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Abstract 

Since its invention in 2001, wireless capsule endoscopy (WCE) has played an important 

role in the endoscopic examination of the gastrointestinal tract. During this period, WCE has 

undergone tremendous advances in technology, making it the first-line modality for diseases 

from bleeding to cancer in the small-bowel. Current research efforts are focused on evolving 

WCE to include functionality such as drug delivery, biopsy, and active locomotion. For the 

integration of these functionalities into WCE, two critical prerequisites are the image quality 

enhancement and the power consumption reduction. An efficient image compression solution is 

required to retain the highest image quality while reducing the transmission power. The issue is 

more challenging due to the fact that image sensors in WCE capture images in Bayer Colour 

filter array (CFA) format. Therefore, standard compression engines provide inferior compression 

performance.  

The focus of this thesis is to design an optimized image compression pipeline to encode 

the capsule endoscopic (CE) image efficiently in CFA format. To this end, this thesis proposes 

two image compression schemes.  

First, a lossless image compression algorithm is proposed consisting of an optimum 

reversible colour transformation, a low complexity prediction model, a corner clipping 

mechanism and a single context adaptive Golomb-Rice entropy encoder. The derivation of 

colour transformation that provides the best performance for a given prediction model is 

considered as an optimization problem. The low complexity prediction model works in raster 

order fashion and requires no buffer memory. The application of colour transformation yields 

lower inter-colour correlation and allows the efficient independent encoding of the colour 

components.  

The second compression scheme in this thesis is a lossy compression algorithm with a 

4 4  integer discrete cosine transformation at its core. Using the statistics obtained from a large 

dataset of CE image, an optimum colour transformation is derived using the principal component 

analysis (PCA). The transformed coefficients are quantized using optimized quantization table, 

which was designed with a focus to discard medically irrelevant information. A fast 

demosaicking algorithm is developed to reconstruct the colour image from the lossy CFA image 

in the decoder.  Extensive experiments and comparisons with state-of-the-art lossless image 

compression methods establish the superiority of the proposed compression methods as simple 
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and efficient image compression algorithm. The lossless algorithm can transmit the image in a 

lossless manner within the available bandwidth.  On the other hand, performance evaluation of 

lossy compression algorithm indicates that it can deliver high quality images at low transmission 

power and low computation costs. 
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Chapter 1 -  Introduction 

In 2001, “Given Diagnostic Imaging” launched its first commercial wireless capsule 

endoscopy system (WCE) i.e. PillCam. It was designed by an Israeli engineer “Gavriel Iddan” 

and British gastroenterologist “Paul Swain” [1][2]. WCE was a revolutionary invention because 

it allowed the non-invasive visualization of the small-bowel.  Due to its capability of direct 

small-bowel visualization, WCE quickly became the first-line modality in the diagnosis of 

gastrointestinal diseases such as obscure gastrointestinal bleeding, unexplained iron deficiency, 

anaemia, Crohn’s disease and small-bowel polyps. Figure 1-1 shows examples of abnormalities 

captured by capsule endoscopy.  

WCE offers patient-friendly alternative to wired endoscopy that caused discomfort and 

also required sedation in many cases. WCE brought a positive impact on the patient compliance 

thereby increasing the early detection of GI diseases such as cancer. As a result, WCE gained 

widespread popularity  and several other companies now are marketing small-bowel endoscopic 

capsules such as PillCam SB3 [3], Endocapsule [4], OMOM Capsule [5], MiroCam [6] and 

Capsocam SV1 [7]. Table 1-1 summarizes the features of these systems [8]. In just a few years, 

WCE has become an invaluable tool in gastrointestinal disease management.  

Despite continued technological advancements, WCE has several limitations such as poor 

image quality, passive locomotion and time-consuming manual reviewing. 

