblas_sgemv host malloc

cblas_sgemv device malloc

cblas_sgemv host static

Fig. 13. SGEMV matrix-vector multiplication using different implementa-
tions and different memory allocation strategies

(see also observations in Section VI on loop optimizations).
Unfortunately, in this case loop reordering is not that easy be-
cause the length of the inner loop depends on the outer loop. A
possible solution is to use other sparse matrix representations
like the ELL format, as used on GPUs e.g. in [12].

F. Stencil Operations

Stencil kernels are one of the most important routines
applied in the context of solving partial differential equa-
tions (PDEs) on structured grids. They originate from the
discretization of differential expressions in PDEs by means of
finite element, finite volume or finite difference methods. They
are defined as a fixed subset of nearest neighbors where the
corresponding node values are used for computing weighted

26 27 28 29 210 211 212 213 214

vector size

0

2

4

6

8

10

12

14

16

G
Fl

o
p
/s

dgemv host malloc
dgemv device malloc
dgemv host static
cblas_dgemv host malloc

cblas_dgemv device malloc

cblas_dgemv host static

Fig. 14. DGEMV matrix-vector multiplication using different implementa-
tions and different memory allocation strategies

void spmv(int nrows, float val[],
int coli[], int rowp[],
float vin[], float vout[]){

#pragma cny no_loop_dep(val, vin, vout)
#pragma cny no_loop_dep(coli, rowp)
for(int row = 0; row < nrows; row++) {
int start = rowp[row];
int end = rowp[row+1];
float sum = 0.0;
for(int i = start; i < end; i++) {
sum += val[i] * vin[coli[i]];

}
vout[row] = sum;
}

}

Fig. 15. Sparse matrix-vector multiplication (SpMV) routine for CSR data
format

sums. The associated weights correspond to the coefficients
of the PDEs where coefficients are assumed to be constant in
our context. In our test we use a 3-dimensional 7-point stencil
for solving the Laplace equation on grids of different sizes.
The performance results on the HC-1, on an 8-core Nehalem
CPU system, and on two different NVIDIA GPUs are shown
in Figure 16. Our stencil code for the HC-1 is close to the
example given in the Convey documentation material. The
CPU implementation is the one used in [13], not using the
presented in-place optimization but only conventional space-
blocking and streaming optimizations. The NVIDIA CUDA
GPU implementation uses blocking of input values in shared
memory for data reuse.

For the conventional CPU one can see a high peak for
small grid sizes when the data can be kept in the cache.
For larger grid sizes a pretty constant performance with slight

7

963 1283 1923 2563 3843 5123 7503
0

10

20

30

40

50

60

70

80

G
Fl

o
p
/s

SP Convey HC-1
DP Convey HC-1
SP Intel Nehalem
DP Intel Nehalem

SP NVIDIA Tesla S1070
DP NVIDIA Tesla S1070
SP NVIDIA GTX480
DP NVIDIA GTX480

Fig. 16. Performance of a 3-dimensional 7-point Laplace stencil (one grid
update is counted as 8 Flop) in single precision (SP) and double precision
(DP) on the Convey HC-1, on a 2-way 2.53 GHz Intel Nehalem system using
8 cores, on a single GPU of an NVIDIA Tesla S1070 system, and on an
NVIDIA GTX480 consumer GPU

increases due to less loop overhead is observed. The Convey
HC-1 on the other hand shows no cache effects but lower
performance on smaller grids. But unfortunately because of
its lack of caching, neighboring values of the stencil have to
be reloaded every time they are needed – wasting a large
portion of the much higher total memory bandwidth. On
the Convey HC-1 the difference between single and double
precision stencil performance becomes apparent only for large
grid size. Both NVIDIA GPUs show impressive performance,
especially the newer generation. At the same time, they show
the restrictive memory limitations – especially for the budget-
priced consumer GPU with only 2 GB device memory. Here,
the larger samples could not be computed.

VIII. CONCLUSION

Convey’s HC-1 Hybrid Core Computer offers seamless
integration of a highly capable FPGA platform with an easy
coprocessor programming model, a coherent memory space
shared by the host and the accelerator, and remarkable band-
width values on the coprocessor. Moreover, Convey’s scatter-
gather memory configuration offers advantages for codes with
irregular memory access patterns. With Convey’s personalities
the actual hardware configuration can be adapted to, and opti-
mized for specific application needs. With its HC-1 platform,
Convey brings FPGAs closer to high performance computing.
However, we have failed to port more complex applications
originating in numerical simulation due to the failure to obtain
acceptable speed for sparse matrix-vector multiplication.

The HC-1 has the potential to be used for general purpose
applications. Although the HC-1 falls behind the impressive
performance numbers of GPU systems and the latest multicore
CPUs, it provides an innovative approach to asymmetric
processing, to compiler-based parallelization, and in particular

to portable programming solutions. Only a single code base
is necessary for x86-64 and FPGA platforms which facilitates
maintainability of complex codes. In contrast to GPUs, mem-
ory capacity is not limited by a few GB and FPGAs connected
by direct networks come in reach. A great opportunity lies
in the possibility to develop custom personalities – if time,
knowledge and costs permit.

Convey’s approach represents emerging technology with
some deficiencies but also with a high level of maturity. Major
drawbacks arise from limitations for floating point arithmetics
on FPGAs, compiler capabilities for automatic vectorization,
and the usage of Intel’s obsolete FSB communication infras-
tructure. In our experience, typical code bases still show room
for code and compiler improvements. While major benefits
have been reported for specific workloads in bioinformatics,
the HC-1 also provides a viable means for floating point-
dominated and bandwidth-limited numerical applications. De-
spite its high acquisition costs, this breakthrough technology
needs further attention.

ACKNOWLEDGEMENTS

The Shared Research Group 16-1 received financial support
by the Concept for the Future of Karlsruhe Institute of Tech-
nology in the framework of the German Excellence Initiative
and by the industrial collaboration partner Hewlett-Packard.

REFERENCES

[1] P. J. Ashenden, The VHDL Cookbook. Dept. Computer
Science, Univ. Adelaide, S. Australia. [Online]. Available:
http://tams-www.informatik.uni-hamburg.de/vhdl/doc/cookbook/VHDL-
Cookbook.pdf

[2] D. Thomas and P. Moorby, The Verilog Hardware Description Language,
2008.

[3] J. M. P. Cardoso, P. C. Diniz, and M. Weinhardt, “Compiling
for reconfigurable computing: A survey,” ACM Comput. Surv.,
vol. 42, pp. 13:1–13:65, June 2010. [Online]. Available:
http://doi.acm.org/10.1145/1749603.1749604

[4] A. Shan, “Heterogeneous processing: A strategy for
augmenting Moore’s law,” Linux J. [Online]. Available:
http://www.linuxjournal.com/article8368

[5] T. M. Brewer, “Instruction set innovations for the Convey HC-1 Com-
puter,” IEEE Micro, vol. 30, pp. 70–79, 2010.

[6] O. Storaasli and D. Strenski, “Cray XD1 – exceeding 100x
speedup/FPGA: Timing analysis yields further gains,” in Proc. 2009
Cray User Group, Atlanta GA, 2009.

[7] J. Bakos, “High-performance heterogeneous computing with the Convey
HC-1,” Computing in Science Engineering, vol. 12, no. 6, pp. 80 –87,
2010.

[8] J. M. Kunkel and P. Nerge, “System performance comparison of
stencil operations with the Convey HC-1,” Research Group Scientific
Computing, University of Hamburg, Tech. Rep. 2010-11-16, 2010.

[9] Convey Computer, http://www.conveycomputer.com/resources/ConveyBio
informatics web.pdf.

[10] Basic Linear Algebra Subprograms (BLAS), http://www.netlib.org/blas/.
[11] S. Williams, R. Vuduc, L. Oliker, J. Shalf, K. Yelick, and J. Demmel,

“Optimizing sparse matrix-vector multiply on emerging multicore plat-
forms,” Parallel Computing (ParCo), vol. 35, no. 3, pp. 178–194, March
2009.

[12] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication on
CUDA,” NVIDIA Corporation, NVIDIA Technical Report NVR-2008-
004, Dec. 2008.

[13] W. Augustin, V. Heuveline, and J.-P. Weiss, “Optimized stencil com-
putation using in-place calculation on modern multicore systems,” pp.
772–784, 2009.

8

Optimized Replacement in the Configuration Layers
of the Grid ALU Processor

Ralf Jahr, Basher Shehan, Theo Ungerer
University of Augsburg

Institute of Computer Science
86135 Augsburg, Germany

Email: {jahr, shehan, ungerer}@informatik.uni-augsburg.de

Sascha Uhrig
Technical University Dortmund

Robotics Research Institute
44221 Dortmund, Germany

Email: sascha.uhrig@tu-dortmund.de

Abstract—The Grid ALU Processor comprises a reconfigurable
two-dimensional array of ALUs. A conventional sequential in-
struction stream is mapped dynamically to this array by a
special configuration unit within the front-end of the processor
pipeline. One of the features of the Grid ALU Processor are
its configuration layers, which work like a trace cache to store
instruction sequences that have been already mapped to the ALU
array recently.

Originally, the least recently used (LRU) strategy has been
implemented to evict older configurations from the layers. As
we show in this paper the working set is frequently larger than
the available number of configuration layers in the processor
resulting in thrashing. Hence, there is quite a large gap between
the hit rate achieved by LRU and the hit rate achievable
with an optimal algorithm. We propose an approach called
qdLRU to enhance the performance of the configuration layers.
Using qdLRU closes the gap between LRU and an optimal
eviction strategy by 66% on average and achieves a maximum
performance improvement of 390% and 5.06% on average with
respect to the executed instructions per clock cycle (IPC).

Index Terms—Trace Cache, Replacement Strategy, Post-link
Optimization, Feedback-directed Optimization, Coarse-Grained
Reconfigurable Architecture

I. INTRODUCTION

Within this paper, we present an optimization for the Grid
ALU Processor (GAP), which has been introduced by Uhrig
et al. [1]. It brings together a superscalar-like processor front-
end and a coarse-grained reconfigurable architecture, i.e. a
reconfigurable array of functional units (FUs). The front-end
consisting of instruction fetch and decode unit is extended
with a new configuration unit. This unit maps the instructions
from the instruction stream dynamically and at run-time onto
the array of FUs. Mapping of instructions and execution
of instructions in the array run in parallel until there is a
reason to flush the array and restart the mapping process. The
mapping which has been built until this moment is called a
configuration.

These configurations can be buffered in so-called configu-
ration layers, which are formed by some memory cells very
close to all the FUs. The configuration layers are very similar
to trace caches. If a part of a program, i.e. a configuration, is
already stored in the configuration layers it can be executed
faster because it does not have to go through the front-end first,
so instruction cache misses cannot occur. The timing inside the

array is optimized, too. Because of this, it is a worthwhile goal
to increase the usage of the configuration layers. Analyzing
the execution of benchmarks we came to the conclusion
that for some of them our default replacement strategy LRU
works unexpectedly bad, even worse than replacing a random
configuration layer (we call this strategy RANDOM). So LRU
is in some cases not clever at all and humbles the execution
speed.

The main contributions of this paper are (1) the analysis
and comparison of the behavior of well-known replacement
algorithms when applied to the replacement in the configura-
tion layers and (2) the introduction and analysis of qdLRU.
QdLRU improves the hit rate of LRU by adding flags to the
program code based on a feedback-directed approximation of
the working sets.

After giving a short introduction of the target platform
in Section II, we discuss some basics about replacement
strategies in Section III. The extended version of LRU called
qdLRU is introduced in Section IV and evaluated in Section V.
Related work is presented in Section VI and Section VII
concludes the paper.

II. TARGET PLATFORM: THE GRID ALU PROCESSOR

The Grid ALU Processor (GAP) has been developed to
speed up the execution of conventional single-threaded instruc-
tion streams. To achieve this goal, it combines the advantages
of superscalar processor architectures, those of coarse-grained
reconfigurable systems, and asynchronous execution.

A superscalar-like processor front-end consisting of fetch-
and decode units is used together with a novel configuration
unit (see Figure 1(a)) to load instructions and map them dy-
namically onto an array of functional units (FUs) accompanied
by a branch control unit and several load/store units to handle
memory accesses (see Figure 1(b)).

The array of FUs is organized in columns and rows. Each
column is dynamically and per configuration assigned to one
architectural registers. Instructions are assigned to the columns
whose register match the instructions’ output registers. The
rows of the array are used to model dependencies between
instructions. If an instruction B is dependent of an instruction
A, it will be mapped to a row below the row of A. This way
it is possible for the in-order configuration unit to also “issue”

9

B
ra

n
ch

 c
o

n
tr

o
l
u

n
it

Memory

access

unit

D
a
ta

 c
a
ch

e

...

Decode and

configuration unit

Instruction fetch unit

...

Second level

cache

(not implemented)In
st

ru
ct

io
n

ca
ch

e

Processor front-end

Array of reconfigurable FUs

Memory

access

unit

Memory

access

unit

(a) Block diagram of the GAP core

Reg.

...

Reg.

...

Reg.

...

Reg.

...

...

...

...

...

B
ra

n
ch

 c
o

n
tr

o
l
u

n
it

Memory

access

unit

...

...
Top registers

Reconfigurable

FUs

Horizontal

connections

Forward

connections

Backward

connections

FU FU FU FU

FU FU FU FU

FU FU FU FU

ALU array

Memory

access

unit

Memory

access

unit

Configuration busses

(b) General organization of the ALU array

Fig. 1. Architecture of the Grid ALU Processor

dependent instructions without the need of complex out-of-
order logic. A bimodal branch predictor is used to effectively
map control dependencies onto the array.

Execution starts in the first row of the array. The dataflow
is performed asynchronously inside the array of FUs and it is
synchronized with the clock of the branch control unit and the
L/S units by so-called timing tokens [1].

Whenever either a branch is miss-predicted or execution
reaches the last row of the array with configured FUs the array
is cleared and the configuration unit maps new instructions
starting from the first row of the array. In order to save con-
figurations for repeated execution all elements of the array are
equipped with some memory cells which form configuration
layers. Typically, 2, 4, 8, 16, 32, or 64 configuration layers
are available. The array is quasi three-dimensional and its size
can be written as columns x rows x layers.

With this extension it has to be checked before mapping
new instructions if the next instruction to execute is equal
to the first instruction in any of the layers. If a match is
found, the corresponding layer is set to active and execution
continues there. If no match is found, the least recently
used configuration layer is cleared and used to store the
new configuration. In all cases, the new values of registers
calculated in columns are copied into the registers at the top
of the columns.

To evaluate the architecture a cycle- and signal-accurate
simulator has been developed. It uses the Portable Instruction
Set Architecture (PISA), hence the simulator can execute the
identical program files as the SimpleScalar simulation tool
set [2] (but it is not based on it). Detailed information about the
processor are given by Uhrig et al. [1] and Shehan et al. [3].

III. TOWARDS AN IMPROVED POLICY

Several basic terms of replacement strategies with respect
to the GAP architecture are discussed in this section.

A. Measuring the Performance of a Replacement Strategy

To analyze the performance of a replacement policy, we
suggest two measures. The total hit rate htotal of the layer
subsystem, which is the number of accesses of layers which
can be found in the configuration layers ahit divided by the
total number of accesses atotal. The total hit rate htotal can
also be understood as the sum of the hit rate by re-accessing
the identical configuration subsequently hloop = aloop/atotal,
which is independent from the number of layers available,
and the hit rate contributed by the layer subsystem hlayer =
alayer/atotal for all other accesses:

htotal =
ahit

atotal
=

aloop

atotal
+

alayer

atotal
= hloop + hlayer

A replacement policy can influence only the hit rate of the
layer subsystem hlayer. For a given benchmark, hloop has the
same value for all replacement strategies.

An optimal offline replacement algorithm (named OPT in
the remainder) has been introduced by Belady [4] and it can be
used as upper bound. In other words, no (online) replacement
policy can achieve a better hit rate than this offline policy,
which chooses the element for eviction that will be reused as
the last one of all elements in the future.

Another offline algorithm has been mentioned by Temam [5]
with the goal to maximize the number of instructions which
can be accessed without cache misses. As upper bound for the
performance of a replacement policy the algorithm OPT is a
much more feasible measure because in the GAP, the penalty
caused by activating the front-end of the processor when a
new configuration must be build is much higher compared to
the time, which is saved when some additional instructions
can be found in a layer.

The second measure to evaluate a replacement policy is the
performance of the whole system, which is e.g. described by
the number of instructions executed per clock cycle (IPC).

10

11

12

Listing 1. Algorithm to configuration lines
i n p u t : l i s t <c o n f i g u r a t i o n > t r a c e

d e f i n e l i n e l i s t <c o n f i g u r a t i o n >
s e t <l i n e > a l l l i n e s
map<l i n e , i n t > l i n e c o u n t e r s

l i n e c u r r e n t l i n e = {}
c o n f i g u r a t i o n l a s t c o n f i g u r a t i o n

f o r e a c h (c o n f i g u r a t i o n i t em i n t r a c e)
i f (i t em == l a s t c o n f i g u r a t i o n)

/ / Do n o t h i n g
e l s e i f (i t e m /∈ c u r r e n t l i n e)

c u r r e n t l i n e += i t em
l a s t c o n f i g u r a t i o n = i t em

e l s e
a l l l i n e s += c u r r e n t l i n e
l i n e c o u n t e r s [c u r r e n t l i n e]++
c u r r e n t l i n e = {}
l a s t c o n f i g u r a t i o n = i t em

number of layers in the processor and the other group Clong

contains all the other configuration lines, those configuration
lines are too long to fit into the layers without evictions.
With having prepared these groups the following algorithm
is performed:

1) Select a configuration line item from Clong.
2) Select from item the configuration with the least usage

in Cshort, mark its first instruction.
3) Select all configuration lines from Clong where the

number of all configurations minus the number of all
marked configurations in the line is smaller than the
number of layers of the processor. Move them to Cshort.

4) If Clong is not empty, restart the algorithm with step 1.

By this heuristic, we select configurations in a manner
that they influence as little as possible the execution of
configuration lines that fit into the layers. If a configuration
line fits into the layers, but one of its configurations is marked,
than this can humble the hit rate of this configuration line
extremely.

In the last step, our post-link optimization tool GAPtimize
(introduced in [9]) is used to mark the first instruction of the
selected configurations with a special drop quickly flag. This
flag directs the configuration layer subsystem of GAP to drop
the configuration starting with the actual instruction quickly.

B. Executing the modified binary

When implementing qdLRU, changes are necessary both in
hardware and in software. The changes in hardware are very
simple. All which has to be done is to make sure that either a
configuration beginning with a marked instruction is inserted
in the least recently used position in the LRU access queue or
that, when looking for a layer for eviction, it is first looked
for a configuration layer starting with a marked instruction and
then replacing this layer.

If a program is executed on the GAP which has not been
optimized (and is hence without flags), then qdLRU behaves
exactly like LRU, which still offers reasonable performance.
This graceful degradation is one of the requirements of all
techniques used for the GAP.

V. EVALUATION

For the practical evaluation we rely on the cycle-accurate
simulator which has been developed for the GAP and was
extended to support qdLRU. As the hardware complexity of
GAP can vary very much because of different sizes of its
ALU array, we set it to a fixed size of 12 columns and 12

(a) Access plot for the first 1000 accesses of configuration layers for benchmark stringsearch

(b) Access plot for the first 1000 accesses of configuration layers for benchmark qsort

Fig. 4. Access plots (see Section III-C) for GAP with 12x12x16 array and LRU as replacement policy; some patterns are marked and labeled.

13

14

15

one. Together with OPT as upper bound the performance
of LRU, FIFO and RANDOM have been compared for our
situation in Section III-B.

The second class of algorithms are the Dynamic Insertion
Policy (DIP) proposed by Qureshi et al. [11] and the Shepherd
Cache proposed by Rajan etc al. [12]. Both share the property
that they require additional hardware effort. In our experi-
ments, we also got for our particular situation performance
numbers at most comparable to LRU for the Shepherd Cache.
The DIP is only applicable if it can select between LRU
and BIP with extreme parameters to prevent thrashing. The
suggested approach to divide the configuration layers into two
sets does not seem to be applicable due to the small number
of configuration layers. The small number of lines prevents
using strategies like ARC [13] where the lines are split into
two sections and handled in different ways.

Some other techniques have also been proposed (see
e.g. [14]) but most of them either require large changes of the
hardware and/or are not supposed to work well because the low
number of layers available in the GAP normally restricts the
eventual gain in performance caused by replacement strategies.

Trace caches as introduced by Rotenberg et al. [15] work for
superscalar processors very similar to the configuration layers
because they are used to buffer parts of a program flow, too.
To our knowledge, nobody has yet been working on thrashing
situations in this context.

