
This version is available at https://doi.org/10.14279/depositonce-6777

This work is licensed under a CC BY-NC-ND 3.0 DE License (Creative
Commons Attribution-NonCommercial-NoDerivatives 3.0 Germany For more
information see https://creativecommons.org/licenses/by-nc-nd/3.0/de/.

Terms of Use

Thomas, G., Juurlink, B., Tutsch, D. (2011). Traffic Prediction for NoCs using Fuzzy Logic. In High-
performance and hardware-aware computing : proceedings of the Second International Workshop on New
Frontiers in High-performance and Hardware-aware Computing (HipHaC'11), San Antonio, Texas, USA,
February 2011 (in conjunction with HPCA-17). KIT Scientific Publishing. (ISBN: 978-3-86644-626-7,
proceedings DOI: 10.5445/KSP/1000021732). pp. 33–40.

Thomas, G., Juurlink, B., Tutsch, D.

Traffic Prediction for NoCs using Fuzzy
Logic

Published versionConference paper |

Traffic Prediction for NoCs using Fuzzy Logic
Gervin Thomas Ben Juurlink

Technische Universität Berlin
Department of Computer Engineering and Microelectronics

Embedded Systems Architectures
Berlin, Germany

Email: {gthomas,juurlink}@cs.tu-berlin.de

Dietmar Tutsch
Bergische Universität Wuppertal
Automation / Computer Science

Wuppertal, Germany
Email: tutsch@uni-wuppertal.de

Abstract—Networks on Chip provide faster communication
and higher throughput for chip multiprocessor systems than
conventional bus systems. Having multiple processing elements
on one chip, however, leads to a large number of message
transfers in the NoC. The consequence is that more blocking
occurs and time and power is wasted with waiting until the
congestion is dissolved. With knowledge of future communication
patterns, blocking could be avoided. Therefore, in this paper a
model is introduced to predict future communication patterns
to avoid network congestion. Our model uses a fuzzy based
algorithm to predict end-to-end communication. The presented
model accurately predictions for up to 10 time intervals for con-
tinuous patterns. Communication patterns with non-continuous
behaviors, such as fast changes from peak to zero, can also
be predicted accurately for the next 1 to 2 time intervals to
come. The model is a first step to predict future communication
patterns. In addition, some limitations are identified that must
be solved in order to improve the model.

I. INTRODUCTION

Increasing the clock frequency to increase performance is no
longer an option due to, amongst others, energy consumption,
heat developments, and the enormous costs for new technolo-
gies [1] [2]. To increase the performance of a chip, processor
vendors integrate more cores on one die. The current trend
is that the number of cores on a chip multiprocessor (CMP)
increases with every new generation and so parallel computing
has become more important than ever. The increasing number
of cores requires a communication system different from
a conventional bus system, since a bus quickly becomes
the bottleneck of the system. One approach is to employ a
Network on Chip (NoC). With the ongoing trend to increase
the number of cores on CMPs, the NoC becomes an essential
part of the system.
There are many NoC topologies such as meshes, trees, multi-
stage interconnection networks (MINs), and many more. NoCs
have several advantages such as scalability and modularity.
The optimal network configuration depends on the application
that is running because every application produces different
traffic patterns and, moreover, these patterns may change over
time. The NoC should realize communications with minor
congestion or, if possible, free of congestion. Otherwise, the
communication between cores may become the bottleneck.
Several researcher [3] [4] have proposed reconfigurable net-
works to establish communication paths without congestion.
The challenge of establishing congestion-free communication

