
Proceedings of PACLIC 19, the 19th Asia-Pacific Conference on Language, Information and Computation

LPath+: A First-Order Complete Language
for Linguistic Tree Query

Catherine Lai and Steven Bird

Department of Computer Science and Software Engineering
University of Melbourne, Victoria 3010, AUSTRALIA

Department of Linguistics and Linguistic Data Consortium
University of Pennsylvania, Philadelphia PA 19104, USA

laic@ling.upenn.edu , sb@csse.unimelb.edu.au

Abstract

Annotated linguistic databases are widely used in linguistic research and in
language technology development. These annotations are typically hierarchical,
and represent the nested structure of syntactic and prosodic constituents. Recently,
the LPath language has been proposed as a convenient path-based language for
querying linguistic trees. We establish the formal expressiveness of LPath relative
to the XPath family of languages. We also extend LPath to permit simple clo-
sures, resulting in a first-order complete language which webelieve is sufficiently
expressive for the majority of linguistic tree query needs.

1. Introduction

In recent years, a great variety of linguistic query languages have been proposed, most of them
specialised for linguistic trees (Lai and Bird, 2004), and applied to corpora such as the Penn
Treebank (Marcus et al., 1993). Despite this considerable effort, relatively little is known about
the formal expressiveness of these languages, or the computational resources required to process
them as the size of the data grows. One reason for this is that much of the work in this area
has taken place in isolation from well-understood databasequery languages such as SQL and
XPath (Clark and DeRose, 1999).

Recently, the LPath language has been proposed as a convenient path-based language for
querying linguistic trees (Bird et al., 2006). It augments the navigational axes of XPath with
three additional tree operators, and it can be translation into SQL for efficient execution. In this
paper we investigate the expressiveness of LPath with respect toCore XPathand to a first-order
complete language calledConditional XPath. We also extend LPath to permit simple closures,
and argue that this new language supports all the navigational and closure requirements of
linguistic tree query.

This paper is organised as follows. Section 2 reviews LPath,XPath, and Conditional XPath,
and Section 3 examines the LPath operators to see which of them can be expressed in XPath
or Conditional XPath. Section 4 presents an extended language, Conditional LPath, or LPath+,
and discusses its merits as a linguistic tree query language.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286946678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

S2

VP4

NP6

PP11

NP7 NP13

NP3 V5 Det8 Adj9 N10 Prep12 Det14 N15 N17

lex: lex: lex: lex: lex: lex: lex: lex: lex:
I saw the old man with a dog today

Figure 1: Tree Representation

2. Background: LPath and XPath

2.1. LPath

LPath was developed to be expressive enough for linguistic query but also to take advantage
of relational database technology. As the name suggests, LPath is an extension of XPath.
Bird et al. (2006) present three linguistically motivated syntactic additions. These are the
immediate followingaxis (and its converse), tree edge alignment, and a scoping operator. They
also present an efficient interpreter for LPath which converts LPath expressions into equivalent
SQL expressions over annotation graphs (Bird and Liberman,2001). Here are a selection of
examples intended to illustrate the syntax and interpretation of LPath queries. When applied to
the tree in Figure 1 they return the specified node sets.

1. //S[//_[@lex=saw] {S2}
Find a sentence containing the wordsaw.

2. //V->NP {NP6, NP7}
Find noun phrases that are immediately following a verb.

3. //VP/V-->N {N10, N15, N17}
Find nouns that follow a verb which is a child of a verb phrase.

4. //VP{/V-->N} {N10, N15}
Within a verb phrase, find nouns that follow a verb which is a child of the given verb
phrase.

5. //VP{/NP$} {NP6}
Find noun phrases which are the rightmost child of a verb phrase.

6. //VP{//NP$} {NP6, NP13}
Find noun phrases which are rightmost descendants of a verb phrase.

7. //VP[{//ˆV->NP->PP$}] {VP4}
Find verb phrases comprised of a verb, a noun phrase, and a prepositional phrase.

