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ABSTRACT 

 

Steady State and Dynamic Modeling of the Modified Claus Process as part of 

an IGCC Power Plant 

 
Dustin Douglas Jones 

 

In this paper, a systematic approach to design the control system of a commercial-scale 

integrated gasification combined cycle (IGCC) power plant with CO2 capture is considered. The 

control system design is developed with the objective of optimizing a desired scalar function 

while satisfying operational and environmental constraints in the presence of measured and 

unmeasured disturbances. Various objective functions can be considered for the control system 

design such as maximization of profit, maximization of the power produced, or minimization of 

the auxiliary power consumed in the plant. The design of such a control system can make the 

IGCC plant suitable to play an active role in the smart grid era by enabling operation in the load-

following mode as demand for electricity from the grid fluctuates over time. In addition, other 

penalty functions such as emission penalties for CO2 or other criteria pollutants can be 

considered in the control system design.  

The control system design is performed in two stages. In the first stage, a top-down analysis is 

used to generate a list of controlled, manipulated, and disturbance variables considering a scalar 

operational objective and other process constraints. In this section, innovative methods devised 

for primary and secondary controlled variable selection will be discussed.Exploiting these 

results, the second stage uses a bottom-up approach for simultaneous design of the control 

structure and the controllers. In this section, a novel means of control structure design has been 

proposed. 

In this research, the proposed two-stage control system design approach is applied to the IGCC‟s 

acid gas removal (AGR) process which uses the physical solvent Selexol™ to selectively remove 

CO2 and H2S from the shifted syngas.  Aspen Plus Dynamics
®
 is used to develop the AGR 

process model while MATLAB
®
 is used to perform the control system design.  This work has 

shown the proposed design procedure for plantwide control yields an optimal control structure.  

Additionally, the methods proposed in this work for primary and secondary controlled variable 

selection yield controlled variables which balance economic and control performance.  Finally, 

the method proposed for control structure design has been found to yield a control structure that 

balance the control performance with controller complexity.  
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1. Introduction 
 

Designing an optimal control system for an IGCC plant with CO2 capture addresses the 

challenge of efficiently operating and controlling coal-fed IGCC plants with the desired extent of 

CO2 capture in the face of disturbances without violating operational and environmental 

constraints.  The control system design needs to optimize a desired scalar function while 

satisfying all the operational and environmental constraints in the presence of measured and 

unmeasured disturbances.  Various objective functions can be considered for the control system 

design such as maximization of profit, maximization of the power produced, or minimization of 

the auxiliary power.  The design of such a control system makes the plant suitable to play an 

active role in the smart grid era.  In addition, other penalty function(s) such as emission penalties 

for CO2 or other criteria pollutants may be considered in the framework.  This approach can be 

followed for control system design of future IGCC plants at the grassroots level as well as for 

retrofitting existing plants with suitable modifications.  More specifically, the approach will be 

applicable for any number of large scale plants. 

The control system design will be performed in two stages.  In the first stage, a top-down 

approach will be taken to generate a list of manipulated, control, and disturbance variables 

considering a scalar operation objective and other process constraints.  In the second stage, a 

bottom-up approach will be used for simultaneous design of the control structure and the 

controllers taking into account the results from the previous stage.  The regulatory control layer 

will be designed for both servo control and disturbance rejections.  Traditional, as well as 

advanced, PID controllers will be designed in this layer.  In the supervisory control layer, both 

centralized and decentralized controls will be explored.  For centralized control, linear model 

predictive control (MPC) will be evaluated where the process models will be identified from the 

first principles dynamic model (of the plant).  Finally, an optimization layer will be designed that 

can satisfy the operational objective by utilizing the primary controlled variables as degrees of 

freedom.  The design procedure will first be developed and applied to the Selexol unit of an 

IGCC plant.   

In practice, the control system of a chemical plant is divided into multiple control layers which 

are separated by their respective time scales.  Figure 1 shows five of these control layers and how 

they are connected (Skogestad, 2004).  This work will be concerned with the design of the lower 



2   

 

three levels.  The regulatory control level is required primarily for the stabilization of the plant 

and operates in the time scale of seconds.  The supervisory control layer is required to maintain 

desired process outputs and operates in the time scale of minutes.  The local optimizer is used for 

determining the optimal process outputs and operates in the time scale of hours.  These control 

layers are connected by the set points of the lower level controllers.  The local optimizer sets the 

set points of the supervisory control layer that determines the set points of the regulatory control 

layer to attain the desired output. 

 

 

Figure 1. Typical Control Hierarchy in a Chemical Plant (Skogestad, 2004) 

 

Plantwide control is described by Skogestad (Skogestad, 2004) as dealing with the structural 

decisions required before controllers are designed.  Skogestad breaks this process into several 

tasks:  

1. selection of manipulated variables m (inputs) 

2. selection of controlled variables (outputs) 

3. selection of additional measurements for control purposes, including stabilization 

4. selection of control configuration (the structure of the overall controller that 

interconnects the controlled, manipulated, and measured variables) 

5. selection of controller type (PID, decoupler, linear-quadratic-Gaussian control, etc.) 
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Methods exist for some of these tasks, however, generally these tasks are undertaken following a 

heuristic method.  Foss (Foss, 1973) describes the problem in the following way: 

“The central issue to be resolved by the new theories is the determination of the control system 

structure.  Which variables should be measured which inputs should be manipulated and which 

links should be made between the two sets? There is more than a suspicion that the work of a 

genious is needed here, for without it the control configuration problem will likely remain in a 

primitive, hazily stated and wholly unmanageable form.  The gap is present indeed, but contrary 

to the views of many, it is the theoretician who must close it.” 

Though this area of research has been active for the last decade, many gaps still exists which 

limit the generic applicablity.  The objective of this research is to identify these gaps and to 

devise new procedures which will enhance the design procedure and allow it to become more 

generically applicable.  These include the identification of candidate controlled variables, the 

selection criteria of primary controlled variables, and how one is to connect manipulated 

variables with controlled variables, just to name a few.  Additionally, it is desired to determine 

how these methods can be applied to large-scale, highly nonlinear systems where the linear 

models used for the design may not be applicable. 
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2. Literature Review 
 

A design procedure proposed by Skogestad (Skogestad, 2004) is outlined in Tables 1 and 2.  The 

design procedure that will be developed in this work is based largely on the design procedure 

proposed by Skogestad.  This procedure is broken into two stages, a top-down analysis and a 

bottom-up design.  The top-down analysis deals with the definition of an operational objective 

and process constraints.  Additionally, it is at this stage that input and output variables are 

selected.  During the bottom-up design stage, the control layers of the control system are 

designed sequentually. 

2.1. Top-Down Analysis 

During the top-down analysis portion of the design, no controller design is undertaken.  This 

analysis is concerned with identification of operational regions of the process and determining 

what should be controlled within the process. 

2.1.1. Definition of Operational Objective and Constraints 

The first step in the top-down analysis is the definition of an operational objective and 

operational constraints.  This operational objective must be a scalar cost function that must be 

minimized.  The operational objective could be minimization of the cost of operation, auxiliary 

power usage, total power output, or any other objective.  The constraints of the process can be 

related to operational constraints, e.g., maximum allowable pressure of a vessel, or 

environmental constraints, e.g., maximum CO2 emissions. 
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Table 1. Plantwide control structure design procedure, top-down anlaysis (Skogestad , 2004) 
Step Comment Proposed Modifications 

(I)Top – down analysis 
1. Definition of operational 
objectives 

Identify operational constraints, and 
a scalar cost function J to be 
minimized 

  

2. Manipulated variables and degrees of freedom 
Identify dynamic and steady-state degrees of freedom 

May need extra equipment of 
there are too few DOF‟s 

 

3. Primary controlled variables 
Which variables should we control? 

 Active Constraints 

 With remaining control variables, control 

variables for which constant set points give 
small economic loss when disturbances occur 

Steady-state economic 
analysis: 

 Define cost and 
constraint 

 Optimization w.r.t 
steady-state DOF‟s 
for various 

disturbances 
(identifies active 
constraints) 

 Evaluation of loss 

with constant set 
points 

Multi-objective optimization 
consisting of an economic 

performance function and a 
controllability function.  If not 
computationally prohibitive, 
consider both controlled variables 
and manipulated variables selection 
(simultaneous design of regulatory 
control layer) 

4. Production rate 
Where should the production rate be set? (Very 
important choice as it determines the structure of 
remaining inventory control system) 

Optimal location follows 
from steady-state 
optimization (step 3), but 
may move depending on 

operation 

This should be undertaken during 
step 3 unless a bottleneck is present 
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Table 2. Plant-wide control structure design procedure, bottom-up design (Skogestad, 2004) 
Step Comment Proposed Modifications 

(II) Bottom–up design   

5. Regulatory control layer 

5.1 Stabilization 
5.2 Local disturbance rejection 

Purpose: “Stabilize” the plant using low-complexity 
controllers (single-loop PID controllers) such that 1) the 
plant does not drift too far away from its nominal operating 
point and 2) the supervisory layer (or the operators) can 
handle the effect of disturbances on the primary outputs 
Main Structural issue: What more should we control 

 Select secondary controlled variables 

(measurements) 

 Pairing these with manipulated variables avoiding 

manipulated variables that saturate 

5.1 Pole vector analysis 

for selecting measured 
variables and 
manipulated inputs for 
stabilizing control 

5.2 Partially controlled 
plant analysis. Control 
secondary 
measurements so that 
the sensitivity of states 

to disturbances is 
small at intermediate 
frequencies 
Model Requirement: 
Linear multivariable 
dynamic model 

 

6. Supervisory control layer 

Purpose: Keep primary controlled variables at optimal set 
points using degrees of freedom (inputs) the set points for 
the regulatory layer and any unused manipulated variables. 
Main Structural issue: Decentralized or multivariable 
control? 
6a. Decentralized (single-loop) control 

 May use simple PI or PID controllers 

 Structural issues: choose input-output pairing 

Possibly with addition of feed-forward and ratio control 
Pairing analysis: Pair on RGA close to identity matrix at 
crossover frequency, provided not negative at steady-state.  
Use CLDG for more detailed analysis 
6b. Multivariable control 

1. Use for interacting processes and for easy handling of 
feed-forward control 
2. Use MPC with constraints handling for moving smoothly 
between changing active constraints (avoids logic needed in 
decentralized scheme) 

 Determine structure of supervisory 

control layer with Gramian based 
interaction measures 

7. Optimization layer 
Purpose: Identify active constraints and compute optimal 
set points for controlled variables 

Main structural issue: Do we need real-time optimization 
(RTO)? 

Model Requirements: 
Nonlinear steady-state 
model, plus costs and 

constraints 

 

8. Validations Nonlinear dynamic 
simulation of critical parts 

 

2.1.2. Degree of Freedom Analysis 
 

The process degrees of freedom can be divided into two catagories, dynamic and control degrees 

of freedom.  Dynamic degrees of freedom (typically liquid levels of holdup tanks) are degrees of 

freedom that have no impact on steady state operation.  The control degrees of freedom are 

defined as degrees of freedom that have an impact on steady state operation.  Skogestad 

(Skogestad, 2004) divides the control degrees of freedom into two additional classes, 

optimization and steady-state degrees of freedom.  Optimization degrees of freedom are defined 

as degrees of freedom that have an effect on the cost function defined in the first step and that 
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will be used to optimize the process.  Steady-state degrees of freedom are defined as degrees of 

freedom that effect the steady-state operation but not the operational objective.  In general, 

however, the steady-state degrees of freedom (DOF) are the same as the optimization degrees of 

freedom.  An example of a degree of freedom analysis from (Skogestad, 2004) is shown in 

Figure 2.  This is an integrated distillation process with total DOF of 11.  This is, for all intents, 

an exercise in „valve counting‟ as, in general, the DOF‟s are available through the manipulation 

of the valves.  Four of these DOF‟s are associated with liquid levels, and therefore are dynamic 

DOF‟s with no steady-state effect.  Removing these four DOF‟s from the original eleven results 

in seven control DOF‟s that have steady-state effects. 

 

Figure 2: Example of degree of freedom analysis  (Skogestad, 2004) 

 

2.1.3. Primary Controlled Variable Selection 

An important step in the design of a control structure is choosing what should be controlled.  

From the work of Skogestad, 2004 and Araujo et al, 2007, determining which controlled 

variables should be choosen is an involved, multistep process.  First, several optimization studies 

must be undertaken.  The process is optimized with respect to an operational objective at the 

nominal operation point using the degrees of freedom previously identified and subject to all 

process and enviornmental constraints.  With this complete, likely disturbances that the process 

may encounter are identified.  The process is then reoptimized under varying magnitudes of 

these identified disturbances.  These disturbances may include changes in flowrate, 
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compositions, temperatures, operational and environmental constraints among others possibilites.  

This reoptimization is undertaken by implementing the disturbance onto the model and then 

optimizing the process.  Constraints that are active under all disturbances will be chosen as 

controlled variables (Maarleveld & Rijnsdrop, 1970;Skogestad , 2000).  Any degrees of freedom 

remaining after active constraints are controlled need additional controlled variables.  It is 

desired that these remaining controlled variables will result in self-optimizing control.  Self-

optimizing control variables, as defined by Skogestad, are those that result in acceptable loss 

when a constant setpoint policy is used.  Here, loss is defined as the difference in the objective 

function values between the optimized cases and the constant setpoint cases.  Morari et al (1980) 

described the self-optimizing controlled variables as those that “when held constant, lead 

automatically to the optimal adjustments of the manipulated variables.”  Figure 3, from 

(Skogestad, 2004), is a graphical representation that depicts the general idea of self-optimizing 

control variables.  The controlled variable set C2,s results in higher loss than C1,s.  For this reason, 

C1,s would be called a self-optimizing controlled variable set as compared to C2,s.  It is important 

to note that self-optimizing performance is a relative term.  For example, one controlled variable 

set has better self-optimizing performance as compared to another controlled variable set.   
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Figure 3: Comparison of constant setpoint policy with two controlled variables sets where d
*
 is 

the nominal operating point (Skogestad , 2004) 

 

There are several proposed methods for finding these self-optimizing control variables: the local 

linear method (Skogestad , 2000), the exact local worst-case method (Halvorsen et al, 2003), and 

the local average loss method (Kariwala & Cao, 2008).   A major advantage of these methods is 

that they do not require any dynamic information, only steady state information.  Each of these 

methods start by defining a loss function for the process.  The loss functions for the local linear 

method, the exact local method, and the local average loss method are shown as Equations 1, 2, 

and 3, respectively.  Equation 1 is based upon a Taylor series expansion of the loss function out 

to the 3
rd

 term.  Equations 2 and 3 are exact solutions to the loss function.  The basic concept 

behind Equations 2 and 3 is determining how disturbances will effect the primary controlled 

variables and how the input variables will have to be manipulated to maintain those controlled 

variables at their setpoints.  Additionally, the effect of the disturbances on the objective function 

itself is considered, e.g., how changes in throughput of a plant effects the loss itself.  Finally, 

how the disturbances and the manipulated variables work together to effect the loss function are 
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brought together in the first term of Equations 2 and 3.  Additionally, the effect of 

implementation error is also included in Equations 2 and 3.  This term is, essentially, an additive 

term that accounts for any implementation error that will effect the cost function.  It is important 

to note that the formulations of Equations 2 and 3 are the same, they differ only in respect to the 

matrix norm that is applied to them.  Additionally, these selection criteria neither consider the 

controllability nor the observability of the resulting process. 
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The above methods all assume the linear model shown as Equation 4.  Loss is defined as 

Equation 5.  

d ey Gu G d W e                                                                 (4) 
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where J is the cost function, G is the steady-state gain matrix, Gd is the disturbance gain matrix, 

Juu is 
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, ny is the number of controlled variables to be selected, nd is the number 

of disturbances considered, and S, Wd, and We are all scaling matrices.  The scaling matrix S is 

based on the range of the candidate controlled variables from the optimization studies.  

Specifically, 
 

1

i

S diag
span c

  
  

  

 where   max nom d

i i ispan c c c   with nom

ic  as the value of the 

candidate controlled variable i at nominal operation and d

ic  is the value of the candidate 

controlled variable due to the disturbance d.  The matrices Wd and We are scaling matrices used 

so that the magnitudes of the disturbance and implementation error vectors are between 0 and 1. 

The way in which these equations are used to find candidate self-optimizing control variables is 

the same.  Note that all of the variables in these equations are independent of the controlled 

variables with the exception of the steady-state gain matrix and the disturbance gain matrix.  
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Because of this, candidate controlled variables can be compared by the evaluation of these 

equations with the respective controlled variables included in the gain matrices while the others 

are removed.  These relations are advantageous compared to direct evaluation of the loss 

function using the non-linear process model in several important respects.  First, these relations 

are far less computationally expensive.  Second, the gain matrix, which is the only variable in 

these equations that is dependent upon the selected controlled variables, can be calculated 

beforehand.  The gain matrix used in any of the above equations is composed of selected rows of 

the original gain matrices containing all candidate controlled variables.  Therefore, by appending 

the gain matrices used in these equations from the elements of the gain matrices calculated from 

the process model, the comparison of a large number of controlled variable sets is significantly 

simpler and computationally less expensive. 

It is important to note, however, that although these equations allow for an easier and 

computationally less expensive method for the evaluation of loss, a method for determing the 

globablly optimal set of controlled variables is required.  For example, consider a system (the 

Selexol™ process) that has 320 possible controlled variables and 6 degrees of freedom.  This 

system has over 1.4 trillion possible controlled variable sets.  Evaluation of all of these 

possibilites is impossible even with the simplified methods of evaluation of loss.  Consider the 

first equation, the local linear loss, the least compuationally expensive function.  Evaluation of 

this function for a system of the size described above takes approximately 0.05 ms.  Therefore, 

evaluating all of these possibilities would take over 2.2 years.  Additionally, there is no method 

for determining which controlled variables should even be considered in the first place.  The 

method most commonly used for solving these types of problems is a branch and bound 

algorithm (Araujo et al, 2007; Cao & Kariwala, 2008; Kariwala & Cao, 2009; Kariwala & Cao, 

2010).  The branch and bound algorithm is well suited for this particular problem because the 

objective functions are, or can be made to be, applicable for branch and bound algorithm .  

Additionally, branch and bound is unique in that it is the only method, with the exception of 

brute force enumeration, that can guarentee a globablly optimal solution (Chen, 2003). 

When a list of controlled variable sets is generated, direct evalution of loss and feasibility is 

undertaken using the nonlinear process model.  These sets are evaluated at all of the disturbances 

that have been considred.  Generally, the set which yields the lowest average loss across all the 

disturbances considered is selected as the primary controlled variable set. Skogestad (Skogestad, 

2000) includes additional requirements on the selected controlled variables, in addtion to 
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minimizing loss.  First, the controlled variables should be easy to measure so as to minimize 

implementation error.  Second, the controlled variables should be sensitive to changes in the 

inputs.  Third, the selected controlled variables should be independent of one another when more 

than one needs to be selected.  It is claimed by Skogestad that the last two criteria should 

automatically be satisfied under most conditions since the gain matrix includes this information.  

The claim is also based upon the assumption that after active constraints are controlled, few 

remaining controlled variables will be needed.  However, no work can be found within the open 

literature that investigates and compares the controllability of the controlled variable sets.  Due 

to this, it is difficult to determine whether acceptable control preformance from the controlled 

variable set that is chosen can be attained or not.  Essentially, the problem is that although the 

selected controlled variable set may provide the best steady state preformance, the dynamics 

could be such that steady state may not be realizable. 

2.2. Bottom-Up Design 
During the bottom-up design section of the design procedure, the control structure is determined, 

secondary controlled variables are selected, and the controllers for the system are designed. 