VII. CONCLUSION AND FUTURE WORK

We introduced a software-supported replacement strategy
for the configuration layers of the GAP processor, which are
used like a trace cache to buffer instructions sequences ready
for execution. So far, LRU is used as replacement strategy
which offers an unsatisfying performance for several bench-
marks. Strangely enough, LRU shows for some benchmarks
even worse performance than RANDOM, a strategy evicting a
random element. The main reason for this is thrashing, which
can happen if the elements of a working set are processed
repeatedly and sequentially, i.e. there is a huge degree of
locality, and the set contains more configurations than the GAP
provides configuration layers. In this case, the hit rate achieved
with LRU collapses.

To overcome this issue, we proposed a replacement strategy
called qdLRU and a heuristic to approximate the working
sets in software. Based on working sets we select some
configurations which are evicted immediately from the con-
figuration layers. With this, we can draw the behavior of
qdLRU nearer to the optimal strategy OPT. The performance
measured by the IPC for qdLRU is on average 5.06% higher
than the performance achieved by LRU. A peak improvement
of 390% is gained for secu-rinjdael-decode caused by a peak
improvement of the hit rate of 0.5.

This approach could be adapted for all situations in which a
replacement strategy is needed for a small number of complex
elements with many thrashing-risky situations. The introduced
strategy requires only very little changes of the hardware when

LRU has already been implemented. It also supports graceful
degradation back to LRU.

As future work, we propose to work on the detection of
working sets. The rule which has been introduced is simple
and effective. Nevertheless, there are situations where this rule
cannot find a sufficient solution. Hence, to find better solutions
it should be thought about the scope of the working sets. From
our point of view, it is important that the configurations in a
working set should be executed repeatedly in the same order.
If this restriction is weakened, the scope of working sets could
be enlarged which must be handled carefully but might lead
to further improved results. Concluding, it might be possible
to find better solutions with biologically inspired algorithms,
e.g. ant algorithms or genetic algorithms. Linear programming
should also be taken into consideration.

REFERENCES

[1] S. Uhrig, B. Shehan, R. Jahr, and T. Ungerer, “The two-dimensional su-
perscalar gap processor architecture,” International Journal on Advances
in Systems and Measurements, 2010.

[2] D. Burger and T. Austin, “The simplescalar tool set, version 2.0,” ACM
SIGARCH Computer Architecture News, vol. 25, no. 3, pp. 13–25, June
1997.

[3] B. Shehan, R. Jahr, S. Uhrig, and T. Ungerer, “Reconfigurable grid alu
processor: Optimization and design space exploration,” in Proceedings of
the 13th Euromicro Conference on Digital System Design (DSD) 2010,
Lille, France, 2010.

[4] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems, vol. 5, no. 2, pp. 78–101, 1966.

[5] O. Temam, “Investigating optimal local memory performance,” SIGOPS
Oper. Syst. Rev., vol. 32, no. 5, pp. 218–227, 1998.

[6] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and T. Brown,
“MiBench: A free, commercially representative embedded benchmark
suite,” 4th IEEE International Workshop on Workload Characteristics,
pp. 3–14, December 2001.

[7] P. J. Denning, “The locality principle,” Commun. ACM, vol. 48, no. 7,
pp. 19–24, 2005.

[8] P. Denning, “Thrashing: its causes and prevention,” in AFIPS ’68 (Fall,
part I): Proceedings of the December 9-11, 1968, fall joint computer
conference, part I. New York, NY, USA: ACM, 1968, pp. 915–922.

[9] R. Jahr, B. Shehan, S. Uhrig, and T. Ungerer, “Static speculation as
post-link optimization for the grid alu processor,” in Proceedings of the
4th Workshop on Highly Parallel Processing on a Chip (HPPC 2010),
2010.

[10] R. W. Carr and J. L. Hennessy, “WSCLOCK - a simple and effective
algorithm for virtual memory management,” in SOSP ’81: Proceedings
of the eighth ACM symposium on Operating systems principles. New
York, NY, USA: ACM Press, 1981, pp. 87–95.

[11] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,” in ISCA ’07:
Proceedings of the 34th annual international symposium on Computer
architecture. New York, NY, USA: ACM, 2007, pp. 381–391.

[12] K. Rajan and G. Ramaswamy, “Emulating optimal replacement with
a shepherd cache,” in MICRO 40: Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture. Washing-
ton, DC, USA: IEEE Computer Society, 2007, pp. 445–454.

[13] N. Megiddo and D. S. Modha, “Outperforming lru with an adaptive
replacement cache algorithm,” Computer, vol. 37, no. 4, pp. 58–65,
2004.

[14] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Where replacement
algorithms fail: a thorough analysis,” in CF ’10: Proceedings of the
7th ACM international conference on Computing frontiers. New York,
NY, USA: ACM, 2010, pp. 141–150.

[15] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: a low
latency approach to high bandwidth instruction fetching,” in MICRO 29:
Proceedings of the 29th annual ACM/IEEE international symposium on
Microarchitecture. Washington, DC, USA: IEEE Computer Society,
1996, pp. 24–35.

16

Performance Engineering of an Orthogonal
Matching Pursuit Algorithm for Sparse

Representation of Signals on Different Architectures

Markus Stürmer, Harald Köstler
University of Erlangen-Nuremberg

91058 Erlangen
Germany

Florian Rathgeber
Imperial College London

London SW7 2AZ
United Kingdom

Abstract—Modern multicore architectures require
adapted, parallel algorithms and implementation strategies
for many applications. As a non-trivial example we chose
in this paper a patch-based sparse coding algorithm
called Orthogonal Matching Pursuit (OMP) and discuss
parallelization and implementation strategies on current
hardware. The OMP algorithm is used in imaging and
involves heavy computations on many small blocks of
pixels called patches. From a global view the patches
within the image can be processed completely in parallel
but within one patch the algorithm is hard to parallelize.
We compare the performance on the Cell Broadband
Engine Architecture (CBEA), different GPUs, and current
multicore CPUs.

Index Terms—Batch-OMP algorithm, orthogonal
matching pursuit, GPGPU, Cell Broadband Engine
Architecture, performance engineering, multicore

I. INTRODUCTION

Since image acquisition systems produce more
and more data and most imaging applications are
time-critical, efficient implementations are needed
that run on current hardware.

In this work we consider sparse coding, i.e.
finding sparse representations of signals or images,
based on a frame (overcomplete basis), the so-
called dictionary. Sparse representations are widely
used and currently state-of-the-art in imaging ap-
plications like image denoising, super-resolution, or
image restoration [1], [2], [3]. Since sparse coding
is in general an NP-hard problem, we reduce the
complexity for the creation of the sparse represen-
tation of an image by decomposing it into many
small blocks called patches. Then, sparse coding
is done independently for each of them. While the

patches thus can be processed completely in paral-
lel, within one patch the very time-consuming and
hardly parallelizable task is to find the coefficients
for the sparse representation in the given basis.
We solve this approximately by a variant of an
orthogonal matching pursuit (OMP) [4], the Batch-
OMP algorithm [5].

In previous work we have shown that sparse
representations are suitable for CT image denois-
ing and compared the results to other denoising
approaches [6], [7], [8], [9]. We also accelerated
the Batch-OMP algorithm on the Cell Broadband
Engine Architecture (CBEA) in order to achieve
close to real-time performance [10]. In this paper
we compare the performance of the Batch-OMP
algorithm on different hardware architectures like
standard CPUs, the CBEA, and GPUs.

Sparse coding is a prominent topic and thus
several other contributions have been made by other
groups. GPU, CPU, and CBEA implementations for
the related compressive sensing are presented in
[11], [12] and general image reconstruction algo-
rithms on GPUs in [13]. In [14], a matching pursuit
algorithm is implemented on the GPU, which is
easier to parallelize and requires less computational
effort than OMP. Closest to our work are Septimus
and Steinberg [15], who port the Batch-OMP algo-
rithm to a Xilinx Virtex 5 FPGA, and Braun [16],
who shows a GPU implementation of the Batch-
OMP algorithm. Since Braun states that GPUs are
not significantly better or worse than CPUs for
OMP, we decided to make a deeper analysis. We
achieve better performance with our manually tuned

17

code, but still observe interestingly similar results
for CBEA, GPUs and standard CPUs. This is due
to the versatile requirements of the different parts
of OMP algorithm which cancel out the specifics of
each platform.

In the following we give more details about sparse
representations and the Batch-OMP algorithm in
section II. After that we discuss our GPU implemen-
tation strategy in section III and in section IV we
present a performance comparison on CPU, GPU,
and CBEA. Future work is outlined in section V.

II. METHODS

A. Sparse representation

The goal of a sparse representation of a signal
is to reduce the amount of data required to store
it. This is achieved by first defining a frame —
an overcomplete basis of the signal vector space—
that is also called dictionary and then representing
signals compactly by a linear combination of only
few vectors out of the frame. The signals can also
be represented only approximately to reduce data.
Mathematically, the problem of finding the sparsest
representation a ∈ RK of a signal X ∈ Rn, up to a
given error tolerance ε > 0, can be formulated as:

min
a
‖a‖0 subject to ‖Da−X‖2 ≤ ε , (1)

where ‖·‖0 denotes the `0 - seminorm that counts
the nonzero entries of a vector ‖a‖0 =

∑K
j=0 |aj|0.

The full rank matrix D ∈ Rn×K is the dictionary
that forms an overcomplete basis of the signal space
(i.e. K > n). Its column vectors are called atoms.

A suitable dictionary, that we use throughout our
paper, is a frame derived from cosine functions. An
alternative would be dictionary training with the K-
SVD algorithm [17].

Unfortunately, exactly determining the sparsest
representation of signals is an NP-hard combina-
torial problem [4], [18]. Therefore, one usually
does not try to find the sparsest representation of
the whole signal directly, but one divides X into
small, typically overlapping patches x and solves
(1) for each patch separately in order to reduce the
computational effort. The single patches are treated
independently of each other and at the end they are
assembled to obtain the whole signal X.

B. Orthogonal Matching Pursuit
Orthogonal matching pursuit (OMP) [19], a sim-

ple greedy algorithm, solves (1) approximately by
sequentially selecting dictionary atoms. OMP is
guaranteed to converge in finite-dimensional spaces
within a finite number of iterations [4]. The com-
plexity of this algorithm for finding n atoms is
O(n3) [5]. In each iteration it proceeds as follows:

• First, the projection of the residual r on the
dictionary p = DT r is computed, and the atom
k̂ = argmax

k
|p| with maximal correlation to

the residual is selected.
• Then, the current patch x is orthogonally pro-

jected onto the span of the selected atoms by
computing a = (DI)

+x. This orthogonaliza-
tion step ensures that all selected atoms are
linearly independent [5].

• Finally, the new residual is computed by r =
x−DIa, which is orthogonal to all previously
selected atoms.

Here, I denotes a set containing indices of selected
atoms, DI are the corresponding columns of D and
(DI)

+ represents the pseudoinverse of DI .
The Batch-OMP algorithm [5], summarized in

algorithm 1, accelerates the OMP algorithm for
larger patch sizes. It pre-computes the Gram matrix
G = DTD and the initial projection p0 = DTx in
order to require only the projection of the residual
on the dictionary instead of explicitly computing the
residual. In addition to that we replace the compu-
tation of the pseudoinverse in the orthogonalization
step, which is done in OMP by a singular value
decomposition, with a progressive Cholesky update
performed in lines 5 - 8 of algorithm 1 by means of
forward substitution. The two subscripts at the Gram
matrix in line 6 indicate that entries of the Gram
matrix in rows corresponding to previously chosen
atoms and in the column corresponding to the latest
chosen atom are considered. The orthogonalization
and residual update step in the OMP algorithm can
be written as

r = x−DI(D
T
I DI)

−1DT
I x . (2)

Due to orthogonalization, the matrix (DT
I DI)

is symmetric positive definite, which allows the
Cholesky decomposition. In each iteration, the tri-
angular matrix L is extended by another row.

18

Algorithm 1 a = Batch-OMP
(
p0 = DTx, ε0 = xTx, G = DTD

)
1 Init: Set I = ∅, L1 = [1] , a = 0, δ0 = 0, p = p0, i = 1
2 while εi−1 > ε do
3 k̂ = argmax

k
|p|

4 Ii = Ii−1 ∪ k̂
5 if i > 1 then
6 w = Solve: Li−1w = GIi−1,k̂

7 where Li =

[
Li−1 0

wT
√

1−wTw

]
8 end if
9 aIi

= Solve: Li (Li)
T aIi

= p0
Ii

10 β = GIi
aIi

11 p = p0 − β
12 δi = aT

Ii
βIi

13 εi = εi−1 − δi + δi−1

14 i = i+ 1
15 end while

The non-zero element coefficient vector aIi
is

computed in line 9 by means of a forward- and
backward substitution. In line 11 we update the
projection

p = DT r = p0 −GI (DI)
+ x . (3)

When an error-constrained sparse approximation
problem is to be solved, the residual is required to
check the termination criterion. The `2 norm of the
residual εi is computed in line 13.

III. GPU IMPLEMENTATION

A first approach to port Batch-OMP to CUDA
[20] was to perform sparse coding of one patch in
a single thread block as a monolithic kernel. Data
is held on-chip in registers and shared memory, but
the working set is too large to allow for many such
blocks to be active concurrently on a given mul-
tiprocessor. Furthermore, the degree of parallelism
changes strongly during the computation, keeping
most threads idle for a large portion of the kernel
execution. The results shown in table I confirm the
results of [16] that this approach is inferior.

A better solution computes the sparse representa-
tion of as many patches as possible concurrently,
allowing for at least as many CUDA threads as
patches throughout the whole algorithm. Conse-
quently, scalars in algorithm 1 become vectors, and

vectors become columns of matrices. However, we
still keep the symbols from the algorithm descrip-
tion.

As input, the dictionary D, the Gram matrix G
and a two-dimensional array containing all patches
x are taken. Instead of computing each of them
separately, all p0s can be computed by a matrix-
matrix multiplication of the matrix containing all x
(or its transpose, depending on storage scheme) with
DT using a CUBLAS call. Another kernel computes
a vector containing all initial errors e0.

To find the next atom from the dictionary and
the optimal coefficients for the respective set, four
kernel calls are required each time:

find next atom: As it is required only for this
task, all values of p = p0− β are computed on the
fly, which requires to have β initialized as zero. One
thread is used for each patch. This task corresponds
to lines 3, 4, and 11 of the algorithm.

substitutions: All operations involving L, cor-
responding to lines 5 to 9, are performed by a single
kernel. Values from the Gram matrix are fetched
from the texture unit, which performed best also on
the Fermi architecture. All temporaries during the
substitution are held in shared memory. It should
also be mentioned that the forward substitution
Liti = p0

Ii
in line 9 needs only to compute a single

additional element to ti−1. Again, one thread is used

19

per patch.
projection: Line 10 of the algorithm corre-

sponds to a matrix-sparse-vector product for each
patch. In contrast to the other kernels, two com-
pletely different strategies are used on CUDA com-
pute capability 1.3 and 2.

For 1.3, blocks of 16×16 are used to compute β
for 16 patches. First, coefficients and indices are
copied to shared memory, with the x-dimension
determining the patch. Then threads synchronize,
and now the x-dimension determines the elements
of β and the y-dimension the patch. The computed
elements are stored in shared memory, and only
written to device memory after synchronizing again
and associating the x-dimension with patches again.
As temporary data is stored with an appropriate
padding, it is possible to load and store it column-
as well as row-wise without bank conflicts in shared
memory. The flipping of the orientation further
ensures that global and texture memory are accessed
contiguously. The code is further unrolled so that
four elements of β are computed by a thread at a
time.

For the Fermi architecture, which introduces a
configurable 16 KiB or 48 KiB L1 and 768 KiB
unified L2 cache, the kernel simplifies drastically.
All data is fetched from device memory completely
relying on the caches. Some blocking is performed
by having each thread computing eight elements at
a time. The y-dimension of the grid can be used to
compute different elements of β concurrently.

error update: Computation of the new error
corresponds to lines 12 and 13 of the algorithms.
The scattered accesses to β are best treated by
mapping the storage to texture memory, but for
i being small (typically up to two or three) it is
faster to recompute the respective elements of β, as
accesses to G have a much better cache reuse.

A drawback of this implementation strategy is
that for each patch the same number of atoms needs
to be chosen. Approaches that allow to continue
only with patches that could not yet be represented
good enough without drastically losing performance
are still being explored.

IV. RESULTS

We measured the performance of our Batch-OMP
implementation on an NVIDIA GTX480 GPU and

an NVIDIA GTX295 dual-GPU. The former pro-
vides 15 multiprocessors (MP) of CUDA compute
capability 2.0 that access 1.5 GiB of main memory
with a theoretical peak bandwidth of 177.4 GB/s.
The latter provides two GPUs, each consisting of
30 MPs of compute capability 1.3, each having
access to 896 MiB of device memory with a peak
bandwidth of 111.9 GB/s each. The results for the
GTX295 have been measured on a single GPU and
doubled where appropriate.

We are using our implementation [10] for the
Cell Broadband Engine Architecture (CBEA) as
comparison. The CBEA results are measured using
very precise counters on a single compute core,
a so-called synergistic processing element (SPE),
and extrapolated to a whole two-socket system. As
no double precision is required, the older Cell/B.E.
and the newer PowerXCell8i processors perform
equally fast for this kernel. The results are therefore
equally valid for IBM’s QS20, QS21 and QS22
blade servers, whose two CPUs have the same clock
frequency of 3.2 GHz and provide 8 SPEs each.

We also compare against an implementation in
C99 which has been optimized for performance,
but without usage of libraries or compiler intrinsics.
Test are run on a Fujitsu Celsius R570 worksta-
tion containing two Intel Xeon X5670 processors
(Westmere core). Each processor has six cores at a
base frequency of 2.93 GHz, but this can increase to
3.33 GHz for a single core using Intel’s TurboBoost
technology. Each core provides a second virtual core
using simultaneous multithreading (SMT).

System performance

Figure 1 shows how many patches can be pro-
cessed on a whole system depending on the number
of atoms to be chosen. Quite surprisingly, both
GPUs and the Cell blades are close with a small
advantage for the GPUs when only few atoms
should be used and for the CBEA for three or
more. The x86-64 system is slower especially for
few atoms to be chosen due to the scalar matrix
multiplications in C99. This is even more surprising
when considering that all data for processing a
single patch fits into a Xeons core’s L2 caches or
an SPE’s local storage, but that the graphics card
must largely operate on device memory due to the
high degree of parallelism.

20

21

22

23

least programming effort to get acceptable perfor-
mance, and could perhaps keep up after further opti-
mization. To accumulate that much compute power
in a single system, however, expensive hardware is
required – both Xeon processors alone are currently
worth about five GTX480.

V. FUTURE WORK

We compared the performance of the Batch-OMP
algorithm on different hardware architectures. We
find that the performance achievable on CBEA,
GPGPU and standard CPUs is interestingly similar
for this algorithm. We attribute this to the versatile
requirements of the various parts of Batch-OMP
which cancel out the specifics of each platform.

The next steps are tuning and analysis of the
implementation for standard CPUs, and the devel-
opment of a strategy to compute a different number
of atoms on a GPU efficiently.

REFERENCES

[1] J. Starck, M. Elad, and D. Donoho, “Image decomposition
via the combination of sparse representations and a variational
approach,” IEEE transactions on image processing, vol. 14,
no. 10, pp. 1570–1582, 2005.

[2] J. Tropp, “Topics in Sparse Approximation,” Ph.D. dissertation,
The University of Texas at Austin, 2004.

[3] M. Aharon, M. Elad, and A. Bruckstein, “On the uniqueness
of overcomplete dictionaries, and a practical way to retrieve
them,” Linear Algebra and Its Applications, vol. 416, no. 1,
pp. 48–67, 2006.

[4] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy
approximations,” Constructive approximation, vol. 13, no. 1,
pp. 57–98, 1997.

[5] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient Im-
plementation of the K-SVD Algorithm and the Batch-OMP
Method,” Department of Computer Science, Technion, Israel,
Tech. Rep., 2008.

[6] A. Borsdorf, R. Raupach, and J. Hornegger, “Wavelet based
Noise Reduction by Identification of Correlation,” in Pattern
Recognition (DAGM 2006), Lecture Notes in Computer Science,
K. Franke, K. Müller, B. Nickolay, and R. Schäfer, Eds., vol.
4174. Berlin: Springer, 2006, pp. 21–30.

[7] ——, “Separate CT-Reconstruction for 3D Wavelet Based
Noise Reduction Using Correlation Analysis,” in IEEE
NSS/MIC Conference Record, B. Yu, Ed., 2007, pp. 2633–2638.

[8] M. Mayer, A. Borsdorf, H. Köstler, J. Hornegger, and U. Rüde,
“Nonlinear Diffusion vs. Wavelet Based Noise Reduction in
CT Using Correlation Analysis,” in Vision, Modeling, and
Visualization 2007, H. Lensch, B. Rosenhahn, H.-P. Seidel,
P. Slusallek, and J. Weickert, Eds., 2007, pp. 223–232.