depends on the applications that run on the system. Often,
congestion arises because several cores send messages at the
same time and all messages must be routed through the same
network. If two or more messages arrive at the same time at the
same switching element and compete for the same link, only
one can pass while the others must wait. This situation could
be avoided if, before the communication starts, it is already
known how much data each core will send and to which
core. In that case the routing in the network could be realized
with minor congestion by changing the routing algorithm. As
another example, if the NoC has a reconfigurable structure,
disjoint or lightly loaded paths through the network could be
established.
This work presents a method to predict end-to-end communi-
cation patterns. Our method is based on a fuzzy algorithm.
The prediction method searches for similar pattern in the
communication history and predicts based on that information
the next data point. By taking the newly predicted data point
into account and applying this technique several times, several
future steps can be predicted. The method is validated with a
chaotic time series and with some real traffic traces obtained
on a multicore system.
This paper is organized as follows. Section II describes related
work. Section III provides a motivational example and Sec-
tion IV describes the model that is applied. Section V describes
the fuzzy based algorithm that is used to predict end-to-end
traffic. Results are presented in Section VI. Finally, Section VII
summarizes the paper and presents some directions for future
work.

II. RELATED WORK

Huang et al. [5] proposed a table-driven predictor to predict
communication in NoCs. Like us, they predicted end-to-end
traffic without taking intermediate switches into account. Their
method, however, only predicted one future time interval.
The predicted amount of communication is either zero or the
current quantity. The technique was evaluated by running a
modified block LU decomposition kernel on Tilera’s TILE64
platform. Kaxiras and Young [6] used coherence communica-
tion prediction in distributed shared-memory systems to detect
data that is needed by several processors and to deliver the data
as soon as possible. Their approach is also table-driven.
Duato and Lysne [7] [8] have proposed a methodology for

33

deriving procedures for dynamic and deadlock-free recon-
figuration between routing functions but did not used any
prediction technique.
Ahmad [3] introduced a dynamically reconfigurable NoC
architecture for reconfigurable Multiprocessor system-on-chip.
Hansson and Goossens [4] introduced a library for NoC
reconfiguration for dynamically changing the interconnections
in dependency of the modules connected to the ports. Both
works, however, did not investigate how traffic prediction
could improve the reconfiguration of the network.
Chen et al. [9] used a fuzzy based predictive traffic model
to avoid congestion at high utilization while maintaining high
quality of service in ATM networks. This prediction model
was only applied to ATM networks. Pang et al. [10] used
a fuzzy traffic predictor and also applied it to ATM traffic
management. Results have been presented only for one-step
prediction in contrast to our model which predicts several time
steps. Otto and Schunk [11] applied fuzzy logic successfully
to load forecasting for electric utilities. They did not apply it to
other problems, however. Ogras and Marculescu [12] proposed
a flow control algorithm to predict switch-to-switch traffic.
This prediction is decentralized and based on the information
the routers receive directly from their neighbors. From the
prediction the number of packets injected in the network is
controlled. Brand et al. [13] presented a congestion control
strategy based on a Model Predictive Controller which controls
the offered load. This method requires that routing is not
dynamic, however, in contrast to our model.
The approach presented in this paper differs from and im-
proves upon the ones mentioned above as follows. First, our
approach uses a fuzzy based algorithm while previous ap-
proaches use a table-driven predictor or flow control algorithm.
Second, our method predicts several future time steps which
allows to avoid congestion or low utilization in a more flexible
way. For example, reconfiguration of a network takes some
time and is gainful only when the sum of the reconfiguration
time and message transfer time after the reconfiguration is
shorter than the transfer time without reconfiguration. It is
therefore necessary to predict several time steps ahead to be
more flexible for reconfiguration.

III. MOTIVATIONAL EXAMPLE

Communications that take place at the same time is the
reason for blocking in the network. Assume, for example,
a mesh NoC topology with 5 × 5, nodes as depicted in
Figure 1. In both figures it is illustrated that node (2, 0)
communicates with node (0, 4) (indicated by solid lines). With
dimension-order (xy) routing the communication is established
by first routing the message horizontally followed by routing
it vertically. Additional messages that are sent simultaneously
and need to cross the same links as the first message cannot
reach their destination and a congestion occurs. Such an
example is shown in Figure 1(a), where an additional message
transfer should be established between nodes (2, 1) and (3, 3)
(indicated by dotted line) as well as the nodes (4, 4) and
(1, 4) (indicated by dashed line). These communication cannot