Proceedings of PACLIC 19, the 19th Asia-Pacific Conference on Language, Information and Computation

locpath := abspath | abspath ’{’ locpath ’}’ |
locpath ’|’ locpath

abspath := | locstep abspath
locstep := axis test | axis test ’[’fexpr’]’
fexpr := locpath | fexpr ’and’ fexpr | fexpr ’or’ fexpr

| ’not’ fexpr | ’(’ fexpr ’)’
axis := ’\’ | ’\\’ | ’\\ * ’ | ’.’ | ’/’ | ’//’ | ’// * ’

’->’ | ’<-’ | ’-->’ | ’<--’ |
’=>’ | ’<=’ | ’==>’ | ’<==’

test := p | _ | ’ˆ’p | p’$’

Figure 2: LPath Syntax (p is a node label; attribute syntax is omitted)

\ parent / child
\\ ancestor // descendant
\\ * ancestor or self // * descendant or self
-> immediate following <- immediate preceding
--> following <-- preceding
=> immediate following sibling <= immediate preceding sibling
==> following sibling <== preceding sibling
. self

Figure 3: LPath Axes and their Interpretation

The syntax of LPath is described in Figure 2. Figure 3 gives the translation of abbreviated
axes. We briefly review the syntax of LPath here, and refer thereader to (Bird et al., 2006) for
full details.

Scoping: The scopingoperator is denoted by pairs of braces,{} . These braces represent
queries constrained to a particular subtree rooted by the context node immediately before the
opening brace. The location path inside the scoping braces is evaluated as if this subtree were
the whole of the input. This allows us to write queries restricted to a particular constituent.

Alignment. Left and right tree edge alignment,ˆ and $ respectively, together with the
scoping operator allow us to constrain a node to be leftmost (rightmost) edge in a constituent.
For example, the following query returns sentences (S labelled nodes) that begin with a noun
phrase and end with a verb phrase://S{[//ˆNP-->VP$]} .

Horizontal axes. The immediate followingaxis,-> , is the natural one-step version of the
followingaxis,--> . We can consider this axis as taking a step to constituents immediately right
of the current context node. LPath also includes animmediate following siblingrelation.

These extensions to XPath give LPath the ability to express arange of linguistic tree queries.
However, LPath cannot express closures of any sort, and it isnot clear where LPath lies on the
hierarchy of XPath languages. Nor is it clear what extra expressiveness, if any, the LPath
operators offer to these path-based languages. The following sections explore this question, and
indicate how LPath can be extended to express closures, and how such an extension might be
efficiently implemented.

locpath := locstep | /locpath | locpath ’/’ locpath |
locpath ’|’ locpath

locstep := axis::test | axis::test[fexpr]...[fexpr]
fexpr := locpath | fexpr ’and’ fexpr |

fexpr ’or’ fexpr | ’not’ fexpr | ’(’ fexpr ’)’
axis := ancestor | ancestor_or_self | parent | child |

descendant | descendant_or_self | self |
following | preceding |
following_sibling | preceding_sibling |

test := p | _

Figure 4: Syntax of Core XPath

Notation. The following sections take an incremental approach to investigating the expres-
siveness of Core XPath and LPath extensions. This involves several languages constructed
and related by restrictions on closures and the LPath operators defined above. Subscripts
and superscripts denote the addition of a particular operator. X+

{} denotes Conditional XPath
extended with the scoping operator (but not-> or its converse).X->{}$ represents Core XPath
with -> , => and their converses, scoping and edge alignment, that is, LPath orL. L+ denotes
LPath extended with the conditional axis.

2.2. XPath and Conditional XPath

Marx (2004) presents a family of XPath languages that extendthe navigational functionality of
XPath 1.0. Core XPath (X) was originally presented by Gottlob et al. (2003). This language
can be seen as XPath 1.0 stripped of non-navigational components such as attributes and
namespaces. The syntax ofX is shown in Figure 4.