 

Table 1-1: Comparison of video capsule endoscopes  

 
PillCam 

SB3 
Endocapsule 

OMOM  

Capsule 
MiroCam 

Capsocam  

SV1 

Manufacturer Given Imaging Olympus Jianshan IntroMedic CapsoVision 

Length  

Diameter 
26mm × 11mm 26mm × 11mm 28mm × 13mm 25mm × 11mm 31mm × 11mm 

Frame Rate  

(per second per camera) 
2-6 2 3 3 3-5 

Field of View ( o  ) 156 160 140 170 360 

Battery Life (h) 12 12 8 12 15 
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(a)                                                          (b) 

Figure 1-1. Abnormalities captured in capsule endoscopy image (a) bleeding, (b) 

polypoid (courtesy: KID Dataset [9])  

The main function of endoscopy is to inspect GI tract using imaging technique.  A wired 

endoscope utilizes high-resolution image camera and light delivery systems powered by an 

external source. An optical fibre transmission system is used for transmitting power and 

receiving image data. On the other hand, the battery-operated WCE transmits the image data 

using radio-frequency (RF) transmission. As shown in Figure 1-2, a typical imaging system in 

WCE consists of five components i.e. a CMOS image sensor, an illumination system, an image 

processor, a RF transmitter and a power source [1]. The CMOS image sensor along with the 

illumination system constitutes the image acquisition system. The main function of the image 

processor is to compress the image data before transmission. Additionally, the image processor 

may contain pre-processing algorithms such as demosaicking and white balancing.  

 

Using these modifications, WCE greatly alleviates the discomfort and pain of the patients 

caused by the cable in wired endoscopes. However, the hardware limitations brought up by these 

modifications such as power consumption and wireless transmission bandwidth, result in image-

quality degradation [10]. As the battery occupies most of the space in capsule, frame rate and 

image resolution have been curtailed in the WCE to reduce the RF transmission power. 

Moreover, the available bandwidth for transmitting data through the human body is restricted to 

2~3 Mbps by the Federal Communications Commission [11]. As shown in Table 1-1, 
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commercial WCEs typically yield images with QVGA (256x256) resolution at a maximum 

frame rate of 6 FPS. The low resolution of image often results in the unintentional omission of 

abnormal findings.  

 

Figure 1-2. Visual demonstration WCE components  (Courtesy: Given Imaging). 

 

Besides diagnosis, image quality plays a vital role as a feedback signal for the remote 

manipulation system. A remote manipulation system is essential for allowing targeted biopsies or 

drug delivery. Most of the current commercial WCEs employ passive locomotion, where the 

natural peristalsis motion controls the capsule movement. As a result, WCE lags behind its wired 

counterpart in therapeutic procedures. In addition to increasing diagnostic yield, an efficient 

remote manipulation system can reduce the transit time, energy consumption and completion rate 

of the WCE [2]. It is foreseeable that the next generation capsule endoscopy system will replace 

the passive locomotion with active locomotion. The efficiency of remote manipulation system 

relies largely on the availability of image transmission with sufficient frame rate and high 

resolution [12].   

 

One of the most challenging issues for the development of WCE is transmitting high-

quality images while reducing the transmission power consumption. An efficient image 

compression system can effectively limit the transmission power by decreasing the amount of RF 
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transmission data. On the other hand, standard compression engines such as JPEG [13], JPEG-

LS [14], JPEG-2000 [15] and JPEG-XR [16] are not suitable for WCE due to their high 

computational complexity. Moreover, these engines are not optimized for capsule endoscopy 

images. Therefore they cannot exploit the unique characteristics of capsule endoscopy images.  

 

The purpose of this thesis is to propose and evaluate low complexity image compression 

system optimized for wireless capsule endoscopy system. The goal is to optimize the 

compression system to exploit the unique characteristics of capsule endoscopy images and 

provide the best compression performance while maintaining a low computational complexity 

and memory requirement. The development of a dedicated image-compression system for WCE 

will enable the next generation capsule endoscopy system to improve the image quality and 

incorporate functionality such as active locomotion and automated computer-aided detection 

system.    

 

1.1 Previous Work on WCE Image Compression 

In WCE, compression of CE image prior to transmission can reduce the power 

consumption by reducing the transmitted bits per pixel. This section summarizes the prior works 

on the compression of CE images. Due to space constraint in the capsule, the camera in WCE 

only has a single image sensor plane, consisting of either charge couple device (CCD) or a 

complementary metal oxide semiconductor (CMOS). WCE captures a colour image with this 

sensor by placing a colour filter array (CFA) in front of the image sensor.  The result is a mosaic 

image where each pixel location contains either a red, blue or green samples. The full-colour 

image is reconstructed by applying a colour interpolation process called demosaicking, which 