2,0

0,4

2,1

3,3

4,4

1,4

(a) Congested communication

2,0

0,4

2,1

3,3

4,4

1,4

(b) Uncongested communication

Fig. 1. Reducing congestion by rerouting communications

Fig. 2. System as a black box

take place until the first communication releases the switching
elements.
With traffic prediction it could be known a priori that the above
mentioned nodes want to communicate. With this knowledge
a different routing decision could be taken. Alternative routing
paths are shown in Figure 1(b). The first communication
between nodes (2, 0) and (0, 4) (indicated by solid line) could
be realized by dimension-order (yx) routing which first routes
the message vertically and then horizontally. With this new
routing decision the other nodes (2, 1) and (3, 3) (indicated by
dotted line) as well as (4, 4) and (1, 4) (indicated by dashed
line) can communicate in parallel. This example illustrates
the advantages of traffic prediction to realize blocking free
communications. We remark that deadlocks could arise due to
the new routing decision, but this is not the main focus of this
work, since it can be solved using other techniques such as
virtual channels [14].

IV. END-TO-END TRAFFIC PREDICTION

Normally it is important to know the specific NoC topology
to be able to analyze it. In order to generalize our method
we do not consider the specific network topology. Instead,
our goal is to predict end-to-end communication. This means
that we do not consider the switching elements between the
nodes. It is also irrelevant which type of components (e.g. core,
memory, I/O) is connected to the NoC. Every component is
simply seen as a node. The NoC is considered as black box
to which several node are connected.
The structure of the model is depicted in Figure 2. For the
communication between nodes it is important to know which
nodes want to exchange information between them and when.
Therefore the point of time at which communication takes
places and the amount of data that is transmitted are needed.

34

yγ−m+1 yγ yn−m+1 yn

yγ+1

yn+1

Fig. 3. Search for similar pattern in the history

With these assumptions the problem of predicting traffic in
NoCs is similar to predicting a time series.

V. FUZZY BASED TRAFFIC PREDICTOR

The proposed traffic predictor is based on [11] and uses
fuzzy logic, introduced by Zadeh in 1965 [15]. Fuzzy logic
has no strict assignment of elements to sets like binary logic.
Instead, every element has a degree of membership to a set.
This degree is represented by a value between 0 and 1. To
be able to apply fuzzy logic to a specific problem such as the
prediction of a time series, a fuzzy system must be constructed.
The construction consists of three steps:

1) Fuzzyfication: In this step the degree of membership of
the input values is assigned to fuzzy sets. The degree of
membership is given by µ : X → [0, 1], where X is the
set of input values. So every input value is mapped to a
value between 0 and 1.

2) Fuzzy-Inference: In this step the output values from the
membership function are linked with several different
functions to generate an output set.

3) De-Fuzzyfication: In this step a numerical output value
is generated from the output set.

The above mentioned steps are used to predict a time series. To
do so several time steps from the past are needed. The idea
behind the algorithm is to consider the latest m (m < n)
data points from the time series Y = (y0, y1, · · · , yn) and
then search for some similar patterns in the past. We refer
to m as the pattern length. The time series Y has n + 1
data points. To determine similarity between patterns, fuzzy
logic is used. If there are some similar patterns in the past,
the algorithm forecasts the next step by interpreting these
patterns. This method is depicted in Figure 3. The last data
points between (yn) and (yn−m+1) are compared with pattern
from the history communication. If there is a pattern of pattern
length m in the past that is very similar to the latest one,
like the pattern between (yγ) and (yγ−m+1), the algorithm
predicts, that the next future point (yn+1) is also very similar
to the point that follows the past pattern (yγ+1). The latest
m data points correspond to a sub vector Y [n−m+ 1, n] =
(yn−m+1, · · · , yn−1, yn) and this vector is used as a window.
That window vector is subtracted iteratively from the past
data points, so that in total j = n − m + 1 difference
vectors D(n−m−i) = (d(n−m−i)

0 , d
(n−m−i)
1 , · · · , d(n−m−i)

m−1)

are obtained (i ∈ [0, n−m]), where D(n−m−i) is given by

D(n−m−i) =Y [n−m− i, n− 1− i] (1)
− Y [n−m+ 1, n] .