Conditional XPath (X+) extendsX primarily by adding a conditional axis. This expresses
conditional paths where every node in that path satisfies a particular condition represented as a
filter expression.X+ replaces the definition ofaxis in Figure 4 as follows:

axis := primaxis | ’[’ fexpr ’]’ primaxis |
primaxis ’[’ fexpr ’]’ | axis ’ * ’

primaxis := self | child | parent |
immediate_following_sibling |
immediate_preceding_sibling

Primary axes (primaxis) represent the smallest steps that can be taken in each direc-
tion from nodes in a tree. Note,X does not include the one-step sibling axisimmediate
following siblingor its converse. However, it does include its transitive closures,following
sibling. In fact, the transitive closures of each primary axis are included inX so we will
use these axis names for non-conditional closures. For example, child * is equivalent to
descendant_or_self . We also defineaxis+ as the non-reflexive transitive closure of
an axis as/axis::_/(axis) * . Again, we will denotechild+ asdescendant .

X+ is a first-order complete language. However, it is not alwayseasy translate first-order
formulas into path expressions. For example, there is oftena need to distinguish first and last
constituents in a phrase or to find the next constituent. Moreover, linguistic phenomena are often

Proceedings of PACLIC 19, the 19th Asia-Pacific Conference on Language, Information and Computation

\\

//
//

//

NP

VP

NPP −−>

Figure 5: Scoping induced cycles:NP{//PP-->N\\VP}

restricted to particular types of constituents and their contents. In order to express scoping we
need expressions that have some way of remembering the subtree they should be in. However,
path-based, variable-free languages likeX+ have no explicit memory and so can only do this
implicitly.

3. The Relationship between LPath, XPath and Conditional XPath

How does the expressiveness of LPath,L, compare with that ofX andX+, existing well-
understood languages? Perhaps LPath is just a syntactic variant of one of them, in which case
we could build an interpreter to convertL expressions toX orX+ expressions. We take up this
question in the next two subsections.

3.1. LPath Operators and Core XPath

To begin, it is easy to see that edge alignment can be expressed in X . We note the following
equivalences:̂A ≡ A[not <-- _] andA$ ≡ A[not --> _] .

The scoping operator can be thought of as the assertion that adominance relation between
the scoping node and those appearing within the scoping braces. This is illustrated in Figure 5.
Here, the queryNP{//PP-->NP\\VP} is drawn as a cyclic graph where edges are labelled
with the axes relating pairs of nodes. The scoping constraint corresponds to the extra dashed
edges.

The difficulty implementing the scoping operator in path-based languages such asX is that
they have no memory of previous steps. In general, it is not possible to return to a particular
node unless every node in the tree is uniquely labelled. Thisis clearly not the case for linguistic
trees. In order to to transform a ‘scoped’ expression into aX expression we need to convert
cyclic queries into a disjunction of acyclic ones. An algorithm that does exactly this for the
positive fragment ofX has been presented by Gottlob et al. (2004). PositiveX is the set ofX
expressions that do not include negation in filter expressions. However, note that positiveX
cannot express the edge alignment operators.

Lemma 1. The scoping operator adds no expressiveness to PositiveX .

Proof. LetL be anL expression that uses the scoping operator. We simply draw the query graph
of L addingdescendant labelled edges between scoping and scoped nodes. Now, the algorithm
of Gottlob et al. (2004) results in a disjunction,D of acyclic query trees that is equivalent to the
original (cyclic) query. Each query tree in the disjunctionhas a nodex that represents the target
node set of of the original expressionL. Thus each query tree inD is equivalent to a finite set

PP N

NP

VP

=>
//* //*

//

//*

=>
VP

PP N

NP

//
//

////

//*

=>

PP N

NP

VP

//

//

Figure 6: Acyclic version ofNP{//PP-->N \\VP}

of filter expressions,F = {Fi}, based atx. ThusL is equivalent to aX expression of the form
//_[A] whereA ≡

∨
Fi.

The result of applying this transformation on theL expressionNP{//PP-->N\\VP} is
shown in Figure 6. The equivalentX expression is as follows.

//N[\\VP_<=\\NP[// * PP] or \\ * _<=_[// * PP]\\VP\\NP or
\\VP<=_[// * PP]\\NP]

Unfortunately, this technique does not extend toX expressions with negation. Negation
within the scoping braces only holds inside the scoped subtree. This is not a problem for negated
paths that do not involve theancestor axis because such paths cannot escape the scoped subtree.
However, the effects of negation and scoping on theancestor axis give the following lemma.

