9 research outputs found

    Reliable Identification of RFID Tags Using Multiple Independent Reader Sessions

    Full text link
    Radio Frequency Identification (RFID) systems are gaining momentum in various applications of logistics, inventory, etc. A generic problem in such systems is to ensure that the RFID readers can reliably read a set of RFID tags, such that the probability of missing tags stays below an acceptable value. A tag may be missing (left unread) due to errors in the communication link towards the reader e.g. due to obstacles in the radio path. The present paper proposes techniques that use multiple reader sessions, during which the system of readers obtains a running estimate of the probability to have at least one tag missing. Based on such an estimate, it is decided whether an additional reader session is required. Two methods are proposed, they rely on the statistical independence of the tag reading errors across different reader sessions, which is a plausible assumption when e.g. each reader session is executed on different readers. The first method uses statistical relationships that are valid when the reader sessions are independent. The second method is obtained by modifying an existing capture-recapture estimator. The results show that, when the reader sessions are independent, the proposed mechanisms provide a good approximation to the probability of missing tags, such that the number of reader sessions made, meets the target specification. If the assumption of independence is violated, the estimators are still useful, but they should be corrected by a margin of additional reader sessions to ensure that the target probability of missing tags is met.Comment: Presented at IEEE RFID 2009 Conferenc

    Reliable and Fast Estimation Systems for Wireless Media and RFID Systems

    Get PDF

    Multipacket Reception of Passive UHF RFID Tags: A Communication Theoretic Approach

    Get PDF

    Batch size estimate

    Get PDF
    In this work we analyze the main batch resolution algorithms. We particularly focus on the tree-based class to underline how their efficiency depends on the batch size. In fact, batch size is a critical parameter when using smart resolution strategies that take advantage this information to improve resolution efficiency. The dissertation will continue with the analysis of noteworthy techniques available in literature for the batch size estimate: in fact, original papers pay attention on the resolution process and leave the estimate problem in the background. Finally we propose and analyze GEGA, an estimate algorithm particularly good in terms of estimate accuracy over time taken by the estimate process.ope

    Towards Secure and Scalable Tag Search approaches for Current and Next Generation RFID Systems

    Get PDF
    The technology behind Radio Frequency Identification (RFID) has been around for a while, but dropping tag prices and standardization efforts are finally facilitating the expansion of RFID systems. The massive adoption of this technology is taking us closer to the well known ubiquitous computing scenarios. However, the widespread deployment of RFID technology also gives rise to significant user security issues. One possible solution to these challenges is the use of secure authentication protocols to protect RFID communications. A natural extension of RFID authentication is RFID tag searching, where a reader needs to search for a particular RFID tag out of a large collection of tags. As the number of tags of the system increases, the ability to search for the tags is invaluable when the reader requires data from a few tags rather than all the tags of the system. Authenticating each tag one at a time until the desired tag is found is a time consuming process. Surprisingly, RFID search has not been widely addressed in the literature despite the availability of search capabilities in typical RFID tags. In this thesis, we examine the challenges of extending security and scalability issues to RFID tag search and suggest several solutions. This thesis aims to design RFID tag search protocols that ensure security and scalability using lightweight cryptographic primitives. We identify the security and performance requirements for RFID systems. We also point out and explain the major attacks that are typically launched against an RFID system. This thesis makes four main contributions. First, we propose a serverless (without a central server) and untraceable search protocol that is secure against major attacks we identified earlier. The unique feature of this protocol is that it provides security protection and searching capacity same as an RFID system with a central server. In addition, this approach is no more vulnerable to a single point-of-failure. Second, we propose a scalable tag search protocol that provides most of the identified security and performance features. The highly scalable feature of this protocol allows it to be deployed in large scale RFID systems. Third, we propose a hexagonal cell based distributed architecture for efficient RFID tag searching in an emergency evacuation system. Finally, we introduce tag monitoring as a new dimension of tag searching and propose a Slotted Aloha based scalable tag monitoring protocol for next generation WISP (Wireless Identification and Sensing Platform) tags

    Building efficient wireless infrastructures for pervasive computing environments

    Get PDF
    Pervasive computing is an emerging concept that thoroughly brings computing devices and the consequent technology into people\u27s daily life and activities. Most of these computing devices are very small, sometimes even invisible , and often embedded into the objects surrounding people. In addition, these devices usually are not isolated, but networked with each other through wireless channels so that people can easily control and access them. In the architecture of pervasive computing systems, these small and networked computing devices form a wireless infrastructure layer to support various functionalities in the upper application layer.;In practical applications, the wireless infrastructure often plays a role of data provider in a query/reply model, i.e., applications issue a query requesting certain data and the underlying wireless infrastructure is responsible for replying to the query. This dissertation has focused on the most critical issue of efficiency in designing such a wireless infrastructure. In particular, our problem resides in two domains depending on different definitions of efficiency. The first definition is time efficiency, i.e., how quickly a query can be replied. Many applications, especially real-time applications, require prompt response to a query as the consequent operations may be affected by the prior delay. The second definition is energy efficiency which is extremely important for the pervasive computing devices powered by batteries. Above all, our design goal is to reply to a query from applications quickly and with low energy cost.;This dissertation has investigated two representative wireless infrastructures, sensor networks and RFID systems, both of which can serve applications with useful information about the environments. We have comprehensively explored various important and representative problems from both algorithmic and experimental perspectives including efficient network architecture design and efficient protocols for basic queries and complicated data mining queries. The major design challenges of achieving efficiency are the massive amount of data involved in a query and the extremely limited resources and capability each small device possesses. We have proposed novel and efficient solutions with intensive evaluation. Compared to the prior work, this dissertation has identified a few important new problems and the proposed solutions significantly improve the performance in terms of time efficiency and energy efficiency. Our work also provides referrable insights and appropriate methodology to other similar problems in the research community

    Conflict multiplicity estimation and batch resolution algorithms

    No full text
    corecore