The superscripts indicate the different difference vectors. All
elements of the calculated difference vectors are mapped using
the membership function µ : X → [0, 1] to a value between
0 and 1 which shows the similarity to the original data points
from the past. In this work the triangular function, given by

µ(x) =

{
1− ∣∣ xw ∣∣ , if |x| < |w|
0, otherwise

(2)

is used as membership function. In this expression w is the
width of the membership function. The width is a degree
of how much the latest data points differs from those in
the past and can be set by the user. If the difference is too
high, the membership function generates the output value 0,
which means there is no similarity. Applying the membership
function is the first step (fuzzyfication) from the fuzzy system.
All j difference vectors are now weighted based on to their
similarity. This is done by multiplying all memberships of
all elements of a difference vector, as given by the following
equation

β(n−m−i) =
m−1∏
k=0

µ
(
d
(n−m−i)
k

)
. (3)

In this equation d
(n−m−i)
k is element k of difference vector

D(n−m−i). So every difference vector is now reduced to a
scalar value which reflects the similarity of the patterns from
the past to the last m data points. This step corresponds to the
fuzzy-inference step.
From these weights we calculate the next future data point
by performing a weighted sum of all past data points. This is
done by the following equation

yn+1 =

∑n−m
γ=0 β(n−m−γ) · yn−γ∑n−m

γ=0 β(n−m−γ) . (4)

This step corresponds to de-fuzzyfication.
The steps explained above predict the next future data point.
To predict several data points, the algorithm can be reapplied
including the predicted data point.
To predict future data points, we need several data points from
the past. The more data points are available, the higher the
possibility is to find a very similar pattern in the past and
increase the accuracy of the algorithm. The disadvantage of
using all data points from the past is that the calculation time
and memory requirements increase. So a trade-off must be
made between the number of considered data points and the
accuracy of the algorithm. This trade-off depends on how often
some communication patterns repeat. If some communication
patterns repeat very often, fewer data points are needed than
with less repetitive patterns. The effect of the history length as
well as the pattern length m on the accuracy of the proposed
algorithm is investigated in Section VI.

35

2 4 6 8 10
0

0.1

0.2

0.3

0.4

Pattern length

C
um

ul
at

iv
e

av
er

ag
e

er
ro

r

1 predicted data point
10 predicted data point
25 predicted data point
50 predicted data point

Fig. 4. Cumulative average error as a function of the pattern length

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section experimental results are provided using two
types of inputs. First, a chaotic time series will be used as
input to the proposed algorithm. Thereafter, traces from a real
MPI application will be used.

A. Mackey-Glass

First the proposed algorithm is tested with a chaotic time
series given by the Mackey-Glass differential equation [16]:

dx

dt
= β · xτ

1 + xτ n
− γ · x. (5)

To generate a chaotic time series from this equation, the
parameters are set as follows: β = 0.2, γ = 0.1, and n = 10.
In this equation xτ represents the value of the variable x at
time (t−τ). The first 600 data points are calculated by solving
the differential equation.
The pattern length m is an important parameter for the
accuracy of the proposed algorithm. Therefore, the impact
of the pattern length on the accuracy of the algorithm is
investigated first. To perform this investigation the pattern
length varied from 1 to 10 and the history length is set to 300.
Furthermore, the algorithm is used to predict different numbers
of data points. For every number of predicted data points
the cumulative average error is calculated. The cumulative
average error after n data points is the average error of the
first n data points. Figure 4 depicts the cumulative average
error as a function of the pattern length. The results show
that the cumulative average error decreases when the pattern
length is increased up to a length of 7. Therefore, all further
investigations with the Mackey-Glass time series, the pattern
length m is set to 7.
Figure 5 compares the predicted data points to the data points
generated by Equation (5) for up to 50 predicted data points.
The history length is set to 300. Thus the algorithm only
considers the last 300 data points to make a prediction. The