2.2.1. Secondary Controlled Variable Selection 
In a plant-wide control system design procedure, the selection of controlled variables for the 

regulatory control layer is an important consideration.  As discussed by Skogestad (2004), the 

control layers are generally divided into the upper supervisory controls and the lower regulatory 

control layers.  Supervisory controls are used for the control of the primary controlled variables, 

associated with the economics of the process, and the regulatory controls are required to stabilize 

the plant by controlling the secondary controlled variables.  Selection of a secondary controlled 

variable is driven primarily by how well it indirectly controls performance of the primary 

controlled variables, thereby enabling it to be used as a degree of freedom by the upper layers.  

Additional important considerations for secondary controlled variable selection are ease of 

measurement, sensitivity to the input variables, and minimal loop interactions. 

As the secondary controlled variables are controlled on a faster time scale, the regulatory control 

layer should be as simple as possible (i.e., consisting mainly of PID controllers).  Traditionally 

the determination of the indirect control performance of the controlled variable set is determined 

by a partially controlled plant analysis (Shinnar, 1981; Kothare et al., 2000; Luyben et al., 1998; 

Konda et al., 2005).  A block flow diagram of a partially controlled plant analysis is shown in 
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Figure 4.  Here, y1 and y2 are the primary and secondary controlled variables, respectively.  From 

this block flow diagram, it can be shown that, when K2 approaches infinity, the primary 

controlled variables are given, as reported by Skogestad and Postlethwite (2005), as 

      
1 2

1 1 1

1 11 12 22 21 1 12 22 12 22 2 2d d ref
y G G G G u G G G G d G G y n        .  Here, Guy is the process 

gain matrix from input u to output y and Gd1 and Gd2 are the disturbance gain matrices for the 

primary and secondary controlled variables, respectively.  From this expression it is possible to 

derive several measures of control performance.  However, a limitation of this partially 

controlled plant analysis is that it is a steady-state evaluation and does not address the dynamics 

of the system.  In addition, two of the important considerations when selecting secondary 

controlled variables are ease of measurement and controllability and a purely steady-state based 

analysis cannot address these issues.   

 

Figure 4: Partially Control Plant Block Flow Diagram 

A new method for secondary controlled variables selection has recently been published by 

Yelchuru and Skogestad [2013].  In this method, the objective is the selection of a set of 

secondary controlled variables or a linear combination of secondary controlled variables that 

minimizes the „state drift‟ of the plant.  This method of secondary controlled variable selection, 

as applied by the authors, was limited to only steady-state analysis. However, the method itself 

could be applied to dynamic systems.  This method also neither accounts directly for the servo or 
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regulatory control performance of the supervisory control layer, which can be drastically affected 

by the secondary controlled variables.  Another method for system stabilization is proposed by 

Alonso and Ydstie [2001] which connects thermodynamics and the passivity theory of control.  

This method, however, does not consider the control performance of a primary control loop.  

Although the process may be stabilized, the economic/primary controlled variable performance 

may not be satisfactory. 

2.2.2. Interaction Analysis 
Four major interaction measures are available within the open literature.  These are the relative 

gain array (RGA) analysis (Bristol, 1966), the Participation Matrices (PM) (Conley & Salgado, 

2000), the Hankel Interaction Index Array (HIIA) (Wittenmark & Salgado, 2002), and the Σ2 

measure (Birk & Medvedev, 2003).  The RGA is given by Equation 6 where G is the steady-state 

gain and „.*‟ denotes element by element matrix multiplication.  The RGA is, essentially, a 

normalized gain matrix that allows for easier determination of appropriate input-output pairings 

for multi-input-multi-output (MIMO) systems.  Consider an arbitrary RGA shown as Equation 7.  

Here, the element λij corresponds to yi and uj.  Equation 8 is the formal definition of what the 

elements of the RGA represent.  Each of these elements shows how the gain of input j on output i 

changes when all remaining loops are closed.  Therefore, λij >1 indicates that the gain of input j 

on output i will decrease when all remaining control loops are closed.  Likewise, when λij <1 

indicates that the gain of input j on output i will increase when all other control loops are closed.  

Finally, if λij <0 indicates that the gain of input j on output i has changed direction, that is 

changes in j will have the opposite effect on i when all other control loops are closed.  This 

provides information on loop-loop interactions as the further away an element is from 1, the 

higher the degree of loop-loop interactions.  Finally, the RGA has several significant properties.  

The RGA is independent of the scaling applied to G (Halvarsson, 2010).  Additionally, the 

numerical sum of any row or column is equal to 1.  To demonstrate how pairing is accomplished 

using the RGA, consider a 2×2 system whose RGA is given by Equation 9. 
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(Kinnaert, 1995) shows 5 possible cases.  If  =1 , this is the ideal case, where no interaction 

exists and the pairing should be y1-u1 and y2-u2.  If  = 0, this, like the first case, is the ideal case, 

except the pairing should be y1-u2 and y2-u1.  If 0 < <1, the gain will increase when the loops 

are closed, where  = 0.5 represents the worst-case, i.e., most interaction.  If  >1, the gain 

decreases when the loops are closed, where interaction increases as  increases.  If  < 0, the 

sign of the gain changes when the loops are closed.  This is highly undesired and should be 

avoided.  Interaction increases as becomes more negative.  In short, pairing should be done 

such that the resulting RGA is as close as possible to the identity matrix. 

The remaining three interaction measures all rely upon the controllability and observability 

Gramians.  Consider the following continuous time-invariant state-space model:  

     

   

x t Ax t Bu t

y t Cx t

 


                                                      (10) 

where x(t) is the state vector, u(t) is the input vector, and y(t) is the output vector.  The 

controllability and observability Gramians for this system are defined by Equations 11 and 12, 

respectively.  Additionally, the controllability and observability Gramians may be obtained by 

solving the Lyapunov equations, Equations 13 and 14, respectively.  The controllability Gramian 

is a measure of the effect of the inputs on the states across the entire frequency range of the 

system. 
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All of the Gramian based interaction measures work in essentially the same way.  The 

controllability Gramian is a measure of the influence that each manipulated variable has on the 

states of the process.  The observability Gramian is a measure of the influence of the states on 

the outputs.  The product of these two Gramians provides information as to the influence that an 

input has on an output.  The difference between all the Gramian based interaction measures is 

only in terms of which matrix norm is applied to the resulting matrix.  These interaction 

measures are superior to the RGA as they examine the process across the entire frequency range 

of the process as well as making no assumption of how the control structure will be.  

Specifically, the Gramian based methods do not assume that a decentralized control structure 

will be used. 

2.2.2.1. HIIA 

The HIIA (Wittenmark & Salgado, 2002) involves breaking a multi-input multi-output (MIMO) 

system represented as (A, B, C, 0) into multiple single-input single-output (SISO) subsystems 

represented as (A, B*j, Ci*, 0).  The subsystem is based upon the single input, j, and the single 

output, i.  This subsystem is generated by taking the j
th

 column of B and the i
th

 row of C as the 

SISO system.  Controllability and observability matrices for this SISO system, Pj and Qi 

respectively, can then be calculated.  To generate the HIIA matrix, all possible SISO subsystems 

must be generated, i.e., all possible pairings of inputs with outputs.  From these SISO 

subsystems, the Hankel norms, H


, of the product of the controllability Gramian with the 

observability Gramian must be calculated.  The Hankel norm is defined in Equation 15.  When 

this is completed, the HIIA matrix is given by Equation 16. 
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H denotes the HIIA, Pj and Qi are the controllability and observability Gramians of the SISO 

subsystem, respectively.  Note that the HIIA matrix is scaled in such a way that the sum of all of 

its elements will equal 1.  How the HIIA analysis and the other Gramian interaction measures are 

used for determining control variable pairings as well how they assist in determining the optimal 

structure of the control system will be discussed in section 2.2.3.4. 

2.2.2.2. PM 

The PM interaction measure (Conley & Salgado, 2000) is very similar to the HIIA interaction.  

An argument against the HIIA analysis is that it considers only the largest Hankel singular value, 

but not all of them (Halvarsson, 2010).  This can be a problem if several Hankel singular values 

are of the same order of magnitude.  The difference between the HIIA and the PM is that the PM 

considers all of the Hankel singular values.  Equation 17 is used for generating the PM. 
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                                                      (17) 

  denotes the PM, tr denotes the trace, Pj and Qi are the controllability and observability 

Gramians of the SISO subsystem respectively, and P and Q are the controllability and 

observability Gramians of the entire MIMO system.  The PM is scaled in this way so that, as 

with the HIIA, the sum of all elements equals 1. 

2.2.2.3. Σ2 Interaction Analysis 

The Σ2 interaction measure (Birk & Medvedev, 2003) is nearly identical to the HIIA except the 

Hankel norm is exchanged with the H2 norm (Skogestad & Postlethwaite, 1996).  The H2 norm is 

defined in Equation 18.  However, the work of (Halvarsson, 2010) shows that the calculation of 

the H2 norm can be simplified for a state-space model (A, B, C, 0) using Equation 19.  Equation 

20 is used to generate the Σ2 matrix.  Essentially, the Σ2 interaction measure, like the PM 

interaction measure, takes into account the contribution of all states, as indicated by taking a 
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trace.  The difference between the Σ2 from the PM is the use of the output controllability 

Gramian rather than the product of the controllability and observability Gramians 
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Note, like all other Gramian based interaction measures, that the Σ2 matrix is scaled in such a 

way that the sum of all elements equals 1. 

2.2.3. Supervisory Control Layer 

Before the controller(s) of the supervisory control layer are designed, the structure of the control 

structure must be determined.  For a simple process with little interaction between control loops, 

decentralized, PID control can be used.  If there is a high degree of loop interactions, one may 

choose a model predictive controller (MPC) for the process.  In this section, how the Gramian 

interaction measures can be used to determine the optimal structure of the supervisory control 

layer. 

2.2.3.1. Control Structure Design 

To show how paring is accomplished with the Gramian based interaction measure and how it can 

be used to determine the control structure to be selected, consider this 3×3 example from 

(Halvarsson, 2010): 
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(G(0)) denotes the RGA.  The goal when using any of the Gramian based methods is to select 

elements that will result in a maximized sum.  Obviously, for decentralized control, only one 

element from each row and column may be selected.  Therefore, for a decentralized control 

design, the pairings y1-u2, y2-u1, and y3-u3 are suggested by the RGA, HIIA, and PC.  The Σ2 

interaction measure however suggests the pairings y1-u2, y2-u3, and y3-u1.  The RGA analysis, 

however, would suggest that these pairing would result in instability and should be avoided. 

The Gramian based methods are superior to RGA as they can suggest control structures in 

addition to decentralized control and their applicability is not limited to decentralized control.  

The method is the same for all the Gramian based methods so, for simplicity, the HIIA will be 

used to demonstrate the method.  The sum of elements that is attained with the decentralized 

control is 0.4758; however, if the element (3, 1) is also included (the largest element not 

currently included), the sum is 0.6184.  The inclusion of this element results in a control 

structure in which y3 is „controlled‟ by both u1 and u3.  More accurately, u1 would be an input to 

a feed-forward controller that is part of a feed-forward augmented feedback control strategy for 

controlling y3 by manipulating u3. This is still a relatively simple control structure that requires 

no centralized control; however, the HIIA analysis suggests a significant improvement in 

performance as compared to decentralized control.  If the next largest element (2, 2) is included, 

the resulting sum is 0.7062.  The inclusion of the element is equivalent to the addition of a feed-

forward controller which accounts for the effect of u2 on y2 to the previous control system.  

Again, this does not significantly increase the complexity of the control structure as still no 

centralized controller is added. 

Continuing the procedure, we can add the next largest element (3, 2) to further improve the 

control performance.  With the addition of element (3, 2), a centralized controller is now required 

to control the outputs y2 and y3 with the inputs u1 and u3.  Note, however, that this does not 

substantially increase the sum of elements. The previously suggested design, which included one 

feedback controller as well as two feed-forward augmented feedback controllers, had a sum of 

0.7062.  The current suggestion consists of a centralized controller and a feed-back controller 

and yields a sum of 0.7843. 

This process can continue until all elements are included, resulting in a completely centralized 

control strategy.  It is important to note that with each addition, controller complexity increases 
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with increasingly small improvements in control performance.  Ultimately, the Gramian based 

methods can help inform a decision on the control structure, but it does not give a definitive 

answer to which structure provides the best balance of performance against complexity.  In 

addition, unlike the RGA, the Gramian based methods do not yield any information about how 

controllable the resulting process will be. 

2.2.4. Validation 

Finally, the proposed control structure must be validated using the nonlinear dynamic model. 
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3. Contributions 
 

In this section, the contributions of this work to the field of plantwide control will be discussed. 

Major contributions during the course of this work are in the area of primary controlled variable 

selection, secondary controlled variable selection, and control structure design. 

3.1. Primary Controlled Variable Selection 

During this work it has been found that considering only the economic performance of the 

primary controlled variables, as currently done within the open literature, will yield 

uncontrollable and/or infeasible controlled variables.  This can be due to the lack of manipulated 

variables with the necessary gain to control the primary controlled variables and/or a high degree 

of interaction between the primary controlled variables that will result in a high degree of loop 

interactions.  Finally, the „distance‟ of the manipulated variable from the controlled variable may 

be such that the associated dead-time with that control loop is very large, resulting in poor 

control performance.  The method for primary controlled variables selection proposed in this 

paper addresses these issues.  This method involves a three-stage procedure: a priori analysis, 

controlled variable selection, and a posteriori analysis.  The contributions of this work to each of 

these stages are summarized below. 

 A Priori Analysis 

o Prescreening criteria have been added to the control structure design procedure 

to help eliminate infeasible controlled variable sets from consideration and to 

reduce the size of the large scale combinatorial optimization problem.  The 

prescreening criteria identify controlled variables that would show either poor 

servo or regulatory control performance and eliminates them from further 

consideration.  This allows for exploration of the feasible controlled variables 

by eliminating the infeasible controlled variables at the start of the selection 

process. 

 Controlled Variable Selection 

o A controllability measure has been added within the framework of the primary 

controlled variable selection problem.  It has been found during the course of 

this work that primary controlled variables selected solely upon their economic 

performance will lead to infeasible and/or uncontrollable controlled variable 
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sets.  The controllability measure and additional constraints as mentioned 

below are included in the algorithm to take care of this issue. 

o Loop interactions are included within the framework as a controlled variable 

set may show good economic and control performance, but fail to attain 

satisfactory control performance due to strong loop interactions. 

o A constraint is added to the selection methodology to address the issue of poor 

control performance for time-delay systems. The constraint is formulated by 

considering the dead-time of the paired manipulated variable with the 

controlled variable. 

 A Posteriori Analysis 

o In addition to the evaluation of the economic performance of the selected 

controlled variables by using the nonlinear model, control performance is also 

evaluated by using the nonlinear model.  Examination is undertaken at off-

design operations considering the presence of a real-time optimizer (RTO) 

(process is at the optimal operational point) and the absence of an RTO 

(primary controlled variables are left constant at their nominal values). 

3.1.1. A Priori Analysis 

The a priori analysis begins by defining an operational objective that is to be optimized.  

Operational and other constraints are then identified along with likely disturbances to which the 

process may be subjected.  The process is then optimized with respect to this operational 

objective at the nominal operating point as well as under the identified disturbances.  From these 

optimization studies, active constraints are identified (Skogestad, 2004).  However, further 

analysis is required to determine appropriate pairings of manipulated variables with active 

constraints as well as identification of a candidate set of controlled variables for controlled 

variables analysis. 

3.1.1.1. Optimization 

The process of selecting primary controlled variables begins with the definition of an operational 

objective that is to be optimized.  This is followed by a degree of freedom analysis to identify the 

manipulated variables available for the control of the system.  This is preceded by the 

identification of process constraints that can be operational or environmental constraints.  

Finally, the disturbances likely to affect the process must be determined. At this point, the 
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process is optimized in relation to the operational objective using the identified degrees of 

freedom and subject to the identified constraints.  This optimization study is completed at the 

nominal operating point of the process and also under disturbance conditions.  These 

optimization studies yield important information related to the optimal variations of the input and 

output variables as well as optimal operations at these conditions.  The identification of the 

optimal operational regions is important for later stage analysis of controllability of the 

controlled variable sets as well as for the actual design of the supervisory control layer.  The 

optimal variations are used in later stage analyses as scaling matrices defined in Equations 21 

and 22, where subscripts i and j denote outputs and inputs respectively and nom and d denote 

their nominal operation and disturbance operations.  These are similar scaling factors as 

proposed by (Skogestad and Postlethwaite, 2005).  Finally, the optimization studies identify the 

active constraints of the process.  Active constraints are defined as those constraints that are 

active at all operations investigated. 

     
1

max w/ 
nom d

D diag span c span c c coutput i i i i



  

                                
(21) 

     maxw/ j j j

nom d
D diag span u span uinput j u u  

                               
(22) 

3.1.1.2. Control of Active Constraints 

For the process to be operated efficiently, the active constraints identified during the optimization 

studies must be controlled (Skogestad, 2000; Maarleveld & Rijnsdrop, 1970).  Since the bounds 

on the variability of the active constraints are tighter than any other controlled variables, the 

assumption taken in this methodology is that the control performance of the active constraints 

must be the highest priority.  

The measure taken for the quantification of the control performance of the active constraint 

controls is the RGA number, defined in Equation 23 where Λ(G) is the relative gain array.  The 

RGA number is a measure of the loop interaction of the resulting closed-loop system.  The 

objective is the selection of manipulated variables for the control of the active constraints which 

will result in a minimal RGA number, therefore minimal loop interaction.  Additionally, this 

provides information about the least amount of closed-loop interactions possible for the control 

of the active constraints.  The RGA number does not determine whether the manipulated variable 

has the required gain to control the active constraint.  Additionally, the RGA number does not 

address the associated dead-time of the manipulated variable‟s effect on the active constraint.  
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For this reason, the manipulated variables should not necessarily be selected for the global 

minimal RGA number. The selection of the manipulated variables should also consider these 

important issues. 

  RGA number G I
SUM

    (23) 

3.1.1.3. Identification of the Candidate Sets of Controlled Variables 

The first step of the procedure is the generation of a set of candidate controlled variables.  Very 

little work can be found in the existing literature for generating the candidate controlled variable 

sets (Alonso & Ydstie, 2001). Our proposed method is described below. 

Obviously, one would like to consider all possible controlled variables: algebraic and differential 

process variables, e.g., temperatures, compositions, flows, and derived variables, e.g., ratios of 

flows and compositions, in this set.  However, not all candidate controlled variables are, in and 

of themselves, controllable.  In addition, a large candidate controlled variable set will greatly 

increase the number of possible sets.  For small scale systems, this may not be an issue as 

candidate controlled variables that many be uncontrollable can be identified and discarded.  

Additionally, as the number of manipulated variables in smaller processes is expected to be less, 

the number of possible controlled variable sets will be less even if the number of candidate 

controlled variables considered is the same. Therefore, the consideration of more candidate 

controlled variables may remain computationally tractable for smaller systems, whereas in larger 

systems it may become intractable.   