[9] D. Bartuschat, A. Borsdorf, H. Köstler, R. Rubinstein, and
M. Stürmer, “A parallel K-SVD implementation for CT im-
age denoising,” Department of Computer Science 10 (Sys-
tem Simulation), Friedrich-Alexander-University of Erlangen-
Nuremberg, Germany, Tech. Rep., 2009.

[10] D. Bartuschat, M. Stürmer, and H. Köstler, “An Orthog-
onal Matching Pursuit Algorithm for Image Denoising on
the Cell Broadband Engine,” in Parallel Processing and Ap-
plied Mathematics, ser. Lecture Notes in Computer Science,
R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Was-
niewski, Eds. Springer Berlin / Heidelberg, 2010, vol. 6067,
pp. 557–566.

[11] A. Borghi, J. Darbon, S. Peyronnet, T. Chan, and S. Osher, “A
Compressive Sensing Algorithm for Many-Core Architectures,”
Advances in Visual Computing, pp. 678–686, 2010.

[12] ——, “A simple compressive sensing algorithm for parallel
many-core architectures,” CAM Report, pp. 08–64, 2008.

[13] S. Lee and S. Wright, “Implementing algorithms for signal and
image reconstruction on graphical processing units,” Computer
Sciences Department, University of Wisconsin-Madison, Tech.
Rep., 2008.

[14] M. Andrecut, “Fast GPU Implementation of Sparse Sig-
nal Recovery from Random Projections,” Arxiv preprint
arXiv:0809.1833, 2008.

[15] A. Septimus and R. Steinberg, “Compressive sampling hard-
ware reconstruction,” in Circuits and Systems (ISCAS), Pro-
ceedings of 2010 IEEE International Symposium on. IEEE,
2010, pp. 3316–3319.

[16] T. R. Braun, “An evaluation of GPU acceleration for sparse re-
construction,” in Signal Processing, Sensor Fusion, and Target
Recognition XIX, I. Kadar, Ed., vol. 7697, no. 15. Proc. of
SPIE, 2010, pp. 1–10.

[17] M. Elad and M. Aharon, “Image denoising via sparse and re-
dundant representations over learned dictionaries,” IEEE Trans.
Image Process, vol. 15, no. 12, pp. 3736–3745, 2006.

[18] D. L. Donoho and M. Elad, “Optimally sparse representations
in general (non-orthogonal) dictionaries via l1 minimization,”
Proc. Nat. Acad. Sci., vol. 100, pp. 2197–2202, 2002.

[19] J. Tropp and A. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” Information The-
ory, IEEE Transactions on, vol. 53, no. 12, pp. 4655–4666,
2007.

[20] “Compute Unified Device Architecture, C Programming Guide,
version 3.2,” NVIDIA Corporation, 2010.

24

Impact of Data Sharing on CMP design: A study based on Analytical Modeling

Anil Krishna, Ahmad Samih, Yan Solihin

Dept. of Electrical and Computer Engineering
North Carolina State University

{akrishn2, aasamih, solihin}@ece.ncsu.edu

Abstract
In this work we study the effect data and instruction sharing

on cache miss rates. We then extend an analytical system-level
throughput model to take multi-threaded data and instruction shar-
ing into account. We use the model to provide insights into the inter-
action of thread count, cache size, off-chip bandwidth, and, sharing,
on system throughput. Using specific examples we teach how the
model can reveal insights about the impact of sharing on questions
such as - 1) how should cores in a CMP be sized (fewer larger cores
vs. more smaller cores); 2) how many and what configuration CMP
chips should be used to build an SMP system given a total thread-
count requirement; 3) how do system-level core, cache and band-
width provisioning decisions change between multi-programmed
workloads (as in a cloud computing context) and multi-threaded
workloads (as in a commercial or scientific server). Our model re-
veals that the optimal number and size of cores in a CMP, and the
optimal number of CMPs in an SMP, can be significantly different
depending of the amount of sharing in the target workload.

Keywords: Chip multiprocessor, Analytical modeling, Data
Sharing, Multithreading, Performance

1 Introduction
Over the past few years, Chip Multi Processor(CMP) archi-

tecture has become the dominating hardware architecture across a
spectrum of computing machinery – personal computing devices,
workstations, commercial and scientific servers, and warehouse
scale computers. The sheer complexity involved in the design and
verification of each unit in a CMP solution has necessitated sig-
nificant design reuse. The differentiation between computational
machinery is orchestrated by careful system-level design choices,
while keeping the basic core-level designs relatively unchanged.

Chip and system-level architects make high level design trade-
offs during the concept phase and the high level design phase of a
project. Some of the design parameters considered by system ar-
chitects are the number and type of cores used in a CMP, the cache
sizes and organization, memory bandwidth, and, on-chip and off-
chip interconnect design. Each individual unit on a chip (cores,
caches, interconnect, memory controller) is typically designed with
extensive simulation driven methodologies. System level design de-
cisions, however, are tackled differently. These are driven more by
the target market requirements (performance, energy and cost) and
technology limits. Detailed system-level simulations are often not
feasible due to simulator complexity, large design spaces, and inor-
dinate simulation turnaround times. This has necessitated the use of
less precise, yet more insightful and flexible approaches to system
design involving queuing model simulators, spreadsheet analysis,
and, analytical modeling.

Analytical modeling of chips and multi-chip systems is a partic-
ularly powerful, flexible and insightful approach to design space
pruning and performance characterization. There is, however, a
need to develop and teach newer ways of using analytical perfor-
mance models to draw system-level design insights.

Desktop and personal computing applications, which used to be
single-threaded, are being rewritten as multi-threaded applications
to take advantage of the multiple cores on-chip. CMPs have also en-
abled a trend in which multi-threaded applications are now moving
from the realm of small and medium-size Symmetric Multi Proces-
sor (SMP) systems to a single chip. However, though it is tempting
to directly transplant, say, a 64-thread medium scale SMP applica-
tion to a single CMP, the performance impact of such a move is not
clear.

CMPs are fundamentally limited by on-chip cache and memory
bandwidth compared to an SMP. In fact, as the number of on-chip
processing cores grow, they take up corresponding die area from
what could have been on-chip cache. Further, more cores without a
corresponding increase in the die area place greater pressure on the
available on-chip cache resources, leading to greater pressure on the
memory bandwidth. This can hurt performance. Therefore, while
the achievable performance scalability in SMPs is limited primarily
by the inherent scalability limitations in the application itself, with
CMPs, another first order concern comes into play – the hardware
resources available to each thread with thread scaling.

Multi-threaded applications may be able to withstand this
cache and memory bandwidth pressure better compared to multi-
programmed workload mixes depending on the amount of instruc-
tion and data sharing 1 they exhibit. The prefetching effect of shar-
ing (where one thread fetches data and other threads can use it) can
make the on-chip cache behave as an effectively larger cache. This,
in turn, may enable additional cores to be added to the chip.

There is a growing need to understand and incorporate the effects
of multi-threaded application data sharing into analytical models of
chip and multi-chip performance. Developing insights from chip
and multi-chip analytical models is an increasingly relevant skill
for system-level design.

Most prior work in analytical modeling does not focus on the
impact of multi-threaded applications on system-level performance.
Prior work has attempted to explore the design considerations in
scaling up uni-processor chips into CMPs, primarily assuming mul-
tiprogrammed workloads. However, the reverse trend enabled by
CMPs, the consolidation of small and medium-scale multi-threaded
applications on one or a few CMP chips, has not been explicitly
studied.

In this work we first study and classify the impact of data sharing
on miss rates for PARSEC 2.1 and NAS parallel benchmarks. We

1Throughout the rest of the paper the phrase data sharing will be used to
refer to the sharing of both instructions and data

25

then extend an existing system-level analytical performance model,
with specific focus on multi-threaded applications; we incorporate
the impact of data sharing into the analytical model. We illustrate
specific examples of how to use the analytical model to draw design
insights.

We find that when the system is off-chip bandwidth limited it
is possible to increase the core size (and, by extension, core capa-
bilities) to get better single-threaded throughput without any signif-
icant loss in overall chip throughput. We discover that Amdahl’s
Law, which dictates that multi-threaded application performance is
constrained by the serial section of code, is significantly less impor-
tant in on-chip core vs. cache rationing decision when the system
is bandwidth constrained. That is, though an application’s paral-
lelization efficiency continues to affect the system throughput, in
a bandwidth constrained scenario it does not affect the decision of
how to divide up die area between cores and cache significantly. We
find that when designing a system with a target number of threads,
there is an ideal SMP size in a bandwidth constrained scenario. In-
stead of cramming all the cores on to a single CMP, it may be better,
for system throughput, to spread the cores across multiple intercon-
nected CMPs. After a certain amount of SMP scaling, however,
there is a distinct knee in the system throughput curve, and any fur-
ther scaling only results in negligible performance improvement.
This may make a case for building SMPs out of CMPs with fewer
cores than technologically possible (or, alternatively, using CMPs
in which only a subset of the cores are defect-free).

2 Related Work

The popularity of CMPs has encouraged significant research re-
cently in the area of high-level design and resource sizings.

Huh et. al [8] evaluate CMP designs based on two types of pro-
cessor cores (one in-order and the other about 3x larger, out-of-order
core). They predict that the lack of bandwidth scaling hurts CMP
scaling, and find that the larger processor core proves to be more
area efficient in a bandwidth-constrained scenario. This work is
similar to ours in the type of issues addressed. The main differ-
ence of our work is that we focus on multi-threaded workloads and
try to understand the impact of realistic data sharing in CMP and
SMP design, where as this prior work does not model data sharing.
A second difference is that we develop and use an analytical model,
which may be easier to use than a simulation based study, especially
for a large number of on-chip cores.

Alameldeen et al. [1] develop an analytical model, similar in
spirit to the model we develop, to study the interplay between cores
and caches. They incorporate sharing in their throughput model;
however, they only explore a relatively simple sharing pattern (1.3
sharers for any number of threads greater than 1). The focus of
their work is to understand the role of cache and link compression
in CMP design decisions. Further, though they vary the off-chip
bandwidth between 10 GB/s and 10 TB/s, their queuing model is
not integrated into their throughput model to mimic a bandwidth-
constrained system.

Wentzlaff et al. [17] develop a system-level IPC model, and
explore a large space of cache hierarchies for multicores in the
cloud computing context. They use SPEC Int 2000 rate applications
which have no data sharing. They find that there is a greater leeway
in optimizing L1 sizes, but using an optimally-sized L2 is more im-
portant. We use their approach to develop our baseline throughput
model, and extend it for multi-threaded workloads while incorpo-
rating data sharing, parallelizing efficiency and SMP scaling.

Zhao et al. [19] develop a constraint-aware analysis methodol-
ogy that uses chip area and bandwidth as the two constraints. They
explore CMP cache design options, pruning the design space for
future Large-scale CMPs (LCMPs). They use an in-house simula-
tion framework, commercial workloads, and restrict the analysis to
a fixed number of processor cores per chip (16 or 32). Our work
relaxes the core count stipulation and develops an analytical frame-
work to explore additional dimensions in the CMP design space.

Oh et al. [14] explore the cache design space for CMPs with up
to 70 processor cores. They explore different cache hierarchies -
they consider private, shared (both uniform and non-uniform cache
access) and hybrid caches at L2 and L3 levels.

Wu et al. [18] use a simulator to model 1 to 256 processor cores
(of a fixed design) in a tiled CMP configuration, running parallel
benchmarks. They evaluate the on-chip network contention with
cache scaling, and off-chip bandwidth requirements as the number
of cores and cache size changes. Their primary goal is to identify
whether on-chip communication or off-chip bandwidth will be the
main bottleneck to LCMP scaling. They find the off-chip bandwidth
to be the bottleneck. They do not explore different core sizes, or the
effect of reducing CMP scaling at the expense of increasing SMP
scaling.

Rogers et al. [16] use a simple analytical model to highlight the
growth in off-chip traffic due to exponential CMP scaling, and then
propose techniques (such as 3D stacking, DRAM caches, link com-
pression etc.) to overcome the bandwidth wall for several technol-
ogy generations. In our work we develop an analytical model to
design a CMP or an SMP system in the presence of the bandwidth
wall, rather than to prove the severity of the bandwidth wall.

3 Impact of Data Sharing on Miss Rate
Motivation In multi-threaded applications data sharing can help

improve cache miss rates. One thread brings the cache block on-
chip and one or more threads can then use the cache block with-
out suffering misses. However, as the number of threads grows the
competition for the on-chip cache space increases, especially for ap-
plications with large working sets. In such a scenario, cache blocks
that could have been shared across threads might not stay in the
cache long enough to be effective, and the benefit of data sharing
declines.

The interaction between the number of threads, the amount of
algorithmic sharing potential in an application, and the applica-
tion’s working set size is complex. In order to develop insights
into the impact of data sharing on on-chip cache miss rates, in an
area-constrained CMP, we use simulation. We then incorporate the
findings into an analytical model for chip IPC that we develop in
Section 4 and draw insights in Section 6.

Simulated Machine We simulate a CMP under the Virtutech
Simics3.1 [12] simulation framework. We assume that each core in
the CMP is the same size as 1MB of L2 cache (we elaborate on this
assumption in Section 5). We assume that the size of the CMP is
the equivalent of 33 Cache Effective Areas (CEAs); a CEA is the
size of 1MB of cache. Therefore, the CMP can contain 1 core with
32MB of L2 cache, or, 32 cores and 1 MB of L2 cache, or, any
intermediate combination. Each processor core is in-order, single-
threaded, and has 32KB each of L1 instruction and data caches. We
simulate a shared L2 in order to maximize the potential impact of
sharing on the L2 cache miss rates.

We use a total of 20 unique multi-threaded applications from the
PARSEC 2.1 [5] and the NAS [4] benchmark suites. We run each
application for a billion instructions in the region of interest (i.e.

26

the parallel region) in order to warm up the on chip caches. We then
run the application to the end of the region of interest, or, 10 billion
instruction, whichever happens first.

We run each application with 1, 2, 4, 8, 16 and 32 threads (and a
correspondingly increasing number of cores and decreasing amount
of L2 cache). For each application and thread-count, we measure
the L2 miss rates in two ways. In the first case, we simulate an
L2 cache where data sharing is allowed as is normal. In a second
case, we simulate an L2 cache where data and instruction blocks are
treated as being private to the thread that brings the block on-chip.
This mimics the effect of running the application without any inter-
thread sharing. We then study the relative difference between the
miss-rates. We believe that this difference yields an accurate indi-
cation of how helpful sharing is in reducing miss rates for different
workloads under different thread-scaling scenarios. Prior work has
often studied the effect of sharing indirectly, using the sharer count
for a cache block. We found that sharer count is an unreliable metric
since it does not capture how many misses each shared line saved.

0
1
2
3
4
5
6
7
8
9

1t 2t 4t 8t 16t 32t

Sh
ar

in
g-

in
du

ce
d

m
is

s
ra

te

re
du

ct
io

n
fa

ct
or

Simics simulation based
Canonical - Realistic 1

0

0.5

1

1.5

2

2.5

3

1t 2t 4t 8t 16t 32t

Simics simulation based
Canonical - Realistic 2

(a) (b)

Figure 1. How data sharing affects miss rates.

Result Figure 1 shows how sharing impacts miss-rates. The fig-
ure plots relative improvement in miss-rates attributable to sharing
(on the y-axis) as the number of threads increases (on the x-axis).
The y-axis is normalized to the single-threaded case, which, under-
standably, involves no sharing, and sees no change in the miss-rate
due to sharing. The two sub-plots show the two fundamental be-
haviors we observed across the 20 benchmarks we studied. Some
applications continue to see sharing improve the miss-rates as the
number of threads the application is spread across increases. Fig-
ure 1(a) plots the average of the following 10 applications which
fall under this first category – blackscholes, bodytrack, facesim, flu-
idanimate, freqmine, vips, x264, dedup, cg and is. Some applica-
tions continue to see sharing improve the miss-rates up to a point,
beyond which the beneficial impact of sharing on miss-rates starts
to decline. As the number of threads grow inter-thread cache inter-
ference makes potential sharing opportunities unrealizable in cache
in these workloads. Figure 1(b) plots the average of the following
10 applications which fall under this second category – ferret, swap-
tions, canneal, streamcluster, bt, ep, ft, lu, mg and sp. We develop
two simple canonical curves to fit the observed sharing-impact - Re-
alistic1 and Realistic2. These are also shown in Figure 1. We use
these canonical curves in Section 6, where we study CMP designs
using an analytical model; these curves are assumed to represent
realistic impact of sharing on miss rates. Further, in order to book-
end the impact of sharing we study two additional canonical curves
NoSharing and PerfectDoPipe. Here is a brief description of the
canonical curves we use in this work to capture the impact of shar-
ing on cache miss rates.

• NoSharing: There is no data sharing between threads. This
mimics multi-program workloads, and multi-threaded work-
loads with minimal sharing.

• PerfectDoPipe: The amount of data sharing, and therefore,
the effective cache size, grows linearly with the number of
threads. That is, only the first thread brings data on-chip and
all remaining threads can use that data without suffering any
misses. This helps bound multi-threaded performance.

• Realistic1: Sharing improves miss-rate (by reducing it) by 7%
with every extra thread; this is represented by the canonical
curve shown in Figure 1(a).

• Realistic2: Sharing improves miss-rate by a fixed amount,
equal to 11% of the single-threaded miss-rate for each ex-
tra thread for half the maximum number of threads; beyond
that, sharing worsens (increases) the miss-rate with an equal-
magnitude negative slope. This is represented by the canonical
curve as shown in Figure 1(b).

4 Derivation of the Analytical IPC Model
IPC model In this section we develop the analytical model for

CMP and SMP system throughput. Our model derivation is based
on the approach developed by Wentzlaff et al. [17]. We calculate
the Cycles Per Instruction (CPI) for each individual core and then
use that to calculate the system-wide throughput. We assume for the
purposes of this study that a CMP system is composed of homoge-
neous cores, and an SMP system is composed of interconnected
homogeneous CMPs. Further, we assume that a core is single-
threaded; the number of cores corresponds to the number of threads
a multi-threaded application can be spread across. Note that if a
core under consideration for a design is multi-threaded, then our
model can still be used by proportionally dividing the core area by
the number of threads per core. Given the per-core CPI (CPIcore),
and given the number of cores in the system (n), the system-wide
IPC (IPCsystem) is given by Equation 1.

IPCsystem =
n

CPIcore
(1)

Equation 1 is simplistic; it assumes that the performance of a multi-
threaded application grows linearly with thread scaling. It has been
observed [2] that for multi-threaded workloads realistic scaling is
limited by the fraction of the serial section(fs) in the application
code. Taking this into account the system-wide IPC is given by
Equation 2.

IPCsystem =
n

1 + fs · (n− 1)
· 1

CPIcore
(2)

Components of CPI CPIcore in Equation 2 is the number of
processor cycles it takes to execute an average instruction for a sin-
gle core. It can be calculated as a summation of the average number
of cycles spent by an instruction in three phases - before reaching
the L2, in the L2, and, beyond the L2. This is shown in Equation 3.

CPI = CPIpreL2 + CPIinL2 + CPIbeyondL2 (3)

CPIpreL2 includes the time an instruction spends in the processor
core and its reasonably-sized L1s. We assume that CPIpreL2 can
be obtained by system architects, for the core designs under con-
sideration, and the applications under consideration. These can be
obtained via detailed simulations or hardware measurements.

27

The CPIinL2 term takes into account the cycles an average in-
struction spends in the L2. Note that the model can be extended to
L3 and L4 cache levels in a similar fashion. For the purposes of the
high level insights we draw in this paper, we find that a two level
cache hierarchy suffices.

The CPIbeyondL2 depends on application characteristics (the
spatial and temporal locality of the application in the L2) as well as
microarchitecture characteristics (the per-core L2 size and geome-
try). We assume that the cache space on the CMP chip is divided
evenly across the cores as private L2 caches. We assume that for
a given application and a given core design, the number of L2 ac-
cesses per instruction(apiL2) is a metric that is available to a system
architect from simulation or measurement. Every access to the L2
spends the time to look-up the L2, regardless of whether it is a hit
or a miss. This latency is dependent on the L2 cache size. We leave
the latency term as function of the cache size. When using the for-
mula we plug in latency values calculated by CACTI6.5 [7] for the
appropriate cache size.

For both the CPIinL2 and CPIbeyondL2 (which refers to the
cycles spent by an average instruction in the memory subsystem
lower than the L2), we first need the per-core L2 cache size.

Per-core L2 Size We assume that the CMP is composed of
CEAT units of area, where each unit of area is the equivalent of
1MB of cache. We use 1MB only because it is a reasonably small
area in process technologies of today, and gives us a fine grain unit
of area to work with. We refer to these grains of chip area as Cache
Equivalent Areas(CEAs). We assume that system architects start
with some rough estimate of the total chip area, based on process
yield estimates, chip power budget etc. We assume that the CEAT

CEAs of area corresponds to the total chip area to be devoted to
cores and L2 cache (L1 cache is included in core area). We assume
that each core is CEAp CEAs in size (fractional values allowed).
Given n cores in a chip, the amount of cache per core (L2core) can
be calculated as shown by Equation 4.