estimates the two missing colour values at each pixel. The most straightforward approach to 

compression is to apply demosaicking prior to compression in order to generate full-colour 

image and design[17]–[21]. The major reason for the popularity of such demosaicking-first 

scheme is the standard compression engine such as JPEG, JPEG-2000, JPEG-XR and JPEG-LS, 

that are intended to compress still continuous tone colour image. However, such demosaicking-

first approach (Figure 1-3 (a)) is found to be sub-optimum in the case of WCE due to several 

reasons. First, the demosaicking process adds irreversible distortion to the image. In addition, the 

demosaicking process requires computational resource and memory to interpolate the data and 
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the data to be compressed is tripled which increases the computational complexity and memory 

requirement of the compressor. To address these issues, various compression algorithms for 

direct coding of CFA image (Figure 1-3 (b)), that avoids the demosaicking stage prior to 

compression have been proposed for WCE. 

 

CFA image

(Gr, R, B, Gb)

Demosaicing

(R, G, B)

Storage/ 

Transmission

Decoding Full 

Color Image

(a)

Encoding Full 

Color Image

CFA image

(Gr, R, B, Gb)

Storage/ 

Transmission

Decoding CFA 

Image

(b)

Encoding CFA 

Image

Demosaicing

(R, G, B)

Full Color 

Image

Full Color 

Image

 

Figure 1-3. Block diagram of CFA image compression using: (a) demosaicking-first 

scheme; (b) compression-first scheme. In (a) the demosaicking occurs in the image sensor and 

encoder works on full-colour images. In (b) the demosaicking occurs in the decoder after the 

compression and decompression of the CFA image. 

 

The state-of-the-art image compression algorithms for direct compression of CFA image 

can be broadly divided into two ways i.e. lossless [22] and lossy [12], [23]–[28]. In lossless 

compression, the image can be reconstructed without any loss of information in the decoder. 

Lossless compression plays a major role in reducing the error for both manual diagnosis and 

computer-aided decision system. On the other hand, lossy compression allows the addition of 

some distortion with a substantial increase in compression factor. The bottleneck in power 

consumption and transmission bandwidth force WCE to apply lossy compression. The major 

design concern in lossy compression is to preserve the diagnostic findings in the reconstructed 

image. Again these methods can be subdivided into prediction based and transform based 

coding.  
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1.1.1 Prediction Based Coding 

In prediction based coding, a prediction model is used for predicting the current pixel by 

using the neighbouring pixel values. The prediction model employs a causal template to enable 

the decoder to reconstruct the pixel value. Among various prediction based compression 

schemes, JPEG-LS has been widely utilized for WCE [20], [25], [29]–[32]. Compared to other 

standard compression engines such as JPEG-2000 and JPEG, JPEG-LS is simple and has lower 

storage and computational requirement. These features make JPEG-LS attractive for real-time 

implementation in WCE. The block diagram of JPEG-LS is given in Figure 1-4. The prediction 

is computed based on the four neighbouring pixels as shown in Figure 1-4 (a, b, c and d). As the 

neighbouring pixels in CFA are sampled from different colour planes, they exhibit varying levels 

of pixel intensities. Therefore, direct compression of CFA image using JPEG-LS results in an 

inferior compression performance. Various proposed modification to address this issue are 

discussed below.  

There are three popular modifications applied in the prior compression algorithm: i) structure 

separation, ii) structure rearrangement and iii) redefinition of prediction template. 

Fixed 

Predictor

Adaptive 

Correction

+

-
Context 

Modeler

Gradients

Flat 

Regions?

Golomb 

Coder

Run 

Counter

Run 

Coder

mode

run

regular

mode

c b d

a x

image 

samples

run

regular

Context
Image 

Samples

Prediction 

Errors

Compressed 

bitstream

 

Figure 1-4. JPEG-LS Block Diagram based on LOCO-I algorithm  [33] 

 

Structure separation deinterleaves the different colour components into sub-images and 

then encodes them independently using the JPEG-LS engine. In WCE, the Bayer CFA data is 

commonly subdivided into green sub-images and non-green (red and blue) sub-images [34] [35]. 