300 310 320 330 340 350

0.2

0.4

0.6

0.8

1

1.2

1.4

Data point

A
m

pl
itu

de

Time series
Prediction

Fig. 5. Generated and predicted data points (history length is 300)

0 10 20 30 40 50
0

0.2

0.4

0.6

Data point

R
el

at
iv

e
er

ro
r

HL 300
HL 200
HL 100

Fig. 6. Average error for 50 predicted data points with different history
lengths (HL)

width w of the membership function, Equation (2), is set to
0.3. The predicted data points differs only slightly from the
generated data points. The average error in Figure 5 is less
than 4.5%.
The history length is another important parameter for the
accuracy of the proposed algorithm. Therefore the impact
of the history length on the accuracy of the algorithm is
investigated in more detail. To perform this investigation, the
starting point for the prediction is set to four different values,
and from there on 50 data points are predicted. Afterwards
the average error for every predicted point is calculated. This
experiment is performed for different history lengths. Figure 6
depicts the average error for each predicted data point and
Figure 7 depicts the cumulative average error after a certain
number of data points have been predicted. The cumulative

36

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Data point

C
um

ul
at

iv
e

av
er

ag
e

er
ro

r

HL 300
HL 200
HL 100

Fig. 7. Cumulative average error for different history lengths (HL)

average error after n data points is the average error of the
first n data points in Figure 6. In both Figure 6 and Figure 7,
different history lengths of 100, 200 and 300 have been used.
These results show that the algorithm has the ability to predict
up to 10 data points with high accuracy (5.2% error) for a
chaotic time series with a history depth of 300. The high
accuracy is achieved because of the continuous data points.
The results also shows that the error increases when the history
length is reduced. When 10 future data points need to be
predicted the cumulative average error increases to 6.2% for a
history length of 200, and to 9.8% for a history length of 100.
There is a direct dependence between the first predicted values
and the error propagation for succeeding data points. Predicted
data points are used for the prediction of the succeeding data
point. The error accumulates from data point to data point so
error propagation happens. With a longer history lengths the
error for the first predicted value is smaller and only a minor
error propagation takes places. The algorithm miss predicts a
peak in step 31 for all history lengths, which results in an
error peak depicted in Figure 6.
Figure 8 depicts the cumulative average error as a function of
the history length. The history length is varied from 50 to 300.
The four lines correspond to different number of predicted data
points (1, 10, 25, 50). The figure shows that the first accuracy
improvement occurs when the history length is between 100
and 150. Afterwards the history length has no considerable
influence on the accuracy of the predicted data points up to
a history length of around 280. Another improvement of the
prediction accuracy takes place beyond a history length of 280.
It can be seen that for 25 and 50 predicted data points, using a
history length of e.g. 125 yields better predictions than using
longer history lengths. We cannot fully explain this behavior,
but expect this is due to the ”period” of the chaotic time series.
Figure 9 depicts normalized prediction accuracy for different
history lengths. The accuracy is normalized with respect to

50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

History length

C
um

ul
at

iv
e

av
er

ag
e

er
ro

r

1 predicted data point
10 predicted data point
25 predicted data point
50 predicted data point

Fig. 8. Cumulative average error as a function of the history length

1 2 5 10 25 50

2

4

6

8

Predicted data points

Im
pr

ov
em

en
t

HL 50
HL 100
HL 150
HL 200
HL 250
HL 300

Fig. 9. Prediction accuracy normalized to the prediction accuracy obtained
for a history length (HL) of 50 for different numbers of predicted data points.

the shortest considered history length (50). This figure shows
that the history length has a huge impact on the prediction
accuracy. When one data point is predicted, the accuracy is
improved by a factor of 8 when the history length is increased
for 50 to 300. However, the impact of the history length
decreases when the number of predicted data points increases.
When 50 data points are predicted, the improvement is reduced
to a factor of 1.5.