For the generation of a candidate controlled variable set, an initial set of controlled variables is 

prepared.  The initial set of controlled variables contains those variables that the user suspects are 

valid controlled variables for the process.  The generation of this initial set is dependent upon the 

process insight of the user.  The candidate set will be generated from the initial set defined by the 

user and it is ultimately the candidate set that will be used in later stage analyses. For 

determining the candidate set from the initial set, the linear process model, defined as Equation 

24, is calculated with the active constraint controls in place for all of the candidate controlled 

variables. Gp is the process gain matrix and Gd is the disturbance gain matrix.    These gain 

matrices will then be scaled in such a way that elements of the vectors y, u, and d are all of 

magnitude 1 or less.  With the process and disturbance gain matrices scaled in this manner, all 

candidate controlled variables are evaluated and checked against the criteria in Equations 25 and 

26.  If both of these equations are not satisfied, the corresponding candidate controlled variable is 
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not considered for further analysis.  Equations 25 and 26 are measures of the servo and 

regulatory control performance, respectively.  From the linear process model, it is obvious that if 

Equations 25 and 26 are not true and the process model is scaled appropriately, that no input 

variable exists that can control output variable i subject to inputs and outputs magnitudes being 

bound to less than 1. This method of generating a set of candidate controlled variables can 

reduce the number of possible candidate controlled variable sets to a great extent, allowing for 

the examination of a larger number of initial sets as expected in large-scale plants. It is important 

to note that within the initial candidate set, the manipulated variable itself must be included.  By 

including the manipulated variable itself within the initial candidate controlled variable set, it 

allows for the possibility of „self-selection‟.  In this way, manipulated variables do not 

necessarily need to be paired with a controlled variable but instead may self-select, specifically, 

the manipulated variable is left at a fixed value.  For example, consider an absorption column 

where the solvent flowrate is a degree of freedom that could be used for control.  If the solvent 

flowrate is not used for control of another variable, it is said that it has „self-selected‟, i.e., it is 

itself a controlled variable. 

p dy G u G d 
                                                     

(24) 

  1p i MAX
G 

                                                     
(25)

 

   p d ii MAXMAX
G G

                                             
(26) 

3.1.2. Selection of the Pareto-Optimal Controlled Variable Sets 

At this stage, a linearized process model is used to analyze the candidate controlled variable sets, 

identified in the previous stage, to determine their economic and control performance.  In 

addition, the closed-loop interactions are also examined by a relative gain array (RGA) analysis. 

The Pareto-optimal controlled variable sets are further analyzed during the a posteriori analysis 

for obtaining the final set of primary controlled variables. 

3.1.2.1. Formulation of the Optimization Problem 
A constrained, multi-objective optimization problem is formulated for the generation of a set of 

primary controlled variables.  The first objective is an economic objective.  Two measures can be 

considered for determining self-optimizing performance of the controlled variable sets that 

directly consider the cost function: the local worst-case loss derived by (Halvorsen et al., 2003) 

and the local average loss derived by (Kariwala and Cao, 2010).   In this work, we have 
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considered the local average loss (Kariwala and Cao, 2010), Equation 27, for evaluating the self-

optimizing performance.  J is the cost function and Wd and We are diagonal matrices containing 

the expected magnitudes of the disturbances and implementation errors, respectively. Loss, 

defined in Equation 28, refers to economic loss incurred due to a constant setpoint policy.  It 

should be noted that these measures of economic performance are very similar to one another.  

Both rely upon a partially controlled plant analyses, first proposed by (Shinnar 1981), which is 

scaled in relation to the economics.  The difference between the two is in the matrix norm that is 

applied.  Readers interested in a more detailed discussion of the use of partial control in the area 

of control structure design are directed to (Kothare et al., 2000).  It should be noted that if large 

magnitudes of the disturbances are considered, i.e., large diagonal elements in Wd, the resulting 

matrix can become near singular and evaluation of the average loss function becomes 

meaningless.  If this is the case, smaller magnitudes of the disturbances should be considered 

while ensuring that the relative magnitudes of all the disturbances are consistent with the 

anticipated magnitudes.  This will change the absolute value of the function, but not its optimal 

value.  Readers interested in the derivation of the local worst-case loss and the local average loss 

are directed to (Halvorsen et al., 2003) and (Kariwala and Cao, 2010). 
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   , optL J c d J d                                                   
(28) 

The second objective is the controllability.  The controllability measure selected in this work is 

the minimum singular value of the steady-state gain matrix.  The singular value analysis was 

selected for the controllability measure as the singular values provide better information about 

the gain of the plant than the eigenvalues do (Skogestad & Postlethwaite, 2005).  The minimum 

singular value, Equation 29, was selected as the controllability measure as it represents the 

smallest gain for any input direction.  In this equation, Pn is a vector of logical 1‟s and 0‟s, 

denoting row selections.  In addition, using the minimum singular value as a measure of the 

control performance is advantageous as it is not dependent upon the disturbances considered.     
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The constraints included in this formulation are required to address the issues related to loop 

interactions and dead-time.  The first constraint, Equation 30, is related to the loop interactions.  

Here,  denotes the element-wise matrix multiplication and ac is the number of active 

constraints.    and   are real vectors.  The gain matrix is arranged such that the pairings of the 

manipulated variables with the active constraints lie upon the diagonal elements.  As the 

assumption made in this work is that active constraints control must be the highest priority, i.e., 

the best possible control performance, this constraint is only applied to the active constraint 

control loops.    This constraint serves two important roles in the primary variable selection 

problem.  As the measure chosen for controllability is based upon a process gain matrix that is 

calculated with active constraint controls in place, the effect of the active constraint control on 

the remaining controlled variables is accounted for in the gain matrix.  However, the effect of the 

additional controlled variables on the active constraint control should be accounted for during the 

controlled variable selection process.  RGA analysis can be performed by using the process gain 

matrix without the active constraint control, thereby allowing one to determine how the selected 

primary controlled variables will affect the performance of the active constraint controls.  With 

this constraint, one can specify the maximum extent of degradation in the active constraint 

control that is acceptable. 

 T    for 1 :
,

G G i ac
i ii i

    

                                      
(30) 

A second constraint, Equation 31, is used to address the associated dead-time of the paired 

manipulated variable with the controlled variable.  Here,  ,i jh u y  is a function of the i
th

 input 

and j
th

 output that describes or estimates the dead-time between ui and yj.  ij  is a user specified 

constraint on the loop dead-time of ui and yj.  This constraint is required to ensure good 

controllability of the resulting process.  This constraint can be formulated in the form available in 

the existing literature (Yelchuru & Skogestad, 2012).  Work is ongoing in our group in the 

development of a rigorous, generically applicable means of addressing this issue for controlled 

variable selection. 

 ,i j ijh u y 
                                                     

(31) 

If the process model is nonlinear, the linear model of the process and disturbance gain matrices 

required for the evaluation of the economic and controllability selection criteria can be generated 

by linearizing around the nominal conditions.  The Hessians of the cost function may be 
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calculated analytically or numerically.  For numerical calculation of the Hessians, the gain 

matrix of the terms in the cost function can be calculated at the nominal operating point.  The 

gain matrix can then be recalculated after a small change in either an input variable or 

disturbance variable is introduced.  This should be undertaken for all input variables and 

disturbance variables.  From the resulting set of gain matrices, the Hessians can then be 

calculated numerically. 

From the above mentioned measures of economic and control performance, the mixed-integer, 

multi-objective optimization problem shown in Equation 32 is formulated.  The method used to 

solve this constrained, multi-objective optimization problem and the contributions to the existing 

methods will be discussed in the next section. The solution of this optimization problem will be a 

set of Pareto-optimal solutions.  It should be mentioned that further analysis of these sets is 

required by using the nonlinear process model to make a final selection of the primary controlled 

variables.   
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3.1.3. A Posteriori Analysis 

From the multi-objective optimization, multiple controlled variable sets will be identified.  

However, a linear process model is used in this approach. In order to finalize the selection, the 

economic and control performance of the controlled variable sets are evaluated by using the 
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nonlinear process model during the a posteriori analysis. At the end of this analysis, several 

feasible sets may be found that show acceptable economic and control performance.  At this 

point, process knowledge and insight may be used to make the final selection of the primary 

controlled variable set. 

  During the a posteriori analysis, first the economic loss is determined through the evaluation of 

the cost function at varying magnitudes of the identified disturbances with the primary controlled 

variables being held constant by using the manipulated variables (Araujo, Govatsmark, & 

Skogestad, 2007).  This determines the actual loss that would be expected from a constant 

setpoint policy for each of the controlled variable sets.   

In addition to nonlinear evaluation of economic performance, the control performance must also 

be determined.  Evaluation of controllability by using the nonlinear process model is 

accomplished via the linearization of the process at multiple optimal operational points and at 

suboptimal operational points where the controlled variables are held constant by the 

manipulated variables.  These two methods account for the two possible situations the process 

may encounter: the first when there is a an RTO updating the setpoints of the supervisory control 

layer and the second when there is no RTO or updated setpoints are not yet available from the 

RTO. It should be noted that the second situation is the primary motivation for selecting the self-

optimizing controlled variables.  Two linear models should be generated for all the mentioned 

cases under the two possible situations mentioned before, one with the active constraints 

controlled and another without the active constraints controlled.  As with the two models used in 

the multi-objective optimization, both models are required to get a complete understanding of 

how the process will behave.  The process gain matrix that is calculated with active constraint 

controls in place addresses the effect of the active constraint control on the remaining controlled 

variables accounted for in the gain matrix.  However, the effect of the remaining controlled 

variables on the active constraint control is not.  With these models, the control performance of 
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each controlled variable set can be examined at multiple operational points as well as under the 

condition of an RTO and without an RTO. 

To begin, the gain matrices with the active constraint controlled are scaled in the same manner as 

mentioned in Section 3.1.1.1.  The minimum singular values are then calculated for all of these 

cases, i.e., all feasible controlled variable sets under optimal and suboptimal operations.  This 

allows for the determination of how the worst input direction associated with the controlled 

variable set changes as the disturbances affect the process.  This is required as the controlled 

variable sets could have poor control performance as the disturbances of various magnitudes 

affect the process. 

It is possible that a number of controlled variable sets perform satisfactorily as evaluated by the 

nonlinear process model. Further analysis can be done for screening the controlled variables by 

considering other constraints that have not been considered before such as control complexity, 

ease of measurement and/or maintenance of the selected controller variable set, and process 

insight to determine which set will be the final primary controlled variable set.  As most of these 

issues are process dependent, it is not possible to address all situations in a methodical manner.  

However, it is possible to estimate the control complexity of a primary controlled variable set. 

To estimate the likely control complexity required for adequate control, the control performance 

is evaluated considering decentralized control. It is determined how Gp changes for a controlled 

variable set as operations change.  To determine this, the appropriate input-output pairings needs 

to be determined.  This can be accomplished via an RGA analysis at the nominal operation point.  

With the pairings determined, corresponding elements of the scaled gain matrix are examined.  

This examination is similar to examinations done in Equations 25 and 26.  However, in those 

cases, the examination was limited to evaluation whether an input existed that had the power to 

reject the disturbances on the controlled variable and to drive the controlled variable within a 

desired range.  In this case, the pairings are determined from the RGA analysis and the 
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evaluation is in relation only to that particular element.  Specifically, if the element is less than 1, 

the control performance of that loop will likely be poor.  This examination is then undertaken for 

the remaining gain matrices that were computed at the off-design conditions.  An RGA analysis 

is done for these off-design operations to determine how the loop interactions change as the 

disturbances affect the process.  Finally, it is also important to note if the gain of any of the 

control loops will flip during disturbance operations.  It should be noted that the analyses 

mentioned in this paragraph can be used to reduce the number of controlled variable sets further, 

but are not necessarily required as even if loop interactions become large, loop gains deteriorate, 

or loop gains change sign, this does not necessarily imply that the system will have poor control 

performance.  It does, however, imply the need for a more complex control structure for the 

supervisory control layer.  This can become relevant especially if the economic and control 

performance of several of the candidate sets are nearly equivalent.  If, for example, two 

controlled variable sets show nearly equivalent economic and control performance, one would 

choose the controlled variable sets that requires the least complex supervisor control layer. 

3.2. Secondary Controlled Variable Selection 

In this work, a new method of secondary controlled variable selection has been developed that 

considers the servo and regulatory control performance of the closed loop system directly and 

optimizes the regulatory control performance as measured by the scaled integral absolute error 

(IAE).  Additionally, issues related to loop interactions are addressed by relative gain array 

(RGA) constraints on the supervisory and regulatory control layers. This method consists of 

three stages as summarized below. 

 A Priori Analysis 

o This stage comprises of formulation and implementation of a subset selection 

constraint.  This subset selection constraint is an integer constraint that is used 
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to determine if a manipulated variable can be used for control of a candidate 

controlled variable.  Servo and regulatory control performance criteria, as well 

as process insight, can be used to formulate this constraint. 

 Set Selection 

o A new objective function is formulated for selection of the secondary 

controlled variables.  This new objective function is sum of scaled integral 

absolute errors (IAEs) of the primary controlled variable loops with secondary 

controlled variables used as manipulated variables.  The IAEs are scaled 

according to the economic importance of the associated primary controlled 

variable.  In this way, both the economic performance and control performance 

of the control system are addressed in a single objective function. 

o Loop interactions are included within the framework.  An RGA analysis is 

included within the formulation to ensure minimal loop interactions exist 

within the regulatory and supervisory control layers. 

o An approach by which the subset selection constraint may be implemented 

within a branch and bound algorithm is discussed.  In addition, methodologies 

by which this constraint may be used for pruning of supernodes (nodes with a 

large set of possible solutions) within a branch and bound algorithm are also 

discussed.  

 A Posteriori Analysis 

o Evaluation of the controllability of the system at off-design operating 

conditions. 
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o Evaluation of the dynamic performance of the secondary controlled variables 

within the nonlinear process model. 

3.2.1. A Priori Analysis 

The a priori analysis is divided into four steps: identification of a candidate set of secondary 

controlled variables and disturbances, generation of a subset selection constraint, identification 

of input-output models, and calculating and scaling of the IAE of the cascaded primary control 

loop.   

3.2.1.1. Identification of a Candidate Set of Secondary Controlled 

Variables and Disturbances 

For the identification of the candidate set of secondary controlled variables, process insight is 

required.  It is at this stage that one must decide which controlled variables will be considered for 

further analysis and this decision is best made with process insight. While it is possible to screen 

a large number of candidate variables by using the proposed three stage method, inclusion of 

certain candidate variables may not add any value. At this stage, only those variables that are 

obviously not candidate secondary controlled variables are excluded from the candidate set.  

Applying process insight in this manner simplifies and accelerates the entire procedure of 

secondary controlled variable selection; however, it is not required.  Likewise, identification of 

disturbances to the process also requires process insight.  The disturbances here do not 

necessarily need to be the same as those that were considered during primary controlled variable 

selection.  The disturbances considered during primary controlled variable selection are related 

to higher level operations and disturbances.  At this level, it is of more concern to reject local 

disturbances and not allow them to propagate through the process, eventually affecting the 

primary controlled variables and/or making the process unstable.  Unlike the generation of a 

candidate set of secondary controlled variables, which does not necessarily require process 
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insight, the proposed procedure for secondary controlled variable selection requires the 

identification of process disturbances, therefore requiring a degree of process insight. 

3.2.1.2. Subset Selection Constraint 

Here, a subset selection constraint is defined.  Let Q be a set of ncv vectors of length nu.  Here, ncv 

is the number of candidate secondary controlled variables and nu is the number of manipulated 

variables.  If the j
th

 element of the i
th

 set is a logical 1, the corresponding pairing of the i
th

 input to 

the j
th

 output is feasible; otherwise, if it is a logical 0, it is not feasible.  Servo and regulatory 

control performance of all pairings of manipulated variable to secondary controlled variable are 

used to formulate this constraint.  All pairings of a manipulated variable to a controlled variable 

are checked to determine if Equations 1 and 2 are true.  Equations 33 and 34 reflect whether the 

controlled variable/manipulated variable pairing has acceptable servo and regulatory control 

performance, respectively.  If both of these Equations are true, the pairing of the i
th

 input to the j
th
 

output is defined as feasible, i.e., Qi,j  is a logical 1, otherwise Qi,j is a logical 0.  Here, Gp2 and 

Gd2 are the process gain and disturbance gain matrices of the secondary controlled variables, 

respectively.  This evaluation is undertaken for all the nu input variables and ncv output variables.  

It should be noted that additional constraints may be used for the formulation of this subset 

selection constraint.  This can include, but may not be limited to, servo and regulatory control 

constraints at off-design operations and/or gain switching constraints, i.e., checking whether the 

gain of a manipulated variable to a secondary controlled variable changes direction at certain 

operating conditions. 
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With the subset selection constraint formulated, implementation of the constraint within a branch 

and bound algorithm follows a similar procedure as discussed in our previous work (Jones et al., 
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2013).  The difference between this application and the previous work is that this subset selection 

constraint is not based upon a predefined number of controlled variables that may be selected 

from a subset.  In this work, the constraint defines whether a manipulated variable can or cannot 

be used for control of a particular controlled variable.  Similar to the previous work, this can be 

used for pruning within the branch and bound algorithm. 

Here it will be explained how the proposed subset selection constraint can be used for pruning 

within the branch and bound algorithm.  The first, and easiest, case is when 

   
,

: 1:0
k j n k ncvQ S  

 is true.  Here, Sn is the union of F and C, where F and C are the 

fixed and candidate sets, respectively, of the node n.  If this equation is found to be true for any 

node, that node is infeasible as are all of its subsets. This is due to a controlled variable within 

the fixed set, Sn, not being controllable by any manipulated variable, as defined by the subset 

selection constraint.  

For the second case, if for a particular n node it is true that 
   

,
: 1:1

k j n
k ncvQ S  

 there 

exists an element within the fixed set that can only be controlled by one manipulated variable.  

Let r denote this manipulated variable.  Due to this, all controlled variables within the candidate 

set, Cn, that can only be controlled by the r
th

 manipulated variable are no longer feasible 

candidate controlled variables within the particular node.  Therefore, the candidate set Cn is 

redefined as 

, , ,\ \n k j p j k j

p K

C Q Q Q


   
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    .  With this pruning complete, the r
th

 column of Qk 

is removed from the node and it is again checked if 
   : 1:0

k n
k ncvQ S    or

   : 1:1
k n

k ncvQ S   . Depending upon the outcome, the pruning continues until there is no k 

such that 
  0

k n
Q S  nor 

  1
k n

Q S   is true.   
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3.2.1.3. Input-Output Model Identification 

For the calculation of the IAEs of all pairings of u – y2 – y1, input-output models need to be 

identified.  The models required are disturbance models, input to secondary controlled variables, 

and input to primary controlled variables.  In addition, models of the sensors are also required to 

accurately capture the effect of measurement delays on the overall system performance. 

3.2.1.4. Calculation of IAEs 

With the identified input-output models, the IAE of all possible pairings of u – y2 – y1 must be 

calculated.  This is required as one set of secondary controlled variables may result in different 

pairings of u – y1 from another set.  The IAEs required are for servo and regulatory control.  The 

block flow diagram shown in Figure 5 is used to model the system where G1 and G2 are the 

transfer functions of the primary and secondary controlled variables, respectively, GC1 and GC2 

are the controllers for the primary and secondary controlled variables, respectively, and H1 and 

H2 are the models of the measurement device for the primary and secondary controlled variables, 

respectively.  It should be noted that this model is based upon the assumption that the 

disturbances affect the outputs and not the inputs.  The block flow diagram should be suitably 

modified if that is not the case.  From this model, it can be shown that the error of the primary 

controlled variable is defined as Equation 35. 

       2 2 2 1 2 1 1 1 2 1 1 1 2 2 2 2 2 1 2
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    
 

          (35) 

Obviously, the design of the controllers GC1 and GC2 will affect the results.  From these transfer 

functions, it is now possible to calculate the IAE of the servo and regulatory performance for all 

pairings of u – y2 – y1.  For the regulatory performance, each disturbance can be applied one at a 

time and the resulting IAEs can then be summed.  The IAEs for the regulatory control are stored 

in the three dimensional matrix IAEreg.  The IAEs for the servo control are stored in the three 

dimensional matrix IAEservo.  The economics of the process are used for the determination of the 

applied scaling to the IAEs.  For primary controlled variables that are active constraints, the 
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scaling applied is 

J

 , where J is the cost function of the process that was defined in Jones et al. 