The procedure is shown in Figure 1-5(a). This reduces the number of parallel paths thereby 
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leading to lower computational complexity. In order to reduce the artificial discontunities 

between R and B components, simple low-pass filtering is applied prior to compression. This 

low-pass filtering stage controls the trade-off between the compression rate and the distortion. As 

a result, this method cannot be applied in lossless compression as low-pass filtering stage is not a 

lossless process.  
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c b d
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(c) 

Figure 1-5. Different modification used in JPEG-LS based compression model for WCE 

are as follows: (a) Structure separation divides the CFA image into a green sub-image and a non-

green sub-image, (b) Structure rearrangement shifts the green components to the left of the row 

and shifts the non-green components to the right and (c) redefining the prediction template to 

generate prediction from same colour components. 
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 Instead of dividing the image into several sub-images, structure rearrangement shifts the 

elements into a suitable arrangement for JPEG-LS compression. For example: in  [25], the green 

components are shifted to left and the non-green components to the right of each row (Figure 

1-5(b)).    The resulting mosaic image is then processed by a low-pass filter and fed directly to 

the JPEG-LS engine. This modification reduces the computational complexity compared to 

structure rearrangement [25]. However, both structure rearrangement and structure separation 

require frame memory for restructuring the components. The redefinition of prediction template 

for CFA image has been proposed in [32]. As shown in Figure 1-5(c), the work defines the 

position of a, b, c and d in the prediction template in order to generate the prediction using same 

colour pixels. The work also modified the JPEG-LS prediction model and proposed a hybrid 

entropy encoder optimized for CE image compression. As a result, the work has significantly 

reduced the computational complexity compared to previous works. This is the only previously 

published work on lossless compression of CE image.  

 

1.1.2 Transform Based Methods 

Transform coding is an efficient decorrelation technique for block-based image data, 

where the energy of the image data is condensed into a relatively small number of transformed 

coefficients. Due to their energy-packing efficiency, transform coding based on the discrete 

cosine transform (DCT) is widely used and is the core element in JPEG image compression. 

Most of the current low-bitrate lossy compression algorithm for WCE image follows a similar 

pipeline of JPEG. The JPEG of a colour image follows five basic stages as shown in Figure 1-6. 

First, a colour transformation reduces the spectral redundancy between the colour components. 

Then the individual colour components are divided into blocks that are transformed using a two-

dimensional DCT. The transformed coefficients are quantized and then encoded using a 

coefficient encoder.  

As direct compression of CFA image by JPEG produces periodic distortions [36], several 

modifications of JPEG algorithm have been proposed in the literature. In this section, a brief 

overview of various transform based coding proposed for WCE is given. 
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Figure 1-6. Block Diagram of Transform Coding 

 

 In order to reduce the artificial high frequencies in the CFA image due to the interlacing 

of different colour components, all the transform-based methods apply structure separation to 

divide the image into four sub-images. Each of the sub-images consists of pixels of a single 

colour plane. Most conventional colour conversion algorithms are designed for full-colour image 

and hence require three colour components. However, the CFA image contains two green 

components i.e. one red component and one blue component. Therefore, application of 

conventional colour conversion such as YCbCr would require demosaicking to generate the 

missing colour components, which will in turn increases the computational cost. Some 

compression algorithms [26]–[28] and [36] remove the colour transformation stage to avoid the 

application of demosaicking. In these cases, the image is first divided into four sub-images that 

consist of two G sub-images, one R sub-image and one B sub-image, each of which is one 

quarter the size of the original image. These sub-images are then transformed using a DCT 

transformation. The reduction of computational complexity of 2D DCT calculation requires 

approximation of DCT such as algebraic integer quantization based DCT [26] or integer 

transform [28]. The resultant transformed coefficients are quantized independently using 

optimized quantization table. Although these methods can yield a good compression ratio, the 

resulting peak signal to noise ratio is comparatively low (around 35dB).  

 

In order to reduce the spectral redundancy between the sub-images in CFA, several 

approaches have been proposed [12], [37] and [38]. In [23], one of G sub-image is discarded and 

the other three sub-images are processed using a low complexity colour transformation, which is 

derived from YCbCr.  The systems in [12] and [38] detail the reversible transformation 

introduced by Lee and Ortega [40] to map the CFA components into a new colour space. The 

conversion is applied on each 2x2 macro block of CFA image. It produces two luminance signals 

Y and two chrominance components Cb and Cr. The two Y components are merged to form a 

single Y sub-image with half the width of the original CFA image. The application of colour 

transformation significantly improves the compression performance resulting in compression 
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ratio of around 0.8 bits per pixel (BPP). In [12], the compression ratio is further increased by 

using the YYCoCg colour transformation and replacing the Huffman entropy encoder with a 

Golomb-Rice encoder.  