L2core =
CEAT − CEAp · n

n
(4)

The L2core is a unitless quantity, and represents the number of
CEAs (each CEA is equal to the size of a 1MB cache array) that
make up the per-core L2 cache size.

Returning to the second term in Equation 3, we can now repre-
sent CPIinL2 as shown in Equation 5, where, thit() represents the
function that takes in the cache size and returns the hit latency.

CPIinL2 = apiL2 · thit(L2core · 1MB) (5)

The third term in Equation 3 is CPIbeyondL2, and is perhaps
the most interesting as memory system bandwidth is likely to be-
come a constrained resource in the future. The number of cycles an
average instruction spends beyond the L2 depends, firstly, on how
often it misses the L2, and, secondly, on how long does it take to
return after a miss. How often the average instruction misses the
L2 depends on how often the average instruction accesses the L2
(a parameter we have seen before, apiL2) and the application’s L2
miss-rate. How long the average instruction takes beyond a miss is
the sum of the time an instruction spends queued up trying to get to
memory(TQ), and the memory access penalty(TM). We put these
together into Equation 6, where fmiss() represents a function which
takes the per-core L2 size and appropriate workload characteristics
into consideration and generates the cache miss-rate.

CPIbeyondL2 = apiL2·fmiss(workload, L2core·1MB)·(TM+TQ)
(6)

L2 Miss Rate and Data Sharing We use the well-known Power
Law of cache miss-rates [6], and, the canonical sharing-impact
curves from Section 3, to replace fmiss() in Equation 6 with. We
assume that α, the workload’s sensitivity to cache size changes, and
m1MB , the miss-rate of the application with a 1MB L2 cache, are
both easily obtainable quantities from measurement or simulation.
Further, we assume that E(n) represents the canonical sharing-
impact curves for a given workload as a function of n, the num-
ber of threads the workload is spread across. Equation 7 shows the
updated equation.

CPIbeyondL2 = apiL2 ·m1MB ·L2core
−α ·E(n)·(TM +TQ) (7)

Misses Per Instruction It is useful to recognize that without
the (TM + TQ) term the right side of Equation 7 represents the L2
misses per instruction. Equation 8 extracts this metric (MPIL2)
explicitly.

MPIL2 = apiL2 ·m1MB · L2core
−α · E(n) (8)

Memory Latency The memory penalty, TM , in Equation 7 is,
typically, a well understood constant. Coherence protocol over-
heads and average on-chip network delays (often, tens of processor
clocks) may be added to the pure memory penalty (often, hundreds
of processor clocks) to get TM .

Memory Queuing Delay To calculate TQ, we assume a stan-
dard M/D/1 queuing model to represent the memory interconnect.
The mean service rate, µ, is a constant depending on the rate at
which the interconnect can transfer a request. We assume that the
off-chip bandwidth in one direction in B GB/s and that the proces-
sor frequency is f GHz. Thus the service rate in bytes per cycle is
B/f overall, and 1/n of that per core.

We model the arrival of memory requests as a Poisson process,
with a mean arrival rate of λ. The mean arrival rate in bytes per
cycle depends on the request rate (in request per cycle) and the re-
quest size (in bytes per request). The request size is simply the L2
block size (lL2 bytes). The request rate in requests per cycle, can
be calculated from the L2 misses per instruction (MPIL2) and the
cycles per instruction (CPIcore). Equation 9 summarizes this.

µ =
B

f · n, λ =
MPIL2

CPIcore
(9)

For an M/D/1 queue, the queuing delay(TQ), is given by Equa-
tion 10, where ρ refers to λ

µ
.

TQ =
ρ

2µ(1− ρ)
(10)

Substituting from Equation 9 into Equation 10, and simplifying it,
we get to Equation 11.

TQ =
MPIL2 · f2 · n2

2 ·B2 · CPIcore − 2 ·B · f · n ·MPIL2
(11)

Final CPI Model Now we have all the components of Equa-
tion 3. Equation 12 puts it all together.

CPIcore = CPIpreL2 + (apiL2 · thit(L2core · 1MB)) +

MPIL2 · (TM +
MPIL2 · f2 · n2

2 ·B2 · CPIcore − 2 ·B · f · n ·MPIL2
) (12)

We leave the L2core and MPIL2 terms unexpanded. We can see
that the CPIcore term appears on both sides of equation. In par-
ticular, the TQ term is inversely proportional to CPIcore. This is

28

expected and insightful. It indicates that as the off-chip queuing de-
lay (TQ) increases, the instruction processing rate slows down and
CPIcore increases. However, an increasing CPIcore slows down
the rate at which requests are made to the memory subsystem; this
helps the queued up requests drain and improves TQ.

We ignore the on-chip network queuing, which, being not pin-
bound, tends to scale much better than off-chip bandwidth.

It is also clear from studying Equation 12 that when
workload-specific parameters (α, m1MB , apiL2, E(n)), the
microarchitecture-and-workload-specific parameter (CPIpreL2),
the technology process specific parameter (thit()) and design spe-
cific variables (CEAT , n, CEAp) are all set, we end up with a
quadratic equation in CPIcore. This can be solved by using the
standard quadratic equation solution, taking care that the + form of
the solution is used [17].

5 Assumptions
The model developed in Section 4 has many parameters. De-

pending on the process technology, area budget, workload charac-
teristics, core microarchitecture, and power or energy constraints,
several parameters in the model can be fixed, allowing the model
to explore a relevant and focused solution space. In this section we
describe the specific parameter assumptions that we make for the
analysis in Section 6.

We assume a 22nm process technology. We assume that the chip
size devoted to cores and lower level cache is around 307mm2. The
actual chip die area is larger, by about 25%, to account for on-chip
interconnect, memory controllers and other pervasive logic. Using
CACTI6.5 [7] we calculate 2 that 1MB of SRAM cache occupies
about 1.2mm2 (we assume 8-way set associativity), giving us about
256 CEAs (a CEA is equal to 1MB of cache).

For the baseline core microarchitecture, we use area estimates
from IBM’s latest embedded processor core, PPC476FP [10] (out-
of-order, multi-issue superscalar, single-threaded core, with Float-
ing Point support), ARM’s Cortex A9 core [3] (out-of-order, multi-
issue superscalar, with Floating Point support) and MIPS 1004K
core [13] (in-order, dual-core design with dual-threading per core,
with floating point support). We find that at 1.2 to 1.5mm2 (in
22nm technology) there are several baseline core designs which
can be used as a building block for CMP or an SMP. This baseline
core choice allows us to approximate CEAp, the number of CEAs
needed per core, to 1. We will relax this restriction and approximate
the impact of going to larger and smaller cores in Section 6.3.

For the workload characteristics we assume a memory intensive
workload. We assume an apiL2, the probability of an average in-
struction accessing the L2, of 0.033. This corresponds to the apiL2

we measured for canneal, facesim, swaptions and x264 benchmarks.
Most other workloads we studied have a much smaller rate to access
to the L2. However, we intentionally choose a memory intensive
workload to illustrate the impact of sharing, while the memory sys-
tem is stressed. We assume a m1MB , the miss-rate with a 1MB
L2 cache, of 0.6. This corresponds to highly memory intensive,
data streaming workloads where there is a large working set and
little reuse. We made the decision to go with such an example to
more clearly illustrate high-level insights in Section 6, effects may
be more subtle if less memory intensive parameters are chosen. We
assume the standard

√
2 miss-rate sensitivity [6] for the power law

(α=0.5). We set CPIpreL2 to 2 (varied in Section 6.3).

2CACTI6.5 provides latency and area estimates only down to 32nm pro-
cess technology; we measure area and latency for different cache sizes for
90nm, 65nm, 45nm and 32nm technologies and extrapolate these to 22nm.

According to the projections from ITRS [11] chip pin-counts
are growing at a rate of 5% per year. For a cost-effective bus sig-
naling solution, the rate of growth of bus frequency is about 10%.
This falls significantly short of the 59% per year growth in transistor
density which is expected to continue for at least another decade. In
order to highlight this bandwidth wall, we assume that the off-chip
bandwidth is 30 GBps (15 GBps in each direction). This is sim-
ilar to the usable bandwidth available with a 128-bit dual-channel
DDR3-1066. We assume that the processor frequency is 2GHz, the
memory penalty (including coherence protocol overheads, on-chip
network delay, memory controller and memory device overhead) is
400 processor clocks, and the L2 cache line size is 128 bytes.

We assume, as a baseline, that the multi-threaded code can be
perfectly parallelized (fs, serial fraction = 0); however, we relax this
in Section 6.2 to study the impact of parallelization efficiency. We
study data sharing as suggested by the 4 canonical sharing-impact
curves identified in Section 3 – NoSharing, PerfectDoPipe, Real-
istic1 and Realistic2. We extend these curves to applications that
scale to 256 threads (compared to the 32 threads that the curves
were originally generated with). We realize that the specific bench-
marks we studied in Section 3 may not be scalable to 256 threads;
however, similar sharing patterns may still provide valuable insights
into how sharing impacts design choices.

6 Evaluation and Analysis
In this section we use the analytical throughput model from Sec-

tion 4 and the design space parameter assumptions from Section 5
to develop both design insights and provide examples of how the
model may be used.

6.1 Effect of off-chip bandwidth
Using Equation 12 with and without the TQ term (off-chip queu-

ing delay), we get the per-core CPI (CPIcore) in the bandwidth
limited (30 GBps) and the infinite bandwidth scenarios respectively.
Using Equation 2, and assuming perfect parallelism (a constraint we
relax in section 6.2), we can estimate the best-case chip-wide IPC.
We vary the number of cores, n, from 1 (almost all-cache) to a max-
imum of 255 (almost all-cores). Figure 2 contains 4 plots, one for
each of the 4 sharing patterns we study. The plots show the number
of processor cores (out of a maximum of 256) on the x-axis and the
chip IPC on the y-axis.

There are two main observations that can be drawn from
these plots. First, in a bandwidth-constrained system the optimal
core count can be significantly smaller than in a non-bandwidth-
constrained system (47 vs 220 with a Realistic1 sharing assump-
tion). This observation, by itself, is not novel; however, the model’s
agreement with prior observations [8, 18, 16] is comforting. Sec-
ond, even with reasonably good amount of sharing (Realistic1 and
Realistic2) the optimal core count does not increase as much in a
bandwidth-constrained system, compared to the NoSharing case.
With Realistic1 and Realistic2 sharing-impact, only an extra 9 and
7 cores may be added respectively, to the optimal core-count in the
NoSharing case. Similarly, the best achievable IPC can be vastly
different across different sharing behaviors; however, in a con-
strained bandwidth scenario IPC is much less sensitive to sharing
behavior.

In summary, these figures indicate that though data sharing has
the potential to allow the integration of a lot more cores on chip
compared to a workload mix with no sharing (and thus benefit from
the resultant IPC improvement), in a bandwidth constrained system
only a small fraction of this potential gain may be realized.

29

Sharing = None

0

10

20

30

40

50

60

70

1 33 65 97 129 161 193 225

Realistic Off-chip Bandwidth
Infinite Off-chip Bandwidth

Sharing = Ideal Pipelined

0

10

20

30

40

50

60

70

1 33 65 97 129 161 193 225

Sharing = Realistic1

0

10

20

30

40

50

60

70

1 33 65 97 129 161 193 225

Sharing = Realistic2

0

10

20

30

40

50

60

70

1 33 65 97 129 161 193 225

(a) (b) (c) (d)

Figure 2. Effect of off-chip bandwidth on CMP scaling. The x-axis is the number of cores and the y-axis is chip IPC

No Sharing, Infinite B/w

0

4

8

12

16

1 41 81 12
1

16
1

20
1

24
1

number of cores

No Sharing, Constr. B/w

0

4

8

12

16

1 41 81 12
1

16
1

20
1

24
1

number of cores

C
hi

p-
IP

C

p=1
p=0.995
p=0.99
p=0.95

Realistic Sharing, Constr. B/w

0

4

8

12

16

1 41 81 12
1

16
1

20
1

24
1

number of cores

Realistic Sharing, Infinite B/w

0

8

16

24

32

40

1 41 81 12
1

16
1

20
1

24
1

number of cores

(a) (b) (c) (d)

Figure 3. Core-count that maximizes chip-IPC is less sensitive to parallelization efficiency in a bandwidth-constrained system.

6.2 Effect of Amdahl’s Law

Amdahl’s Law [2], when applied to performance scaling of a
multi-threaded program, states that the serial section of code signif-
icantly affects the realizable speed-up as parallel programs scale to
a larger number of threads. We study the impact of this by vary-
ing the fraction of serial section in workloads between 0%, 0.5%,
1% and 5% in Equation 2. Figure 3 shows the chip IPC curves for
the 4 parallelization efficiencies. There are 4 plots. The first pair
of plots assumes a bandwidth-constrained scenario; the second pair
assumes an infinite bandwidth scenario. In each pair, the first plot
depicts the NoSharing scenario and the second plot depicts the Re-
alistic1 sharing pattern. The x-axis is the number of cores on-chip
(out of a maximum of 256). The y-axis plots the chip IPC.

The figure shows that data sharing improves chip IPC signif-
icantly, and parallelization efficiency affects chip IPC noticeably.
However, the main takeaway from this figure is that the peaks of
the IPC curves fall along an almost vertical line on the left two
curves. This indicates that the optimal core-count decision does
not change much with parallelization efficiency in a bandwidth-
constrained scenario. We deal with a bandwidth-constrained system
in the later sections; therefore, we assume 100% parallelization ef-
ficiency, without affecting the correctness of the decisions related to
core vs cache rationing.

A second important observation from this figure is seen from the
rightmost two plots. When there is sufficient bandwidth, the benefit
of sharing is better realized in workloads which are more efficiently
parallelized. With 95% parallel code the IPC only improves 1.30X
going from NoSharing to Realistic1. However, with 99%, 99.5%
and 100% parallel code the improvement is 1.68X, 1.77X and 1.76X
respectively.

In summary, in a bandwidth-constrained system the core vs.
cache decision is roughly parallelization-efficiency independent. In
a non-bandwidth-constrained system the impact of data sharing on
chip throughput is directly correlated with the parallelization effi-
ciency.

6.3 Effect of Core Size
System architects often face a situation where they need to pick

a core design from several baseline core designs to integrate into
a CMP. Our baseline core size is equal to 1 CEA (CEAp=1). We
relax this restriction in this section to study the effect of integrating
smaller or larger cores in a CMP. We try CEAp values of 0.25, 0.5,
1 (baseline), 2, 4 and 8. We assume, in accordance with Pollack’s
Rule [15], that a core K times larger than a base design (there-
fore, K times more complex) provides only a

√
K improvement

in performance. Doubling the core size boosts IPC by approxi-
mately 41%, while halving the size of a core reduces IPC to about
71%, of initial value. Figure 4 plots the best chip-wide IPC and
the corresponding per-core IPC for 6 different core designs, each
under the Realistic2 and NoSharing scenarios. The core sizes (in
CEAs) and their corresponding expected CPIpreL2s are shown on
the x-axis. With NoSharing, the chip IPC reduces somewhat with
smaller cores; however, the drop is more steep with 4x and 8x larger
cores. There is an 8% drop in chip IPC by going to cores 0.25x the
base line size. With the Realistic2 sharing, there is no loss in chip
wide IPC by moving to smaller cores. However, for this to be real-
ized, applications must be parallelizable across hundreds of threads,
which may not be practical. When the core size is increased to 2x
the base size, the per-core IPC improves considerably (14%), for
a relatively small loss in chip IPC. Note that with larger cores, the
number of cores reduces compared to the core-count with smaller
cores. Therefore, for applications which may be single threaded

30

0
2
4
6
8

10
12
14

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Processor CEAs (out of a maximum 256)

C
hi

p
IP

C

core = 1 CEA
core = 1 CEA, inf. b/w
core = 2 CEA
core = 2 CEA, inf. b/w
core = 4 CEA
core = 4 CEA, inf. b/w
core = 8 CEA
core = 8 CEA, inf. b/w

Figure 5. Effect of increasing core size on the bandwidth and cache walls

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

(0.25, 4) (0.5, 2.83) (1, 2) (2, 1.41) (4, 1) (8, 0.71)
Processor Size (in CEAs), Base CPI

N
or

m
al

iz
ed

 to
 P

ro
ce

ss
or

 S
iz

e
=

1
C

EA Chip IPC - No Sharing
Chip IPC - Realistic2 Sharing
Core IPC - No Sharing
Core IPC - Realistic2 sharing

Figure 4. Effect of core type on overall, and per-core, throughput

or scale to a smaller degree of parallelism, larger cores may make
sense.

Figure 5 shows the underlying reason for why fewer larger cores
may do just as well as more smaller cores. The figure plots the
CEAs devoted to processor logic along the x-axis (note that 1 CEA
no longer necessarily corresponds to 1 core). The y-axis is the chip
IPC. The per-core IPC is not explicitly plotted; it is understood that
a larger core will have a better core IPC. There are 8 series in the
plot. The IPC curves are plotted for core sizes of 1, 2, 4 and 8
CEAs, each with and without the bandwidth constraint. As can be
seen from the figure, there are two main effects of going to larger
cores. First, the fraction of chip area occupied by cores increases.
This is because there are fewer cores, and they need lesser cache
compared to the case with smaller cores occupying the same amount
of total core area. This frees up more area for the cores to occupy.
Second, the chip IPC falls. This too happens because there are fewer
cores, and the individual core’s IPC does not grow in proportion
to the core’s size. However, because of the bandwidth-constrained
nature of the design space, the reduction in the best-case chip IPC,
especially going from 1 to 2 CEAs per core, is negligible. As the
cores get larger, the difference between the peaks of the bandwidth-
constrained and the non-bandwidth-constrained curves get closer.
In other words, as the number of processors reduces the bandwidth
wall becomes less severe (compared to the cache wall). This makes
a case for moving to larger processors rather than scaling to a larger
number of processors in the presence of the bandwidth wall.

In summary, there may be an optimal core size which gives the
best single-threaded performance without hurting chip IPC notice-
ably.

6.4 SMP Scaling

So far we have used our model to draw insights about CMP
design. Another interesting area that the model can help explore
is SMP to CMP consolidation. With CMPs becoming the indus-
try standard for all computing platforms, and CMP-scaling contin-
uing in the foreseeable future, server-consolidation is generating
widespread interest. CMPs are being seen as a vehicle to assimi-
late SMPs by effectively creating an SMP on-chip. With IBM’s 8-
core POWER7 system already announced [9], and with more scal-
ing likely in the future, a small to medium scale SMP could fit on
a single chip. To study the impact of such an SMP to CMP consol-
idation, we take as an example a system which expects to use 200
threads. The system designer has the option of either placing all the
200 threads on one CMP (across 200 CEAp=1 cores), or spreading
the cores across multiple tightly interconnected CMPs. We continue
to assume a bandwidth-constrained system. We further assume that
with each additional CMP that is added to the SMP system the ad-
ditional pin resources provide another 30 GBps of bandwidth to the
distributed memory. We ignore the additional network delay to get
to the appropriate SMP node. 3

Figure 6 shows the system IPC (across the SMP) when 200 cores
are spread across 1 through 8 CMP chips. There are 4 series plotted,
corresponding to the 4 sharing scenarios we study. Focusing first on
the NoSharing curve, the figure shows that instead of placing all the
200 cores on one CMP (which is possible, but performance suffers
significantly due to the bandwidth limitation), it is better to spread
the 200 cores across multiple chips.

In fact, performance improves almost linearly up to about a 6-
way SMP, beyond which performance starts to saturate. There are 2
reasons for why spreading the cores across multiple CMPs improves
performance. First, by reducing the number of cores on each chip,
both the total cache on-chip and the per core cache increases. This
reduces the pressure on off-chip bandwidth significantly. Second,
every new CMP brings with it additional pins and, therefore, addi-
tional bandwidth. After about 5 to 6 chips, however, spreading cores
on to additional chips does not give proportional performance ben-
efit because the SMP as a whole has overcome the bandwidth wall.
The additional chips do add more cache, leading to monotonically
increasing performance. We model a small scale SMP system. For
larger SMP systems, a more robust representation of the effect of
the interconnect becomes important, and hence it would not be sur-

3We experimented by increasing the TM term in Equation 6 by 50 and
100 pClks to account for both the increase in average memory latency and
the coherence overhead, and found that both qualitatively and quantitatively
the results are not affected significantly.

31

0
10
20
30
40
50
60
70
80
90
100

1 2 3 4 5 6 7 8
SMP size

C
hi

p
IP

C

NoSharing
PerfectDoPipe
Realistic1
Realistic2

Figure 6. Scaling the number of chips in an SMP system

prising if the system IPC starts to degrade as scaling spreads across
more chips.