[2013] for the selection of the primary controlled variables and λ is the active constraint.  For 

primary controlled variables that are self-optimizing, the applied scalings are 
 

1
12

uuJ G 

, where 

the G is the process gain matrix with the active constraints controlled and Juu is the Hessian of 

the cost function with respect to the inputs used to control the self-optimizing controlled 

variables, again the active constraint controls are in place.  Applying this scaling methodology 

provides insight not only into the control performance of the process, but also how that control 

performance will impact the economics of the process as well.  In this way, if the control 

performance of one loop deteriorates during set selection in favor of improving the performance 

of another that more drastically impacts the economics of the system, then that can be accounted 

for in the set selection algorithm.  

 

 

Figure 5. Block flow diagram of cascaded primary control variable loop 

3.2.2. Set Selection 

During set selection, it must be ensured that the servo and regulatory control performance of the 

regulatory control layer is satisfied, minimal loop interactions exist within the regulatory control 

layer so as to ensure that decentralized control will provide adequate control performance, 
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satisfactory loop interaction exists within the supervisory layer to minimize control problems, 

and the summation of the scaled ISEs is minimized to ensure optimal control/economic 

performance.  Each of these points will be discussed in detail within this section.   

3.2.2.1. Servo and Regulatory Control of Regulatory Control Layer 

First, to address the issue related to servo and regulatory control performance, two constraints are 

imposed on the selection of secondary controlled variables.  The first, Equation 36, stipulates 

that a manipulated variable, within a bound, must be able to drive a secondary controlled 

variable within a desired range.  The second constraint, Equation 37, stipulates that a 

manipulated variable, within a bound, must exist that can reject the effects of a disturbance on 

the secondary controlled variable.     

 2 1pG 
                                                                (36) 

 1

2 2 1p dG G  
                                                              (37) 

3.2.2.2. Loop Interaction and Control Pairings 

Loop interaction is considered within this selection framework by performing an RGA analysis 

and by considering the RGA number.  The loop interactions at both the regulatory and 

supervisory control layers should be considered.  Therefore, two RGAs are required, one for the 

regulatory control layer and another for the supervisory control layer.  As the selection of 

secondary controlled variables will affect both RGAs, two constraints must be applied.  For the 

regulatory control layer, the constraint is defined as Equation 38 and for the supervisory control 

layer, the constraint is defined as Equation 39.  Again, because the design of the regulatory 

control layer will directly affect the design of the supervisory control layer, this effect should be 

considered while selecting secondary controlled variables. 

 T
2 2
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                                              (38) 
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In addition to ensuring good control performance of the regulatory controls and supervisory 

controls, an RGA analysis is also required for the evaluation of the objective function.  The 

evaluation of the objective function is dependent upon the connection of input variable to 

secondary controlled variable to primary controlled variable.  These connections are dependent 

upon the secondary controlled variables that are selected; since one set of secondary controlled 

variables may result in a completely different pairing of u – y1 as another set.  For determining 

how these variables are connected, the RGA analysis is used.  For determining both the optimal 

pairing of input variable to secondary controlled variable and secondary controlled variable to 

primary controlled variable, the minimization of the RGA number can be considered to be the 

objective.  However, as these evaluations will have to be done within the branch and bound 

algorithm and they are relatively high in computation cost, solution times can become quite high.  

To address this issue, the subset selection constraint can be used in addition to the RGA 

constraints to help reduce the overall computation costs, instead of calculating the RGA number. 

Here it will be explained how the RGA constraints and subset selection constraint can be used to 

more efficiently determine optimal pairings in comparison to enumeration of the RGA number.  

However, it should be noted that the use of the subset selection constraint can only be used in 

this way for the regulatory control layer but not for the supervisory control layer.  First, a matrix, 

P, is defined based upon the subset selection matrix, Q.  Here, P is made up of the corresponding 

secondary controlled variable set associated with a node from Q.  Next, the RGA for the 

regulatory and supervisory control layers are calculated and stored. 

If any element of the summation of the rows or columns of the matrix P is equal to 1, then, based 

upon the subset selection constraint, the only feasible pairing is associated with the location of 

that particular element.  This is due to either a controlled variable being only controllable by a 
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single manipulated variable or a manipulated variable only able to control a single controlled 

variable.  As this pairing is required by the subset selection constraint, the corresponding row 

and column of the matrix Q are then removed.  This evaluation continues until there are no 

exclusive pairings of manipulated variables to secondary controlled variables.  Based on the 

updated Q, a new matrix R is calculated.  This new matrix is a truth matrix defined as whether an 

element of the RGA is within the bounds of the constraint defined in Equation 36, if it is the 

corresponding element of P is a logical 1 otherwise a logical 0.  With this newly defined R 

matrix, the procedure is applied again.  For the same reason as discussed above, this is due to 

only a particular pairing being feasible without violating the RGA constraint.  Unlike the subset 

constraint, the RGA constraint can also be used to determine the pairings of secondary variables 

to primary controlled variables.   

3.2.2.3. Closed Loop System IAEs 

Finally, the IAE of the closed loop system must be determined.  This can be done by using the 

stored IAE values calculated and scaled during the a priori analysis.  The stored three-

dimensional matrix contains the IAE values of all the possible pairings, used in conjunction with 

the RGA analysis, and can be used to determine the total IAE of the closed loop system.  This 

method of calculating the IAE assumes that there are no interactions between the loops.  This is 

not necessarily required, as it is possible to calculate the closed loop IAE with loop interactions, 

however, that is far more computationally expensive and, for large scale systems, may become 

computationally intractable.  By making the assumption that there are no loop interactions, it is 

possible to make the IAE calculations offline and use the three dimensional matrix of IAE values 

as a lookup table for the evaluation of the objective function.  Here the objective is the 

minimization of the summed IAEs related to the regulatory control performance of the 

supervisory control layer.  The IAEs related to the servo control performance can be used as a 

constraint within the formulation, if desired. 
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3.2.2.4. Formulation of the Optimization Problem 

A constrained optimization problem is formulated for the generation of a set of secondary 

controlled variables.  The objective is the minimization of the summed and scaled IAEs of the 

primary control loops as described in Section 3.2.2.3.  The constraints included in this 

formulation are required to address the issues of loop interactions, both at the regulatory and 

supervisory control layers, and servo control performance of the primary control loop.  In 

addition, the subset selection constraint, as defined in Section 3.2.1.2, is also included within this 

formulation. With this, the constrained, mixed integer optimization problem shown as Equation 

40 is solved to determine the optimal set of secondary controlled variables.  For all solutions 

investigated during the course of the optimization, shown as Equation 41, the optimal pairings of 

u – y2 and y2 – y1 must be determined, subject to the subset selection constraint.  The constrained, 

mixed integer optimization problem shown as Equation 41 is used to determine the optimal 

pairing of u – y2 and the mixed integer optimization problem shown as Equation 42 is used to 

determine the optimal pairing of y1 – y2. 

        (40) 
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3.2.3. Posteriori Analysis 

After set selection, multiple sets of secondary controlled variables should be identified.  To 

finalize the selection of a secondary controlled variable set, a posteriori analysis is required since 

a linear process model under nominal operation is used in the proposed approach.  Therefore, the 

controllability of the sets obtained at the end of the second stage should be evaluated under off-

design operations.  From the analysis undertaken during the primary controlled variable 

selection, the user should have identified the off-design operations, as shown in Jones et al. 

[2013].  The analysis of controllability consists of the evaluation of the servo and regulatory 

control performance of the regulatory control layer, an RGA analysis for the regulatory and 

supervisory control layers, and ensuring that no gain switching occurs between the pairings of u 

– y2 – y1.  Some, or all, of these analyses may be implemented within the second stage where set 

selection is performed; however, specification of desired performance under off-design operation 

can be difficult and the problem can become overly constrained in case of very aggressive 

constraints.  By applying these analyses posteriori, the user can intervene to make the final 

selection of the controlled variable set. 

3.3. Control Structure Design 

As discussed in Section 2.2.3.1, Gramian based interaction measures can be used to inform the 

design of the structure of the supervisory control layer.  However, within the open literature, no 

work can be found that proposes a systematic means of using these measures for the design of 
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the control structure.  In this section, a systematic means of determining the optimal control 

structure is proposed. 

3.3.1. Gramian Interactions 

An important characteristic of the Gramian based interaction measures is that they are scaling 

dependent.  Therefore, before these measures can be used in a systematic means for the design of 

the control structure, a systematic means of scaling must be defined.  To this end, it is proposed 

that the Gramian interaction measures should be scaled in such a way that the sum of all 

elements of any row is the same as the sum of all elements of any column.  Scaling in this way 

ensures that all output variables are considered of equal importance, i.e., one output variable is 

not considered more important than any other output variables.  Additionally, it is assumed that 

the relative „power‟ of all input variables are the same, specifically, all input variables have the 

same relative gain.  This scaling method makes the properties of the Gramian matrices similar to 

that of the commonly used RGA. 

Applying this scaling method to the Gramian interaction matrices now allows for a systematic 

means of determining the expected control performance of any number of possible control 

structures. 

3.3.2. Control Structure Complexity 

The Gramian interaction measures provide quantitative insight into the possible control benefits 

of moving from a simple, decentralized control structure, to a more complex control structures, 

such as MPC.  However, to determine a truly optimal control structure, a quantitative measure of 

controller complexity is required.  This is due to the need to balance control performance with 

control complexity.  A few authors have proposed some measures of controller complexity.  The 

measure proposed by (Skogestad, 2004) is based, largely, on the number of input variables, 

output variables, and tuning factors of the proposed control structure.  However, this measure 

does not address the issue of computation time required to determine control actions.  For this 
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reason, the measure of computational expense proposed in this work is based upon the 

computational time required for the calculation of control actions.  For simple PID control, it is 

assumed that the computation is completed instantaneously.   For centralized, MPC based 

control, it is assumed the computational time required is defined as Equation 43.  This measure is 

based upon the time complexity of the evaluation of an n dimensional optimization problem 

(Karmarkar, 1984).  Using this measure, it is possible to determine a set of Pareto optimal 

control structures which balance control performance with control complexity.   

O(n
2
ln(n))                                                     (43) 
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4. Application 

In this section, the application of the above described control system design procedure is applied 

to an acid gas removal (AGR) unit and the gasification section of the IGCC power plant with 

CO2 capture. 

The IGCC power plant with CO2 capture that is considered in this work is based upon the work 

of Bhattacharyya et al, 2011.  A simplified block flow diagram of the process is shown in Figure 

6.  The process begins when coal is gasified in the gasifier to generate a raw synthesis-gas 

stream.  This syngas consists of carbon monoxide, carbon dioxide, hydrogen, water, hydrogen 

sulfide, and other impurities.  This raw syngas is then sent to a series of water-gas shift reactors.  

These reactors promote the water-gas shift reaction, shown as Equation 44.  The shifted syngas is 

then sent to the acid gas removal unit (AGR) where carbon dioxide, ammonia, and hydrogen 

sulfide are selectively removed from the syngas.  The carbon dioxide is sent to the CO2 

compressors where it is pressurized and sent for sequestration. The ammonia and hydrogen 

sulfide are sent to the Claus unit where ammonia is destroyed and hydrogen sulfide is converted 

to elemental sulfur.  The cleaned syngas is then sent to the gas turbine (GT) for power 

production.  The hot tail gas from the GT is then sent to a heat recovery steam generation unit 

(HRSG) where it is used to raise three pressures of steam for additional power production. 

2 2 2H O CO CO H  
                                           (44) 
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Figure 6: Block Flow Diagram of IGCC with Carbon Capture (Bhattacharyya et al, 2011) 

4.1. Acid Gas Removal (AGR) Unit 

The AGR considered in this work is a dual-stage SELEXOL unit based upon the work of 

(Bhattacharyya et al, 2011).  A dual-stage Selexol unit, as shown in Figure 7, is used to remove 

hydrogen sulfide (first stage) and carbon dioxide (second stage) contained in the shifted syngas.  

Part of the loaded solvent from the CO2 absorber is sent to a series of four flash vessels.  The 

first flash is for the recovery of most of the hydrogen dissolved in the solvent.  The remaining 

three vessels are used to flash off the dissolved carbon dioxide which is subsequently 

compressed and sent for sequestration.  This semi-lean solvent is then sent back to the CO2 

absorber.  The remainder of the loaded-solvent from the bottom of the CO2 absorber is sent to the 

H2S absorber.  From the H2S absorber, the solvent is sent to the H2S concentrator, where by 

means of a pressure swing and using nitrogen as a stripping gas, the majority of the dissolved 

carbon dioxide is released from the solvent while leaving the majority of the hydrogen sulfide.  

The stripped gas is recycled back to the H2S absorber.  From the concentrator, the solvent is sent 

to the Selexol stripper, where hydrogen sulfide is stripped from the solvent and sent to a Claus 

unit to recover elemental sulfur. This thermally regenerated solvent is then pumped, chilled, and 

sent back to the CO2 absorber. 
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Figure 7: Configuration of Selexol Unit with CO2 Compressors (Bhattacharyya et al, 2011) 

 

The plant model is developed using the PC-SAFT EOS thermodynamics package available in 

Aspen Engineering Suite (AES). As reported in the AspenTech knowledge base, the parameters 

used in the EOS are determined by regressing with the experimental data available in the open 

literature. 

4.1.1. Top-Down Analysis 

4.1.1.1. A Priori Analysis 

4.1.1.1.1. Optimization 

There exist two obvious operational objectives that could be considered for the AGR unit.  These 

are the minimization of operational cost or minimization of auxiliary power consumption in the 

unit.  For all the studies considered here, the operational objective considered was the 

minimization of the operational cost.  For this operational objective, associated costs of utilities, 

feeds, and products are considered.  The utilities used within the AGR unit are electricity, steam, 

cooling water, and refrigerant (ammonia).  The steam utility is converted into an equivalent 

electrical power production for the determination of its cost.  This was done by using a steam 
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turbine to determine the electrical power generation possible from the steam used for heating 

duties.  The cost for cooling water was also converted into an equivalent electrical cost. This was 

done by determining the electrical power required to pump the equivalent amount of water 

required for the heating duties.  Ammonia refrigeration duty was likewise converted to an 

equivalent power requirement by determining the compressor power required to generate the 

equivalent heating duty.  With all utilities converted into an equivalent electrical power 

requirement, these values were then converted into a cost per hour.  The assumed cost of 

electricity used in these studies is $0.0943/kWh (http://www.eia.gov/electricity/monthly).  There 

are three feeds to the AGR unit, the shifted syngas, makeup solvent, and tailgas from the tailgas 

treatment unit (Bhattacharyya, Turton, & Zitney, 2011).  No cost, or value, was taken for the 

shifted syngas and tailgas streams.  The cost of the makeup solvent was found from (Bucklin and 

Schendel, 1984).  This cost was adjusted based upon the inflation rate to arrive at an equivalent 

cost in 2011.  The assumed cost of the solvent is $6.28/kg.  There are three product streams from 

the AGR unit, the cleaned syngas, the Claus unit feed stream, and the CO2 stream.  From these 

product streams, four costs were assumed to be incurred: carbon monoxide sent with the CO2 

stream, carbon monoxide sent with the Claus feed, hydrogen sent with the CO2 stream, and 

hydrogen sent with the Claus feed.  These are considered to be losses from the system because 

these species can be sent to the gas turbine (GT), and subsequently to the heat recovery steam 

generator (HRSG), for power generation (Bhattacharyya, Turton, & Zitney, 2011).  To determine 

this power loss, the electrical power output of the GT and steam turbines per unit of lower 

heating value (LHV) of the clean syngas was determined.  This is a measure of the efficiency of 

the GT and steam turbines as a function of the LHV.  This efficiency was used to determine the 

power output lost from hydrogen and carbon monoxide not being sent with the cleaned syngas 

based upon the LHV of hydrogen and carbon monoxide.  From this analysis, a scalar cost 

function in terms of dollars per hour was derived and is shown as Equation 45.  The units of 

mass flowrate, power, and heat duty are kg h
-1

, MW, and MW, respectively. Operational 

constraints of the process are listed within Table 3.  Maximum solvent temperature and water 

content values are taken from (Bucklin and Schendel, 1984).  Table 4 shows the disturbances and 

the magnitudes of the disturbances that are considered likely to affect this AGR unit. The table is 

prepared considering the expected operational changes in the IGCC power plant. Changes in 

syngas composition are calculated from assumed variations in inlet temperature of the upstream 

water-gas shift reactors
 
(Bhattacharyya, Turton, & Zitney, 2011). 
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Table 3. Operational Constraints 

Constraint Value 

Percentage CO2 Capture 95% of Inlet CO2 

Percentage H2S Capture 99.95% of Inlet H2S 

Solvent Temperature at the Outlet of 

the Refrigeration Coolers 

4°C 

Solvent Temperature at the Outlet of 

the Water Coolers 

21°C 

Solvent Temperature at the Outlet of 

the Steam Heaters 

177°C 

Maximum Compressor Power +20% of nominal 

Maximum Heat Exchanger Duty +50% of nominal 

Maximum Allowable Solvent 

Temperature 

175°C 

Maximum Allowable Water Content 

of Solvent 

6 wt% 

Minimum Stripper Pressure 276 kPa 

Minimum Claus Feed Purity 40 mol% H2S 
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Table 4. Disturbances Considered 

Disturbance Nominal Low High 

CO2 Capture 95% 91% 97% 

Syngas Flow Rate 100% 65% 105% 

Syngas Composition 

(mol fraction) 

0.0294

0.554

2
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Claus Feed Purity 

Requirement (mol% 

H2S) 

40% 25% 60% 

Tailgas Flow Rate 100% 75% 105% 

Sulfur Content of 

Syngas 

100% 80% 110% 

 

Using the 16 DOF available in the AGR unit, the process is optimized at nominal operation and 

at varying magnitudes of the disturbances as listed in Table 3.  Due to the high degree of process 

nonlinearity and multiple degrees of freedom, this optimization problem is difficult to solve 

using the default sequential-modular (SM) solution method in Aspen Plus
®
.  Instead, the 

equation-oriented (EO) solver available in Aspen Plus
®
 is used to solve this problem 

successfully.   

With the optimization studies complete, a 27% reduction in hourly operational cost, at nominal 

conditions, is accomplished and 10 active constraints are identified.  These active constraints are 

listed in Table 5.  

 

 

 

 

 

 

 



51   

 

Table 5.  Active Constraints and Pairings 

 

Active Constraint Manipulated Variable 

CO2 Capture Low Pressure Flash Pressure 

H2S Capture Stripper Reboiler Duty 

Water Content of Solvent Steam Flow rate 

H2S Purity to Claus Unit H2S Concentrator Pressure 

Stripper Pressure Stripper Vapor Flow rate 

Stripper Top Temperature Stripper Condenser Duty 

Semi-lean Solvent Cooler Outlet Temperature Semi-lean Solvent Cooler Duty 

Loaded Solvent Heater Outlet Temperature Loaded Solvent Heater Duty 

Lean Solvent Cooler Outlet Temperature Lean Solvent Cooler Duty 

H2 Cooler Outlet Temperature H2 Cooler Duty 

 

4.1.1.1.2. Control of Active Constraints 

With the active constraints identified, appropriate manipulated variables need to be identified for 

their control.  From the 16 manipulated variables, there are a total of  

16! 10
2.906 10

16 10 !
 

  possible 

pairings.  However, many of the pairings are obvious, such as cooler heat duties with outlet 

cooler temperatures.  If these obvious pairings are made, there are only  

10!
5, 040

10 4 !


  remaining 

pairings.  To determine the optimal pairings, enumeration of the RGA number in Equation 23 

was undertaken for all possible combinations using MATLAB
®
.  Since the number of 

possibilities here are small and the evaluation of the RGA number is computationally 

inexpensive, enumeration is feasible for all possible combinations using a linearized process 

model.  The linearized model is generated from the nonlinear process model developed within 

Aspen Plus Dynamics
®
 using a control design interface (CDI) script.  The CDI script generates a 

state-space model and a steady state gain matrix at the current operational point of the nonlinear 

model.  The operational point chosen to carry out this evaluation is the optimal nominal 

operation identified during the optimization stage of this study.  The resulting pairings shown in 

Table 5 are found to provide the globally minimal RGA number for all the possibilities.  