 

 

1.2 Key Design Challenges 

 

In the design of image compression, one of the key challenges is to find the optimum 

trade-off between performance and complexity. In addition, WCE operates under a set of unique 

resource constraints, including limitations on battery life, chip area, computational resources, 

memory and transmission bandwidth. This section summarizes the associated limitations and 

design constraints with image compression for wireless capsule endoscopy system.  

 

 Direct Compression of Raw Colour-Filter-Array Images: In consumer camera, 

demosaicking is applied prior to the compression stage. However, the colour interpolation stage 

triples the data to be compressed resulting in a sub-optimum compression performance. 

Additionally, the sub-optimum demosaicking algorithm used by the in-chip processor introduces 

a significant amount of distortion in the data [41].  

Therefore, WCE shifts the demosaicking algorithm to the receiver by directly 

compressing and transmitting the mosaic image. This approach avoids the increase in redundancy 

before compression and allows the use of high-complexity demosaicking algorithms for 

reconstructing the full-colour image. However, in CFA image, the intermixing of different colour 

pixel generates artificial discontinuities [36]. As a result, direct compression of mosaic images 

using standard continuous-tone image-compression algorithms such as JPEG, JPEG-2000 and 

JPEG-XR results in an inferior compression performance. The proposed compression algorithm 

should address this issue to facilitate efficient compression of raw CFA image for capsule 

endoscopy.  

   

     Image Quality: The proposed compression algorithm should be able to yield 

high-quality images. Ideally, a lossless compression should be applied for transmission of the 
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endoscopic image without any distortion. For example: if the capsule is transmitting a VGA 

image (640 × 480, 8 bits per pixel) at a frame rate of 2 frames per second (fps), the lossless 

compression should reduce the bits per pixel (BPP) to 3.26 to 4.89 based on the available 

bandwidth for transmission (2-3 Mbps). 

However, in view of facilitating s remote manipulation system, lossy compression is  

preferable [42]. According to a recent study, for a real-time remote-manipulation system to 

operate properly while complying with the FCC transmission bandwidth, the image should be 

compressed by a  factor ranging between 5 to 20 [12].  Since lossless compression algorithm 

cannot provide such a high compression factor, a lossy compression algorithm must be applied. 

Particular attention should be given to retaining the medically-relevant information in the 

reconstructed image. Thus some distortion can be introduced but reconstructed images should 

have a very high image quality both in terms of objective and subjective measures. 

 

 Implementation Cost: The computational complexity of the proposed 

compression scheme should be very low in order to reduce power consumption of the capsule. 

As the memory consumes a major part of the area and power in the compressor, the memory 

footprint of the proposed compression scheme should be small. Moreover, the compressor should 

work on raster order data so that it can be readily integrated with commercially-available image-

sensors.  

 

1.3 Thesis Objective 

 

The objective of this work is to develop efficient image compression algorithms for WCE 

that works directly on the raw CFA image. To achieve this goal, the specific objectives of this 

thesis are as follows: 

 

1. To improve the existing methods of colour transformation in prediction based lossless 

CFA image-compression for exploiting the redundancy between different colour components in 

CFA image and decreasing the BPP.   
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2. To develop a lossless compression algorithm to be used in WCE system with a 

comparable area and power to the state-of-the-art WCE systems and bits per pixel of 3.26 to 

4.31.  This enables transmission of full resolution image while complying with the transmission 

bandwidth available for RF transmission through the human body (2-3 Mbps).  

 

3. To develop a lossy-compression algorithm for WCE to provide compression rate 

between 5-20 while keeping the peak signal ratio greater than 40 dB. The memory and 

computational complexity should be low to keep the area and power consumption low for WCE. 