B. MPI Application

1) Traffic Trace: To validate the proposed algorithm on
real traffic patterns, traffic traces from real applications are
needed. To generate these traces the application Meep [17] is
used. Meep is a free finite-difference time-domain (FDTD)
simulation software package developed at MIT to model

37

0 10 20 30 40
0

5

10

15

Time [ms]

D
at

a
[k

B
]

Exemplary traffic
Traffic in intervals

Fig. 10. Non-equidistant MPI communication patterns become equidistant

electromagnetic systems. The program has the ability to to par-
allelize a problem with the Message Passing Interface (MPI)
which is used for the communication between processes. For
our purpose Meep is used with OpenMPI [18].
Every communication is recorded using the MPItrace tool [19].
This tool traces the basic activities in an MPI program and
generates a Paraver [20] trace file. This trace file includes
information about thread states and communication. For our
purpose only the communication information between MPI
processes is relevant. Therefore a short script has been im-
plemented that separates the communication information from
the rest. A drawback of the MPItrace tool is, however, that
the start and end time of every communication correspond to
the time when the MPI functions (send and receive) are called
respectively return. This calls the logical communication. It
is not possible to determine when the real (physical) com-
munication takes places. How we dealt with this problem is
described in the next section.
The application Meep has been running on a server with 2
processors with 4 cores each.

2) MPI Analysis: The dashed bars in Figure 10 depicts
exemplary the amount of data sent by an arbitrary core over
time. The figure shows that the gap between two transferred
messages and also the amount of data that is sent vary. This
leads to a prediction problem with two unknown variables,
since the problem is not only to predict how much data is sent
but also at which time. There is a large difference between not
knowing if a certain data point in time exists or to know that
there is a data point whose value may be zero. This means that
the time between two communications in the time domain are
not equidistant, which introduces problems for the proposed
algorithm. The introduced algorithm cannot deal with this
problem because there are too many unknown variables. The
algorithm can predict only one unknown variable over an
equidistant scale, for example, the amount of data that is sent
at a fixed point in time. For that reason the problem must be

0 5 10 15 20
0

2

4

6

8

10

12

Time [ms]

D
at

a
[k

B
]

Prediction
Original

Fig. 11. Prediction of MPI communications (first behavior)

reduced in order to be able to apply the proposed algorithm.
To reduce this problem, time is divided into fixed sized
intervals. In every time interval, the amount of data that is
sent is summed up. The solid bars in Figure 10 depict the
amount of data sent in each time interval. The advantage of
time intervals is that now the time axis no longer has non-
equidistant time steps. Therefore the above mentioned problem
with two unknown variables has been reduced to a problem
with one unknown, namely to predict the amount of data
that will be sent. With this technique the problem that the
tracing tool provides only traces with logical communication
information is also reduced. It can be assumed that the physical
communication will take place shortly after the logical so the
assumption is made that most communications will start in the
corresponding time interval, provided the size of the interval is
not too short. For communications that take places at the end
of a time interval it, cannot be determined if they are assigned
to the correct time interval. This side effect will be neglected.
The proposed algorithm should predict up to 20 prospective
time intervals. The width of the membership function, Equa-
tion (2), is set to 5.5 and the pattern length m is set to 7. When
predicting the MPI communication traces two behaviors have
been observed, which are depicted in Figure 11 and Figure 12.
The first data point numbered zero in both figures is the real
one. Therefore the measured and predicted values match. The
prediction starts in time interval 1. In time intervals where no
bars are visible the communication volume during this interval
is zero.
Both figures show the amount of data sent in each time
interval. The dashed bars depict the real data and the solid bars
the predicted. The first behavior is depicted in Figure 11. The
time at which a communication takes places is predicted with
high accuracy, but the predicted amount of data is below the
actual amount. The second behavior is depicted in Figure 12.
In this case the amount of transmitted data is predicted better

38

0 5 10 15 20
0

5

10

15

Time [ms]

D
at

a
[k

B
]

Prediction
Original

Fig. 12. Prediction of MPI communications (second behavior)