4.1.1.1.3. Identification of the Candidate Sets of Controlled Variables 

Since the 10 active constraints in Table 5 are added to the controlled variable set, they are 

removed from the candidate set, reducing the size of the initial set from 282 to 272.  Considering 
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the remaining 6 DOF, the additional primary controlled variables need to be selected from 

 272 11
5.3207 10

6
 

candidate sets. This is a large reduction in the candidate sets from the earlier 

value of
25

4.9555 10 , but direct evaluation in the nonlinear process model is still intractable.  The 

list of the initial controlled variable set is shown in Table 6.  The first step taken is the evaluation 

of Equations 25 and 26 to determine the controllability of each of the individual controlled 

variables.  This analysis eliminates 109 controlled variables from the original list.  This reduces 

the size of the initial list from 272 to 163, reducing the number of possible controlled variable 

sets from 
 272 11

5.3207 10
6

 

 to 
 163 10

2.3734 10
6

 

, a 95% reduction.   
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Table 6. List of Initial Controlled Variable Set 

Temperature of stages in CO2 Absorber 

H2S vapor fraction of stages in CO2 Absorber 

CO2 vapor fraction of stages in CO2 Absorber 

H2S liquid fraction of stages in CO2 Absorber 

CO2 liquid fraction of stages in CO2 Absorber 

Temperature of stages in H2S Absorber 

H2S vapor fraction of stages in H2S Absorber 

CO2 vapor fraction of stages in H2S Absorber 

H2S liquid fraction of stages in H2S Absorber 

CO2 liquid fraction of stages in H2S Absorber 

Pressure of H2 Recovery Flash 

Temperature of H2 Recovery Flash 

H2 vapor fraction of H2 Recovery Flash 

CO2 vapor fraction of H2 Recovery Flash 

H2 liquid fraction of H2 Recovery Flash 

CO2 liquid fraction of H2 Recovery Flash 

Pressure of High Pressure Flash 

Temperature of High Pressure Flash 

H2 vapor fraction of High Pressure Flash 

CO2 vapor fraction of High Pressure Flash 

H2 liquid fraction of High Pressure Flash 

CO2 liquid fraction of High Pressure Flash 

Pressure of Medium Pressure Flash 

Temperature of Medium Pressure Flash 

H2 vapor fraction of Medium Pressure Flash 

CO2 vapor fraction of Medium Pressure Flash 

H2 liquid fraction of Medium Pressure Flash 

CO2 liquid fraction of Medium Pressure Flash 

Pressure of Low Pressure Flash 

Temperature of Low Pressure Flash 
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H2 vapor fraction of Low Pressure Flash 

CO2 vapor fraction of Low Pressure Flash 

H2 liquid fraction of Low Pressure Flash 

CO2 liquid fraction of Low Pressure Flash 

Temperature of stages in H2S Concentrator 

H2S vapor fraction of stages in H2S Concentrator 

CO2 vapor fraction of stages in H2S Concentrator 

H2S liquid fraction of stages in H2S Concentrator 

CO2 liquid fraction of stages in H2S Concentrator 

Temperature of stages in Selexol Stripper 

H2S vapor fraction of stages in Selexol Stripper 

CO2 vapor fraction of stages in Selexol Stripper 

H2S liquid fraction of stages in Selexol Stripper 

CO2 liquid fraction of stages in Selexol Stripper 

Split Fraction of Solvent at Bottom of CO2 Absorber 

Ratio of Syngas – Solvent inlets to CO2 Absorber 

 

4.1.1.2. Selection of the Pareto-Optimal Controlled Variable Sets 

At this stage, the optimization problem defined in Equation 32 is solved. In the formulation of 

the optimization problem, the constraints shown within Equations 30 and 31 must be defined.  

An acceptable maximum degree of loop interactions in the active constraint controls was sought 

by using 
0.5,  2 :i i i   

 for the constraint defined by Equation 30.  Due to this, the 

evaluation of this constraint is only carried out at terminal nodes to ensure the found solution 

does not violate the constraint. 

In the formulation of the constraint defined by Equation 31, process insight is required.  The 

constraint accounts for the dead-time associated with the effect of a manipulated variable on 

controlled variables.  The constraint that has been formulated for this application is shown as 

Equation 46.  This constraint, as currently formulated, requires a degree of process insight to be 

applied.  For this application, this constraint is formulated so that only a specified number of 

controlled variables may be selected from a subset of the candidate set.  Q is a set of K logical 

vectors of size 1×ncv where ncv is the number of candidate controlled variables.  These logical 
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vectors define whether a controlled variable is a member of the subset.    is a set of natural 

numbers that defines how many controlled variables may be selected from the K subsets.    This 

constraint is similar to what has been proposed by (Yelchuru & Skogestad, 2012) as a restriction 

on the number of measurements used from different process sections.  However, in that case, the 

constraint is a formulated as an equality constraint, for this case, a more generically applicable 

version of this constraint is proposed.  This constraint does not necessarily require the selection 

of a fixed number of controlled variables from a subset.  A benefit of this constraint, in addition 

to ensuring good control performance by addressing issues of large dead-times, is the reduction 

in number of feasible solutions within the search space.  

:

k

P k Knk
Q

   

                                                   (46) 

A means of using the constraint, shown as Equation 46, for the pruning of nodes within the 

branch and bound algorithm will now be formulated.  For all nodes that have been upwardly 

branched it is checked to determine whether Equation 47 is true.    If Equation 47 is true, Cn is 

redefined as 

\ \n k p k

p K

C Q Q Q


   
     

    .  This eliminates all controlled variables that are 

exclusive to the k
th

 subset.  This can be done because if a controlled variable is exclusively a 

member of a subset that already has the maximum number of its members in the fixed set, it is 

not possible to obtain a solution within that node that includes an exclusive variable.  That is due 

to the fact that it will violate Equation 46.  The inclusion of this pruning method does not change 

the monotonicity of any objective function nor constraints that may be used for pruning.  This is 

because when j i  and 
      \ \n n n n uF C i F C j n       , where nu is the number 

of inputs, it must be that 
       \ \n n n n n nT F C j T F C i T F C    

 if the function T  is 

monotonic.  As this pruning method is only applied to the node that has been upwardly branched, 

it has no effect on the node branched downwardly.  If it is found that after applying this pruning 

method that 
 n n uF C n    the node is pruned as it contains no feasible solutions. 

  :
k n k

k KQ F                                                      (47) 

A degree of freedom analysis is undertaken for the process units within the AGR unit so as to 

implement the constraint defined within Equation 46.  For the CO2 absorber section, there are 3 
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degrees of freedom available: the H2 recovery flash pressure, the semi-lean solvent flow, and the 

lean solvent flow.    For the H2S absorber, one degree of freedom is available: the lean solvent 

flow.    For the H2S concentrator, there is one degree of freedom available: the nitrogen flow.  

The H2S concentrator pressure is no longer a degree of freedom for control of a variable within 

the H2S concentrator as it has already been used for the control of the H2S purity of the off-gas 

from the Selexol stripper.  For the Selexol stripper, there are no degrees of freedom available for 

additional controlled variables from it.  The three degrees of freedom associated with the stripper 

are already used for the control of three of the four active constraints: stripper top temperature, 

stripper pressure, water content of solvent at the bottom of the stripper, and the H2S capture of 

the process. For the H2 recovery flash vessel, there are two degrees of freedom available: the H2 

recovery flash pressure and the semi-lean solvent flow.  For the remaining three CO2 flash 

vessels, the HP flash, MP, and LP CO2 flash vessels, there is one primary degree of freedom, the 

respective flash vessel pressures. With the models and constraints required to undertake the 

optimization defined within Equation 32 calculated and formulated, the optimization problem is 

solved using the parallelized bi-directional BB algorithm that has been developed.  Two 

disturbances are considered in the optimization. These are changes in the syngas throughput and 

CO2 capture requirement, as these two disturbances are expected to frequently and continuously 

affect the process.  For this reason, the control system was designed such that near optimal 

operation will be maintained under these two disturbance conditions, even at the expense of the 

less frequent and non-sustained disturbances.  It should be noted that this formulation does not 

restrict the number of disturbances considered. 

While the parallelized BB algorithm can be solved on a large computer cluster, the current multi-

objective optimization problem was run on a dual core 2.6 GHz processor and was solved in 

approximately 1 hour.  The 28 Pareto solutions found from this optimization are shown in Figure 

8.    However, several of these solutions are only minor variations of one another, e.g., 

controlling a temperature at the 3
rd

 stage or the 4
th
 stage of a tower.  If one examines the 

solutions that are significantly different from one another, 17 controlled variable sets remain 

from the original set of 28.  The index of these 17 solutions is shown in Table 7 with the variable 

corresponding to each index being shown in Table 8.  The sets in Table 7 are arranged in 

descending cost performance and, thus, increasing controllability performance.  This means that 

sets nearer the top of Table 7, and further to the right in Figure 8, are more sensitive to changes 

in the input variables, implying better control performance.  Additionally, sets nearer the bottom 
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of Table 6, and further to the left in Figure 8, have better self-optimizing control performance, 

implying better economic performance. 

 

Figure 8.  Pareto Solutions for Controlled Variable Selection Problem 
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Table 7. Controlled Variable Indices 

Index Controlled Variable 

1 H2 Recovery Vessel Pressure 

2 High Pressure Vessel Pressure 

3 Medium Pressure Vessel Pressure 

4 Nitrogen Flowrate 

5 Semi-lean Solvent Flowrate 

6 Lean Solvent Flowrate 

7 (yCO2)8 CO2 Absorber
a
  

8 (yCO2)11 CO2 Absorber
a
 

9 (yCO2)16 CO2 Absorber
a
 

10 (xCO2)8 CO2 Absorber
a
 

11 (xCO2)11 CO2 Absorber
a
 

12 T11 CO2 Absorber
a
 

13 (yCO2)21 H2S Absorber
a
 

14 (xCO2)9 H2S Absorber
a
  

15 (xH2S)8 H2S Absorber
a
  

16 (xH2S)24 H2S Absorber
a
 

17 (xH2S)25 H2S Absorber
a
 

18 (yCO2)1 H2S Concentrator
a
  

19 (yCO2)4 H2S Concentrator
a
 

20 (yCO2)6 H2S Concentrator
a
 

21 (xCO2)2 H2S Concentrator
a
 

22 (xCO2)6 H2S Concentrator
a
 

23 Ratio of Semi-lean:Lean Solvent 

Flow to CO2 Absorber 

24 Ratio of Total Solvent Flow : Gas 

Flow to CO2 Absorber 

a. Subscript denote stage number 
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Table 8. Controlled Variable Sets Arranged in Descending Cost Performance 

 

Controlled Variable Sets Controlled Variable 

C0 1, 2, 3, 4, 5, 6 

C1 2, 3, 9, 20, 23, 24 

C2 2, 3, 4, 9, 23, 24 

C3 1, 2, 3, 4, 5, 16 

C4 1, 2, 3, 10, 16, 18 

C5 1, 2, 3, 4, 10, 16 

C6 1, 2, 3, 7, 16, 18 

C7 1, 2, 3, 4, 7, 16 

C8 1, 2, 3, 7, 13, 20 

C9 1, 2, 3, 4, 12, 14 

C10 1, 2, 3, 4, 8, 14 

C11 1, 2, 3, 4, 11, 14 

C12 1, 2, 3, 17, 21, 22 

C13 2, 3, 17, 21, 22, 23 

C14 2, 3, 17, 19, 21, 23 

C15 2, 3, 4, 5, 15, 23 

C16 2, 3, 5, 15, 20, 23 

4.1.1.3. A Posteriori Analysis 

With the 17 identified candidate controlled variable sets, evaluations using the nonlinear process 

model are required to finalize the selection.  The first nonlinear model evaluation that is 

undertaken is the economic performance of the controlled variable sets.  This is required because 

the process and the model are nonlinear and the above methods relied upon linearized process 

models.  However, as can be seen within Figures 9 and 10, the economic loss of the process is 

not linear.  This is undertaken within Aspen Plus using the EO solver.  With the EO solver within 

Aspen Plus, it is possible to make specification changes within the system of equations 

describing the process.  In this way, it is possible to fix the controlled variables and to calculate 

the values of the manipulated variables required to hold the controlled variables constant.  With 

these variable specifications changes implemented for all the controlled variable sets, the 

disturbances considered are applied and the system of equations is solved.  With each magnitude 

of the disturbances considered, the objective function is evaluated and stored.  These evaluations 

were undertaken for all the controlled variable sets and the results of these examinations are 

shown in Table 9.  If, due to the implementation of the specification changes, no solution exists 

for the system of equations, the controlled variable set is not feasible as no values of the 

manipulated variables within the given bounds will be capable of holding the controlled 

variables at their setpoints.  However, it should be noted, that just because no solution exists for a 
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controlled variable set, this does not necessarily imply that the controlled variable set is 

infeasible.  For example, controlled variable sets C5, C7, C9, C10, and C11 would require a 

change in the controlled variables when the syngas flow is 75% lower than the nominal as the 

H2S concentration in the off-gas from the stripper is no longer an active constraint.  Instead, the 

pressure of the H2S concentrator becomes the new active constraint as the purity of the off-gas 

becomes greater than what is desired.  This does not mean these controlled variable sets are 

infeasible, simply that at some operating points, the active constraints change.  However, other 

controlled variable sets, for example C15 and C16, are infeasible, as at some operations, 

specifically when syngas flow is below approximately 90% of the nominal value, no value of the 

manipulated variables exist that can hold these controlled variable sets constant while satisfying 

the process constraints.  It is important to note that although the loss of these controlled variable 

sets appear small, these losses are in terms of dollars per hour.  The economic loss of C0, C2, 

and C10 at 65% syngas throughput is $15,849,000/yr, $605,000/yr, and $815,000/yr, 

respectively.  This calculation is made assuming no down-time in a year. 

Table 9. Economic Loss [$ h
-1

] of Controlled Variable Sets 

 

Controlled Variable 

Set 

65% Syngas 

Throughput 

91% CO2 Capture 97% CO2 Capture 

C0 1808 88 399 

C1 74 62 165 

C2 69 62 165 

C3 1159 93 230 

C4 101 148 47 

C5 106 144 48 

C6 101 108 47 

C7 106 106 47 

C8 92 109 45 

C9 93 34 19 

C10 93 42 23 

C11 93 44 23 

C12 138 37 32 

C13 56 46 53 

C14 209 67 79 
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Figure 9. Effect of Syngas Flowrate on Economic Loss of Selected Controlled Variables 

 

Figure 10. Effect of CO2 Capture Requirement on Economic Loss of Selected Controlled 

Variables 
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With the economic performance of the controlled variable sets determined from the nonlinear 

model, the control performance must be determined next.  This is first done by considering the 

presence of an RTO. Therefore, the optimal inputs, as determined from the optimization studies, 

are implemented in the Aspen Plus Dynamics model.  From the Aspen Plus Dynamics model, a 

linear process model of the process is generated, via a CDI script, at that operating point.  This is 

undertaken at various identified optimal operating points of the process.  From these linearized 

process models, the minimum singular value of the appropriately scaled gain matrix is examined 

for all the feasible controlled variable sets at the extreme disturbance conditions.  The results of 

this analysis are shown in Table 10.  From this analysis, it is clear that several of the controlled 

variable sets lose control performance drastically at the possible extreme possible operations of 

the process.  Also important to note is that the gains of several of the identified controlled 

variables change direction with deviation from the nominal conditions.  As an example, the 

scaled gain of the lean solvent flow on the H2S content of the solvent on the 24
th
 stage of the H2S 

absorber is shown in Figure 11 at various syngas flowrates.  It should be noted that this input-

output pairing is suggested by the RGA analysis at nominal operation for all controlled variable 

sets that contain this particular controlled variable.  In general, the controlled variables that are 

selected from the bottom of the H2S absorber have gain switches associated with them.  This is 

due to the effects of the H2S concentrator pressure and lean solvent flow upon the H2S purity in 

the stripper off-gas.  As lean solvent flow is decreased, the H2S purity in the stripper off-gas 

increases, causing an increase in the H2S concentrator pressure, resulting in less gas being 

recycled back to the H2S absorber.  Inversely, if lean solvent flow is increased, the H2S purity in 

the stripper off-gas decreases, causing a decrease in the H2S concentrator pressure, resulting in 

an increase in gas being recycled back to the H2S absorber.  The controlled variables at the 

bottom of the H2S absorber are sensitive to this recycled flow and also to the lean solvent flow 

and due to these interactions, the gain of the lean solvent flow may switch on variables at the 

bottom of the H2S absorber.  This does not necessarily imply that the controlled variable sets that 

contain controlled variables that switch gain are uncontrollable; however, it does imply the need 

for a more complex control configuration for the control of these controlled variable sets.  

Additionally, as these gains approach zero, the controllability of the process will, obviously, be 

sacrificed. 
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Table 10. Effect of Disturbances on Controllability of Controlled Variable Sets [minimum 

singular value] 

 

Controlled 

Variable Set 

Nominal (95% 

CO2 Capture) 

65% Syngas 

Throughput 

91% CO2 

Capture 

97% CO2 

Capture 

C0 1.0000 1.0000 1.0000 1.0000 

C1 0.9999 0.5672 1.0000 0.9984 

C2 0.9815 0.5037 0.9884 0.9719 

C3 0.9815 0.6658 0.9958 0.9496 

C4 0.9747 0.5278 0.9459 0.9851 

C5 0.9747 0.6109 0.9459 0.9839 

C6 0.9745 0.5188 0.9460 0.9840 

C7 0.9744 0.6071 0.9459 0.9830 

C8 0.9739 0.9985 0.9456 0.9838 

C9 0.9513 0.9912 0.9074 0.9728 

C10 0.9513 0.9906 0.9072 0.9729 

C11 0.9513 0.9904 0.9071 0.9729 

C12 0.8698 0.2757 0.1657 0.9294 

C13 0.4499 0.1551 0.4554 0.3858 

 

Figure 11. Effect of Syngas Throughput on the Gain of Controlled Variable 

With these analyses complete, the controlled variable sets C9, C10, and C11 appear to be the 

superior sets, in terms of both controllability and economics, and are thus selected for further 

consideration.  At this point, further analysis can be performed to reduce the size of the 

controlled variable sets.  C11 contains a variable associated with the solvent composition within 

the H2S absorber.  In comparison, controlled variable sets C9 and C10 contain a variable 
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associated with temperature and a vapor composition.  With the exception of these differences, 

these controlled variable sets are the same.  As the measurement of liquid compositions is more 

expensive and more susceptible to errors, the selection of a vapor phase composition or 

temperature would be preferred.  Given these process insights, the controlled variable sets C9 

and C10 are considered for further evaluation. 