 

   

1.4 Thesis Organization 

 

This thesis is organized in a manuscript-based style. The proposed methods and 

experimental results obtained are included in the form of submitted manuscripts. The remainder 

of the thesis is organized as follows. Chapter 1: provides the motivation, review of previous 

works, key design challenges and the thesis objective. Proposed optimum reversible-colour 

transformation models for lossless coding are presented in Chapter 2. Based on the proposed 

derivation model, a lossless image compression system for wireless capsule endoscopy system is 

proposed in Chapter 3. Proposed lossy image compression scheme is presented in Chapter 4. 

Finally, conclusion and directions for further research are given in Chapter 5. 
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Chapter 2 -  A Lossless and Reversible Colour Space 

Transformation for Bayer CFA Images 

 The chapter includes a manuscript entitled ‘A Lossless and Reversible Colour Space 

Transformation for Bayer CFA Images’ by Shahed K. Mohammed, and Khan A. Wahid. The 

manuscript has been submitted to IEEE Transaction on Circuits and Systems for Video 

Technology on January 2017. In this chapter, a novel optimization method to derive the colour 

transformation for lossless prediction based coding is proposed. The method is evaluated by 

deriving colour transformation for natural image and comparing the performance with other 

colour transformation model. Later this optimization method is applied for deriving the colour 

transformation for CE image (Chapter 3).  
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Abstract—This chapter presents two low-complexity integer- reversible colour transformation 

for colour filter array (CFA) images, which are derived using a novel optimization method for 

reducing the prediction error variance and inter-colour correlation. These colour spaces can 

lower lossless bitrate of low complexity prediction model without using high complexity 

interpolation and inter-colour prediction scheme. Therefore, they are suitable for hardware 

implementation. One of the proposed colour transformation fully eliminates buffer memory 

requirement as it works directly on the raster order data. The second colour transformation, 

working on the 2x2 macroblock of colour components, requires storing only a half row of pixel 

values in memory and has an excellent decorrelation capability. In experiments, the proposed 

ORCTs reduced the computational complexity by 85% and buffer memory by 90% compared to 

state-of-art decorrelation technique used for CFA. These colour transformations can increase the 

prediction gain by 0.45 dB while significantly reducing the bits per pixel for standard lossless 

compression engine.  

Index Terms—Colour filter array (CFA), reversible colour transformation (RCT), 

Lossless compression. 

 

2.1 Introduction 

 

Most digital cameras employ a single image sensor plane along with a red-green-blue 

(RGB) colour filter array (CFA), such as Bayer CFA (Figure 2-1 (a)), in which every pixel 

captures only one of the three primary colour components. The resultant image is called a mosaic 

image [43]. However, conventional compression engines, such as JPEG, are designed to work on 

the full-colour image; as a result, a demosaicking process reconstructs the full-colour image 

before compression. From the data compression perspective, this demosaicking stage triples the 

data to be compressed. Such data expansion is particularly questionable for lossless compression 

in applications such as image archiving and medical imaging [41]. An alternative approach 

where demosaicking occurs after compression offers simpler low power optical sensor as the 

computationally expensive process such as demosaicking can be shifted to powerful computer 

[44]–[48]. Specifically for lossless compression, these alternative schemes outperform the 

conventional methods. Among different types of lossless CFA compression methods, the 
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prediction-based approach using hierarchical prediction (HP) model [46] and adaptive colour 

difference (ACD) model [47] have demonstrated superior performance. These algorithms can 

provide a very promising lossless compression rate for CFA images by exploiting the inter-

colour correlation. To this end, these models process the green (G) components first, then apply 

locally adaptive interpolation, and colour difference estimation in the non-green pixels. 

However, the associated requirement of a large buffer memory, computationally intensive 

interpolation, and inter-colour prediction process makes them unsuitable for hardware 

implementation in low-power image sensors. The alternative method of reducing the inter-colour 

correlation by applying a suitable colour transformation techniques have been widely utilized in 

lossy compression algorithm for mosaic images [36], [40]. But these methods cannot be 

incorporated in the lossless algorithms because associated colour transformations are not integer 

reversible, and hence cause rounding errors. In a recent work, a lifting-based reversible colour 

transformation YDgCoCg was presented for Bayer CFA image [48] which can substantially 

improve the lossless bitrate of transform-based methods, such as JPEG-2000 and JPEG-XR.  