With Realistic1 and Realistic2 sharing scenarios, the effect of
going from 1 CMP with 200 cores to 2 chips with 100 cores on
each, is even more dramatic. In fact, at a 3-way SMP with about
67 cores per chip for Realistic1 (4-way with 50 cores per chip for
Realistic2), there is a distinct performance knee. This figure shows
that sharing can significantly help reduce the size of an SMP sys-
tem. Effectively, these curves tell us that in a bandwidth-constrained
scenario, where the total number of cores is known a priori the cost
trade-off is between spreading the work across multiple chips ver-
sus providing a more expensive, higher bandwidth memory bus and
multiple memory controllers to provide the necessary off-chip band-
width. There are at least three issues to consider. First, with fewer
cores needed per chip, the CMP yields may be much better, thus
making each chip cheaper. Second, with fewer cores per chip, the
chip will likely run cooler, thus saving packaging and cooling costs.
Third, with the extra pins available with the extra chips, the mem-
ory bus can be operated at a lower frequency (and lower power)
using standard single-ended signaling technology (rather than, say,
a higher-frequency, differential signaling, technology).

In fact, Figure 6 may also make the case to reduce the area of
the CMP chip. There are fewer cores in each CMP in the optimal
design. The performance of the SMP is more sensitive to off-chip
bandwidth increase than cache increase that comes with more chips
(the cache sensitivity is visible in the slowly growing tails of the
curves in this figure). Therefore, it may be possible to reduce the
chip size noticeably by reducing the on-chip cache, while retaining
the core count. We leave this study for future work.

In summary, to enable a targeted number of cores/threads in
a system there exists a certain minimum number of chips across
which the cores/threads should be spread for best overall through-
put; scaling beyond that results in almost no further performance
gain.

7 Conclusion
CMP design in the future will rely on core-level design-reuse

to provide chip-level design-differentiation. Multi-threaded work-
loads require a new dimension, data-sharing, to be considered in
chip design. In this work we studied how data sharing impacts cache
miss rates of multithreaded workloads. Then wei extended a simple,
but powerful, analytical, throughput model that can help system ar-
chitects explore the interplay of design parameters, such as - number

and size of cores, workload characteristics, and, cache and memory
organizations. We incorporated the effect of multi-threaded data
sharing into the analytical model. The model revealed interesting
insights. For example, the model revealed that though data shar-
ing can significantly boost throughput compared to an application
whose threads do not share data, in a bandwidth-constrained sce-
nario, the benefit from sharing is severely restricted. The model
also showed that in future, off-chip bandwidth constrained systems,
it may be possible to use fewer larger cores to build a CMP, rather
than many smaller cores, without reducing the chip throughput.

References
[1] A. R. Alameldeen. Using Compression to Improve Chip Multiproces-

sor Performance. PhD thesis, University of Wisconsin at Madison,
2006.

[2] G. M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In AFIPS Conf. Proc., pages 483–
485, 1967.

[3] ARM. Corex A9 Processor. http: // www. arm. com/ products/
processors/ cortex-a/ cortex-a9. php , 2010.

[4] D. Bailey, et al. The NAS Parallel Benchmarks. Intl. Journal of Super-
computer Applications, 5(3):63–73, 1991.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In 17th Intl.
Conf. on Parallel Architectures and Compilation Techniques, 2008.

[6] A. Hartstein, V. Srinivasan, T. Puzak, and P. Emma. On the Nature of
Cache Miss Behavior: Is It

√
2? In The Journal of Instruction-Level

Parallelism, volume 10, pages 1–22, 2008.
[7] Hewlett Packard Laboratories. CACTI6.5. http: // www. hpl. hp.

com/ research/ cacti/ , 2010.
[8] J. Huh, D. Burger, and S. W. Keckler. Exploring the Design Space

of Future CMPs. In 2001 Intl. Conf. on Parallel Architectures and
Compilation Techniques, pages 199–210, 2001.

[9] IBM. POWER7. http: // www-03. ibm. com/ press/ us/ en/
pressrelease/ 29315. wss , 2009.

[10] IBM. PowerPC 476FP. http: // www. power. org/ events/
powercon09/ taiwan09/ IBM Overview PowerPC476FP. pdf ,
2009.

[11] ITRS. International Technology Roadmap for Semiconductors:
2007 Edition, Assembly and Packaging. http: // www. itrs. net/
Links/ 2007ITRS/ 2007Chapters/ 2007Assembly. pdf , 2007.

[12] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hall-
berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A
Full System Simulation Platform. Computer, 35:50–58, 2002.

[13] MIPS. MIPS 1004K Processor. http: // www. mips. com/
products/ processors/ 32-64-bit-cores/ mips32-1004k ,
2010.

[14] T. Oh, H. Lee, K. Lee, and S. Cho. An Analytical Model to Study
Optimal Area Breakdown between Cores and Caches in a Chip Mul-
tiprocessor. In 2009 IEEE Computer Society Symp. on VLSI, pages
181–186, 2009.

[15] F. J. Pollack. New microarchitecture challenges in the coming gener-
ations of CMOS process technologies (keynote address). In 32nd an-
nual ACM/IEEE international symposium on Microarchitecture, pages
2–, 1999.

[16] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Soli-
hin. Scaling the Bandwidth Wall: Challenges in and Avenues for CMP
Scaling. In 36th Intl. Symp. on Computer Architecture, pages 371–382,
2009.

[17] D. Wentzlaff, N. Beckmann, J. Miller, and A. Agarwal. Core Count
vs Cache Size for Manycore Architectures in the Cloud. Tech. Rep.
MIT-CSAIL-TR-2010-008, MIT, 2010.

[18] M.-J. Wu and D. Yeung. Scaling Single-Program Performance on
Large-Scale Chip Multiprocessors. Tech. Rep. UMIACS-TR-2009-16,
University of Maryland, 2009.

[19] L. Zhao and R. Iyer, et al. Performance, Area, and Bandwidth Impli-
cations for Large scale CMP Cache Design. In CMP-MSI, 2007.

32

Traffic Prediction for NoCs using Fuzzy Logic
Gervin Thomas Ben Juurlink

Technische Universität Berlin
Department of Computer Engineering and Microelectronics

Embedded Systems Architectures
Berlin, Germany

Email: {gthomas,juurlink}@cs.tu-berlin.de

Dietmar Tutsch
Bergische Universität Wuppertal
Automation / Computer Science

Wuppertal, Germany
Email: tutsch@uni-wuppertal.de

Abstract—Networks on Chip provide faster communication
and higher throughput for chip multiprocessor systems than
conventional bus systems. Having multiple processing elements
on one chip, however, leads to a large number of message
transfers in the NoC. The consequence is that more blocking
occurs and time and power is wasted with waiting until the
congestion is dissolved. With knowledge of future communication
patterns, blocking could be avoided. Therefore, in this paper a
model is introduced to predict future communication patterns
to avoid network congestion. Our model uses a fuzzy based
algorithm to predict end-to-end communication. The presented
model accurately predictions for up to 10 time intervals for con-
tinuous patterns. Communication patterns with non-continuous
behaviors, such as fast changes from peak to zero, can also
be predicted accurately for the next 1 to 2 time intervals to
come. The model is a first step to predict future communication
patterns. In addition, some limitations are identified that must
be solved in order to improve the model.

I. INTRODUCTION

Increasing the clock frequency to increase performance is no
longer an option due to, amongst others, energy consumption,
heat developments, and the enormous costs for new technolo-
gies [1] [2]. To increase the performance of a chip, processor
vendors integrate more cores on one die. The current trend
is that the number of cores on a chip multiprocessor (CMP)
increases with every new generation and so parallel computing
has become more important than ever. The increasing number
of cores requires a communication system different from
a conventional bus system, since a bus quickly becomes
the bottleneck of the system. One approach is to employ a
Network on Chip (NoC). With the ongoing trend to increase
the number of cores on CMPs, the NoC becomes an essential
part of the system.
There are many NoC topologies such as meshes, trees, multi-
stage interconnection networks (MINs), and many more. NoCs
have several advantages such as scalability and modularity.
The optimal network configuration depends on the application
that is running because every application produces different
traffic patterns and, moreover, these patterns may change over
time. The NoC should realize communications with minor
congestion or, if possible, free of congestion. Otherwise, the
communication between cores may become the bottleneck.
Several researcher [3] [4] have proposed reconfigurable net-
works to establish communication paths without congestion.
The challenge of establishing congestion-free communication

depends on the applications that run on the system. Often,
congestion arises because several cores send messages at the
same time and all messages must be routed through the same
network. If two or more messages arrive at the same time at the
same switching element and compete for the same link, only
one can pass while the others must wait. This situation could
be avoided if, before the communication starts, it is already
known how much data each core will send and to which
core. In that case the routing in the network could be realized
with minor congestion by changing the routing algorithm. As
another example, if the NoC has a reconfigurable structure,
disjoint or lightly loaded paths through the network could be
established.
This work presents a method to predict end-to-end communi-
cation patterns. Our method is based on a fuzzy algorithm.
The prediction method searches for similar pattern in the
communication history and predicts based on that information
the next data point. By taking the newly predicted data point
into account and applying this technique several times, several
future steps can be predicted. The method is validated with a
chaotic time series and with some real traffic traces obtained
on a multicore system.
This paper is organized as follows. Section II describes related
work. Section III provides a motivational example and Sec-
tion IV describes the model that is applied. Section V describes
the fuzzy based algorithm that is used to predict end-to-end
traffic. Results are presented in Section VI. Finally, Section VII
summarizes the paper and presents some directions for future
work.

II. RELATED WORK

Huang et al. [5] proposed a table-driven predictor to predict
communication in NoCs. Like us, they predicted end-to-end
traffic without taking intermediate switches into account. Their
method, however, only predicted one future time interval.
The predicted amount of communication is either zero or the
current quantity. The technique was evaluated by running a
modified block LU decomposition kernel on Tilera’s TILE64
platform. Kaxiras and Young [6] used coherence communica-
tion prediction in distributed shared-memory systems to detect
data that is needed by several processors and to deliver the data
as soon as possible. Their approach is also table-driven.
Duato and Lysne [7] [8] have proposed a methodology for

33

deriving procedures for dynamic and deadlock-free recon-
figuration between routing functions but did not used any
prediction technique.
Ahmad [3] introduced a dynamically reconfigurable NoC
architecture for reconfigurable Multiprocessor system-on-chip.
Hansson and Goossens [4] introduced a library for NoC
reconfiguration for dynamically changing the interconnections
in dependency of the modules connected to the ports. Both
works, however, did not investigate how traffic prediction
could improve the reconfiguration of the network.
Chen et al. [9] used a fuzzy based predictive traffic model
to avoid congestion at high utilization while maintaining high
quality of service in ATM networks. This prediction model
was only applied to ATM networks. Pang et al. [10] used
a fuzzy traffic predictor and also applied it to ATM traffic
management. Results have been presented only for one-step
prediction in contrast to our model which predicts several time
steps. Otto and Schunk [11] applied fuzzy logic successfully
to load forecasting for electric utilities. They did not apply it to
other problems, however. Ogras and Marculescu [12] proposed
a flow control algorithm to predict switch-to-switch traffic.
This prediction is decentralized and based on the information
the routers receive directly from their neighbors. From the
prediction the number of packets injected in the network is
controlled. Brand et al. [13] presented a congestion control
strategy based on a Model Predictive Controller which controls
the offered load. This method requires that routing is not
dynamic, however, in contrast to our model.
The approach presented in this paper differs from and im-
proves upon the ones mentioned above as follows. First, our
approach uses a fuzzy based algorithm while previous ap-
proaches use a table-driven predictor or flow control algorithm.
Second, our method predicts several future time steps which
allows to avoid congestion or low utilization in a more flexible
way. For example, reconfiguration of a network takes some
time and is gainful only when the sum of the reconfiguration
time and message transfer time after the reconfiguration is
shorter than the transfer time without reconfiguration. It is
therefore necessary to predict several time steps ahead to be
more flexible for reconfiguration.

III. MOTIVATIONAL EXAMPLE

Communications that take place at the same time is the
reason for blocking in the network. Assume, for example,
a mesh NoC topology with 5 × 5, nodes as depicted in
Figure 1. In both figures it is illustrated that node (2, 0)
communicates with node (0, 4) (indicated by solid lines). With
dimension-order (xy) routing the communication is established
by first routing the message horizontally followed by routing
it vertically. Additional messages that are sent simultaneously
and need to cross the same links as the first message cannot
reach their destination and a congestion occurs. Such an
example is shown in Figure 1(a), where an additional message
transfer should be established between nodes (2, 1) and (3, 3)
(indicated by dotted line) as well as the nodes (4, 4) and
(1, 4) (indicated by dashed line). These communication cannot

2,0

0,4

2,1

3,3

4,4

1,4

(a) Congested communication

2,0

0,4

2,1

3,3

4,4

1,4

(b) Uncongested communication

Fig. 1. Reducing congestion by rerouting communications

Fig. 2. System as a black box

take place until the first communication releases the switching
elements.
With traffic prediction it could be known a priori that the above
mentioned nodes want to communicate. With this knowledge
a different routing decision could be taken. Alternative routing
paths are shown in Figure 1(b). The first communication
between nodes (2, 0) and (0, 4) (indicated by solid line) could
be realized by dimension-order (yx) routing which first routes
the message vertically and then horizontally. With this new
routing decision the other nodes (2, 1) and (3, 3) (indicated by
dotted line) as well as (4, 4) and (1, 4) (indicated by dashed
line) can communicate in parallel. This example illustrates
the advantages of traffic prediction to realize blocking free
communications. We remark that deadlocks could arise due to
the new routing decision, but this is not the main focus of this
work, since it can be solved using other techniques such as
virtual channels [14].

IV. END-TO-END TRAFFIC PREDICTION

Normally it is important to know the specific NoC topology
to be able to analyze it. In order to generalize our method
we do not consider the specific network topology. Instead,
our goal is to predict end-to-end communication. This means
that we do not consider the switching elements between the
nodes. It is also irrelevant which type of components (e.g. core,
memory, I/O) is connected to the NoC. Every component is
simply seen as a node. The NoC is considered as black box
to which several node are connected.
The structure of the model is depicted in Figure 2. For the
communication between nodes it is important to know which
nodes want to exchange information between them and when.
Therefore the point of time at which communication takes
places and the amount of data that is transmitted are needed.

34

yγ−m+1 yγ yn−m+1 yn

yγ+1

yn+1

Fig. 3. Search for similar pattern in the history

With these assumptions the problem of predicting traffic in
NoCs is similar to predicting a time series.

V. FUZZY BASED TRAFFIC PREDICTOR

The proposed traffic predictor is based on [11] and uses
fuzzy logic, introduced by Zadeh in 1965 [15]. Fuzzy logic
has no strict assignment of elements to sets like binary logic.
Instead, every element has a degree of membership to a set.
This degree is represented by a value between 0 and 1. To
be able to apply fuzzy logic to a specific problem such as the
prediction of a time series, a fuzzy system must be constructed.
The construction consists of three steps:

1) Fuzzyfication: In this step the degree of membership of
the input values is assigned to fuzzy sets. The degree of
membership is given by µ : X → [0, 1], where X is the
set of input values. So every input value is mapped to a
value between 0 and 1.

2) Fuzzy-Inference: In this step the output values from the
membership function are linked with several different
functions to generate an output set.

3) De-Fuzzyfication: In this step a numerical output value
is generated from the output set.

The above mentioned steps are used to predict a time series. To
do so several time steps from the past are needed. The idea
behind the algorithm is to consider the latest m (m < n)
data points from the time series Y = (y0, y1, · · · , yn) and
then search for some similar patterns in the past. We refer
to m as the pattern length. The time series Y has n + 1
data points. To determine similarity between patterns, fuzzy
logic is used. If there are some similar patterns in the past,
the algorithm forecasts the next step by interpreting these
patterns. This method is depicted in Figure 3. The last data
points between (yn) and (yn−m+1) are compared with pattern
from the history communication. If there is a pattern of pattern
length m in the past that is very similar to the latest one,
like the pattern between (yγ) and (yγ−m+1), the algorithm
predicts, that the next future point (yn+1) is also very similar
to the point that follows the past pattern (yγ+1). The latest
m data points correspond to a sub vector Y [n−m+ 1, n] =
(yn−m+1, · · · , yn−1, yn) and this vector is used as a window.
That window vector is subtracted iteratively from the past
data points, so that in total j = n − m + 1 difference
vectors D(n−m−i) = (d(n−m−i)

0 , d
(n−m−i)
1 , · · · , d(n−m−i)

m−1)

are obtained (i ∈ [0, n−m]), where D(n−m−i) is given by

D(n−m−i) =Y [n−m− i, n− 1− i] (1)
− Y [n−m+ 1, n] .

The superscripts indicate the different difference vectors. All
elements of the calculated difference vectors are mapped using
the membership function µ : X → [0, 1] to a value between
0 and 1 which shows the similarity to the original data points
from the past. In this work the triangular function, given by

µ(x) =

{
1− ∣∣ xw ∣∣ , if |x| < |w|
0, otherwise

(2)

is used as membership function. In this expression w is the
width of the membership function. The width is a degree
of how much the latest data points differs from those in
the past and can be set by the user. If the difference is too
high, the membership function generates the output value 0,
which means there is no similarity. Applying the membership
function is the first step (fuzzyfication) from the fuzzy system.
All j difference vectors are now weighted based on to their
similarity. This is done by multiplying all memberships of
all elements of a difference vector, as given by the following
equation

β(n−m−i) =
m−1∏
k=0

µ
(
d
(n−m−i)
k

)
. (3)

In this equation d
(n−m−i)
k is element k of difference vector

D(n−m−i). So every difference vector is now reduced to a
scalar value which reflects the similarity of the patterns from
the past to the last m data points. This step corresponds to the
fuzzy-inference step.
From these weights we calculate the next future data point
by performing a weighted sum of all past data points. This is
done by the following equation

yn+1 =

∑n−m
γ=0 β(n−m−γ) · yn−γ∑n−m

γ=0 β(n−m−γ) . (4)

This step corresponds to de-fuzzyfication.
The steps explained above predict the next future data point.
To predict several data points, the algorithm can be reapplied
including the predicted data point.
To predict future data points, we need several data points from
the past. The more data points are available, the higher the
possibility is to find a very similar pattern in the past and
increase the accuracy of the algorithm. The disadvantage of
using all data points from the past is that the calculation time
and memory requirements increase. So a trade-off must be
made between the number of considered data points and the
accuracy of the algorithm. This trade-off depends on how often
some communication patterns repeat. If some communication
patterns repeat very often, fewer data points are needed than
with less repetitive patterns. The effect of the history length as
well as the pattern length m on the accuracy of the proposed
algorithm is investigated in Section VI.

35

2 4 6 8 10
0

0.1

0.2

0.3

0.4

Pattern length

C
um

ul
at

iv
e

av
er

ag
e

er
ro

r

1 predicted data point
10 predicted data point
25 predicted data point
50 predicted data point

Fig. 4. Cumulative average error as a function of the pattern length

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section experimental results are provided using two
types of inputs. First, a chaotic time series will be used as
input to the proposed algorithm. Thereafter, traces from a real
MPI application will be used.

