325 research outputs found

    The Many Qualities of a New Directly Accessible Compression Scheme

    Full text link
    We present a new variable-length computation-friendly encoding scheme, named SFDC (Succinct Format with Direct aCcesibility), that supports direct and fast accessibility to any element of the compressed sequence and achieves compression ratios often higher than those offered by other solutions in the literature. The SFDC scheme provides a flexible and simple representation geared towards either practical efficiency or compression ratios, as required. For a text of length nn over an alphabet of size σ\sigma and a fixed parameter λ\lambda, the access time of the proposed encoding is proportional to the length of the character's code-word, plus an expected O((Fσλ+33)/Fσ+1)\mathcal{O}((F_{\sigma - \lambda + 3} - 3)/F_{\sigma+1}) overhead, where FjF_j is the jj-th number of the Fibonacci sequence. In the overall it uses N+O(n(λ(Fσ+33)/Fσ+1))=N+O(n)N+\mathcal{O}\big(n \left(\lambda - (F_{\sigma+3}-3)/F_{\sigma+1}\big) \right) = N + \mathcal{O}(n) bits, where NN is the length of the encoded string. Experimental results show that the performance of our scheme is, in some respects, comparable with the performance of DACs and Wavelet Tees, which are among of the most efficient schemes. In addition our scheme is configured as a \emph{computation-friendly compression} scheme, as it counts several features that make it very effective in text processing tasks. In the string matching problem, that we take as a case study, we experimentally prove that the new scheme enables results that are up to 29 times faster than standard string-matching techniques on plain texts.Comment: 33 page

    Huffman-based Code Compression Techniques for Embedded Systems

    Get PDF

    Advanced constellation and demapper schemes for next generation digital terrestrial television broadcasting systems

    Get PDF
    206 p.Esta tesis presenta un nuevo tipo de constelaciones llamadas no uniformes. Estos esquemas presentan una eficacia de hasta 1,8 dB superior a las utilizadas en los últimos sistemas de comunicaciones de televisión digital terrestre y son extrapolables a cualquier otro sistema de comunicaciones (satélite, móvil, cable¿). Además, este trabajo contribuye al diseño de constelaciones con una nueva metodología que reduce el tiempo de optimización de días/horas (metodologías actuales) a horas/minutos con la misma eficiencia. Todas las constelaciones diseñadas se testean bajo una plataforma creada en esta tesis que simula el estándar de radiodifusión terrestre más avanzado hasta la fecha (ATSC 3.0) bajo condiciones reales de funcionamiento.Por otro lado, para disminuir la latencia de decodificación de estas constelaciones esta tesis propone dos técnicas de detección/demapeo. Una es para constelaciones no uniformes de dos dimensiones la cual disminuye hasta en un 99,7% la complejidad del demapeo sin empeorar el funcionamiento del sistema. La segunda técnica de detección se centra en las constelaciones no uniformes de una dimensión y presenta hasta un 87,5% de reducción de la complejidad del receptor sin pérdidas en el rendimiento.Por último, este trabajo expone un completo estado del arte sobre tipos de constelaciones, modelos de sistema, y diseño/demapeo de constelaciones. Este estudio es el primero realizado en este campo

    COMIC: Towards A Compact Image Captioning Model with Attention

    Full text link
    Recent works in image captioning have shown very promising raw performance. However, we realize that most of these encoder-decoder style networks with attention do not scale naturally to large vocabulary size, making them difficult to be deployed on embedded system with limited hardware resources. This is because the size of word and output embedding matrices grow proportionally with the size of vocabulary, adversely affecting the compactness of these networks. To address this limitation, this paper introduces a brand new idea in the domain of image captioning. That is, we tackle the problem of compactness of image captioning models which is hitherto unexplored. We showed that, our proposed model, named COMIC for COMpact Image Captioning, achieves comparable results in five common evaluation metrics with state-of-the-art approaches on both MS-COCO and InstaPIC-1.1M datasets despite having an embedding vocabulary size that is 39x - 99x smaller. The source code and models are available at: https://github.com/jiahuei/COMIC-Compact-Image-Captioning-with-AttentionComment: Added source code link and new results in Table