TABLE I
ABSOLUTE AVERAGE ERROR IN KB

Steps 1 2 5 10 20

Avg. Err. (Fig. 11) 0.008 0.768 1.551 1.498 1.920

Avg. Err. (Fig. 12) 0.246 1.596 2.442 2.427 2.656

than in the case depicted in Figure 11. The algorithm also,
however, predicts communication peaks where no peaks are.
This can be seen in time interval 12.
Table I shows the absolute average error in kB for both figures
after several predictions steps. It is not possible to present
the relative error because several data points are zero which
would lead to a division by zero. Table I shows that a 1-
step prediction can be performed with high accuracy for both
behaviors. For the first behavior also a 2-step prediction has
a small error. After that the error increases but stays nearly
constant up to step 10. Thereafter the error increases more
and more because of error propagation.
The miss predictions for both shown behaviors arise from the
relative distance between two data points in contiguous time
intervals, especially when a peak communication is followed
by the absence of communication or vice versa. Such jumps
mislead the proposed algorithm so that a wrong estimation
is produced. The communication patterns from the history
are weighted incorrectly so an error arises which influences
coming data points.
To interpret the presented results it must be taken into account
that only static simulations are performed. Data points that
occur far into the future are predicted with previously predicted
values. That means that no new data points are taken into
account so that the error propagates. In a real system the time
goes on and new data points are produced and so the history
is updated. In that case more real data points could be used to
predict the next data points, which would lead to slower error

propagation. This is identical to a prediction with few future
time intervals. Moreover, the size of the time intervals must
also be taken into account. The size of a time interval is set by
the user so that one interval could correspond to many clock
cycles. Based on the problem one or two predicted intervals
could be sufficient.

VII. CONCLUSIONS AND FUTURE WORK

In this paper a model has been proposed to predict end-to-
end traffic in NoC-based multiprocessor systems. The model
predicts end-to-end communication, so intermediate switching
elements are not considered. A fuzzy based algorithm is
employed that searches for similar traffic patterns in the
history to predict prospective data points. The prediction is
performed for time intervals. Experimental results have been
provided for a chaotic time series as well as real traffic patterns
obtained by tracing an MPI application on a multiprocessor
system. The accuracy of the prediction depends mainly on the
behavior the traffic patterns that should be predicted. Chaotic
patterns with continuous behavior can be predicted with high
accuracy for up to 10 data points. Traffic patterns that are non-
continuous, jumping from high communication volume to zero
communication or vice versa, can also be predicted accurately,
but only up to two steps ahead. Accurately predicting two data
points can be sufficient, however, because the prediction is
performed for time intervals and one interval consist of many
clock cycles.
As future work, we plan to validate the proposed method
on a NoC system. To do that the proposed algorithm must
be integrated into a NoC simulator. This step allows us to
investigate the NoC system speedup due to traffic prediction.
Furthermore, this step is important to check how the prediction
of future data points influences the NoC system. Also the
computational complexity of the model must be analyzed and
optimized in order to be able to integrate the proposed model
in NoC systems. On a real NoC system, it could be validated
how many time steps must be predicted in order to improve
the system performance. Furthermore, the prediction accuracy
of the algorithm could be improved. In particular the amount
of data that is transferred could be predicted with higher
accuracy, since the predicted amount is currently below the
actual amount.

REFERENCES

[1] D. Geer, “Chip Makers Turn to Multicore Processors,” Computer,
vol. 38, no. 5, pp. 11 – 13, May 2005.

[2] P. Gepner and M. Kowalik, “Multi-Core Processors: New Way to
Achieve High System Performance,” in Parallel Computing in Electrical
Engineering, 2006. PAR ELEC 2006. International Symposium on, 2006,
pp. 9 –13.

[3] B. Ahmad, A. Erdogan, and S. Khawam, “Architecture of a Dynamically
Reconfigurable NoC for Adaptive Reconfigurable MPSoC,” in Adaptive
Hardware and Systems, 2006. AHS 2006. First NASA/ESA Conference
on, 2006, pp. 405 –411.

