84 research outputs found

    A Direct Translation from XPath to Nondeterministic Automata

    Get PDF
    Abstract. Since navigational aspects of XPath correspond to first-order definability, it has been proposed to use the analogy with the very successful technique of translating LTL into automata, and produce efficient translations of XPath queries into automata on unranked trees. These translations can then be used for a variety of reasoning tasks such as XPath consistency, or optimization, under XML schema constraints. In the verification scenarios, translations into both nondeterministic and alternating automata are used. But while a direct translation from XPath into alternating automata is known, only an indirect translation into nondeterministic automata- going via intermediate logics- exists. A direct translation is desirable as most XML specifications have particularly nice translations into nondeterministic automata and it is natural to use such automata to reason about XPath and schemas. The goal of the paper is to produce such a direct translation of XPath into nondeterministic automata.

    LPath+: A First-Order Complete Language for Linguistic Tree Query

    Get PDF
    PACLIC 19 / Taipei, taiwan / December 1-3, 200

    Report on the first Twente Data Management Workshop on XML Databases and Information Retrieval

    Get PDF
    The Database Group of the University of Twente initiated a new series of workshops called Twente Data Management workshops (TDM), starting with one on XML Databases and Information Retrieval which took place on 21 June 2004 at the University of Twente. We have set ourselves two goals for the workshop series: i) To provide a forum to share original ideas as well as research results on data management problems; ii) To bring together researchers from the database community and researchers from related research fields

    Web Queries: From a Web of Data to a Semantic Web?

    Get PDF

    Reasoning about XML with temporal logics and automata

    Get PDF
    We show that problems arising in static analysis of XML specifications and transformations can be dealt with using techniques similar to those developed for static analysis of programs. Many properties of interest in the XML context are related to navigation, and can be formulated in temporal logics for trees. We choose a logic that admits a simple single-exponential translation into unranked tree automata, in the spirit of the classical LTL-to-Büchi automata translation. Automata arising from this translation have a number of additional properties; in particular, they are convenient for reasoning about unary node-selecting queries, which are important in the XML context. We give two applications of such reasoning: one deals with a classical XML problem of reasoning about navigation in the presence of schemas, and the other relates to verifying security properties of XML views

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Combining Temporal Logics for Querying XML Documents

    Get PDF
    Abstract. Close relationships between XML navigation and temporal logics have been discovered recently, in particular between logics LTL and CTL ⋆ and XPath navigation, and between the µ-calculus and navigation based on regular expressions. This opened up the possibility of bringing model-checking techniques into the field of XML, as documents are naturally represented as labeled transition systems. Most known results of this kind, however, are limited to Boolean or unary queries, which are not always sufficient for complex querying tasks. Here we present a technique for combining temporal logics to capture nary XML queries expressible in two yardstick languages: FO and MSO. We show that by adding simple terms to the language, and combining a temporal logic for words together with a temporal logic for unary tree queries, one obtains logics that select arbitrary tuples of elements, and can thus be used as building blocks in complex query languages. We present general results on the expressiveness of such temporal logics, study their model-checking properties, and relate them to some common XML querying tasks.

    A Perfect Match for Reasoning, Explanation, and Reason Maintenance

    Get PDF
    Path query languages have been previously shown to com- plement RDF rule languages in a natural way and have been used as a means to implement the RDFS derivation rules. RPL is a novel path query language specifically designed to be incorporated with RDF rules and comes in three avors: Node-, edge- and path- avored expressions allow to express conditional regular expressions over the nodes, edges, or nodes and edges appearing on paths within RDF graphs. Providing reg- ular string expressions and negation, RPL is more expressive than other RDF path languages that have been proposed. We give a compositional semantics for RPL and show that it can be evaluated efficiently, while several possible extensions of it cannot

    Relative Expressive Power of Navigational Querying on Graphs

    Get PDF
    Motivated by both established and new applications, we study navigational query languages for graphs (binary relations). The simplest language has only the two operators union and composition, together with the identity relation. We make more powerful languages by adding any of the following operators: intersection; set difference; projection; coprojection; converse; and the diversity relation. All these operators map binary relations to binary relations. We compare the expressive power of all resulting languages. We do this not only for general path queries (queries where the result may be any binary relation) but also for boolean or yes/no queries (expressed by the nonemptiness of an expression). For both cases, we present the complete Hasse diagram of relative expressiveness. In particular the Hasse diagram for boolean queries contains some nontrivial separations and a few surprising collapses.Comment: An extended abstract announcing the results of this paper was presented at the 14th International Conference on Database Theory, Uppsala, Sweden, March 201
    corecore