A. Mackey-Glass

First the proposed algorithm is tested with a chaotic time
series given by the Mackey-Glass differential equation [16]:

dx

dt
= β · xτ

1 + xτ n
− γ · x. (5)

To generate a chaotic time series from this equation, the
parameters are set as follows: β = 0.2, γ = 0.1, and n = 10.
In this equation xτ represents the value of the variable x at
time (t−τ). The first 600 data points are calculated by solving
the differential equation.
The pattern length m is an important parameter for the
accuracy of the proposed algorithm. Therefore, the impact
of the pattern length on the accuracy of the algorithm is
investigated first. To perform this investigation the pattern
length varied from 1 to 10 and the history length is set to 300.
Furthermore, the algorithm is used to predict different numbers
of data points. For every number of predicted data points
the cumulative average error is calculated. The cumulative
average error after n data points is the average error of the
first n data points. Figure 4 depicts the cumulative average
error as a function of the pattern length. The results show
that the cumulative average error decreases when the pattern
length is increased up to a length of 7. Therefore, all further
investigations with the Mackey-Glass time series, the pattern
length m is set to 7.
Figure 5 compares the predicted data points to the data points
generated by Equation (5) for up to 50 predicted data points.
The history length is set to 300. Thus the algorithm only
considers the last 300 data points to make a prediction. The

300 310 320 330 340 350

0.2

0.4

0.6

0.8

1

1.2

1.4

Data point

A
m

pl
itu

de

Time series
Prediction

Fig. 5. Generated and predicted data points (history length is 300)

0 10 20 30 40 50
0

0.2

0.4

0.6

Data point

R
el

at
iv

e
er

ro
r

HL 300
HL 200
HL 100

Fig. 6. Average error for 50 predicted data points with different history
lengths (HL)

width w of the membership function, Equation (2), is set to
0.3. The predicted data points differs only slightly from the
generated data points. The average error in Figure 5 is less
than 4.5%.
The history length is another important parameter for the
accuracy of the proposed algorithm. Therefore the impact
of the history length on the accuracy of the algorithm is
investigated in more detail. To perform this investigation, the
starting point for the prediction is set to four different values,
and from there on 50 data points are predicted. Afterwards
the average error for every predicted point is calculated. This
experiment is performed for different history lengths. Figure 6
depicts the average error for each predicted data point and
Figure 7 depicts the cumulative average error after a certain
number of data points have been predicted. The cumulative

36

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Data point

C
um

ul
at

iv
e

av
er

ag
e

er
ro

r

HL 300
HL 200
HL 100

Fig. 7. Cumulative average error for different history lengths (HL)

average error after n data points is the average error of the
first n data points in Figure 6. In both Figure 6 and Figure 7,
different history lengths of 100, 200 and 300 have been used.
These results show that the algorithm has the ability to predict
up to 10 data points with high accuracy (5.2% error) for a
chaotic time series with a history depth of 300. The high
accuracy is achieved because of the continuous data points.
The results also shows that the error increases when the history
length is reduced. When 10 future data points need to be
predicted the cumulative average error increases to 6.2% for a
history length of 200, and to 9.8% for a history length of 100.
There is a direct dependence between the first predicted values
and the error propagation for succeeding data points. Predicted
data points are used for the prediction of the succeeding data
point. The error accumulates from data point to data point so
error propagation happens. With a longer history lengths the
error for the first predicted value is smaller and only a minor
error propagation takes places. The algorithm miss predicts a
peak in step 31 for all history lengths, which results in an
error peak depicted in Figure 6.
Figure 8 depicts the cumulative average error as a function of
the history length. The history length is varied from 50 to 300.
The four lines correspond to different number of predicted data
points (1, 10, 25, 50). The figure shows that the first accuracy
improvement occurs when the history length is between 100
and 150. Afterwards the history length has no considerable
influence on the accuracy of the predicted data points up to
a history length of around 280. Another improvement of the
prediction accuracy takes place beyond a history length of 280.
It can be seen that for 25 and 50 predicted data points, using a
history length of e.g. 125 yields better predictions than using
longer history lengths. We cannot fully explain this behavior,
but expect this is due to the ”period” of the chaotic time series.
Figure 9 depicts normalized prediction accuracy for different
history lengths. The accuracy is normalized with respect to

50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

History length

C
um

ul
at

iv
e

av
er

ag
e

er
ro

r

1 predicted data point
10 predicted data point
25 predicted data point
50 predicted data point

Fig. 8. Cumulative average error as a function of the history length

1 2 5 10 25 50

2

4

6

8

Predicted data points

Im
pr

ov
em

en
t

HL 50
HL 100
HL 150
HL 200
HL 250
HL 300

Fig. 9. Prediction accuracy normalized to the prediction accuracy obtained
for a history length (HL) of 50 for different numbers of predicted data points.

the shortest considered history length (50). This figure shows
that the history length has a huge impact on the prediction
accuracy. When one data point is predicted, the accuracy is
improved by a factor of 8 when the history length is increased
for 50 to 300. However, the impact of the history length
decreases when the number of predicted data points increases.
When 50 data points are predicted, the improvement is reduced
to a factor of 1.5.

B. MPI Application

1) Traffic Trace: To validate the proposed algorithm on
real traffic patterns, traffic traces from real applications are
needed. To generate these traces the application Meep [17] is
used. Meep is a free finite-difference time-domain (FDTD)
simulation software package developed at MIT to model

37

0 10 20 30 40
0

5

10

15

Time [ms]

D
at

a
[k

B
]

Exemplary traffic
Traffic in intervals

Fig. 10. Non-equidistant MPI communication patterns become equidistant

electromagnetic systems. The program has the ability to to par-
allelize a problem with the Message Passing Interface (MPI)
which is used for the communication between processes. For
our purpose Meep is used with OpenMPI [18].
Every communication is recorded using the MPItrace tool [19].
This tool traces the basic activities in an MPI program and
generates a Paraver [20] trace file. This trace file includes
information about thread states and communication. For our
purpose only the communication information between MPI
processes is relevant. Therefore a short script has been im-
plemented that separates the communication information from
the rest. A drawback of the MPItrace tool is, however, that
the start and end time of every communication correspond to
the time when the MPI functions (send and receive) are called
respectively return. This calls the logical communication. It
is not possible to determine when the real (physical) com-
munication takes places. How we dealt with this problem is
described in the next section.
The application Meep has been running on a server with 2
processors with 4 cores each.

2) MPI Analysis: The dashed bars in Figure 10 depicts
exemplary the amount of data sent by an arbitrary core over
time. The figure shows that the gap between two transferred
messages and also the amount of data that is sent vary. This
leads to a prediction problem with two unknown variables,
since the problem is not only to predict how much data is sent
but also at which time. There is a large difference between not
knowing if a certain data point in time exists or to know that
there is a data point whose value may be zero. This means that
the time between two communications in the time domain are
not equidistant, which introduces problems for the proposed
algorithm. The introduced algorithm cannot deal with this
problem because there are too many unknown variables. The
algorithm can predict only one unknown variable over an
equidistant scale, for example, the amount of data that is sent
at a fixed point in time. For that reason the problem must be

0 5 10 15 20
0

2

4

6

8

10

12

Time [ms]

D
at

a
[k

B
]

Prediction
Original

Fig. 11. Prediction of MPI communications (first behavior)

reduced in order to be able to apply the proposed algorithm.
To reduce this problem, time is divided into fixed sized
intervals. In every time interval, the amount of data that is
sent is summed up. The solid bars in Figure 10 depict the
amount of data sent in each time interval. The advantage of
time intervals is that now the time axis no longer has non-
equidistant time steps. Therefore the above mentioned problem
with two unknown variables has been reduced to a problem
with one unknown, namely to predict the amount of data
that will be sent. With this technique the problem that the
tracing tool provides only traces with logical communication
information is also reduced. It can be assumed that the physical
communication will take place shortly after the logical so the
assumption is made that most communications will start in the
corresponding time interval, provided the size of the interval is
not too short. For communications that take places at the end
of a time interval it, cannot be determined if they are assigned
to the correct time interval. This side effect will be neglected.
The proposed algorithm should predict up to 20 prospective
time intervals. The width of the membership function, Equa-
tion (2), is set to 5.5 and the pattern length m is set to 7. When
predicting the MPI communication traces two behaviors have
been observed, which are depicted in Figure 11 and Figure 12.
The first data point numbered zero in both figures is the real
one. Therefore the measured and predicted values match. The
prediction starts in time interval 1. In time intervals where no
bars are visible the communication volume during this interval
is zero.
Both figures show the amount of data sent in each time
interval. The dashed bars depict the real data and the solid bars
the predicted. The first behavior is depicted in Figure 11. The
time at which a communication takes places is predicted with
high accuracy, but the predicted amount of data is below the
actual amount. The second behavior is depicted in Figure 12.
In this case the amount of transmitted data is predicted better

38

0 5 10 15 20
0

5

10

15

Time [ms]

D
at

a
[k

B
]

Prediction
Original

Fig. 12. Prediction of MPI communications (second behavior)

TABLE I
ABSOLUTE AVERAGE ERROR IN KB

Steps 1 2 5 10 20

Avg. Err. (Fig. 11) 0.008 0.768 1.551 1.498 1.920

Avg. Err. (Fig. 12) 0.246 1.596 2.442 2.427 2.656

than in the case depicted in Figure 11. The algorithm also,
however, predicts communication peaks where no peaks are.
This can be seen in time interval 12.
Table I shows the absolute average error in kB for both figures
after several predictions steps. It is not possible to present
the relative error because several data points are zero which
would lead to a division by zero. Table I shows that a 1-
step prediction can be performed with high accuracy for both
behaviors. For the first behavior also a 2-step prediction has
a small error. After that the error increases but stays nearly
constant up to step 10. Thereafter the error increases more
and more because of error propagation.
The miss predictions for both shown behaviors arise from the
relative distance between two data points in contiguous time
intervals, especially when a peak communication is followed
by the absence of communication or vice versa. Such jumps
mislead the proposed algorithm so that a wrong estimation
is produced. The communication patterns from the history
are weighted incorrectly so an error arises which influences
coming data points.
To interpret the presented results it must be taken into account
that only static simulations are performed. Data points that
occur far into the future are predicted with previously predicted
values. That means that no new data points are taken into
account so that the error propagates. In a real system the time
goes on and new data points are produced and so the history
is updated. In that case more real data points could be used to
predict the next data points, which would lead to slower error

propagation. This is identical to a prediction with few future
time intervals. Moreover, the size of the time intervals must
also be taken into account. The size of a time interval is set by
the user so that one interval could correspond to many clock
cycles. Based on the problem one or two predicted intervals
could be sufficient.

VII. CONCLUSIONS AND FUTURE WORK

In this paper a model has been proposed to predict end-to-
end traffic in NoC-based multiprocessor systems. The model
predicts end-to-end communication, so intermediate switching
elements are not considered. A fuzzy based algorithm is
employed that searches for similar traffic patterns in the
history to predict prospective data points. The prediction is
performed for time intervals. Experimental results have been
provided for a chaotic time series as well as real traffic patterns
obtained by tracing an MPI application on a multiprocessor
system. The accuracy of the prediction depends mainly on the
behavior the traffic patterns that should be predicted. Chaotic
patterns with continuous behavior can be predicted with high
accuracy for up to 10 data points. Traffic patterns that are non-
continuous, jumping from high communication volume to zero
communication or vice versa, can also be predicted accurately,
but only up to two steps ahead. Accurately predicting two data
points can be sufficient, however, because the prediction is
performed for time intervals and one interval consist of many
clock cycles.
As future work, we plan to validate the proposed method
on a NoC system. To do that the proposed algorithm must
be integrated into a NoC simulator. This step allows us to
investigate the NoC system speedup due to traffic prediction.
Furthermore, this step is important to check how the prediction
of future data points influences the NoC system. Also the
computational complexity of the model must be analyzed and
optimized in order to be able to integrate the proposed model
in NoC systems. On a real NoC system, it could be validated
how many time steps must be predicted in order to improve
the system performance. Furthermore, the prediction accuracy
of the algorithm could be improved. In particular the amount
of data that is transferred could be predicted with higher
accuracy, since the predicted amount is currently below the
actual amount.

REFERENCES

[1] D. Geer, “Chip Makers Turn to Multicore Processors,” Computer,
vol. 38, no. 5, pp. 11 – 13, May 2005.

[2] P. Gepner and M. Kowalik, “Multi-Core Processors: New Way to
Achieve High System Performance,” in Parallel Computing in Electrical
Engineering, 2006. PAR ELEC 2006. International Symposium on, 2006,
pp. 9 –13.

[3] B. Ahmad, A. Erdogan, and S. Khawam, “Architecture of a Dynamically
Reconfigurable NoC for Adaptive Reconfigurable MPSoC,” in Adaptive
Hardware and Systems, 2006. AHS 2006. First NASA/ESA Conference
on, 2006, pp. 405 –411.

[4] A. Hansson and K. Goossens, “Trade-offs in the Configuration of a
Network on Chip for Multiple Use-Cases,” in Networks-on-Chip, 2007.
NOCS 2007. First International Symposium on, May 2007, pp. 233 –
242.

39

[5] Y. Huang, K.-K. Chou, C.-T. King, and S.-Y. Tseng, “NTPT: On the
End-to-End Traffic Prediction in the On-Chip Networks,” in Design
Automation Conference (DAC), 2010 47th ACM/IEEE, 2010, pp. 449
–452.

[6] S. Kaxiras and C. Young, “Coherence communication prediction in
shared-memory multiprocessors ,” in High-Performance Computer Ar-
chitecture, 2000. HPCA-6. Proceedings. Sixth International Symposium
on, 2000, pp. 156 –167.

[7] J. Duato, O. Lysne, R. Pang, and T. Pinkston, “A Theory for Deadlock-
Free Dynamic Network Reconfiguration. Part I,” Parallel and Dis-
tributed Systems, IEEE Transactions on, vol. 16, no. 5, pp. 412 – 427,
May 2005.

[8] O. Lysne, T. Pinkston, and J. Duato, “A Methodology for Developing
Deadlock-Free Dynamic Network Reconfiguration Processes. Part II,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 16, no. 5,
pp. 428 – 443, May 2005.

[9] B.-S. Chen, Y.-S. Yang, B.-K. Lee, and T.-H. Lee, “Fuzzy Adaptive
Predictive Flow Control of ATM Network traffic,” Fuzzy Systems, IEEE
Transactions on, vol. 11, no. 4, pp. 568 – 581, 2003.

[10] Q. Pang, S. Cheng, and P. Zhang, “Adaptive fuzzy traffic predictor and
its applications in ATM networks,” in Communications, 1998. ICC 98.
Conference Record.1998 IEEE International Conference on, vol. 3, Jun.
1998, pp. 1759 –1763 vol.3.

[11] P. Otto and T. Schunk, “Fuzzybasierte Zeitreihenvorhersage,” Automa-
tisierungstechnik, vol. 48, pp. 327–334, 2000, In: German.

[12] U. Y. Ogras and R. Marculescu, “Prediction-based Flow Control for
Network-on-Chip Traffic,” in Proceedings of the 43rd annual Design

Automation Conference, ser. DAC ’06. New York, NY, USA: ACM,
2006, pp. 839–844. [Online]. Available: http://doi.acm.org/10.1145/
1146909.1147123

[13] J. van den Brand, C. Ciordas, K. Goossens, and T. Basten, “Congestion-
Controlled Best-Effort Communication for Networks-on-Chip,” in De-
sign, Automation Test in Europe Conference Exhibition, 2007. DATE
’07, 2007, pp. 1 –6.

[14] W. Dally and C. Seitz, “Deadlock-Free Message Routing in Multipro-
cessor Interconnection Networks,” Computers, IEEE Transactions on,
vol. C-36, no. 5, pp. 547 –553, May 1987.

[15] L. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, pp. 338–353,
1965.

[16] L. Glass and M. C. Mackey, “Oscillation and Chaos in Physiological
Control Systems,” Science, vol. 197, pp. 287–289, 1977.

[17] S. G. Johnson, J. D. Joannopoulos, and M. Soljai, “Meep,” 2006.
[Online]. Available: http://ab-initio.mit.edu/wiki/index.php/Meep

[18] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, Concept, and Design of a Next Generation MPI Implementa-
tion,” in Proceedings, 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary, September 2004, pp. 97–104.

[19] H. S. Gelabert and G. L. Snchez, “MPItrace - User Guide Manual,”
2010. [Online]. Available: http://www.bsc.es/plantillaA.php?cat id=492

[20] Paraver - Parallel Program Visualization and Analysis tool, Version
3.1 ed., Barcelona Supercomputing Center - Centro Nacional de
Supercomputacin, October 2001. [Online]. Available: http://www.bsc.
es/plantillaA.php?cat id=493

40

GPU Acceleration of the Assembly Process for
Isogeometric Analysis

Nathan Collier
Aron Ahmadia

V. M. Calo
Applied Mathematics and Computational Science

Earth and Environmental Sciences and Engineering
King Abdullah University of Science and Technology

Thuwal, Saudi Arabia

Hyoseop Lee
Craig C. Douglas

Department of Mathematics
University of Wyoming

Laramie, Wyoming 82071-3036, USA

Abstract—We present a method for graphics processing unit
(GPU) acceleration of matrix assembly as applied to isogeometric
analysis, spline-based isoparametric finite elements. We take
advantage of the basis being defined on a structured grid to
precompute basis functions and assemble the local contributions
to the stiffness matrix on the GPU. We show how GPU resources
may be utilized with minor changes to a serial code. This initial
work achieves a speedup of up to 11 in the matrix assembly stage
of the isogeometric finite element algorithm.

Index Terms—GPU, isogeometric, finite elements, matrix as-
sembly, acceleration, CUDA

I. INTRODUCTION

Isogeometric analysis [1] is a new method proposed in
2005, originally motivated by the desire to find a technique for
solving partial differential equations which would simplify, if
not eliminate the problem of converting geometric descriptions
for discretizations in the engineering design process. Once
a design is born inside a Computer Aided Design (CAD)
program, the process to convert it to an analysis suitable
form is the bottleneck of the analysis process, consuming up
to 80% of this process. Isogeometric analysis aims to use
CAD representations directly by using the B-spline or NURBS
(Non-uniform Rational B-Spline) basis in isoparametric finite
elements.

The term isogeometric refers to the fact that all representa-
tions of the problem have the same (iso) geometry. Refinement
of a finite element space changes the geometry and requires
communication to and from the original CAD description.
Isogeometric analysis is capable of geometry preserving re-
finements, meaning that there is no need to return to the
CAD description. The refinements available to isogeometric
analysis are richer than in the standard finite element method
(FEM). Isogeometric analysis possesses h-refinements (knot
insertion), p-refinements (degree elevation) and k-refinements
(degree elevation followed by knot insertion), all of which are
geometry preserving.

This means that once a mesh is defined, which accurately
describes the geometry, as refinements are needed the ge-
ometry does not change. The number of degrees of freedom
necessary to represent the geometry accurately is, in most ap-

plications, much smaller than the one needed for representing
the solution to the physical phenomena on that domain.

Isogeometric analysis is isoparametric finite elements using
the Bernstein basis in place of the Lagrange basis traditionally
used [2]. The Bernstein bases has been used in CAD for
several decades due to several of its properties, particularly the
smoothness of the basis and ability to represent conic sections
in its rational form. For this reason typically NURBS are used,
yet at the core they are piecewise polynomials possessing
higher orders of continuity.

In addition to the geometrical benefits, the basis is also well
suited to solving nonlinear and higher-order partial differential
equations due to its higher-order continuity. Isogeometric
analysis has successfully been applied to a number of ar-
eas including, structural vibrations, fluid-structure interaction,
particularly patient-specific arterial blood flow, complex fluid
flow and turbulence, shape optimization, phase field models
via the Cahn-Hilliard equation, cavitation modeling, and shell
analysis [3]–[10]. In addition, a book [11] has been written,
detailing the method and showcasing several applications. Due
to this increased interest in both engineering and scientific
applications, it is important that codes which implement this
method are efficient.

Although, as their name indicates, the primary role of a
graphical processing unit (GPU) is to accelerate graphics ren-
dering, computational scientists have demonstrated impressive
performance and speedups over traditional scientific codes by
offloading computationally intensive routines to GPUs [12]–
[14]. Graphical processing units have also become increasingly
popular in the solution of partial differential equations, princi-
pally via the finite difference method (for example [15], [16]).
Finite difference methods map well onto GPUs due to their
structured topology and low memory requirements.

Recent work has looked towards acceleration of finite ele-
ment solvers via GPUs. Research has been published address-
ing the optimization of the sparse matrix solves [17] as well as
the assembly of matrix equations in unstructured meshes [18].
In spite of their speedups in computational time, the limited
memory size of a GPU restricts the problem size that can be
solved on a single GPU. A GPU cluster is a possible solution

41

to tackle the limitation. In [19] we already utilized a GPU
cluster as a linear solver for finite element simulation. In this
paper we are concerned with the local matrix assembly of
the matrix equations used in isogeometric analysis on a single
GPU, which can be naturally extended into a GPU cluster.
The combination of this work and the linear solve on a GPU
cluster will be a forthcoming paper.

The purpose of this paper is two-fold. First, we present an
algorithmic analysis of the stiffness matrix assembly process
using NURBS as the basis. We present results specific to
elasticity equations in three-dimensions. While the NURBS
basis functions are capable of representing complex geome-
tries, topologically each patch has a tensor product structure
in the parametric domain. This fact allows for some computa-
tional efficiencies previously unutilized. Second, we present an
adaptation of a publicly distributed NURBS code [20] which
takes advantage of these efficiencies as well as utilizes the
GPU.

II. ISOGEOMETRIC ANALYSIS

Isogeometric analysis is a Galerkin finite element method
that uses B-spline basis functions. These basis functions are
polynomial splines based on the Bernstein basis. A spline
space is defined by first specifying a knot vector, a one-
dimensional set of non-decreasing locations in parametric
space. The knot vector is denoted by

Ξ = {ξ1, ξ2, . . . , ξn+p+1},
where ξi ∈ R is the ith knot, p is the polynomial order, and n
is the number of basis functions. The knot vector encodes the
basis functions, which can be evaluated using the Cox-deBoor
recursion formula, described in what follows. The zeroth order
functions are defined as

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise,

while for p > 0,

Ni,p(ξ) =
ξ − ξi

ξi+p − ξiNi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ).

Sample basis functions can be seen in Fig. 1. Higher orders
of continuity have the effect of extending the support of the
basis functions beyond their typical single element support.