Lemma 2. X{} is strictly more expressive thanX .

Proof. Consider theL expression//B/A{//A[not (_[not .A])]} . This findsA-
labelled nodes such that there is a\ -path of nodes whose labels conform to the regular expres-
sion A+B. Now, Marx and de Rijke (2004) have shown that allX queries can be expressed
in first order logic over trees using at most two variables, extended withchild and immediate
following sibling. However, the regular expression above cannot be expressedin this signature
in less than three variables (Marx, 2005).

A similar linguistic example is theL query//NP{//VP[not \\PP]} . This expression
selects VPs that are dominated by NPs with no intervening PP.We can express this inX+

as//NP(/_[not PP]) * /VP . However, as we have seen, this closure cannot be expressed
in X .

The other additions ofL to X are the one-step horizontal axes. The next lemma follows
from Marx (2005).

Lemma 3. The immediate following siblingand immediate followingaxes, and their con-
verses, cannot be expressed inX .

Thus,X->{}$ is strictly more expressive thanX , and soL is also strictly more expressive thanX .
We proceed to incrementally addL operators toX as primitives to gain a further idea of the

expressiveness they provide. ConsiderX-> . Since edge alignment can be expressed inX , X-> is
equivalent toL without the scoping operator. Now, if scoping was redundantin X-> , thenX->

would be expressively equivalent toL. However, we can show that this is not the case.

Proceedings of PACLIC 19, the 19th Asia-Pacific Conference on Language, Information and Computation

VP

VPNP

PPNPVPPNPV

VP

Figure 7: Scoping and immediate following. Dashed lines indicate the path of the query.

Lemma 4. L is strictly more expressive thanX-> .

Proof. The additional axes express sequential relations and so do not giveX-> any more ability
to express queries of the form//B/A{//A[not (_[not .A])]} . Thus, the scoping
operator is not expressible inX-> .

In fact, the interaction ofL operators results in queries that require other closures that
are inexpressible inX . First, consider the interaction of the scoping and edge alignment
operators. As noted previously, this allows us to express subtree edge alignment. The query
//S{[//ˆNP-->VP$]} is equivalent to constraining theNP(VP) to be a leftmost (rightmost)
descendant of theS. This requires us to be able to state that every node on the/ -path between
theS andNPhas no left sibling. This is just the conditional axis, whichis inexpressible inX .

Second, consider the scoping operator and theimmediate followingaxis. This axis allows
the current context node to move outside of the scoped subtree. This is demonstrated in Figure 7.
Consider a situation where we wish to find verb phrases (VP) containing a noun phrase (NP)
immediately followed by a prepositional phrase (PP). That is //VP{//NP->PP} . From the
point of view of the NP node, there is no way to tell if an immediate following PP is dominated
by the same VP originally being tested. If order to constrain-> to be within a subtree, we
need to phrase this constraint using other axes. (Note that the following axis, --> , can be
alternatively defined as:--> t[F] ≡ \\ * _==>_// * t[F].)

Now, the only chance that we may leave the scope is if the ‘ancestor’ part of the expression
takes us above the scoping node. As long as we constrain how far up the ancestor is chosen, we
are assured of staying within the scope. The cycle-removingalgorithm of Gottlob et al. (2004)
enumerates the possible positions such an ancestor can take.

Although -> has a similar form to its closure--> it requires further constraints that are
inexpressible inX . Specifically, we need to to be able to identify ancestors that are rightmost
and descendants that are leftmost. This is much the same as subtree edge alignment. As in
the previous example, these constraints cannot be expressed in X . Importantly, this means that
the only way we can represent the immediate following relation is with the primitive. Without
some sort of memory device there is no way to force this primitive to stay within a scope. In a
first-order formulas such a memory device would come in the form of extra variables.