To determine the controllability of controlled variable sets C9 and C10, the maximum magnitude 

of a disturbance is applied to the model in the absence of a RTO.  This is undertaken for all 

disturbances.  The process is then linearized at the new operational point, yielding six linearized 

models of the process.  The gain matrices generated are then scaled and the minimum singular 

values are calculated.  This provides insight into the control performance of these controlled 

variables when either no RTO is present or no updated setpoints from the RTO is available.  The 

results of these analyses are shown in Table 11.  These results show that even if no RTO is 

present or no updated setpoints from an RTO are available the controllability of controlled 

variable sets C9 and C10 are still satisfactory.  For these reasons, controlled variable sets C9 and 

C10 may be considered as primary controlled variable sets for the design of the control system of 

the AGR unit as part of an IGCC power plant.  For future evaluations, controlled variable set 

C10 is considered. 

Table 11. Controllability [minimum singular value] of C9 and C10 with Constant Setpoint Policy 

 

Disturbance C9 C10 

65% Syngas Throughput 0.9997 0.9718 

91% CO2 Capture 0.9665 0.9314 

97% CO2 Capture 0.9312 0.9665 

4.1.2. Bottom-Up Design 

In this section, the selection of secondary controlled variables, control structure of the 

supervisory control layer, and the design of the MPCs used for control of the AGR unit will be 

discussed. 

4.1.2.1. Secondary Controlled Variable Selection 

4.1.2.1.1. A Priori Analysis 

To begin the analysis, a set of candidate secondary controlled variables needs to be identified.  

For this application, the set of secondary controlled variables is the same as previously used for 

the primary controlled variable selection, shown in Table 12, unless they were selected as 
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primary controlled variables.  It should be noted that one would not usually include compositions 

as candidate secondary controlled variables because of time-delay in the measurement. However, 

as not all such variables are evident in a process unit, the motivation for including the 

composition variables in the candidate set of sensors is to see the efficacy of the proposed 

algorithm in removing them.  Next, local disturbances likely to affect the process are identified.   

These are listed in Table 13.  
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Table 12. Candidate Set of Secondary Controlled Variables 

 

Controlled Variable Number of Controlled 

Variable 

Temperature of stages in CO2 Absorber 16 

H2S vapor fraction of stages in CO2 Absorber 15 

CO2 vapor fraction of stages in CO2 Absorber 15 

H2S liquid fraction of stages in CO2 Absorber 16 

CO2 liquid fraction of stages in CO2 Absorber 16 

Temperature of stages in H2S Absorber 27 

H2S vapor fraction of stages in H2S Absorber 27 

CO2 vapor fraction of stages in H2S Absorber 27 

H2S liquid fraction of stages in H2S Absorber 27 

CO2 liquid fraction of stages in H2S Absorber 27 

Temperature of H2 Recovery Flash 1 

H2 vapor fraction of H2 Recovery Flash 1 

CO2 vapor fraction of H2 Recovery Flash 1 

H2 liquid fraction of H2 Recovery Flash 1 

CO2 liquid fraction of H2 Recovery Flash 1 

Temperature of HP Flash 1 

H2 vapor fraction of HP Flash 1 

CO2 vapor fraction of HP Flash 1 

H2 liquid fraction of HP Flash 1 

CO2 liquid fraction of HP Flash 1 

Temperature of MP Flash 1 

H2 vapor fraction of MP Flash 1 

CO2 vapor fraction of MP Flash 1 

H2 liquid fraction of MP Flash 1 

CO2 liquid fraction of MP Flash 1 

Temperature of LP  Flash 1 

H2 vapor fraction of LP Flash 1 

CO2 vapor fraction of LP Flash 1 

H2 liquid fraction of LP Flash 1 

CO2 liquid fraction of LP Flash 1 

Temperature of stages in H2S Concentrator 6 

H2S vapor fraction of stages in H2S Concentrator 6 

CO2 vapor fraction of stages in H2S Concentrator 6 

H2S liquid fraction of stages in H2S Concentrator 6 

CO2 liquid fraction of stages in H2S Concentrator 6 

Temperature of stages in Selexol Stripper 9 

H2S vapor fraction of stages in Selexol Stripper 10 

CO2 vapor fraction of stages in Selexol Stripper 11 

H2S liquid fraction of stages in Selexol Stripper 11 

CO2 liquid fraction of stages in Selexol Stripper 11 

Split Fraction of Solvent at Bottom of CO2 Absorber 1 

Ratio of Syngas – Solvent inlets to CO2 Absorber 1 
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Table 13. Identified Disturbances 

 

Disturbance Disturbance Magnitude 

Water Cooler Outlet Temperatures +16.7 °C 

Refrigeration Cooler Outlet Temperatures +2.8 °C 

Syngas Composition (percent deviation in 

mol fraction) 
20%

0.36%

2

0.76%
2

0.38%
2

y
CO

y
H

y
CO

y
H O

 

 

 

 

 
H2S Flowrate in the Syngas ±35 kmols h

-1
 

 

With the candidate set and disturbance variables identified, linearized process models are 

calculated from the nonlinear Aspen Plus Dynamics
® 

model using a control design interface 

(CDI) script.  Using the CDI script, the linearized process gain matrices for the primary and 

secondary controlled variables, Gp1 and Gp2, respectively, and disturbance gain matrices for the 

primary and secondary controlled variables, Gd1 and Gd2, respectively, are calculated.  Using 

these matrices, Equations 1 and 2 are used to formulate the subset selection constraint.  

Next, the identification of input-output models must be completed.  To accomplish this, the 

nonlinear process model is perturbed from its steady-state, nominal operating conditions.  

Perturbations are applied to the inputs of interest, listed in Table 14 and the disturbances defined 

in Table 15.  The outputs of the primary and candidate secondary controlled variables are stored.  

With this data, transfer functions are identified within MATLAB
®
.  Any number of forms of the 

transfer function can be considered.  For this application, three forms are fitted in MATLAB
®
.  

The first is a simple first-order model plus time-delay, Equation 48.  Here, Θp is the process 

dead-time and   is the process time constant.  The second is a second-order model plus time-

delay, Equation 49.  Here, Θp is the process dead-time, ωn is the undamped natural frequency, 

and ζ is the damping ratio.  The third is a first-order model plus pure gain, Equation 50.  Here, 𝜏 

is the process time constant and α is the fraction of the total gain that applies instantaneously.  

Also, for all these transfer functions, K is the gain.  Within MATLAB, the parameters of these 

equations are used as degrees of freedom to minimize the sum of squared errors between the 

model output and the output from the nonlinear process model.  Next, the Akaike information 

criterion (AIC) (Akaike,1974) is calculated for each of the models, defined as Equation 51, and 

the model which has the lowest value is used for the next stage of analysis.  Here, TSE is the total 
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squared error, ndata is the number of data points, and np is the number of fitting parameters 

associated with the model. 

Table 14. Manipulated Variables for Control of Secondary Controlled Variables 

 

Low Pressure Flash Vessel Pressure 

Temperature at Bottom of Stripper 

Steam Flowrate to Stripper 

H2S Concentrator Pressure 

Semi-lean Solvent Flowrate 

Lean Solvent Flowrate 

 

Table 15. Disturbance Variables Considered during Secondary Controlled Variable Selection 

 

Disturbance Disturbance Magnitude 

Water Cooler Outlet Temperatures +16.7 °C 

Refrigeration Cooler Outlet Temperatures +2.8 °C 

Syngas Composition (extent of WGS reaction) ±272 kmols 

H
2
S Content of Syngas ±35 kmols h

-1
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Finally, the IAEs of all feasible pairings, as determined by the subset selection constraint, of u – 

y2 – y1 are calculated.  For the dynamics of the measurement devices, pure time-delay is 

assumed.  The time-delay applied is based upon the type of measurement.  If the secondary 

controlled variable is a temperature, flowrate, or pressure, it is assumed that there is no time-

delay.  For vapor compositions, measurement delay was assumed to be 2 min.  For liquid 

compositions, measurement delay was assumed to be 5 min.  In addition, the IAE calculations 

rely upon the design of the controllers GC1 and GC2.  For this application, both controllers are 

assumed to be PI controllers and are tuned using the Ciancone correlations (Ciancone and 
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Marlin, 1990).  This tuning method is defined in Tables 16 and 17.  For a PI controller of the 

form 

1
1C

I

K
s

 
 

  , the controller gain, KC, is determined from Table 16, and the integral time 

constant I , is determined from Table 17.  First, the inner, secondary, controller is designed, GC2.  

This is done by providing a step to 2 2G H
 and fitting the response to a first-order system plus 

time-delay.  From this, Tables 5 and 6 are used to design the controller.  For the design of the 

outer, primary, controller, GC1, a step is provided to 

2 1 1

2 2 21

C

C

G G H

G G H
 and the response is fitted to a 

first-order system plus time-delay.  Again, like with the secondary controller, Tables 16 and 17 

are used to design the controller.  The results of all of these calculations are stored in a three 

dimensional matrix which is used during set selection. 

 

Table 16. Controller Gain Table 

 

p

p




 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

KKc  1.1 1.1 1.8 1.1 1.0 0.8 0.54 0.42 0.32 

 

Table 17. Integral Time Constant Table 

 

p

p




 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

I

p



 
 

0.23 0.23 0.23 0.72 0.72 0.70 0.67 0.60 0.53 

 

4.1.2.1.2. Set Selection 
With the a priori analysis complete, the parallelized, bi-directional branch and bound algorithm 

described Appendix A is used to solve the constrained mixed integer optimization problem.  Two 

cases are considered here, the first has no constraint on the servo control performance of the 

supervisory control layer.  In the second, the servo control constraint on the supervisory control 

layer may only deteriorate the performance by 20% from the case with no secondary controlled 

variables.  That is 
 1.2 SERVO basis
IAE 

, as defined in Equation 40, where 
 SERVO basis
IAE

 is the 
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IAE value of the closed loop system with no secondary controlled variables.  The deterioration of 

the servo control performance was set to 20% from the case with no secondary controlled 

variables because if the constraint is tighter no solutions exist and if looser does not change the 

solution set.  The scaling applied to the servo IAEs are the same as used for the regulatory IAEs.  

For both of these cases, ten solutions were desired; however, for Case 2, because of the servo 

constraint, the fifth best solution is the trivial case where no secondary controlled variables are 

selected.  This means that all solutions that follow the fifth solution in Case 2, though not 

violating any constraints, result in a deterioration of control performance from the case with no 

secondary controlled variables. Therefore, only five solutions were found for Case 2 that did not 

result in worse control performance from the base case.  It should be noted that as this is a single 

objective optimization, the user must specify the number of solutions desired.  However, if a 

large number of solutions are desired, the computation time required for solving the optimization 

problem will become high.  However, enough solutions should be acquired to ensure that a 

viable solution is found after completing the posteriori analysis.  The results of Cases 1 and 2 are 

shown in Tables 18 and 19, respectively, where the indices of the controlled variables are shown 

in Table 20.  It should be noted that little difference exists in the solutions found in Case 1; 

however, more substantial differences between the solutions exist within Case 2.  For this 

application, no servo constraint is required because the setpoints of the primary controlled 

variables are not expected to change and, therefore, the remaining discussions will focus on Case 

1.  Within the solutions in Case 1, there are two categories of sets that were observed.  Each of 

these categories are outlined within Table 21.  The first category, containing sets 1, 2, 3, 4, 5, 6, 

7, and 9, use the LP flash vessel pressure to control the CO2 capture, via a secondary controlled 

variable, and the second category, containing Sets 8 and 10, use the semi-lean solvent flowrate, 

via a secondary controlled variable, to control the CO2 capture.  Another important distinction 

between these two categories is related to the primary controlled variables whose regulatory 

control performance is improved.  In the case of the first category, the primary controlled 

variables whose performance is improved are CO2 capture and solvent composition in the H2S 

absorber.  The improvements in CO2 capture and solvent composition in the H2S absorber are 

69% and 48% reductions in the IAE values, respectively.  CO2 capture control, for all ten 

secondary controlled variable sets, is a controlled variable whose performance is always 

improved upon.  This is due to the large economic role that the CO2 capture plays within the 

AGR unit.  Therefore, secondary controlled variables are found that will provide superior 
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performance in CO2 capture.  The solvent composition within the H2S absorber, although it does 

not have as large of an impact on the economics of the process as other primary controlled 

variables, does suffer from poor control performance.  This is due to the large distance, and thus 

large dead-time, of the manipulated variable, lean solvent flow, from the controlled variable.  

Additionally, as this primary controlled variable is a liquid composition, measurement delays 

also contribute to the poor control performance.  Therefore, the controlled variable sets 

associated with the first category seek to improve both the control performance of the CO2 

capture and the solvent composition of the H2S absorber.  However, in the case of the controlled 

variables associated with the second category, only CO2 capture loop performance is improved.  

The improvements in CO2 capture for this category result in a 99% reduction in the IAE value.  

In this case, the secondary controlled variables result in a restructuring of the ultimate pairing of 

manipulated variable to primary controlled variables.  The result is a structure that provides 

superior control performance improvements of the CO2 capture than that used within the second 

category.  In this case, however, there are no secondary controlled variables selected to improve 

the control performance associated with the control of the H2S absorber composition.   

Table 18. Results of optimization with no constraint on servo performance 

 

Objective Function 

Value 

Set 

ID 
Secondary Controlled Variables 

Indices 

16.08034  1 1 2 3 4 5 6 

16.10541  2 1 2 4 5 6 7 

16.12042  3 1 2 4 5 6 8 

16.17628  4 1 2 4 5 6 9 

16.26826  5 1 3 4 5 6 10 

16.29332  6 1 4 5 6 7 10 

16.29506  7 1 2 4 5 6 11 

16.33530  8 5 9 10 12 13 16 

16.33962  9 1 4 5 6 7 18 

16.36419  10 5 6 7 10 13 16 
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Table 19. Results of optimization with constraint on servo performance 

 

Objective 

Function 

Value 

Secondary Controlled Variables 

Indices 

16.60080 1 4 5 6 10 13 

16.79399 4 5 6 10 13 17 

26.46106 4 5 6 13 14 16 

26.60726 4 5 6 13 14 15 

26.67772 4 5 6 10 13 14 

 

Table 20. Controlled variables indices 

 

Index Controlled Variables 

1 (xCO2)6 CO2 Absorber
a
 

2 T1 H2S Absorber
a
 

3 (yCO2)1 H2S Concentrator
a
 

4 T11 Selexol Stripper
a
 

5 Steam Flowrate to Stripper 

6 H2S Concentrator Operating Pressure 

7 (yCO2)25 H2S Absorber
a
 

8 (yCO2)6 H2S Absorber
a
 

9 T22 H2S Absorber
a
 

10 Semi-lean Solvent Flowrate 

11 (yH2S)20 H2S Absorber
a
 

12 (xCO2)6 H2S Concentrator
a
 

13 Lean Solvent Flowrate 

14 LP Flash Vessel Pressure 

15 (xCO2)3 H2S Absorber
a
 

16 T16 CO2 Absorber
a
 

17 (yCO2)6 CO2 Absorber
a
 

18 (xH2S)6 H2S Concentrator
a 

a. Subscript denote stage number 
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Table 21. Ultimate Pairings of Manipulated Variables to Primary Controlled for each Category 

of Secondary Controlled Variable 

 

Category 1 Category 2 

Manipulated Variable Controlled Variable Manipulated Variable Controlled Variable 

LP Flash Vessel 

Pressure 

CO2 Capture Semi-lean Solvent 

Flowrate 

CO2 Capture 

T11 Selexol Stripper
a
 H2S Capture T11 Selexol Stripper

a
 H2S Capture 

Steam Flowrate to 

Stripper 

Water Content of 

Solvent 

Steam Flowrate to 

Stripper 

Water Content of 

Solvent 

H2S Concentrator 

Operating Pressure 

H2S Purity to Claus H2S Concentrator 

Operating Pressure 

H2S Purity to Claus 

Semi-lean Solvent 

Flowrate 

Vapor Composition in 

CO2 Absorber 

LP Flash Vessel 

Pressure 

Vapor Composition in 

CO2 Absorber 

Lean Solvent 

Flowrate 

Solvent Composition 

in H2S Absorber 

Lean Solvent 

Flowrate 

Solvent Composition 

in H2S Absorber 

a. Subscript denote stage number 

4.1.2.1.3. Posteriori Analysis 

With the set selection step of the procedure complete, the posteriori analysis is required to 

finalize the selection of the secondary controlled variable set.  This includes an analysis of the 

regulatory and servo control performance of the regulatory control layer at off-design operating 

conditions.  These off-design operations are 65% throughput, 91% CO2 capture, and 97% CO2 

capture.   These operations were identified in Section 4.2.1.1.1 and are used here for the analysis 

of the performance of the secondary controlled variable sets.  The measure for these control 

performances are the minimum singular value of the process gain matrix for a measure of the 

servo control performance, and the maximum singular value of 
1

2 2d pG G

 for a measure of the 

regulatory control performance.  The requirement is that the servo control performance measure 

should be greater than 1 and the regulatory control measure should be less than 1.  The results of 

this off-design analysis are shown in Table 4.  These are the same constraints applied during the 

set selection procedure; however, in that instance the constraint is applied only at nominal 

operations.  As can be seen in Table 22, the only controlled variable sets that satisfy all the 

constraints under off-design operation are sets 5, 6, and 9.  Finally, these sets need to be 

examined to ensure that there is no gain switching that occurs within the regulatory control layer.  

None of these sets are found to contain pairings whose gains will switch in the operational 

regions examined.   
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Table 22. Off-design control performance regulatory control layer 

 

Controlled 

Variable Set 65% Throughput 97% CO2 Capture 

91% CO2 

Capture   

  Servo Regulatory Servo Regulatory Servo Regulatory 

1 2.3014 0.8788 1.1242 2.351 2.896 0.9686 

2 2.7322 0.9164 1.1309 2.3382 2.9781 0.9868 

3 2.6676 0.9392 1.1327 2.3345 2.9489 1.0041 

4 2.5456 0.9573 1.1300 2.3787 2.6538 0.9735 

5 2.8695 0.0087 3.8224 0.0084 3.1984 0.0121 

6 2.8239 0.0015 7.0058 0.0012 3.2608 0.0073 

7 0.3451 1.338 1.1211 2.3577 2.8434 0.98 

8 0.4412 13.4544 5.6637 0.6574 1.0577 18.0605 

9 2.7803 0.0007877 11.081 0.0005928 2.7666 0.0087 

10 1.5753 3.3046 42.564 0.1283 3.9609 2.8914 

 

4.1.2.2. Control Structure Design 

In this section, it will be discussed how the optimal control structure of the supervisory control 

layer of the AGR unit was determined.  To begin, the linear state space model of the AGR unit 

was required.  This was obtained from Aspen Plus Dynamics using the CDI script.  From this 

state space model, the controllability and observability Gramians are calculated for each of the 

individual subsystems, i.e., each of the pairings of input to output.  From these calculations, the 

three unscaled Gramian interaction matrices are attained.  Next, each of these Gramian 

interaction matrices are scaled, according to the methodology discussed in Section 3.3.1.  

With these matrices, we determine the optimal control structure for the process.  To accomplish 

this, the optimal pairings of inputs and outputs are determined for both centralized and 

decentralized control structures.    One of the three Gramian interaction matrices is used to 

determine the optimal pairings of the structure.  These Gramian interaction measures may lead to 

the same or different control structures.  However, it is important to note that the Gramian 

interaction measures will sometimes suggest unstable structures for a decentralized control case.  