A. Why Rationals?

Rational B-splines (commonly referred to as NURBS) are
used because low degree of freedom polynomial spaces poorly
approximate conic sections. This can be demonstrated by
considering a quadratic Bernstein representation of a quarter
circle, shown in Fig. 2(a). The corresponding polynomial basis
is shown below in Fig. 2(c). Note that to maintain the tangency
at the endpoints, the middle control point must be located in
the corner of the inscribed square. So each basis is weighted
(Fig. 2(d)) to precisely match the circle (Fig. 2(b)). This
enables a low-degree-of-freedom, exact representation of conic
sections, common in engineering design applications.

(a) Three spans of a C0 basis
for p = 1, 2, 3, 4

(b) Three spans of a Cp−1

basis for p = 1, 2, 3, 4

Fig. 1. Examples of B-spline basis functions

In multi-dimensions the rational basis functions, Rp
i , can

be formed directly from the polynomial counterparts, Ni,p, by
weighting each basis, wi, and then dividing by the sum of all
functions to maintain the partition of unity property. Here p
refers to the polynomial order and i indexes the basis,

Rp
i (ξ) =

Ni,p(ξ)wi∑
îNî,p(ξ)wî

.

The polynomial basis functions are formed by tensor product
and the rationals are formed subsequently. For example in
three-dimensions

Rp,q,r
i,j,k (ξ, η, ζ) =

Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k∑
î

∑
ĵ

∑
k̂ Nî,p(ξ)Mĵ,q(η)Lk̂,r(ζ)wi,j,k

,

where N, M, L are the one dimensional basis functions,
p, q, r denote polynomial order in each direction and i, j, k
index the basis. Note that this is not a tensor product structure
since the denominator couples all directions, thus Rp,q,r

i,j,k

cannot be written as the product of three functions where each
depends on a single parametric direction.

B. Elasticity

We focus on the acceleration of stiffness matrix formation
using NURBS basis functions, particularly we address the case
of linear elasticity. The elasticity equations are derived in many
references, such as [11]. The strong form is to find ui : Ω̄→ R
given that fi : Ω→ R, gi : ΓDi

→ R, and hi : ΓNi
→ R such

that,

σij,j + fi = 0 in Ω,
ui = gi on ΓDi

,

σijni = hi on ΓNi
,

42

(a) Quadratic polyno-
mial approximation of
a quarter circle.

(b) Rational basis ap-
proximates the circle
exactly.

(c) Polynomial basis
functions

(d) Rational
basis functions,
{w1, w2, w3} =

{1,
√

2
2

, 1}

Fig. 2. Rational basis functions approximate conic sections, such as circles,
exactly. The circle appears as dashed line, control points appear as small
circles.

where the stress, σij , is related to the symmetric part of
the displacement gradient, ui′j

, by a linear constituitive law,
known as generalized Hooke’s law,

σij = cijklεkl,

with
εkl =

1
2

(ui,j + uj,i) ,

and
cijkl = λδijδkl + µ (δikδjl + δilδjk) ,

where λ and µ are the so-called Lamé constants, and δij is
the Kronecker delta, defined as 1 if i = j and 0 otherwise.

Assuming the pointwise satisfaction of the constitutive
relation, the weak form of the elasticity equations is stated as:
find ui ∈ Si which satisfies the Dirichlet condition ui = gi on
ΓDi

such that for all wi ∈ Vi which satisfy wi = 0 on ΓDi∫
Ω

w(i,j)σijdΩ =
∫

Ω

wifidΩ +
d∑

i=1

(∫
ΓNi

wihidΓ

)
,

where ui denotes the displacement vector components, ui,j

denotes the the derivative of ui in the direction of xj , σij and
εij are the components of the Cauchy stress and small strain
tensors, respectively, and cijkl denotes the component of the
elasticity tensor. The reader is referred to section 4.1 of [11]
for more details on the formation of matrix equations from
this weak form.

III. ALGORITHM

In this section we describe the methods used to accelerate
the assembly process of the stiffness matrix in finite element
analysis. Note that while the work here is specific to linear
elasticity, most of the insights apply to other weak forms as
well. We present the algorithmic changes relative to those

presented in [11]. For reference the algorithm for a multi-
patch isogeometric finite element code is presented here and
designated Alg. 1.

Algorithm 1 Original Isogeometric Analysis
1: Read global input data
2: Build connectivities and allocate global array
3: K = 0 and F = 0
4: for all patches in mesh do
5: Read patch input data
6: for all elements in current patch do
7: Ke = 0 and Fe = 0
8: for all quadrature points do
9: Evaluate basis functions and derivatives

10: Add contributions to Ke and Fe

11: end for
12: Assemble K ← Ke and F ← Fe

13: end for
14: end for
15: Solve Kd = F
16: Write output data

We profiled the reference code using input files representing
a statically loaded cylinder by specifying an internal pressure.
The NURBS basis exactly represents the cyliner geometry at
all levels of the discretization. While cylinder problems can be
analyzed using standard finite elements, doing so while exactly
representing the geometry in an isoparametric framework is
unique to isogeometric analysis.

To solve the system, we use a sparse conjugate gradient
solver with the zero tolerance set to 10−8. While the basis
function routine was suspected to be a major cost of the
simulation, particularly for higher p, the profile shows that
the computation represents a small portion of the overall
routine. We examined each routine, counting the floating point
operations (FLOPS) and the memory accesses. The algorith-
mic intensity is the measure of the ratio of these quantities.
Thus, routines with a high intensity perform more FLOPS per
data access and stand to benefit more from parallelization.
The algorithmic intensity was highest (0.7 and higher) in the
routine which computes the local stiffness matrices. We expect
this routine to achieve decent acceleration by mapping it to the
GPU.

A. Precomputation of Basis Functions

The basis function computation on the GPU was avoided
by a reorganization of the code to take advantage of the
structured nature of tensor product splines and precompute
the one-dimensional basis functions. This is not typically
done as the memory to store this information grows quickly.
However, NURBS-based isogeometric meshes are structured
grids, not unlike finite differences. This structure enables the
reuse of the same basis functions in many elements, which
reduces storage requirements and removes the need to compute
the basis functions on the GPU. The precomputation slightly
economizes (1% speedup for matrix assembly for elasticity)

43

the stiffness matrix assembly process, and requires a small
change to the original algorithm, described in Alg. 2. This
unexpected and marginal efficiency is due to the comparitively
more expensive local stiffness matrix computations. In other
equations were the local stiffness contributions are less intense,
such as in the Laplace equation, precomputation of the basis
functions can speedup matrix assembly by as much as 5%.

Algorithm 2 Isogeometric Analysis: precomputation of basis
functions

1: Read global input data
2: Build connectivities and allocate global array
3: K = 0 and F = 0
4: for all patches in mesh do
5: Read patch input data
6: Precompute 1D basis functions . new
7: for all elements in current patch do
8: Ke = 0 and Fe = 0
9: for all quadrature points do

10: Evaluate 3D basis from 1D values . new
11: Add contributions to Ke and Fe

12: end for
13: Assemble K ← Ke and F ← Fe

14: end for
15: end for
16: Solve Kd = F
17: Write output data

B. GPU Implementation

The strategy used here is that we compute the local stiffness
matrix and load vector (Ke and Fe) on the GPU and then trans-
fer them back to the CPU for global assembly and solution.
Alg. 3 provides a schematic for how this is accomplished.
We copy the precomputed 1D basis functions, the rational
weights, connectivity information, and geometric information
to the GPU.

Algorithm 3 Isogeometric Analysis: GPU enhanced
1: Read global input data
2: Build connectivities and allocate global array
3: K = 0 and F = 0
4: for all patches in mesh do
5: Read patch input data
6: Precompute 1D basis functions and derivatives
7: procedure MOVE TO GPU
8: Compute 3D basis . GPU
9: Add contributions to Ke and Fe . GPU

10: end procedure
11: Copy all Ke and Fe to the CPU
12: end for
13: Assemble K ← Ke and F ← Fe

14: Solve Kd = F
15: Write output data

The GPU kernel launches, assigning a block for each
element where each thread in the blocks is in charge of a single
Gauss point. The kernel is then responsible for first, com-
puting the three-dimensional rational basis, the isoparametric
mapping and its inverse, and the basis derivatives modified
by this inverse mapping. Second, the local stiffness matrix is
computed for the linear-elastic weak form. Finally the local
load vector is assembled. These operations are safe because
the computation is independent for each Gauss point.

The implementation of the each thread is a simple porting
from the original code, but the memory access pattern of the
thread should be considered carefully for the sake of optimiza-
tion. First of all, the variables that are accessed simultaneously
by continuous threads are indexed to be coalesced into a
single memory transaction. The coalesced memory access
enables an efficient global memory bandwidth, and thus it
plays the most important role in terms of optimization. In
particular, the local stiffness matrix is stored with threadID-
based indexing to achieve the coalescent memory access. The
number of local variables is another consideration for efficient
memory management. Local variables declared inside kernel
functions are stored either on the global memory or on the
register. Though the CUDA compiler determines the storage,
basically the variables above the limit of registers spill to
the global memory, and it can cause a serious decrease in
performance. We modified the original code in order to shrink
the number of local variables by removing redundant storage
and computations of the original code

The last two operations of the kernel involve a summation
of each thread’s contribution to the matrix and the load vector
and thus require reductions. The reduction over Gauss points
is achieved through the shared memory on the GPU. Naive
implementation of the reduction results in a considerable
performance loss. The possible reasons of the loss include
instruction bottleneck, bank conflict, and variable addressing.
The details of the optimization strategy can be found in [21],
[22]

Subsequently, the local contributions are copied back to the
CPU and assembled into the global matrix. While on the GPU,
each local matrix is computed ignoring Dirichlet boundary
conditions. The Dirichlet boundary conditions are incorporated
at the global assembly stage on the CPU.

IV. NUMERICAL RESULTS

This strategy was implemented and run on a NVIDIA
Tesla C1060 with the NVIDIA CUDA compiler (release 3.2,
V0.2.1221). In the result table, meshes are detailed by their
polynomial order, p, the number of elements in the cardinal
directions, Nx, Ny , and Nz , as well as the total number of
degrees of freedom, Ndof . The execution times are measured
excluding the time for data transfer between the CPU and
the GPU. The emphasis of isogeometric analysis is that while
the discretizations vary in polynomial order and number of
elements, all exactly represent the cylinder geometry. Tab. I
shows up to a 11-fold speedup compared to the publicly
distribued implementation on a single core of the CPU (an

44

TABLE I
TIME COMPARISON FOR STIFFNESS MATRIX ASSEMBLY.

Elements (Time in sec.)
p Nx Ny Nz Ndof CPU GPU Speedup

2 32 16 8 4096 6.19 0.58 10.7
2 32 16 16 8192 12.40 1.16 10.7
2 64 16 16 16384 49.43 4.60 10.7
3 16 16 8 2048 14.85 1.56 9.5
3 32 16 8 4096 29.70 3.11 9.5
3 32 16 16 8192 59.35 6.22 9.5
4 8 8 8 512 26.27 3.10 8.5
4 16 8 8 1024 52.55 6.06 8.7
4 16 16 8 2048 105.47 12.08 8.7

Intel Xeon E5405 2.00GHz). In order to maximize the thread
occupancy we split the computation of one element into two
blocks only for p = 4. Note that the relatively low speedup
for p = 4 is caused by a higher local memory requirement and
the non-divisible number of Gauss points (53) by the size of
half-warp (16) which loses the perfomance from the reduction.

V. CONCLUSION

We introduced isogeometric analysis in the context of linear
elasticity. We described algorithmic changes that must take
place in an isogeometric code to benefit from the GPU. We
detailed our approach and presented numerical results which
show decent speedups on a series of discretizations repre-
senting both p- and h-refinements. The approach is valuable
beyond linear elasticity, only the GPU code which assembles
the local stiffness matrix and load vector must be changed.

We believe that the there is a lot to be gained by fully
assembling the global matrix on the GPU. Isogeometric local
stiffness matrices overlap each other to greater extent than
conventional finite element analysis due to higher continuity
in the basis. This means that a large savings in the amount
of memory can be realized by directly assembling local
contributions to the global matrix. This also complicates the
code because additional race conditions must be avoided. Once
the global assembly is performed on the GPU we plan to also
solve the system there using a sparse iterative method.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants 1018072
and 1018079 and Award No. KUS-C1-016-04, made by King
Abdullah University of Science and Technology (KAUST).

REFERENCES

[1] T. J. R. Hughes, J. Cottrell, and Y. Bazilevs, “Isogeometric analysis:
CAD, finite elements, NURBS, exact geometry and mesh refinement,”
Computer Methods in Applied Mechanics and Engineering, vol. 194,
pp. 4135–4195, 2005.

[2] M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes, “Iso-
geometric finite element data structures based on Bézier extraction of
NURBS,” International Journal for Numerical Methods in Engineering,
2010.

[3] Y. Bazilevs, V. M. Calo, Y. Zhang, and T. J. R. Hughes, “Isogeometric
fluid-structure interaction analysis with applications to arterial blood
flow,” Computational Mechanics, vol. 38, p. 310, 2006.

[4] Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang, “Isogeometric
fluid-structure interaction: theory, algorithms, and computations,” Com-
putational Mechanics, vol. 43, pp. 3–37, 2008.

[5] J. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes, “Isogeometric
analysis of structural vibrations.” Computer Methods in Applied Me-
chanics and Engineering, vol. 195, no. 41-43, p. 5257, 2006.

[6] H. Gomez, V. M. Calo, Y. Bazilevs, and T. J. R. Hughes, “Isogeometric
analysis of the Cahn-Hilliard phase-field model,” Computer Methods in
Applied Mechanics and Engineering, vol. 197, no. 49-50, pp. 4333–
4352, 2008.

[7] H. Gomez, T. J. R. Hughes, X. Nogueira, and V. M. Calo, “Isogeometric
analysis of the isothermal Navier-Stokes-Korteweg equations,” Computer
Methods in Applied Mechanics and Engineering, vol. 199, p. 1828, 2010.

[8] L. Dedè, T. J. R. Hughes, S. Lipton, and V. M. Calo, “Structural topology
optimization with isogeometric analysis in a phase field approach,” in
USNCTAM2010, 16th US National Congree of Theoretical and Applied
Mechanics, 2010.

[9] W. A. Wall, M. A. Frenzel, and C. Cyron, “Isogeometric structural
shape optimization,” Computer Methods in Applied Mechanics and
Engineering, vol. 197, no. 33-40, pp. 2976 – 2988, 2008.

[10] Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, and T. J. R. Hughes,
“Patient-specific vascular NURBS modeling for isogeometric analysis of
blood flow,” Computer Methods in Applied Mechanics and Engineering,
vol. 196, no. 29-30, pp. 2943 – 2959, 2007.

[11] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis:
Toward Unification of CAD and FEA. John Wiley and Sons, 2009.

[12] D. Komatitsch, D. Michéa, and G. Erlebacher, “Porting a high-order
finite-element earthquake modeling application to NVIDIA graphics
cards using CUDA,” Journal of Parallel and Distributed Computing,
vol. 69, no. 5, pp. 451–460, 2009.

[13] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka, “Bandwidth intensive 3-
D FFT kernel for GPUs using CUDA,” Conference on High Performance
Networking and Computing, 2008.

[14] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W. W. Hwu, “Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA,” in Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming. ACM, 2008, pp. 73–82.

[15] S. Krakiwsky, L. Turner, and M. Okoniewski, “Acceleration of finite-
difference time-domain (FDTD) using graphics processor units (GPU),”
vol. 2, jun. 2004, pp. 1033–1036.

[16] P. Micikevicius, “3d finite difference computation on GPUs using
CUDA,” in GPGPU-2: Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units. New York, NY,
USA: ACM, 2009, pp. 79–84.

[17] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse matrix solvers
on the GPU: conjugate gradients and multigrid,” ACM Trans. Graph.,
vol. 22, pp. 917–924, July 2003.

[18] C. Cecka, A. J. Lew, and E. Darve, “Assembly of finite element methods
on graphics processors,” International Journal for Numerical Methods
in Engineering, 2010.

[19] C. C. Douglas, H. Lee, G. Haase, M. Liebmann, V. Calo, and N. Collier,
“Parallel algebraic multigrid method with GP-GPU hardware accelera-
tion,” 2010, subimitted.

[20] “NURBS code,” http://users.ices.utexas.edu/ evans/isogeometric/nurbs.zip,
jan 2011.

[21] M. Harris, “Optimizaing parallel redcution in CUDA,” White paper,
NVIDIA Developer Technology, available online. [Online]. Available:
http://http://developer.nvidia.com

[22] M. Harris, S. Sengupta, and J. D. Owens, “Parallel Prefix Sum (Scan)
with CUDA,” in GPU Gems 3, H. Nguyen, Ed. Addison Wesley, August
2007.

45

46

GPU Accelerated Scientific Computing:
Evaluation of the NVIDIA Fermi Architecture;

Elementary Kernels and Linear Solvers
Hartwig Anzt, Tobias Hahn, Vincent Heuveline and Björn Rocker

Engineering Mathematics and Computing Lab (EMCL)
Karlsruhe Institute of Technology (KIT), Germany

{hartwig.anzt, tobias.hahn, vincent.heuveline, bjoern.rocker}@kit.edu

Abstract—This study compares the latest GPU generation of
NVIDIA, named ”Fermi”, to the previous generation with respect
to their performance in scientific computing. Both the consumer
version of the hardware, GeForce GTX480 and GTX280, as
well as the professional line, Tesla C2050 and C1060, are
taken into account. The experiments include benchmarks of
elementary kernels as well as of linear solvers applied to problems
arising in the area of computational fluid dynamics. The study
shows a raw performance gain of up to 50 % for the Fermi
generation, while the GPU memory technology plays a central
role for overall performance and energy efficiency in more data-
dependent applications.

I. INTRODUCTION

Recently, the number of users and lines of code taking
advantage of the computational power of accelerators, espe-
cially GPUs, grew enormously. One reason is the facilitated
programmability of GPUs by OpenCL and NVIDIA’s CUDA.
As early as 2003, several papers described the solution of the
Navier-Stokes equations for incompressible fluid flow on the
GPUs [1], [2] or other boundary value problems [4]. With the
introduction of full double precision support on GPUs, many
more scientific projects started porting their algorithms to GPU
hardware.

An analysis of a meteorological simulation for tropical
cyclones based on finite difference and an implementation of
rigid particle flows using finite element techniques using GPU
hardware can be found in [3]. As these studies demonstrate,
hardware-aware numerical mathematics is a research area of
high potential. Both, software and hardware have to develop
hand-in-hand to yield highest performance and allow simu-
lation and optimization algorithms to reach higher levels of
detail and accuracy - A fact that is reflected in the development
of our in-house finite element package HiFlow [11], that is
able to use different kinds of accelerators.

In fall 2009 NVIDIA released their new chip architecture
”Fermi” [7]. This study compares the performance of this new
architecture to former generations, indicating the path of GPU
development and its implication on scientific computing. In
this paper, we benchmark basic BLAS routines for evaluating
the raw chip performance of the GPUs. In order to measure
the impact of the on-board memory technology during the
interplay of different kernels, we also present performance
results of a CG solver for a sparse system, resulting from a

finite difference discretization of the Laplace equation. Larger
parallel applications often need to communicate with the host,
that is why we finally include results of a mixed precision
GMRES solver that is partly executed on the CPU.

II. HARDWARE AND SOFTWARE ENVIRONMENT

We have chosen four graphics cards in total for this evalua-
tion, two of the current and two of the former chip generation,
where of each, one is from the NVIDIA professional line
(Tesla) and one from the consumer line (GeForce). The chip
and on-board memory specifications are given in table I. The
main improvements to the first generation are an increased
number single (MADD) and double precision units, and the
introduction of GDDR5 memory with significantly higher
clock rates. The latter is the reason for a 25 % higher energy
consumption of Tesla C2050 compared to C1060.

Access to the graphics chips is currently only possible via
PCIe, that is why the whole system configuration has to be
taken into account when interpreting benchmark results. Not
all test could be conducted on site, such that the system
characteristics differ. The Tesla cards where benchmarked on
Xeon systems that achieved similar PCIe saturations as the
Core i7 Tesla with GTX280. Only the device-to-host rates
differ a little for the non-pageable memory we are using for
our tests. The GTX480 could only be tested on a workstation
with an older chipset that merely achieved about half of the
PCIe transfer rates. Details on the systems are given in table
II, together with measured memory transfer rates and their
saturation when performing operations with large vectors.