[4] A. Hansson and K. Goossens, “Trade-offs in the Configuration of a
Network on Chip for Multiple Use-Cases,” in Networks-on-Chip, 2007.
NOCS 2007. First International Symposium on, May 2007, pp. 233 –
242.

39

[5] Y. Huang, K.-K. Chou, C.-T. King, and S.-Y. Tseng, “NTPT: On the
End-to-End Traffic Prediction in the On-Chip Networks,” in Design
Automation Conference (DAC), 2010 47th ACM/IEEE, 2010, pp. 449
–452.

[6] S. Kaxiras and C. Young, “Coherence communication prediction in
shared-memory multiprocessors ,” in High-Performance Computer Ar-
chitecture, 2000. HPCA-6. Proceedings. Sixth International Symposium
on, 2000, pp. 156 –167.

[7] J. Duato, O. Lysne, R. Pang, and T. Pinkston, “A Theory for Deadlock-
Free Dynamic Network Reconfiguration. Part I,” Parallel and Dis-
tributed Systems, IEEE Transactions on, vol. 16, no. 5, pp. 412 – 427,
May 2005.

[8] O. Lysne, T. Pinkston, and J. Duato, “A Methodology for Developing
Deadlock-Free Dynamic Network Reconfiguration Processes. Part II,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 16, no. 5,
pp. 428 – 443, May 2005.

[9] B.-S. Chen, Y.-S. Yang, B.-K. Lee, and T.-H. Lee, “Fuzzy Adaptive
Predictive Flow Control of ATM Network traffic,” Fuzzy Systems, IEEE
Transactions on, vol. 11, no. 4, pp. 568 – 581, 2003.

[10] Q. Pang, S. Cheng, and P. Zhang, “Adaptive fuzzy traffic predictor and
its applications in ATM networks,” in Communications, 1998. ICC 98.
Conference Record.1998 IEEE International Conference on, vol. 3, Jun.
1998, pp. 1759 –1763 vol.3.

[11] P. Otto and T. Schunk, “Fuzzybasierte Zeitreihenvorhersage,” Automa-
tisierungstechnik, vol. 48, pp. 327–334, 2000, In: German.

[12] U. Y. Ogras and R. Marculescu, “Prediction-based Flow Control for
Network-on-Chip Traffic,” in Proceedings of the 43rd annual Design

Automation Conference, ser. DAC ’06. New York, NY, USA: ACM,
2006, pp. 839–844. [Online]. Available: http://doi.acm.org/10.1145/
1146909.1147123

[13] J. van den Brand, C. Ciordas, K. Goossens, and T. Basten, “Congestion-
Controlled Best-Effort Communication for Networks-on-Chip,” in De-
sign, Automation Test in Europe Conference Exhibition, 2007. DATE
’07, 2007, pp. 1 –6.

[14] W. Dally and C. Seitz, “Deadlock-Free Message Routing in Multipro-
cessor Interconnection Networks,” Computers, IEEE Transactions on,
vol. C-36, no. 5, pp. 547 –553, May 1987.

[15] L. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, pp. 338–353,
1965.

[16] L. Glass and M. C. Mackey, “Oscillation and Chaos in Physiological
Control Systems,” Science, vol. 197, pp. 287–289, 1977.

[17] S. G. Johnson, J. D. Joannopoulos, and M. Soljai, “Meep,” 2006.
[Online]. Available: http://ab-initio.mit.edu/wiki/index.php/Meep

[18] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, Concept, and Design of a Next Generation MPI Implementa-
tion,” in Proceedings, 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary, September 2004, pp. 97–104.

[19] H. S. Gelabert and G. L. Snchez, “MPItrace - User Guide Manual,”
2010. [Online]. Available: http://www.bsc.es/plantillaA.php?cat id=492

[20] Paraver - Parallel Program Visualization and Analysis tool, Version
3.1 ed., Barcelona Supercomputing Center - Centro Nacional de
Supercomputacin, October 2001. [Online]. Available: http://www.bsc.
es/plantillaA.php?cat id=493

40