Therefore, a constraint is imposed on the optimization that ensures that the pairings used for the 

decentralized controls are always in agreement with those suggested by the RGA.  The 

optimization is solved for all possible control structures that involve either decentralized or 

centralized, or any combination thereof.  With these results, it is possible to determine the 

expected control performance of each of the possible structures.  Next, the controller complexity 
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for each of these structures is determined and with that a Pareto set of possible control structures 

is obtained.  Using these measures for control performance and control complexity, the 

optimization problem shown as Equation 52 is solved where Jcontrol is calculated from one of the 

Gramian interaction measures.  The results of these optimization are shown in Figures 12, 13, 

and 14 for the HIIA, PM and Σ2 interactions measures, respectively.  To determine the actual 

structure to be used the numerical derivative of the control performance criteria with respect to 

the controller complexity is calculated for the HIIA, PM and Σ2 interactions measures, listed in 

Table 23.  From this tables, it can be seen that a large change in expected control performance 

improvement with increasing controller complexity is seen for the case beyond one 4 by 4 and 

one 2 by 2 centralized controllers. Therefore, for this application, that is the control structure that 

was used. 

      2

,
min , , lncontrol

u y
J u y u y u y                                     (52) 

 
Figure 12. Pareto Set for Control Structure using HIIA Interaction Measure 
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Figure 13. Pareto Set for Control Structure using PM Interaction Measure 

 

 
Figure 14. Pareto Set for Control Structure using Σ2 Interaction Measure 
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Table 23. Numerical Derivative of Control Performance with respect to Controller Complexity 

[listed in increasing controller complexity] 

 

Controller Form Sig PM HIIA 

Decentralized - - - 

One 2 by 2 Centralized 0.039638 0.036428 0.040864 

Two 2 by 2 Centralized 0.034841 0.033038 0.030405 

Three 2 by 2 Centralized 0.021244 0.018322 0.012263 

One 2 by 2 Centralized 

One 3 by 3 Centralized 

0.012298 0.015821 0.014232 

One 4 by 4 Centralized 0.010963 0.010176 0.009009 

Two 3 by 3 Centralized 0.01767 0.011027 0.006856 

One 4 by 4 Centralized 

One 2 by 2 Centralized 

0.002028 0.00617 0.007597 

One 6 by 6 Centralized 0.009358 0.007953 0.006746 

 

4.1.2.3. Supervisory Controller Design 

With the structure of the supervisory control determined, the design of the control system is next 

completed.  As mentioned in Section 4.2.2.2, the optimal structure that balances control 

performance and controller complexity are two centralized controllers. One 4×4 centralized 

control of CO2 capture, vapor composition in the CO2 absorber, H2S purity to the Claus unit, and 

solvent composition in the H2S absorber using the LP flash pressure, semi-lean solvent flowrate, 

lean solvent flowrate, and H2S concentrator pressure.  The second centralized controller controls 

H2S capture and water content of the solvent using the stripper bottom temperature and steam 

flow to the stripper.  For the purposes of this work, the forms used for these centralized controls 

are linear model predictive controls (LMPC). 

Models were identified by applying a pseudorandom binary sequence (PRBS) input signal to the 

nonlinear process model in Aspen Plus Dynamics.    The PRBS input signal used for the semi-

lean solvent flow rates can be seen in Figure 15.  The corresponding output data for CO2 capture, 

CO2 vapor fraction in CO2 absorber, CO2 liquid fraction in H2S absorber, H2S capture, water 

composition of the solvent, and the purity of the off-gas sent to the Claus unit from the nonlinear 

process model as well as the predictions from the linear, identified transfer functions are shown 

as Figures 16, 17, 18, 19, 20, and 21, respectively.  Using the MATLAB system identification 

toolbox, the output data and the PRBS input data were used to identify linear transfer functions.  

Using these identified models, the LMPCs for the process are designed. 
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Figure 15. PRBS Input used for Semi-lean Solvent Flow 

 

 

Figure 16. Effect of PRBS input signal on CO2 Capture and Comparison with Identified Model 
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Figure 17. Effect of PRBS input signal on CO2 Vapor Composition in CO2 Absorber and 

Comparison with Identified Model 

 

 

Figure 18. Effect of PRBS input signal on Solvent Composition in H2S Absorber and 

Comparison with Identified Model 
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Figure 19. Effect of PRBS input signal on H2S Capture and Comparison with Identified Model 

 

 

Figure 20. Effect of PRBS input signal on Water Composition of Solvent and Comparison with 

Identified Model 
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Figure 21. Effect of PRBS input signal on H2S Purity to Claus Unit and Comparison with 

Identified Model 
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be solved for this case is shown as Equation 54.  This optimization is undertaken using a quasi-

Newton method.  Five iterations were carried out to solve Equation 54 considering a -20% step 

change in syngas flow as the disturbance.  This optimization improved the performance of the 

LMPC from $222.7 to $177.1, a 20% improvement from the base case.  These values are based 

upon the entire time range of operation till the process settles.  The time series result is shown in 

Figure 22.  Figure 23, 24, and 25 show the comparison of the dynamic responses of the LMPC 

controls with that of the PID controls for a -20% step change in syngas flow for CO2 capture, 

H2S purity to Claus unit, and CO2 vapor fraction in CO2 absorber, respectively.  Table 25 shows 

the corresponding ISE values of the LMPC control and that of the PID control.  It is clear from 

Table 25 that the disturbance rejection characteristics for some primary controlled variables are 

improved while others are made worse.  This is to be expected as the goal of the optimization 

carried out for tuning of the LMPC was to improve the economics of the process.  Certain 

variables, like water composition of the solvent, do not have a large impact on the economics of 

the process, so its performance was sacrificed for the improvement of variables that have a larger 

importance on the economics, e.g., fraction CO2 in the vapor of the CO2 absorber.   

0

u

i

n

i y

i

ISE


                                                        (53) 
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Table 24. Comparison of Initial LMPC to PID for Three Disturbances 

 

Disturbance PID LMPC Percent Improvement 

-20% Step in syngas flow 701.4 222.7 68.25% 

+2% Step in CO2 Capture 116.9   43.0 63.20% 

-2% Step in CO2 Capture 103.7   49.3 52.43% 
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Figure 22. Economic Loss as a Function of Time due to -20% Step in Syngas Flow 

 

Figure 23. CO2 Capture Fraction after -20% Step Change in Syngas Flow 
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Figure 24. H2S Purity to Claus after -20% Step Change in Syngas Flow 

 

 

Figure 25. CO2 Vapor Fraction in CO2 Absorber after -20% Step Change in Syngas Flow 
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Table 25. Comparison of ISE Values for a -20% Step Change in Syngas Flow 

 

 PID MPC Percent 

Improvement 

CO2 Capture 0.089128 0.267443 -200 

H2S Capture 0.000892 0.000649 27 

Water Content of Solvent 0.018939 0.054999 -190 

H2S Purity to Claus 7.379743 1.401381 81 

CO2 Vapor Fraction in CO2 

Absorber 

5.743467 1.929164 66 

CO2 Liquid Fraction in H2S 

Absorber 

0.638438 1.704903 -167 

 

By applying this procedure, an optimal control system has been designed for the AGR unit of an 

IGCC power plant with CO2 capture.  The steady state economics of the process have been 

improved by 27% from the base case.  The primary controlled variables identified reduce 

economic loss due to off-design operations by as much as 94% from the case were only active 

constraints are controlled.  Secondary controlled variables were identified that improve the 

control performance of the primary control loops by reducing loop dead-times and undesired 

dynamics.  Finally, a supervisory controller consisting of two LMPCs have been designed to 

optimally control the process with minimal control complexity. 

4.2. Gasification Section of IGCC 

In this section, the application of the design procedure to the gasification section of the IGCC 

power plant will be discussed.  It should be noted that the gasification section is less complex 

than the AGR unit, due primarily to the number of manipulated variables.   

4.2.1. Optimization 

As with the AGR unit, the design procedure begins by optimizing the process at nominal and off-

design conditions.  For this optimization, the AGR unit, along with its control structure, is 

included.  In this way, the effects of the gasification section on the AGR unit will be accounted 

for within the optimization.  The objective function used for the optimization of the gasification 

section is given as Equation 53.  Like the objective function used for the AGR unit, this objective 

function represents the economic cost of operations ($ h
-1

).  The value of the syngas or generated 

electricity is not considered within this optimization as the production rate is considered as a 

constraint during optimization.  This optimization reduced the operational cost of the gasification 
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section by 12%.  In addition to nominal operation, this optimization was carried out at various 

production rates, carbon capture percentage, and variations in coal type.  Table 26 shows the off-

design conditions investigated.   

 

       
$

47.52 0.04161 0.03957

hr

short ton
94.3J m moxygen steamcoal

kmol
n W Jslurrypump AGRhr hr

 
   

        

 
  

  (53) 

 

Table 26. Disturbances Considered 

Disturbance Nominal Low High 

Carbon Capture 90% 88% 92% 

Syngas Flow Rate 100% 80% 100% 

 

These optimizations identified 3 active constraints: water-to-coal ratio, gasifier outlet 

temperature, and syngas production rate.  The manipulated variables used for the control of these 

active constraints are shown in Table 27.  After the control of the active constraints is complete, 

there exists only one unpaired manipulated variable, the shift steam flowrate.   

Table 27.  Active Constraints and Pairings 

 

Active Constraint Manipulated Variable 

Carbon Capture Low Pressure Flash Pressure 

Water to Coal Ratio Slurry Water Flowrate 

Gasifier Outlet Temperature Oxygen Flowrate 

Syngas Flowrate Coal Flowrate 

 

4.2.2. Primary Controlled Variable Selection 

Unlike the AGR unit, there are very few possible controlled variable sets for the gasification 

section of the IGCC power plant.  For this reason, enumeration of all possible controlled variable 

sets was undertaken for this process.  Table 28 shows all the candidate controlled variables 

considered for the shift steam flowrate.  After enumeration of all these possibilities, only the 

carbon monoxide conversion was found to be a member of the Pareto set.  This makes intuitive 

sense as the gain of the steam flow on the other candidate variables, e.g., temperatures, is not as 

large as it is on carbon monoxide conversion.  Additionally, carbon monoxide conversion is a 
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rather intuitive primary controlled variable for the process as the primary function of the water 

gas shift reactors and the shift steam is conversion of carbon monoxide. 

Table 28. List of Candidate Controlled Variables 

CO conversion in water gas shift reactors 

CO fraction of gas entering 1
st
 water gas shift reactor 

CO fraction of gas entering 2
nd

 water gas shift reactor 

CO fraction of gas exiting 2
nd

 water gas shift reactor 

Temperature of gas entering 1
st
 water gas shift reactor 

Temperature of gas entering 2
nd

 water gas shift reactor 

Temperature of gas exiting 2
nd

 water gas shift reactor 

CO2 fraction of gas entering 1
st
 water gas shift reactor 

CO2 fraction of gas entering 2
nd

 water gas shift reactor 

CO2 fraction of gas exiting 2
nd

 water gas shift reactor 

H2O fraction  of gas entering 1
st
 water gas shift reactor 

H2O fraction of gas entering 2
nd

 water gas shift reactor 

H2O fraction of gas exiting 2
nd

 water gas shift reactor 

 

4.2.3. Secondary Controlled Variable Selection 

For the selection of secondary controlled variables for the gasification section, it is assumed that 

the control structure of the process is that of a gas turbine lead, gasifier follow configuration.  

This configuration uses the coal feed to the gasifier to control the system pressure.  The other 

configuration possible is the gasifier lead, gas turbine follow.  In this configuration, syngas flow 

to the gas turbine is used to control system pressure.  Additionally, it is assumed that the gasifier 

outlet temperature is controlled by the oxygen flowrate to the gasifier via the secondary 

controlled variable of the oxygen-to-coal ratio. 

Secondary controlled variables are selected for the primary controlled variables of carbon 

capture and carbon monoxide conversion.  The candidate secondary controlled variables 

considered are listed in Table 29.  It is important to note that during the control system design for 

the AGR unit that CO2 capture is a constraint.  However, in reality the true constraint for the 

IGCC power plant is carbon capture, not CO2 capture.  Therefore, CO2 capture is a candidate 

secondary controlled variable for the process.  Previously, it was assumed that the CO2 capture 
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would be selected as a secondary controlled variable.  Here it is determined whether or not this 

assumption is correct. 

Table 29. List of Candidate Secondary Controlled Variables 

CO2 capture in AGR 

CO fraction of gas entering 1
st
 water gas shift reactor 

CO fraction of gas entering 2
nd

 water gas shift reactor 

CO fraction of gas exiting 2
nd

 water gas shift reactor 

Temperature of gas entering 1
st
 water gas shift reactor 

Temperature of gas entering 2
nd

 water gas shift reactor 

Temperature of gas exiting 2
nd

 water gas shift reactor 

CO2 fraction of gas entering 1
st
 water gas shift reactor 

CO2 fraction of gas entering 2
nd

 water gas shift reactor 

CO2 fraction of gas exiting 2
nd

 water gas shift reactor 

H2O fraction  of gas entering 1
st
 water gas shift reactor 

H2O fraction of gas entering 2
nd

 water gas shift reactor 

H2O fraction of gas exiting 2
nd

 water gas shift reactor 

 

As with the primary controlled variable selection for the gasification section, the number of 

possible secondary controlled variable sets here is relatively small, and enumeration of all these 

possibilities is tractable.  For this process, the optimal secondary controlled variables found are 

the outlet temperature of the first water gas shift reactor and the CO2 capture of the AGR.  This is 

an intuitive set of secondary controlled variables.  Most of the carbon monoxide conversion 

occurs within the first water gas shift reactor and a reasonable measure of that conversion is the 

outlet temperature as there is no associated delay with the temperature measurements as 

compared to the compositions.  For the carbon capture, using the secondary controlled variable 

of CO2 capture reduces the IAE of that controlled variable loop by 60% from the case with no 

secondary controlled variable.   
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5. Conclusions 

A methodical, three-stage, model-based approach for primary controlled variable section has 

been developed.  In the first stage, the focus is on a priori analysis in which the process is 

optimized with respect to an operational objective at the nominal operating point as well as under 

the identified disturbances subject to the operational and other constraints.    The active 

constraints identified by the optimization studies are then paired with appropriate manipulated 

variables. A candidate set of controlled variables is then identified such that each individual 

candidate controlled variable is controllable in both respects, servo and regulatory. At the second 

stage, the Pareto-optimal controlled variable sets are selected by considering maximization of 

economic, i.e., self-optimizing, performance and control performance, as well as addressing 

issues of loop interactions and dead-time.  The measures taken for self-optimizing control 

performance and controllability are the exact local average loss and the minimum singular value, 

respectively.  Loop interactions are addressed by the inclusion of a constraint based upon an 

RGA analysis.  A constraint is included to address the issue of dead-times within the loops.  To 

solve the large-scale, constrained, multi-objective mixed integer optimization problem, a 

parallelized, bidirectional BB algorithm has been developed so that the optimization problem can 

be run in parallel on a large computer cluster to decrease the computation time.  This new BB 

algorithm implements multiple, dynamically selected search strategies to maximize the potential 

gains from being run on a large computer cluster. At the last stage, a posteriori analysis is 

performed to ensure the economic and control performance of the controlled variable sets by 

using the nonlinear process model. Two possible situations are evaluated: presence or absence of 

optimal setpoints from a RTO. 

A methodical, three-stage, model-based approach for secondary controlled variable selection has 

been developed.  In the first stage, the focus is on a priori analysis.  At this stage, an initial set of 

candidate secondary controlled variables and local disturbance likely to affect the process are 

identified.  A subset selection constraint is then formulated to ensure the control performance of 

the resulting set of secondary controlled variables.  Next, input-output models are identified for 

all feasible pairings, as defined by the subset selection constraint, of input to secondary 

controlled variable.  Finally, from the identified input-output models, the IAE of the primary 

controlled variables for all feasible pairings of u – y2 – y1 are calculated for regulatory and servo 

control and scaled according to the economics of the process.   At the second stage, secondary 

controlled variable sets are selected.  This is done by solving a mixed-integer constrained 
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optimization problem.  This optimization problem seeks to minimize economic loss associated 

with the control performance of the supervisory control layer while not violating controllability 

constraints.  The objective function used in this optimization problem is the minimization of the 

summation of the scaled IAEs associated with a secondary controlled variable set.  The IAEs 

calculated in the a priori analysis are used as a lookup table so as to minimize the computational 

expense of the optimization problem.  To determine the particular pairings of the regulatory and 

supervisory control layers, an RGA analysis is applied.  The RGA analysis, in addition to 

determining appropriate control pairings, is also used to apply a constraint on loop interactions 

associated with the regulatory and supervisory control layers.  Finally, constraints are imposed to 

ensure the servo and regulatory control performance of the regulatory control layer.  At the last 

stage, a posteriori analysis is performed to ensure the control performance of the controlled 

variable sets at off-design operations. Linearized process models are generated from the 

nonlinear process model at these extreme operations and the servo and regulatory control 

performance of the secondary controlled variables are ensured.  Additional evaluations can be 

undertaken as needed, for example to ensure that no gain switching occurs in the regulatory 

control layer.  From these analyses, a secondary controlled variable set that ensures good control 

and economic performance will be identified. 

The proposed methodology for primary and secondary controlled variable selection has been 

applied to the large-scale, highly nonlinear AGR unit of an IGCC power plant with CO2 capture.  

It has been found that the proposed methodology for solving the primary controlled variable 

selection problem yields good results.   Applying the a priori analysis to the initial set of 

controlled variables reduces the size of the optimization problem by over 95% and allows for the 

consideration of a large initial set.  The search for the Pareto-optimal primary controlled 

variables yields 17 distinct controlled variable sets.  During the a posteriori analysis, first the 

economic performance of the controlled variable sets is evaluated by considering a number of 

disturbances of various magnitudes. It is observed that during the off-design operation of the 

plant, some sets of controlled variables may be infeasible because the active constraints can 

change or there may be no manipulated variable that can control one or more controlled variables 

in those sets while satisfying the process constraints.  While evaluating the control performance 

in presence and absence of an RTO, it is observed that several of the controlled variable sets lose 

control performance significantly at extreme operations of the process and gains of several of the 

identified controlled variables change direction in comparison to the nominal conditions.    
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Finally two sets of optimal primary controlled variables are obtained. These sets will be used for 

control system design in our future work. 

The proposed method for secondary controlled variable selection has been found to identify good 

sets that balance economic and control performance.  Ten sets are desired from the set selection.  

Users may specify the number of desired sets.  However, if too few are selected during 

optimization, none may be found to be feasible during the posteriori analysis.  If too many 

solutions are desired from the optimization, the computation may become intractable.  From the 

ten selected sets, two distinct categories are identified.  In the first category, CO2 capture is 

controlled, via a secondary controlled variable, by manipulating the pressure of the low-pressure 

flash vessel.  Additionally, the sets under the first category contain variables between the lean 

solvent flow and solvent composition within the H2S absorber. For the controlled variables under 

the second category, a change in the structure of the supervisory control layer in comparison to 

the base case is needed.  Here, the secondary controlled variables selected require the control of 

the CO2 capture, via a secondary controlled variable, by manipulating the semi-lean solvent flow.  

This particular structure provides superior control performance for CO2 capture; however, it does 

not improve the control performance of the lean solvent loop.  Finally, theses ten controlled 

variable sets are examined at off-design operations to finalize the selection.  Regulatory and 

servo control performance are investigated as well as ensuring that no gain switching occurs 

within the control loops.  From these off-design analyses, three secondary controlled variable 

sets were found to be viable at all expected operational conditions of the AGR. 
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6. Suggestions for Future Work 

In this section, suggestions will be offered to help further advance the field of plantwide control. 