III. NUMERICAL EXPERIMENTS

With the above mentioned introduction of built-in double-
precision support and furthermore IEEE754 compatibility,
GPUs evolve towards universally usable processing units. Still,
their paradigm is related to former graphics stream processing:
The same series of operations is applied to every element of a
set of data (i.e. a stream). Operations of a kernel are pipelined,
such that many stream processors can process the stream in
parallel. The limiting factor in this context is memory latency,
especially when data dependency is high and data locality is
low. GPUs try to hide memory latency by executing many
kernel instances in parallel on the same core. Switching these

47

Name Tesla C2050 Tesla C1060 GTX480 GTX280a
Chip T20 T10 GF100 GT200
Transistors 3 · 109 1.4 · 109 3 · 109 1, 4 · 109

Core frequency 1.15 GHz 1.3 GHz 1.4 GHz 1.3 GHz
Shaders (MADD) 448 240 480 240
GFLOPS (single) 1030 933 1.345 933
GFLOPS (double) 515 78 168 78
Memory 3 GB GDDR5 4 GB GDDR3 1.5 GB GDDR5 1 GB GDDR3
Memory Frequency 1.5 GHz 0.8 GHz 1.8 GHz 1.1 GHz
Memory Bandwidth 144 GB/s 102 GB/s 177 GB/s 141 GB/s
ECC Memory yes no no no
Power Consumption 247 W 187 W 250 W 236 W
IEEE double/single yes/yes yes/partial yes/yes yes/partial

TABLE I
KEY SYSTEM CHARACTERISTICS OF THE FOUR GPUS USED. COMPUTATION RATE AND MEMORY BANDWIDTH ARE THEORETICAL PEAK VALUES.

Host Device
CPU MEM BW H2D GPU MEM BW D2H CC

[GB] [GB/s] [GB/s] [GB] [GB/s] [GB/s] ECC
2 x Intel Xeon 32 12.07 PA: 3.25 Tesla T20 3 BT: 91.28 PA: 2.51 2.0

(E5520, 4 cores) PI: 5.86 daxpy: 82.5 PI: 4.75 Yes
ddot: 88.3

2 x Intel Xeon 16 6.14 PA: 1.92 Tesla T10 4 BT: 71.80 PA: 1.55 1.3
(E5450, 4 cores) PI: 5.44 daxpy: 83.1 PI: 3.77 No

ddot: 83.3
1 x Intel Core2 2 3.28 PA: 1.76 GTX480 1.5 BT: 108.56 PA: 1.38 2.0
(6600, 2 cores) PI: 2.57 daxpy: 135.0 PI: 1.82 No

ddot: 146.7
1 x Intel Core i7 6 12.07 PA:5.08 GTX280 1.0 BT: 111.54 PA: 2.75 1.3

(920, 4 cores, SMT on) PI:5.64 daxpy: 124.3 PI: 5.31 No
ddot: 94.81

TABLE II
SYSTEMS’ CONFIGURATIONS. THE ABBREVIATIONS ARE AS FOLLOWS: MEM IS THE AMOUNT OF MEMORY, BW THE BANDWIDTH, H2D DENOTES THE
HOST TO DEVICE BANDWIDTH VIA PCIE AND D2H THE OTHER TRANSFER DIRECTION, CC IS THE ’CUDA COMPUTE CAPABILITY’ AND ECC DEPICTS

THE AVAILABILITY OF ERROR CORRECTING MEMORY. PA MEANS PAGEABLE MEMORY IS ALLOCATED PI DENOTES THE USAGE OF PINNED MEMORY.

lightweight ”threads” and operating on other register sets can
be done in just a few cycles, whereas the cost of fetching data
from the global memory extends several hundreds of cycles.

While the problem described above is often inherent for
many-core computing, other restrictions of stream processing
techniques have been addressed in CUDA [7], which offer
e.g. gather and scatter operations on the global graphics
memory. The here evaluated chips can all be programmed
with slightly extended C and runtime libraries, including
hardware support for double precision, even obeying IEEE754
completely in the newest generation. As outlined in section
I, we perform benchmarks for some elementary kernels in a
first step, namely dot-products, vector updates, scalar-products,
matrix-vector and matrix-matrix operations both in single and
double precision. As our background is numerical simulation
and optimization, our goal is to solve problems applying
sophisticated mathematical methods. Hence, we rather aim
at future compatibility than for optimizing low-level routines
on single hardware generations. The tests are thus conducted
using the same CUBLAS 3.0 routines, provided by NVIDIA.

In the second step, we evaluate the performance of a CG
solver applied to a stencil-discretization of the Laplace equa-
tion, where we use own code for the sparse matrix routines.

Finally, we apply mixed precision iterative refinement
solvers to linear systems arising in the field of fluid dynamics.
These implementations use the GPU as well as the CPU of
the host system, enabling us to give a performance evaluation
of a more representative application.

A. Elementary Kernels Performance Evaluation

Figures 1 to 5 show the benchmark results of elemen-
tary kernels. The operations on vectors are clearly memory
bounded, as the number of computations is low, and data can-
not be re-used. The performance gain of 30 % in average from
one generation to the other is thus mainly due to the improved
on-board memory technology. Also, the difference from the
consumer to the professional line is proportional to the mem-
ory clock difference. In the case of the GTX480/C2050, the
factor is even larger, possibly due to the ECC protection.

The single-precision matrix-vector benchmarks show speed-
up proportional to the increased MADD-number. The same ap-
plies to the single-precision matrix-matrix benchmarks where
each card, achieves about one third of its theoretical peak
performance.

Most interesting are the double-precision results, where we
observed two phenomena. Firstly, the C2050 cannot really

48

49

Fig. 5. Performance of the general matrix-matrix multiplication routine gemm performed in single (sgemm) and double precision (dgemm).

Experiment Setup Performance (GFLOPS)
Routine Data size C2050 C1060 GTX480 GTX280

sdot 185364 9.27 6.50 12.36 8.24
sdot 39903170 29.83 18.41 38.17 29.11
ddot 110218 5.38 3.50 6.68 4.16
ddot 39903170 18.79 11.03 19.38 12.48

snrm2 185364 7.72 4.88 9.76 7.41
snrm2 39903170 44.34 26.47 48.72 48.99
dnrm2 110218 3.06 1.79 3.39 1.79
dnrm2 39903170 22.74 13.49 33.22 19.22
saxpy 185364 11.96 8.62 14.83 11.23
saxpy 39903170 23.83 13.23 22.08 19.16
daxpy 110218 6.68 4.59 7.87 5.80
daxpy 39903170 12.54 6.92 11.33 10.52
sgemv 8192 58.19 34.63 68.72 40.49
dgemv 4096 25.39 14.74 29.69 19.52
sgemm 4096 330.17 367.61 430.40 368.75
dgemm 2048 174.21 74.40 161.97 73.76

TABLE III
PERFORMANCE FOR THE ELEMENTARY KERNELS FOR SPECIAL DATA

SIZES.

stand out against the GTX480, although its theoretical peak
performance is three times higher and secondly, all but the
C2050 almost reach their peak performance in the dgemm
benchmark, while the C2050 drops to the ration of one third
as for sgemm. A reason for this is not known to us, results
provided by NVIDIA using the preliminary CUBLAS 3.1 on
C2050 are in the same range.

For easier understanding of these findings, table III shows
selected results out of the figures 1 to 5. Small data sizes are
chosen in order to cover influences of latency, which seems to
be equal for all cards. Larger data sizes measure the available
bandwidth/computing power.

B. CG Solver

The second benchmark stage focuses on an implementation
of the conjugate gradients algorithm (see e.g. [5]) based on the
CSR data format. The linear system is obtained from a finite
element discretization of the Laplace equation on a unit square
using linear test-functions, which is equivalent to a finite
differences discretization based on the 5-point-stencil. The
matrix has the following characteristics: 4,000,000 degrees of

Routine Unit C2050 C1060 GTX480 GTX280
ddot ms 0.73 0.77 0.44 0.68
ddot GB/s 88.28 83.33 146.78 94.81
ddot GFLOPS 11.03 10.42 18.35 11.85

dscal+daxpy ms 1.85 1.92 1.15 1.29
dscal+daxpy GB/s 51.89 50.10 83.26 74.71
dscal+daxpy GFLOPS 4.33 4.18 6.94 6.23

dcsrgemv ms 18.70 19.59 11.53 13.15
dcsrgemv GB/s 17.10 16.33 27.75 24.34
dcsrgemv GFLOPS 2.14 2.04 3.47 3.04

daxpy ms 1.16 1.15 0.71 0.77
daxpy GB/s 82.55 83.41 135.02 124.35
daxpy GFLOPS 6.88 6.95 11.25 10.36

TABLE IV
PERFORMANCE EVALUATION OF ELEMENTARY KERNELS OF THE

CG-ALGORITHM ON THE FOUR EVALUATED ACCELERATORS. ALL
MEASUREMENTS ARE PERFORMED IN DOUBLE PRECISION.

freedom (dofs) and 19,992,000 nonzero entries (nnz).
All computations are executed exclusively on the GPU and

are performed in double precision, the absolute stopping crite-
rion for the residual is set to 10−6. Again, we avoid to optimize
for one specific hardware platform, but use the CUBLAS
kernels in version CUBLAS 3.0 as much as possible. Since
the it does not contain any kernels for sparse matrix-vector
operations, we use an implementation of dcsrgemv following
the guidelines suggested in [6]. Optimizing the code for
the different generations of hardware accelerator technology
would result in higher performance, but at the same time
limit the portability of the application and therefore make
comparisons more difficult.

The performance results of the itemized kernels within the
CG algorithm are presented in table IV, the complete runtime
of the solver on the different GPUs is plotted in figure 6.

Again we see unexpected results for the C2050. While the
GTX480 can clearly outperform the former GTX280 model
for ddot and achieve an overall speed-up of 10 %, the factor
between C2050 and C1060 is only 1.05. Also, the consumer
cards achieve overall speed-ups of more than 1.5 compared
to the professional versions, whereby even the older GTX280
is faster than the C2050. This is especially surprising as the
specifications in table I indicate the opposite.

50

Fig. 6. Runtimes of the CG algorithm of the Laplace test for the four
evaluated accelerators. tc results make use of texture caches, ntc does not.

C. Iterative Refinement Method

To be able to evaluate the computational power of the
hardware platform in a more complex application, we use
a GPU-implementation of a plain GMRES-(30) solver and a
mixed-precision iterative refinement implementation based on
the same solver. Mixed precision iterative refinement solvers
use a reduced precision floating point format for the inner
error correction solver, and therefore are able to exploit the
often superior single precision performance of GPUs and the
double precision performance of the CPU [8], [9], [10].

Both, the plain double GMRES-(30) and the mixed preci-
sion variant solve for the right vector hand side ≡ 1 with
initial guess 0, using the relative residual stopping criterion of
ε = 10−10 ‖ r0 ‖2, while we choose εinner = 10−1 ‖ ri ‖2 as
relative inner stopping criterion for the error correction variant.

In the case of the mixed precision iterative refinement
implementation, the error correction solver is executed on the
GPU, while the solution update is performed by the CPU of
the host system. This enables us to address larger problem
sizes, since the available memory on the GPU is usually small
compared to main host memory.

As test problems, we chose three systems of linear equations
CFD1, CFD2 and CFD3, originating from a 2D Venturi Nozzle
problem, discretized in different resolutions using Q2/Q1 finite
elements. The distinct number of supporting points leads to
different matrix characteristics in terms of dimension, sparsity,
and condition number.

When comparing the total needed computation time, as
given in table V, the Tesla C2050 performs better for small
problems than the C1060 and the GTX280, but not as good
as the GTX480. For large problems, the C2050 system out-
performs also the GTX480. The explanation for this resides in
the employed host hardware setup for the GTX480, where the
memory bandwidth between host and device (PCIe) becomes
the limiting factor for large problem sizes.

CFD1

problem: 2D fluid flow
matrix dimension: n = 395009

sparsity: nnz = 3544321
storage format: CSR

CFD2

problem: 2D fluid flow
matrix dimension: n = 634453

sparsity: nnz = 5700633
storage format: CSR

CFD3

problem: 2D fluid flow
matrix dimension: n = 1019967

sparsity: nnz = 9182401
storage format: CSR

Fig. 7. Sparsity plots and properties of the CFD test-matrices.

51

IV. REMARKS ON ENERGY EFFICIENCY AND ECC

Besides the computational performance, energy efficiency
becomes more and more important for customers from
academia and industry. In figure 8 we therefore present energy
consumption estimates based on the theoretical peak power
consumption of the accelerated systems given in table II and
the runtime for our CG solver. In the case of the GTX480, the
higher GPU performance does not come with a much higher
energy consumption, resulting in the fairly good results. The
unexpected bad performance of the C2050 in the CG test and
its much higher energy consumption compared to the older
C1060 caused its fairly poor test results.

The remaining main advantages of the C2050 are thus the
more reliable hardware, which does support ECC. As this
already requires lower clock rates, we decided to evaluate the
necessity of using error correction code at all. We therefore
implemented a test program, performing a matrix-matrix and
matrix-vector multiplications using the CUBLAS routines over
and over. The tests ran in parallel to a CPU-only imple-
mentation for a time period of seven days. During this test,
we did not observe a single cache bit error, neither on the
C1060 nor on the GTX480. This indicates, that also the cards
without ECC are very reliable, though we cannot simulate data
center production operation. Of course, for critical applications
requiring ECC, there is no alternative to the C2050.

V. CONCLUSION

The current GPU generation offers enormous potential that
can be utilized not only in synthetic examples, but also
CFD applications with academic and real-life background. An
essential condition for this is, that the underlying mathematical
model combined with the numerical schemes for solving it
offers enough parallelism to create a sufficient number of
threads for the GPU to hide waiting time for memory calls
of one GPU-thread by executing another thread. Exchanging
threads is cheap compared to the time a global memory
operation takes. The programmability of NVIDIA GPUs was
heavily simplified by the introduction of CUDA compared to
the most common former approaches. Due to this, significant
performance increases can be achieved in very short time by
e.g. extending existing applications with accelerated kernels in
Fortran and/or C/C++, like the partially ported meteorological
implementation in [3] shows. Highest performance is achieved
when porting the code completely to the GPU and thereby

Fig. 8. Energy consumption in Watt hours (Wh) of the Laplace test of the
four evaluated accelerators. tc employs the texture cache, ntc does not.

avoiding host-device communication as much as possible. The
new generation of Tesla and GeForce accelerators based on the
Fermi architecture offer an additional gain in computational
performance already by looking at the theoretical values
compared to the previous generation. For many kernels and
applications based on such kernels, the performance can be
used in practice, as this study demonstrates, though we did
not observe the jump in double precision performance of the
new Tesla line, we had hoped for. When memory bandwidth
is the limiting factor, the speed-ups are lower again, due to the
fact that the memory bandwidth did not increase to the same
ratio as the ALU count (see table I). Still, the measured speed-
ups are in a range of 1.2 for the CG-algorithm, because of the
newer memory standard (GDDR3 vs. GDDR5). Similar results
can be achieved for the mixed precision iterative refinement
solvers, though the speed-up decreases for larger dimension,
as then the PCIe memory bandwidth becomes the bottleneck.
The energy efficiency tests reveal that the performance gain
in terms of execution time of the new Tesla generation comes
with the price of a significantly higher energy consumption.
The consumer versions show much better test results in this
category. In this respect, it should be mentioned, that besides
the floating point performance this paper focuses on, the re-
silience of hardware is equally important in cluster computing.

Experiment setup Computation Time (s)
problem solver type C2050 C1060 GTX480 GTX280

CFD1 plain double GMRES-(30) 164.84 252.74 145.23 183.37
mixed precision GMRES-(30) 80.48 129.19 60.98 98.46

CFD2 plain double GMRES-(30) 473.38 778.75 456.17 518.49
mixed precision GMRES-(30) 273.99 510.38 256.43 301.41

CFD3 plain double GMRES-(30) 993.63 1921.64 1145.08 1046.49
mixed precision GMRES-(30) 554.28 1555.36 669.57 697.12

TABLE V
COMPUTATION TIME (S) FOR PROBLEMS CFD1, CFD2 AND CFD3 BASED ON A GMRES-(30).

52

The rather high performance of the consumer cards comes
with an uncertainty in terms of correctness of long-lasting
computations as especially the memory components are not
designed for reliability. The importance of ECC could not be
evaluated conclusively in this study and is a topic of further
investigation.

ACKNOWLEDGEMENT

The authors would like to thank Werner Augustin and
Dimitar Lukarski from the Shared Research Group (SRG)
[12] for their assistance while performing the benchmarks
and his contributions for the content of this paper.

REFERENCES

[1] Bolz, J., Farmer, I., Grinspun, E., Schröder,P.: Sparse matrix solvers on the
GPU: conjugate gradients and multigrid. ACM Transactions on Graphics,
vol. 22, 2003, pp. 917-924

[2] Krüger, J., Westermann, R.: Linear algebra operators for gpu implemen-
tation of numerical algorithms. ACM Transactions on Graphics, vol. 22,
2003, pp. 908-916

[3] Hahn, T., Heuveline, V., Rocker, B.: GPU-based Simulation of Particulate
Flows with CUDA: Proceedings of the PARS Workshop 2009, German
Informatics Society, 2009

[4] Goodnight, N., Lewin, G., Luebke, D., Skadron, K.: A multigrid solver
for boundary-value problems using programmable graphics hardware.
Eurographics/SIGGRAPH Workshop on Graphics Hardware, 2003, pp.
102-111

[5] Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edition:
SIAM: Philadelpha, PA, 2003

[6] Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on
CUDA: NVIDIA Technical Report NVR-2008-004, December 2008

[7] NVIDIA: NVIDIA’s next generation CUDA compute architecture:
Fermi, v1.1: Whitepaper (electronic), September 2009.
www.nvidia.com/content/PDF/fermi white papers/NVIDIA Compute
Architecture Whitepaper.pdf

[8] Anzt, H., Heuveline, V., Rocker, B.: Mixed Precision Error Correction
Methods for Linear Systems: Convergence Analysis based on Krylov
Subspace Methods: Proceedings of PARA 2010 State of the Art in
Scientific and Parallel Computing, 2010.

[9] Anzt, H., Rocker, B., Heuveline, V.: An Error Correction Solver for Linear
Systems: Evaluation of Mixed Precision Implementations: Proceedings of
VECPAR 2010 High Performance Computing for Computational Science,
2010

[10] Anzt, H., Rocker, B., Heuveline, V.: Energy efficiency of mixed precision
iterative refinement methods using hybrid hardware platforms: Computer
Science - Research and Development, Springer Berlin / Heidelberg, 2010

[11] Heuveline, V. et al.: HiFlow - A Flexible and Hardware-Aware
Parallel Finite Element Package: EMCL Preprint Series, 2010.
www.emcl.kit.edu/preprints/emcl-preprint-2010-06.pdf

[12] Shared Research Group (SRG), Karlsruhe Institute of Technology (KIT),
http://www.numhpc.math.kit.edu

53

54

List of Authors

Ahmadia, Aron . 41

Anzt, Hartwig . 47

Augustin, Werner . 1

Calo, Victor M. 41

Collier, Nathan . 41

Douglas, Craig C. 41

Hahn, Tobias . 47

Heuveline, Vincent . 1,47

Jahr, Ralf . 9

Juurlink, Ben . 33

Köstler, Harald . 17

Krishna, Anil . 25

Lee, Hyoseop .41

Rathgeber, Florian . 17

Rocker, Björn . ??

Samih, Ahmad .25

Shehan, Basher . 9

Solihin, Yan . 25

Stürmer, Markus . 17

Thomas, Gervin . 33

Tutsch, Dietmar .33

Uhrig, Sascha .9

Ungerer, Theo . 9

Weiß, Jan-Philipp . 1

55

56

Financial support

The Shared Research Group (SRG) 16-1 on New Frontiers in High Performance Computing Exploit-

ing Multicore and Coprocessor Technology is a joint initiative of Karlsruhe Institute of Technology and

Hewlett-Packard. The SRG receives grants by the Concept for the Future of Karlsruhe Institute of Tech-

nology in the framework of the German Excellence Initiative and by the industrial collaboration partner

Hewlett-Packard. The present proceedings of the Second International Workshop on New Frontiers in

High-performance and Hardware-aware computing are kindly sponsored by the SRG.

High-performance and
Hardware-aware Computing

Proceedings of the Second International Workshop on
New Frontiers in High-performance and

Hardware-aware Computing (HipHaC‘11)

Rainer Buchty, Jan-Philipp Weiß (eds.)

ISBN 978-3-86644-626-7

High-performance system architectures are increasingly exploiting
heterogeneity: multi- and manycore-based systems are complemented
by coprocessors, accelerators, and reconfigurable units providing huge
computational power. However, applications of scientific interest (e.g.,
in high-performance computing and numerical simulation) are not yet
ready to exploit the available high computing potential. Different pro-
gramming models, non-adjusted interfaces, and bandwidth bottlenecks
complicate holistic programming approaches for heterogeneous archi-
tectures. In modern microprocessors, hierarchical memory layouts and
complex logics obscure predictability of memory transfers or perfor-
mance estimations.

The HipHaC workshop aims at combining new aspects of parallel, hetero-
geneous, and reconfigurable microprocessor technologies with concepts
of high-performance computing and, particularly, numerical solution
methods. Compute- and memory-intensive applications can only benefit
from the full hardware potential if all features on all levels are taken into
account in a holistic approach.

9 783866 446267

ISBN 978-3-86644-626-7