Putting all this together gives a clear picture of the expressiveness is required to implement
L operators using members of the XPath family of languages. Itis clear the scoping and the
immediate following axes are more than syntactic sugar in the context ofX . The interaction
between all threeL operators as well as negation indicate thatL requires some of expressiveness

of the conditional axes. The next section looks at the affectof these operators in the setting of
Conditional XPath.

3.2. LPath operators and Conditional XPath

The first thing to notice in moving to Conditional XPath (X+) is that the immediate following
relation is now expressible:-> ≡ ([not(=> _)]\) * => (/[not(<= _)]) *

SinceX is contained inX+, the definitions of edge alignment operators carry over from
X . Once again, the scoping operator requires more work. However, the ability to express this
follows immediately from the first-order completeness ofX+ queries (Marx, 2005). Consider
nowX+ with the scoping operator added to its syntax,X+

{} .

Lemma 5. X+ is as expressive asX+
{} .

Proof. Any X+
{} with scoping braces deleted is just aX+ expression. Therefore we can write

anyX+
{} expression ignoring any scoping braces into a first-order formulaφ(x, y). Let z be the

variable representing the scoping node and letw0, . . . , wk be variables representing nodes in the
scoped location path. For eachwi we conjoin the clausedescendant(z, wi) in the appropriate
variable scope. Since this does not change the number of freevariables this has an equivalent
X+ expression.

Thus all theL operators are expressible inX+. Moreover, the first-order completeness of
X+ means that the interactions betweenL operators can add no extra expressiveness. However,
there is no Kleene star inL so the reverse case is clearly not true. This gives us the following
theorem.

Theorem 6. L is strictly contained inX+.

That is, the expressiveness of LPath (L) lies strictly between Core XPath (X) and Con-
ditional XPath (X+). ThusL is a new member of the XPath family of languages, and not a
notational variant of one of the existing languages.

4. Conditional LPath

4.1. The Expressiveness of Conditional LPath

The obvious question now is whetherL with conditional axis,L+, is any more expressive than
X+. The main point of difference between the two languages is the status of the theimmediate
following (->) axis. This is elevated to rank of primitive axis inL. Unfortunately, treating
-> as a primitive axis does not necessarily give it the same properties as the one-step axes of
X+. Consider the relationsRi wherei ∈ {=>, <=, / , \ }. If (x, y) ∈ R∗

i
there is a unique

i-path betweenx and y. This is not the case for the immediate following axis. The-> is
a many-to-many mapping and its converse, theimmediate precedingrelation<- , is as well.
Consider theL+ expressionB(->A)+ . We might express this in as:

following(x, y) ∧ B(x) ∧ A(y) ∧ ∀z(following(x, z) ∧ following(z, y) → A(z))

The possibility of multiple-> -paths betweenx andy makes this formula too strong a statement.
The originalL+ expression only requires theexistenceof an -> -path between nodesx andy

Proceedings of PACLIC 19, the 19th Asia-Pacific Conference on Language, Information and Computation

wherex has labelB and the other nodes are labelledA. The formula above requires all-> -paths
to have this property.

However, we can derive a formula that is equivalent to the setdefined byB(->A)+ as
follows. Let x andy be nodes such thatfollowing(x, y), wherex andy are labelledB andA
respectively. Letv be the first common ancestor ofx andy and denote the subtree rooted atv
asTv. We also need the following to hold. For each leafl betweenx andy there is at least one
nodez labelledA on the each\ -path from al to v. This set ofz nodes gives us the required
-> -path. A first-order formula that expresses is as follows:

imfBA+(x, y) ≡ following(x, y) ∧ B(x) ∧ A(y)∧

∀z((following(x, z) ∧ following(z, y) ∧ leaf(z)

→ ∃w((z = w ∧ A(w)) ∨ (ancestor(z, w) ∧ A(w) ∧ ¬ ancestor(w, x)))).

We can easily letA andB represent location paths instead of labels in the the formula above.
So this formula can easily be modified to deal with the conditional -> axis in general. This
means that allL+ expressions without scoping braces can be expressed first-order logic. As in
Lemma 5, we can trivially add the scoping operator.L+ clearly containsX+ so we have the
following equivalence:

Theorem 7. L+ has the same expressiveness asX+. As a result,L+ path sets are first-order
complete.