    Entropy and Certainty in Lossless Data Compression

    Get PDF
    Data compression is the art of using encoding techniques to represent data symbols using less storage space compared to the original data representation. The encoding process builds a relationship between the entropy of the data and the certainty of the system. The theoretical limits of this relationship are defined by the theory of entropy in information that was proposed by Claude Shannon. Lossless data compression is uniquely tied to entropy theory as the data and the system have a static definition. The static nature of the two requires a mechanism to reduce the entropy without the ability to alter either of these key components. This dissertation develops the Map of Certainty and Entropy (MaCE) in order to illustrate the entropy and certainty contained within an information system and uses this concept to generate the proposed methods for prefix-free, lossless compression of static data. The first method, Select Level Method (SLM), increases the efficiency of creating Shannon-Fano-Elias code in terms of CPU cycles. SLM is developed using a sideways view of the compression environment provided by MaCE. This view is also used for the second contribution, Sort Linear Method Nivellate (SLMN) which uses the concepts of SLM with the addition of midpoints and a fitting function to increase the compression efficiency of SLM to entropy values L(x) \u3c H(x) + 1. Finally, the third contribution, Jacobs, Ali, Kolibal Encoding (JAKE), extends SLM and SLMN to bases larger than binary to increase the compression even further while maintaining the same relative computation efficiency

    Platforms for handling and development of audiovisual data

    Get PDF
    Estágio realizado na MOG Solutions e orientado por Vítor TeixeiraTese de mestrado integrado. Engenharia Informátca e Computação. Faculdade de Engenharia. Universidade do Porto. 200

    Efficient Encoding of Wireless Capsule Endoscopy Images Using Direct Compression of Colour Filter Array Images

    Get PDF
    Since its invention in 2001, wireless capsule endoscopy (WCE) has played an important role in the endoscopic examination of the gastrointestinal tract. During this period, WCE has undergone tremendous advances in technology, making it the first-line modality for diseases from bleeding to cancer in the small-bowel. Current research efforts are focused on evolving WCE to include functionality such as drug delivery, biopsy, and active locomotion. For the integration of these functionalities into WCE, two critical prerequisites are the image quality enhancement and the power consumption reduction. An efficient image compression solution is required to retain the highest image quality while reducing the transmission power. The issue is more challenging due to the fact that image sensors in WCE capture images in Bayer Colour filter array (CFA) format. Therefore, standard compression engines provide inferior compression performance. The focus of this thesis is to design an optimized image compression pipeline to encode the capsule endoscopic (CE) image efficiently in CFA format. To this end, this thesis proposes two image compression schemes. First, a lossless image compression algorithm is proposed consisting of an optimum reversible colour transformation, a low complexity prediction model, a corner clipping mechanism and a single context adaptive Golomb-Rice entropy encoder. The derivation of colour transformation that provides the best performance for a given prediction model is considered as an optimization problem. The low complexity prediction model works in raster order fashion and requires no buffer memory. The application of colour transformation yields lower inter-colour correlation and allows the efficient independent encoding of the colour components. The second compression scheme in this thesis is a lossy compression algorithm with a integer discrete cosine transformation at its core. Using the statistics obtained from a large dataset of CE image, an optimum colour transformation is derived using the principal component analysis (PCA). The transformed coefficients are quantized using optimized quantization table, which was designed with a focus to discard medically irrelevant information. A fast demosaicking algorithm is developed to reconstruct the colour image from the lossy CFA image in the decoder. Extensive experiments and comparisons with state-of-the-art lossless image compression methods establish the superiority of the proposed compression methods as simple and efficient image compression algorithm. The lossless algorithm can transmit the image in a lossless manner within the available bandwidth. On the other hand, performance evaluation of lossy compression algorithm indicates that it can deliver high quality images at low transmission power and low computation costs

    Text and Image Compression based on Data Mining Perspective

    Get PDF
    Data Compression has been one of the enabling technologies for the on-going digital multimedia revolution for decades which resulted in renowned algorithms like Huffman Encoding, LZ77, Gzip, RLE and JPEG etc. Researchers have looked into the character/word based approaches to Text and Image Compression missing out the larger aspect of pattern mining from large databases. The central theme of our compression research focuses on the Compression perspective of Data Mining as suggested by Naren Ramakrishnan et al. wherein efficient versions of seminal algorithms of Text/Image compression are developed using various Frequent Pattern Mining(FPM)/Clustering techniques. This paper proposes a cluster of novel and hybrid efficient text and image compression algorithms employing efficient data structures like Hash and Graphs. We have retrieved optimal set of patterns through pruning which is efficient in terms of database scan/storage space by reducing the code table size. Moreover, a detailed analysis of time and space complexity is performed for some of our approaches and various text structures are proposed. Simulation results over various spare/dense benchmark text corpora indicate 18% to 751% improvement in compression ratio over other state of the art techniques. In Image compression, our results showed up to 45% improvement in compression ratio and up to 40% in image quality efficiency
    corecore