1,939 research outputs found

    Multi-Loop Integral Control-Based Heart Rate Regulation for Fast Tracking and Faulty-Tolerant Control Performance in Treadmill Exercises

    Get PDF
    In order to offer a reliable, fast, and offset-free tracking performance for the regulation of heart rate (HR) during treadmill exercise, a two-input single-output (2ISO) control system by simultaneously manipulating both treadmill speed and gradient is proposed. The decentralized integral controllability (DIC) analysis is extended to nonlinear and non-square processes especially for a 2ISO process, namely multi-loop integral controllability (MIC). The proposed multi-loop integral control-based HR regulation by manipulating treadmill speed and gradient is then validated through a comparative treadmill experiment that compares the system performance of the proposed 2ISO MIC control loop with that of single-input single-output (SISO) loops, speed/gradient-to-HR. The experimental validation presents that by simultaneously using two control inputs, the automated system can achieve the fastest HR tracking performance and stay close to the reference HR during steady state, while comparing with two SISO structures, and offer the fault-tolerant ability if the gains of the two multi-loop integral controllers are well tuned. It has a vital implication for the applications of exercise rehabilitation and fitness in relation to the automated control system

    Integration of process design and control: A review

    Get PDF
    There is a large variety of methods in literature for process design and control, which can be classified into two main categories. The methods in the first category have a sequential approach in which, the control system is designed, only after the details of process design are decided. However, when process design is fixed, there is little room left for improving the control performance. Recognizing the interactions between process design and control, the methods in the second category integrate some control aspects into process design. With the aim of providing an exploration map and identifying the potential areas of further contributions, this paper presents a thematic review of the methods for integration of process design and control. The evolution paths of these methods are described and the advantages and disadvantages of each method are explained. The paper concludes with suggestions for future research activities

    Integrated design and control of chemical processes : part I : revision and clasification

    Get PDF
    [EN] This work presents a comprehensive classification of the different methods and procedures for integrated synthesis, design and control of chemical processes, based on a wide revision of recent literature. This classification fundamentally differentiates between “projecting methods”, where controllability is monitored during the process design to predict the trade-offs between design and control, and the “integrated-optimization methods” which solve the process design and the control-systems design at once within an optimization framework. The latter are revised categorizing them according to the methods to evaluate controllability and other related properties, the scope of the design problem, the treatment of uncertainties and perturbations, and finally, the type the optimization problem formulation and the methods for its resolution.[ES] Este trabajo presenta una clasificación integral de los diferentes métodos y procedimientos para la síntesis integrada, diseño y control de procesos químicos. Esta clasificación distingue fundamentalmente entre los "métodos de proyección", donde se controla la controlabilidad durante el diseño del proceso para predecir los compromisos entre diseño y control, y los "métodos de optimización integrada" que resuelven el diseño del proceso y el diseño de los sistemas de control a la vez dentro de un marco de optimización. Estos últimos se revisan clasificándolos según los métodos para evaluar la controlabilidad y otras propiedades relacionadas, el alcance del problema de diseño, el tratamiento de las incertidumbres y las perturbaciones y, finalmente, el tipo de la formulación del problema de optimización y los métodos para su resolución

    A Decentralized Mobile Computing Network for Multi-Robot Systems Operations

    Full text link
    Collective animal behaviors are paradigmatic examples of fully decentralized operations involving complex collective computations such as collective turns in flocks of birds or collective harvesting by ants. These systems offer a unique source of inspiration for the development of fault-tolerant and self-healing multi-robot systems capable of operating in dynamic environments. Specifically, swarm robotics emerged and is significantly growing on these premises. However, to date, most swarm robotics systems reported in the literature involve basic computational tasks---averages and other algebraic operations. In this paper, we introduce a novel Collective computing framework based on the swarming paradigm, which exhibits the key innate features of swarms: robustness, scalability and flexibility. Unlike Edge computing, the proposed Collective computing framework is truly decentralized and does not require user intervention or additional servers to sustain its operations. This Collective computing framework is applied to the complex task of collective mapping, in which multiple robots aim at cooperatively map a large area. Our results confirm the effectiveness of the cooperative strategy, its robustness to the loss of multiple units, as well as its scalability. Furthermore, the topology of the interconnecting network is found to greatly influence the performance of the collective action.Comment: Accepted for Publication in Proc. 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conferenc

    Plantwide Control System Design for IGCC Power Plants with CO2 Capture

    Get PDF
    In this paper, a systematic approach to design the control system of a commercial-scale integrated gasification combined cycle (IGCC) power plant with CO2 capture is considered. The control system design is developed with the objective of optimizing a desired scalar function while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. Various objective functions can be considered for the control system design such as maximization of profit, maximization of the power produced, or minimization of the auxiliary power consumed in the plant. The design of such a control system can make the IGCC plant suitable to play an active role in the smart grid era by enabling operation in the load-following mode as demand for electricity from the grid fluctuates over time. In addition, other penalty functions such as emission penalties for CO2 or other criteria pollutants can be considered in the control system design.;The control system design is performed in two stages. In the first stage, a top-down analysis is used to generate a list of controlled, manipulated, and disturbance variables considering a scalar operational objective and other process constraints. In this section, innovative methods devised for primary and secondary controlled variable selection will be discussed.Exploiting these results, the second stage uses a bottom-up approach for simultaneous design of the control structure and the controllers. In this section, a novel means of control structure design has been proposed.;In this research, the proposed two-stage control system design approach is applied to the IGCC\u27s acid gas removal (AGR) process which uses the physical solvent Selexol(TM) to selectively remove CO2 and H2S from the shifted syngas. Aspen Plus DynamicsRTM is used to develop the AGR process model while MATLABRTM is used to perform the control system design. This work has shown the proposed design procedure for plantwide control yields an optimal control structure. Additionally, the methods proposed in this work for primary and secondary controlled variable selection yield controlled variables which balance economic and control performance. Finally, the method proposed for control structure design has been found to yield a control structure that balance the control performance with controller complexity

    Optimal Control of Two-Player Systems with Output Feedback

    Full text link
    In this article, we consider a fundamental decentralized optimal control problem, which we call the two-player problem. Two subsystems are interconnected in a nested information pattern, and output feedback controllers must be designed for each subsystem. Several special cases of this architecture have previously been solved, such as the state-feedback case or the case where the dynamics of both systems are decoupled. In this paper, we present a detailed solution to the general case. The structure of the optimal decentralized controller is reminiscent of that of the optimal centralized controller; each player must estimate the state of the system given their available information and apply static control policies to these estimates to compute the optimal controller. The previously solved cases benefit from a separation between estimation and control which allows one to compute the control and estimation gains separately. This feature is not present in general, and some of the gains must be solved for simultaneously. We show that computing the required coupled estimation and control gains amounts to solving a small system of linear equations

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas
    corecore