In fact, we can find an equivalentX+ expression for the conditional immediate following
axis using the fact thatX+ is closed under intersection and complementation (Marx, 2005).
First note that the formulaimfBA+(x, y), hence theL+ query//B(->A)+ , is equivalent to the
following:

imfBA+(x, y) ≡ following(x, y) ∧ B(x) ∧ A(y)∧

¬∃z((following(x, z) ∧ following(z, y) ∧ leaf(z)

∧ ¬∃w((z = w ∧ A(w)) ∨ (ancestor(z, w) ∧ A(w) ∧ ¬ ancestor(w, x))))

We can write this using intersections and complements ofX+ path well-formed formulas. Let

φ(x, y) ≡ (?B/ancestor/(child?¬A)+/?leaf) ∩ following.

Now we can write an expression equivalent to//B(->A)+

imfBA+(x, y) ≡ (?B/following?A) ∩ φ/following.

Along with the proof, Marx (2005, Theorem 2) provides a method for finding the comple-
ment of anyX+ path set. Thus, we now have a concrete method for translatingL+ expressions
intoX+.

4.2. Conditional LPath as Linguistic Tree Query Language

L+ is capable of expressing a large range of linguistic tree queries, including all the basic
subtree matching queries identified in our requirements analysis (Lai and Bird, 2004).

The only other current linguistic treebank query language with this level of expressiveness
is fsq (Kepser, 2003). However, fsq only allows boolean queries. Moreover,L+’s path-based

syntax is much more intuitive and more closely aligned to actual descriptions of structure in
the linguistics literature (Palm, 1999). However, there isstill a price to pay for choosing this
path-based variable-free approach over the variables and predicates of classical first-order logic.

The major advantage of the classical approach of fsq is that variables can be used to identify
specific nodes throughout a query. The scoping operator accounts for cases where there is a need
to identify the root of a particular subtree, the scoping node, at every step in a path expression.
However, althoughL+ is first-order complete, it is not always clear how a first-order formula
can be converted into a (variable-free)L+ expression.

First-order completeness tells us that the following queryis expressible:Find the first com-
mon ancestor of noun phrases immediately followed by a verb phrase. This can be expressed
as follows:

ϕ(x) =∃y∃z descendant(x, y) ∧ descendant(x, z) ∧ NP(y) ∧ VP(z)

∧ following(y, z) ∧ ¬∃z′(following(x, z′) ∧ following(z′, y))

∧ ¬∃w(descendant(w, y) ∧ descendant(w, z)).

However, even with theimmediate followingaxis and the scoping operator it is not very obvious
how this can be expressed inL+. Note that the following query is incorrect,

//_[{//NP->VP} and not(//_{//NP->VP})] .

This is because eachNP(or VP) may refer to completely different nodes. We can express this
query by using theX+ definition of theimmediate followingrelation rather than the primitive
-> axis.

//_[/_[(NP or (/_[not(=>_)]) * /NP[not(=>_)) and
=> (VP or (/_[not(<=_)]) * /VP[not(<=_)])]

However, this is a very different approach to representing this sort of query than suggested by the
first-order formula above. These problems are inherent to path-based, variable-free languages.

As an example of how sequential closures are expressed consider the following query:Find
words consisting of consonant-vowel-consonant sequences.1 Let words, consonants and vowels
be represented by the labelsW, C, andV respectively. We can express this query inL+ as
follows: //W{[/ˆC(->C) * (->V)+(->C)+_$]}

Here, the-> axis allows us to capture the case where the consonants and vowels may not all
be at the same depth. Moreover, the scoping operator provides a convenient way of specifying
subtree edge alignment. This allows us to specify completely what a node dominates.