6.1 Primary Controlled Variable Selection 

More rigorous measures of controllability should be applied to the primary controlled variable 

selection procedure.  The method applied in this work, minimum singular value of gain matrix, 

address only one issue of control performance, i.e., the worst-case control performance.  Though 

worst-case control performance is an important consideration in the design of the control 

structure, it should not be the only consideration.  It is suggested that for future work in this field 

that a partially controlled plant analysis be undertaken to determine process controllability.  The 

benefits of the partially controlled plant analysis are that several operational conditions can be 

examined.  In addition to the considerations of the worst-case control scenario, as currently 

considered, regulatory control performance can also be examined as well as the control structures 

sensitivities to measurement errors.  These additional considerations could provide better insight 

into the design of the control structure rather than the examination of only the worst-case 

scenario. 

Through the course of this work, the subset selection constraint that had been applied to primary 

controlled variable selection was advanced to the form that was used in the secondary controlled 

variable selection.  It would be suggested that future work in the area of primary controlled 

variable selection use this new, more rigorous constraint.  As the constraint used in this work for 

primary controlled variable selection relies primarily on process insight of the user, it is possible 

that valid solutions may be defined as infeasible due to lack of user insight. The subset selection 

constraint used here for secondary controlled variable selection can just as easily be applied to 

primary controlled variable selection, requiring less process insight, reducing the possibilities of 

eliminating possible solutions.  In addition, the general form of the subset selection constraint 

used in secondary controlled variable selection is more flexible, allowing for many new possible 

applications in addition to the ones considered in this work. 

6.2 Secondary Controlled Variables 

The major assumption taken in the work on the secondary controlled variable selection 

procedure is that secondary controlled variables do not interact with one another.  This 

assumption is enforced by applying tight constraints on the RGA.  However, it is important to 
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note that the RGA is a steady-state analysis.  Therefore, even though the secondary controlled 

variables may not interact significantly at steady-state, transient operations may show some 

significant interactions.  For this reason, future work in the area of secondary controlled variable 

selection should include the effect of loop interactions.  This is expected to be computationally 

expensive; however, it would provide superior insights when selecting secondary controlled 

variables for a process. 

6.3 Control Structure Design 

The way in which the control structure design algorithm has been implemented is based upon the 

user defined control structures of interest to be considered.  The algorithm will then find the 

optimal form of the desired structure.  The drawback of this method is that superior control 

structures not examined by the user will, inevitably, be overlooked.  For a more rigorous means 

of design of the control structure, the optimization problem must be formulated in such a way 

that all control structures are examined, not only those defined by the user.  There are many 

challenges to overcome to accomplish this.  The first is in the programing of an algorithm to 

„understand‟ physically meaningful structures from those that are meaningless.  As was 

discussed in Section 2.2.3, not all selections of elements from the Gramian interaction measures 

have physical meaning.  For example, if we consider a diagonal pairing in the Gramian 

interaction matrix, that is a decentralized control structure, and add one off diagonal element, this 

represents the addition of a feed-forward element to the control structure, specially that the effect 

of one control loop is considered within another.  However, if one considers the opposite case, 

that is we consider all elements in the Gramian interaction matrix (fully centralized control) and 

remove one element, the structure has no relevant physical meaning.  Second, a more robust 

measure of controller complexity than what has been used in this work is required.  The measure 

of controller complexity used in this work is applicable only to MPC controls.  For a more 

rigorous control structure design procedure, a more rigorous definition of controller complexity 

is required.  In addition, the control complexity measure used in this work does not address the 

complexity related to using either a LMPC or a NMPC.  This is a very difficult metric to attain in 

particular to NMPC.  Such a metric would have to be dependent upon the nonlinearity of the 

NMPC, the solver used to solve either the LMPC or the NMPC, etc. Furthermore, determining 

rather a LMPC or a NMPC would be used for a particular controlled/manipulated variable set 

would add a new dimension to the control structure design problem, possibly increasing the 
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solution time considerably.  Finally, the formulated optimization problem must be solved.  In this 

work, mixed integer optimization problem have been solved using a branch and bound 

algorithm; however, it is not guaranteed that a formulated optimization problem which addresses 

the above raised issues can be solved via this method. 

The control structure design methodology should also address issues related to process 

economics.  The methodology currently as currently applied considers the control performance 

of all controlled variables to be of equal importance and the relative gains of all the input 

variables to be of the same magnitude.  This is similar to the analysis that is attained by applying 

an RGA analysis.  However, from an economic point of view, all controlled variables are not of 

equal importance, indeed, nor are the manipulated variables.  A more rigorous methodology 

should be devised which addresses the relative importance, from an economic perspective, of the 

primary controlled and manipulated variables. 

In relation to the issue of MPC tuning, a nonlinear approach should be undertaken. In this work, 

the economics of the process is assumed to be a linear function of the controlled variables.  This 

is not the case for real world processes.  For the tuning of the MPC, this nonlinearity should be 

considered.  In the case presented in this work, i  within Equation 52 will be a nonlinear 

function of the state of the process rather than a static, linear relation. 

Finally, a major issue related to the field of plantwide control, not yet investigated in any work 

known to the author, is related to the issue of sequential vs. simultaneous control design.  To 

illustrate the point, consider the work present in this paper.  A rigorous, methodological approach 

to the development of a control structure for the AGR unit and gasification section of an IGCC 

power plant has been presented.  However, many other units exist within in the IGCC power 

plant.  Obviously, the ideal solution would be to simultaneously design the entire control 

structure for the IGCC power plant; however, given the size of the process, the number of 

candidate controlled variables, manipulated variables, measured variables, secondary controlled 

variables, etc., makes such an undertaking impractical, if not impossible.  Therefore, a systematic 

and rigorous means of designing such a control structure must be addressed.  This method would 

have to rely on an application of both a sequential and simultaneous design methodology to be 

applied to real world, large scale processes. All works that have been found within the open 

literature, including this work, focus entirely on the simultaneous design method.  However, as a 

sequential method must be developed to allow the plantwide control methodology to become 

applicable to large scale systems.  The sequential method must address how subsets of an entire 
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process will be defined, how the controls between the processes will be defined, and how the 

boundaries of the subset processes will be reconciled.  In addition, the integration of the 

sequential and simultaneous needs to be developed.  It may be found that after the control 

structure is designed simultaneously for each of the subsystems that the integrated system does 

not perform satisfactorily.  Methods need to be investigated to address these future concerns for 

plantwide control design. 
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Appendix A: Parallelized Bi-Directional Branch and Bound Algorithm 
A branch and bound algorithm has been selected for solving the control variable selection 

problem.  The branch and bound approach has an important advantage over genetic algorithms, 

which can also be used for solving this problem. The advantage is that the solution attained by 

branch and bound is guaranteed to be the globally optimal solution.   There exist branch and 

bound algorithms within the open literature which can be used for solving this problem (Cao & 

Kariwala, 2008, 2009, and 2010) and they have been investigated.  However, the branch and 

bound algorithm developed by Cao and Kariwala (Cao & Kariwala, 2008) has two limitations.  

Their algorithm is not capable of constraint handling nor can it be parallelized.  Due to these 

limitations, a new branch and bound algorithm has been developed, which closely follows the 

work of Cao and Kariwala.  The developed algorithm is capable of constraint handling and has 

been parallelized on a cluster of processors.  This algorithm is being coded within MATLAB
®
.  

Additionally, efforts have been made in the development of the code so as not to lose generality, 

ensuring the code can be used to solve a variety of mixed-integer nonlinear problems. 

The first to propose the use of branch and bound methods for a subset selection problem was 

Narendra and Fukunaga (Narendra & Fukunaga, 1977).  Branch and bound is used for subset 

selection problems because, of all the currently available methods, only branch and bound and 

brute force can guarantee a globally optimal solution (Chen, 2003).  Branch and bound, however, 

is significantly computationally less expensive than an exhaustive, brute force search method 

where all possible solutions are evaluated.  This is not only an efficiency issue, but also a 

problem of practicality.  For the subset selection problem being investigated for this work, the 

problem is that of choosing 6 from 320, 

320

6

 
 
  , which gives over 1.4 trillion possibilities.  An 

exhaustive search for the globally optimal solutions using brute force enumeration would take 

approximately 450 years, assuming the evaluation of each solution took 0.01 s.  It should be 

noted that 0.01 s is the approximate time it takes MATLAB
®
 to calculate the two objective 

functions for a 6 x 6 matrix.  The problem, of course, will take significantly longer as the 

objective function evaluation becomes more computationally expensive.   

Figure A.1 shows the basic concept of branch and bound.  Figure A.1 shows a theoretical 

solution tree for a 

6

2

 
 
   problem and will be used as an example of the branch and bound 

algorithm that has been developed.  In this example, J is the objective function which is to be 
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maximized.  The large, original problem is called the root, located at level 0.  This problem is 

divided into two smaller problems.  These two smaller problems, shown at level 1, span the 

space of their parent node and have no intersection.  Since the two branches span the parent and 

do not intersect one another, it is said that this branching strategy is complete and without 

redundancies.  These two smaller problems can likewise be split into four smaller problems, at 

level 2.  Like with the transition from level 0 to level 1, the transition from level 1 to level 2 is 

both complete and without redundancies.  The particular branching method shown in Figure A.1 

is called „bidirectional‟ because one branch has been expanded or branched up, i.e., an element 

has been added to the set, and another has been shrunk or branched down, i.e., an element has 

been removed from consideration.  Note that the element to the far right in level 2 is a so called 

„terminal branch‟ because it contains only 1 subset and thus cannot be further branched, i.e., it is 

a solution.  This terminal branch is evaluated using the selection criteria and is used as a bound.  

Since the selection criterion is to be maximized, this bound is the best available lower limit of the 

objective function, otherwise known as the incumbent, which exists for the globally optimal 

solution.  This means that the globally optimal solution will be either greater than or equal to this 

bound, but it cannot be less.  Now, all existing nodes are evaluated using the selection criterion.  

Since the selection criterion is monotonic, any node whose selection criterion is lower than that 

of the current bound should be „pruned‟ so that none of its subsets need be considered further.  

Note that there exist two such selection criteria for the evaluation of a non-terminal node. These 

correspond to an upward evaluation of the criterion, i.e., the criterion is evaluated with relation to 

the elements added to that branch, and a downward evaluation of the criterion, i.e., the criterion 

is evaluated with relation to all the elements that may be added to the subsets of that node.  If 

either of the evaluations is less than the currently available bound, that branch cannot contain the 

globally optimal solution and should be pruned.  For simplicity, only the smaller of the two are 

shown in Figure A.1.  In the example illustrated in Figure A.1, the branch to the far left can be 

pruned because its criterion evaluation is lower than the bound, therefore the solution cannot be 

contained within that branch.  This procedure continues until no branches exist that need be 

evaluated.
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Figure A.1: Example of Branch and Bound
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The above is a simple representation of a branch and bound algorithm.  Several issues still 

remain and need to be addressed.  For example, the branching strategy and search strategy that 

are used in the algorithm need to be determined.  The branching strategy is concerned with 

which variable will be added to a node in one branch and subsequently removed from the other 

node.  To illustrate the importance of the branching strategy, it has been found that a good 

branching strategy can reduce computation time by as much as 45% as compared to a random 

branching strategy. Specific branching strategies exist for particular objective functions, 

however, no generalized branching strategy could be found within the open literature. Since it is 

desired that this code remain generic and applicable for any objective function, a generalized 

branching strategy has been developed.  To define the strategy, the objective function(s) are 

evaluated for each individual element and their values are stored.  The strategy is then to select 

elements which have the smallest objective function value and branch the node using that 

element.  For nodes that do not contain a particular element, that element‟s value is set to 

infinity.  The logic behind this strategy is to attempt to get the optimal solutions into the smallest 

node; namely, the node that has had an element added. 

The next issue to be addressed is the search strategy.  Choosing which node to branch is not 

obvious; however, three prominent strategies exist: breadth first, depth first, and best first.  Each 

has advantages and disadvantages and which strategy is chosen depends largely on the particular 

problem.  The breadth first strategy uses the largest existing node to branch.  The depth first 

strategy evaluates the smallest existing node first.  The best first strategy evaluates the node that 

has the best current objective function value.  The advantage with a breadth first strategy is that it 

is less likely that time will be spent evaluating nodes that do not contain the global optimum; 

however, at the same time, its disadvantage is that less effort will be spent on nodes that may 

contain the globally optimal solution.  A depth first search is advantageous as it will deeply 

search in a node.  If that node contains the globally optimal solution, the best possible bound 

information is found and pruning of the remaining nodes will be accelerated.  Additionally, the 

depth first search is the least memory intensive of all the strategies as fewer nodes exist at any 

one time.  However, the disadvantage with a depth first approach is that if the node selected does 

not contain the global optimal, the bound information found will be poor and pruning will be 

slow resulting in more enumerations.  Finally, the best first strategy is advantageous as it will 
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quickly find good bounds that will allow for quick pruning.  Additionally, large nodes with poor 

objective function values will not be branched and may be pruned as better bounds become 

available, thus reducing enumeration.  However, this is a very memory intensive strategy.  As the 

“best” current nodes will likely consist of the largest currently available nodes and those are the 

nodes that will be branched.  When branched, the node‟s objective function will be worse, and 

thus another node may be better and will, therefore, be branched.  This can create a large number 

of nodes that must be tracked.  Another disadvantage is that, in general, the evaluation of the 

bounding function for a large node is more computationally expensive than the evaluation of a 

smaller node. 

The branch and bound algorithm has been developed to be a multi-objective optimizer.  The code 

will find the Pareto front of any two arbitrary objective functions.  This is done following the 

work of Kariwala and Cao, 2010.  To accomplish this, only the pruning criteria need be changed.  

From the example shown in Figure A.1, where only one objective is considered, pruning occurs 

if either Equation A.1 or A.2 is true.  For finding the Pareto front, pruning occurs if the condition 

shown in Equation A.3 is not satisfied.  Figure A.2 shows a graphical representation of this 

pruning criterion.  From Figure A.2, consider that points A, B, C, and D constitute the current 

Pareto front that has been found.  Now, a new terminal node is evaluated, shown as point E, this 

point “dominates”, i.e., it is superior with respect to both objectives, points B, C, and D.  

Therefore, points B, C, and D are no longer members of the Pareto front and are discarded.  

Now, a non-terminal node is evaluated and has objective function values representing point F.  

As point A dominates point F, the node represented by point F is pruned.  For completeness, 

consider another non-terminal node with objective function values representing point G, this 

point is not dominated by any existing member of the Pareto front and is therefore not pruned.  

In short, any nodes with objective function values that place it within the area of the dashed lines 

are pruned. 

  ,   S n SJ X B X X  
                                                         (A.1) 

  ,   S n SJ X B X X  
                                                         (A.2) 

       , : ,   i j i j

q S n s n t n t ns t N J P J P J P J P   
                                     (A.3) 
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Figure A.2: Example of Pruning Rule for finding the Pareto Front 

 

Due to the nature of the above formulation, (Cao & Kariwala, 2008) a „fast pruning‟ algorithm 

cannot be used.  Because of this, computation time increases.  To address this issue, the above 

algorithm has been made capable of running in parallel on a cluster of machines.  Figure A.3 

shows the method that has been used to parallelize the problem.  As has been mentioned 

previously, the branching strategy that is used results in two complete, non-redundant nodes.  

Because of this, the two nodes generated from the original parent may be considered as two 

independent problems.  Therefore, every node may be considered as a sub-problem that is stored 

at the „head node‟ and distributed to „workers‟ to be solved in parallel.  When a worker has 

solved the problem or a termination criterion is met, the worker sends the results back to the head 

node where the results from all the workers are gathered, processed, and the global bound 

information is updated.  Any nodes that were not evaluated by the worker are stored with all 

remaining nodes at the head-node.  The head-node then redistributes nodes to the workers to be 

solved.  This process continues until all nodes have been evaluated or pruned.  It is important to 

note that although all workers may refer to the global bound information, they may not update 

the global bound information.  To address this issue, each worker has its own local bounding 
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information that, at the start of the process, is the same as the global bound information.  If local 

bounding information is available to a worker and it is superior to the global bounding 

information, the worker will use its own local bound information over the global. 

 

Figure A.3: Parallelizing Method for Branch and Bound Algorithm (Crainic, Le Cun and 

Roucairol 2006) 

 

Inefficiency arises from this approach.  The inability to share bound information between 

workers results in wasted computational effort evaluating branches that could have been pruned 

had the worker had access to the better bound information.  Another concern is keeping workers 

active as often as possible.  By the nature of the parallelizing strategy that has been chosen, when 

a worker completes its task, it will wait for an additional task.  However, no new tasks will be 

made available until all workers have finished their tasks. Keeping all the workers active is, 
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obviously, important for maximizing the gains from the cluster.  Essentially, the first concern is 

maximizing useful work and the second is maximizing total work.   

It should be noted that there exist the so called „anomalies of parallelized branch and bound‟ 

(Crainic, Le Cun, & Roucairol, 2006).  There are two such anomalies.  The first is a favorable 

speed-up anomaly and the second is an unfavored slow-down anomaly.  As an example, if we 

consider a problem that would take 100 mins to solve in series on one processor, adding a second 

processor would, intuitively, result in a computation time of 50 mins if the parallelization where 

100% efficient.  However, with branch and bound, it is possible to have an improvement that is 

greater than this, the so-called “speed-up” anomaly, and it is possible that the computation time 

may increase, the slow-down anomaly.  These anomalies are present in branch and bound due to 

the search path that is taken by the algorithm.  The efficiency of branch and bound is based 

largely on the quality of the available bound.  However, the bound that is available at any point 

in time is dependent upon the search path that has been taken.  With a parallel branch and bound 

algorithm, the search path taken will differ from the path that was taken when run in series with 

only one machine and, more generally, it will differ based upon the number of workers available.  

Therefore, the bound information found may be better or worse than the bound information that 

would have been found had the problem been solved in series, thus resulting in these anomalies.  

Therefore, any parallelized branch and bound algorithm must minimize the risk of the slow-

down anomaly and, if possible, increase the chance of the speed-up anomaly. 

The basic method used to parallelize the branch and bound algorithm is shown in Figure A.3, 

however, there are several important issues to be resolved with this approach.  The first is to 

determine which node(s) should be sent to the workers.  Second, is to determine what search 

strategy the workers should employ.  Third, how long should each worker be allowed to solve its 

problem should be determined?  The first issue relates to which nodes should be sent to the 

workers.  It has been decided that the head node will send all existing nodes to the workers.  The 

second issue relates to the search strategy that the workers will employ.  This is decided by the 

head-node.  If the head-node has more than 30,000 nodes to store, workers will engage in a 

depth-first search.  Otherwise, the workers will employ both a best-first and depth-first search.  

The worker is allowed so many iterations using a best-first search and after that number of 

iterations, it will switch to a depth-first search.  Finally, how long each worker is allowed to 

work on a problem needs to be determined.  It has been decided that each worker will be allowed 
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to work on their problem for 2 mins before being terminated so that the problem can be 

redistributed and global bound information can be updated. 

Finally, as the branch and bound algorithm is searching for the Pareto front, there is not a single 

objective it is trying to achieve.  For the controlled variable selection problem, there are two 

objectives.  This introduces several challenges.  First, how many solutions that exist are 

unknown.  Second, as there are two objectives that are to be optimized, defining what node is 

„best‟ is not obvious.  Additionally, multiple branching strategies may be needed to have 

acceptable performance.  To address these issues, the Pareto front has been considered as two 

separate regions to be explored.  A generic Pareto front and the two regions considered are 

shown in Figure A.4.  Any nodes that fall within Region 1 are considered to be nodes which are 

„best‟ in terms of Objective 1.  Because of this, they are branched in terms of Objective 1.  

Likewise, nodes which fall within Region 2 are considered to be nodes which are „best‟ in terms 

of Objective 2 and are branched accordingly.  

 

Figure A.4: Region approach used for Pareto front Calculation 
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