1,102 research outputs found

    Automatic Geospatial Data Conflation Using Semantic Web Technologies

    Get PDF
    Duplicate geospatial data collections and maintenance are an extensive problem across Australia government organisations. This research examines how Semantic Web technologies can be used to automate the geospatial data conflation process. The research presents a new approach where generation of OWL ontologies based on output data models and presenting geospatial data as RDF triples serve as the basis for the solution and SWRL rules serve as the core to automate the geospatial data conflation processes

    Automated vector-vector and vector-imagery geospatial conflation

    Get PDF
    Title from PDF of title page (University of Missouri--Columbia, viewed on October 22, 2012).The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.Dissertation advisor: Dr. James M. KellerVita.Ph. D. University of Missouri--Columbia 2011."May 2011"With the rapid advance of geospatial technologies, the availability of geospatial data from multiple sources has increased dramatically. Integration of multi-source geospatial data can provide insights and capabilities not possible with individual datasets. However, multi-source datasets over the same geographical area are often disparate and do not match well with each other. Accurately integrating geospatial data from different sources is a challenging task. In this dissertation research, we proposed a set of innovative geospatial conflation algorithms to attack the multi-source geospatial integration/conflation problem. We developed a novel snake-based approach to conflate two vector road datasets which has several benefits over traditional conflation methods. Since feature matching is one of the most crucial subtasks of conflation, we proposed a new relaxation labeling-based point matching algorithm to provide an elegant and well-motivated solution to the conflation problem. For the vector-to-imagery conflation, we presented a comprehensive approach by integrating several vector-based and image-based algorithms including spatial contextual signature extraction, road intersections and terminations extraction, relaxation labeling-based point matching, piecewise rubber-sheeting transformation, and snake-based refinement. Finally we extended our road conflation approach to digital parcel map to make it consistent with high-resolution imagery. The experiments on real world geospatial datasets showed excellent results.Includes bibliographical reference

    Map Conflation using Piecewise Linear Rubber-Sheeting Transformation between Layout and As-Built Plans in Kumasi Metropolis.

    Get PDF
    Context and backgroundAccurately integrating different geospatial data sets remain a challenging task because diverse geospatial data may have different accuracy levels and formats. Surveyors may typically create several arbitrary coordinate systems at local scales, which could lead to a variety of coordinate datasets causing such data to remain unconsolidated and in-homogeneous.Methodology:In this study, a piecewise rubber-sheeting conflation or geometric correction approach is used to accomplish transformations between such a pair of data for accurate data integration. Rubber-sheeting or piecewise linear homeomorphism is necessary because the different plans’ data would rarely match up correctly due to various reasons, such as the method of setting out from the design to the ground situation, and/or the non-accommodation of existing developments in the design.  Results:The conflation in ArcGIS using rubber sheet transformation achieved integration to a mean displacement error of 1.58 feet (0.48 meters.) from an initial mean displacement error of 71.46 feet (21.78 meters) an improvement of almost 98%. It is recommended that the rubber sheet technique gave a near exact point matching transformation and could be used to integrate zone plans with As-built surveys to address the challenges in correcting zonal plans in land records.  It is further recommended to investigate the incorporation of the use of textual information recognition and address geocoding to enable the use of on-site road names and plot numbers to detect points for matching

    W3C PROV to describe provenance at the dataset, feature and attribute levels in a distributed environment

    Get PDF
    Provenance, a metadata component referring to the origin and the processes undertaken to obtain a specific geographic digital feature or product, is crucial to evaluate the quality of spatial information and help in reproducing and replicating geospatial processes. However, the heterogeneity and complexity of the geospatial processes, which can potentially modify part or the complete content of datasets, make evident the necessity for describing geospatial provenance at dataset, feature and attribute levels. This paper presents the application of W3C PROV, which is a generic specification to express provenance records, for representing geospatial data provenance at these different levels. In particular, W3C PROV is applied to feature models, where geospatial phenomena are represented as individual features described with spatial (point, lines, polygons, etc.) and non-spatial (names, measures, etc.) attributes. This paper first analyses the potential for representing geospatial provenance in a distributed environment at the three levels of granularity using ISO 19115 and W3C PROV models. Next, an approach for applying the generic W3C PROV provenance model to the geospatial environment is presented. As a proof of concept, we provide an application of W3C PROV to describe geospatial provenance at the feature and attribute levels. The use case presented consists of a conflation of the U.S. Geological Survey dataset with the National Geospatial-Intelligence Agency dataset. Finally, an example of how to capture the provenance resulting from workflows and chain executions with PROV is also presented. The application uses a web processing service, which enables geospatial processing in a distributed system and allows to capture the provenance information based on the W3C PROV ontology at the feature and attribute levels

    Management and Conflation of Multiple Representations within an Open Federation Platform

    Get PDF
    Building up spatial data infrastructures involves the task of dealing with heterogeneous data sources which often bear inconsistencies and contradictions, respectively. One main reason for those inconsistencies emerges from the fact that one and the same real world phenomenon is often stored in multiple representations within different databases. It is the special goal of this paper to describe how the problems arising from multiple representations can be dealt with in spatial data infrastructures, especially focusing on the concepts that have been developed within the Nexus project of the University of Stuttgart that is implementing an open, federated infrastructure for context-aware applications. A main part of this contribution consists of explaining the efforts which have been conducted in order to solve the conflicts that occur between multiple representations within conflation or merging processes to achieve consolidated views on the underlying data for the applications

    A Geospatial Cyberinfrastructure for Urban Economic Analysis and Spatial Decision-Making

    Get PDF
    abstract: Urban economic modeling and effective spatial planning are critical tools towards achieving urban sustainability. However, in practice, many technical obstacles, such as information islands, poor documentation of data and lack of software platforms to facilitate virtual collaboration, are challenging the effectiveness of decision-making processes. In this paper, we report on our efforts to design and develop a geospatial cyberinfrastructure (GCI) for urban economic analysis and simulation. This GCI provides an operational graphic user interface, built upon a service-oriented architecture to allow (1) widespread sharing and seamless integration of distributed geospatial data; (2) an effective way to address the uncertainty and positional errors encountered in fusing data from diverse sources; (3) the decomposition of complex planning questions into atomic spatial analysis tasks and the generation of a web service chain to tackle such complex problems; and (4) capturing and representing provenance of geospatial data to trace its flow in the modeling task. The Greater Los Angeles Region serves as the test bed. We expect this work to contribute to effective spatial policy analysis and decision-making through the adoption of advanced GCI and to broaden the application coverage of GCI to include urban economic simulations

    Conflating point of interest (POI) data: A systematic review of matching methods

    Full text link
    Point of interest (POI) data provide digital representations of places in the real world, and have been increasingly used to understand human-place interactions, support urban management, and build smart cities. Many POI datasets have been developed, which often have different geographic coverages, attribute focuses, and data quality. From time to time, researchers may need to conflate two or more POI datasets in order to build a better representation of the places in the study areas. While various POI conflation methods have been developed, there lacks a systematic review, and consequently, it is difficult for researchers new to POI conflation to quickly grasp and use these existing methods. This paper fills such a gap. Following the protocol of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we conduct a systematic review by searching through three bibliographic databases using reproducible syntax to identify related studies. We then focus on a main step of POI conflation, i.e., POI matching, and systematically summarize and categorize the identified methods. Current limitations and future opportunities are discussed afterwards. We hope that this review can provide some guidance for researchers interested in conflating POI datasets for their research
    • …
    corecore