We can express more hierarchical closures too, for example,to findNPnodes that conform to
the simple grammar fragment,NP→ Adj NP ; NP→ Nas: //NP[({/ˆAdj=>NP$}) * /N]

The addition of theimmediate followingand immediate following siblingaxes completes
the set ofX axes for navigating trees. InL+, each axis has a corresponding one-step axis. The
L+ axis set accounts for both hierarchical, sequential and sibling orderings on unranked ordered
trees. As such, there do not appear to be any such (unconditional) relations lacking in theL+

axis set. Thus,L+ appears to have the complete set of axes necessary for linguistic tree query.

1This is slightly harder version of the query in Cassidy (2002).

Proceedings of PACLIC 19, the 19th Asia-Pacific Conference on Language, Information and Computation

5. Conclusion

LPath was proposed as a new query language which augmented the navigational axes of XPath
with three additional tree operators. The analysis of LPathoperators shows that they are more
than just syntactic sugar. In fact, LPath takes up a new rung on the expressiveness hierarchy
strictly between Core and Conditional XPath. Conditional LPath, LPath extended with the
conditional axis, has the same expressiveness as Conditional XPath. This provides evidence
that the closures required for linguistic query can be restricted to conditional paths, and supports
the argument that first-order logic provides enough expressiveness for our linguistic tree query
needs.

6. Acknowledgements

This research has been supported by an Australian Postgraduate Award (Lai) and by the US
National Science Foundation project 0317826Querying Linguistic Databases(Bird). We are
grateful to Marcus Kracht and Maarten Marx for helpful discussions of this work. A substan-
tially expanded version of this work may be found in the first author’s masters thesis (Lai,
2005).

References

Bird, S., Chen, Y., Davidson, S. B., Lee, H., and Zheng, Y. (2006). Designing and evaluating an XPath
dialect for linguistic queries. In22nd International Conference on Data Engineering.

Bird, S. and Liberman, M. (2001). A formal framework for linguistic annotation.Speech
Communication, 33:23–60.

Cassidy, S. (2002). XQuery as an annotation query language:a use case analysis. InProceedings of
LREC 2002, Las Palmas, Spain, May.

Clark, J. and DeRose, S. (1999).XML Path language (XPath). W3C.
http://www.w3.org/TR/xpath .

Gottlob, G., Koch, C., and Pichler, R. (2003). The complexity of XPath query evaluation. In
Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS, pages 179–190, San Diego, CA, USA. ACM.

Gottlob, G., Koch, C., and Schulz, K. U. (2004). Conjunctivequeries over trees. InProceedings of the
Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database System, pages
189–200, Paris, France. ACM.

Kepser, S. (2003). Finite structure query: A tool for querying syntactically annotated corpora. InEACL
2003: The 10th Conference of the European Chapter of the Association for Computational
Linguistics, pages 179–186.

Lai, C. (2005). A formal framework for linguistic tree query. Master’s thesis, Department of Computer
Science and Software Engineering, University of Melbourne.

Lai, C. and Bird, S. (2004). Querying and updating treebanks: A critical survey and requirements
analysis. InProceedings of the Australasian Language Technology Workshop, pages 139–146.
http://eprints.unimelb.edu.au/archive/00000774/ .

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotated corpus of
English: The Penn Treebank.Computational Linguistics, 19(2):313–30.
http://www.cis.upenn.edu/˜treebank/home.html .

Marx, M. (2004). XPath with conditional axis relations. InAdvances in Database Technology - EDBT
2004, 9th International Conference on Extending Database Technology, Proceedings, volume 2992
of Lecture Notes in Computer Science, pages 477–494, Heraklion, Crete, Greece. Springer.

Marx, M. (2005). First order paths in ordered trees. In Eiter, T. and Libkin, L., editors,Database
Theory - ICDT 2005, 10th International Conference, Edinburgh, UK, January 5-7, 2005,
Proceedings, volume 3363 ofLecture Notes in Computer Science, pages 114–128. Springer.

Marx, M. and de Rijke, M. (2004). Semantic characterizationof navigational XPath. InProceedings of
TDM’04 Workshop on XML Databases and Information Retrieval, Twente, The Netherlands.

Palm, A. (1999). Propositional tense logic for trees. InProceedings of the Sixth Meeting on
Mathematics of Language: MOL6, University of Central Florida, Orlando, Florida.