 

In this chapter, first, a novel derivation method is proposed to find the optimum colour 

transformation for a prediction based lossless CFA compression scheme (Section 2.2.1). This 

method incorporates the prediction model in the derivation of optimum colour transformation 

that can reduce the inter-colour correlation. Then, two optimum reversible colour transformation 

(ORCT) colour space for Bayer CFA image with varying implementation cost are proposed 

(Section 2.2.2). These colour spaces can efficiently improve the prediction based lossless 

performance by reducing the variance in error signal. Experiments with standard lossless engines 

such as JPEG-LS, JPEG-2000 and JPEG-XR demonstrated that the proposed ORCTs could be 

integrated with standard engines to improve the lossless bit rate with a negligible increase in 

computational complexities and buffer memories (Section 2.3). 

  

2.2  Proposed method 

 

The Bayer CFA pattern consists of repeating 2x2 macroblock of two G, one B, and one R 

components as shown in Figure 2-1(a). Throughout this thesis, the rows containing the R 

components and B components in the CFA image is denoted as R-line and B-line respectively; 
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the parameters associated with these lines are also distinguished by subscripts ‘r’ and ‘b’ 

respectively.  

 

Figure 2-1.  Spectral correlation in Bayer CFA image  (a) Bayer CFA pattern for a 2x2 

block, (b) Profile of the colour components G and R in the line 219 at Airplane CFA image 

which shows the presence of significant intra-colour and inter-colour redundancy (c) Profile of 

the residual signal in the same line obtained using a DPCM prediction model with reduced intra-

colour redundancy but noticeable inter-colour redundancy, (d) Comparison of average inter-

colour correlation in the prediction error signal for different colour transformations for airplane 

and Lena images 

 

In CFA image, a significant inter-colour redundancy exists between the colour 

components. Error signals generated by individual processing of the colour components using a 

prediction model reduces the intra-colour redundancy. However, these error signal exhibits a 

significant inter-colour correlation. For example, the row profile R and Gr taken from one line in 

the Airplane image is plotted in Figure 2-1 (b). It is evident that a significant intra-colour 

redundancy or spatial redundancy and inter-colour redundancy exist between the components. A 

prediction model such as delta pulse coded modulation (DPCM) can effectively reduce the 

spatial redundancy as evident from the error signal ∆R and ∆Gr  Figure 2-1 (c). However, there is 

still noticeable spectral redundancy between the residual signal from two different colour 

channels. Therefore, independent encoding of the colour component gives a sub-optimal 

compression performance as the spectral redundancy is not efficiently exploited. Application of 

colour transformation such as YDgCoCg or the colour difference signal estimation such as HP 

GbB Gb B

RGr R Gr

GbB Gb B

RGr R Gr
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and ACD reduces the spectral correlation in the original signal as well as in the residual error 

signal as evident from Figure 2-1 (d). 

 

Figure 2-2. Overview of the proposed scheme   (a) Optimum Colour space derivation, (b) 

Integration of the optimum RCT in prediction based lossless coding 

 

 On the other hand, the performance of prediction based image compression depends 

substantially on the variance of error signal [49]. It is expected that smooth images will have 

smaller error variance and can be coded with fewer bits. Therefore, the goal is to derive an 

optimization model that minimizes both the prediction error variance and the inter-colour 

correlation using a reversible colour transformation. First, the method is applied to obtain the 

colour transformation for both R-line and B-line, which can efficiently reduce the redundancy in 

the horizontal direction. Later, a separable colour transformation is obtained to lessen the 

redundancy in the vertical direction between R-line and B-line. An overview of the proposed 

method is given in Figure 2-2(a). The proposed colour transformation would improve the 

performance of prediction based CFA image coding systems that work on deinterleaved colour 

components separately (Figure 2-2 (b)). 

  

2.2.1  Optimum Colour Transformation Derivation 

 

It is seen from Figure 2-1 (a) that there are only two colour components in each line. The 

goal is to derive a lossless colour space defined by a 2x2-transformation matrix A  which can 
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reduce the redundancy of the two colour components in raster order fashion. If the original 

colour components are P and Q, and the transformed colour components are W and D, the 

transformation can be written as:- 

 W P
A

D Q

   
   

   
 , where

11 12

21 22

a a
A

a a

 
  
 

  (2-1) 

         

To make the transformation reversible, there are two constraints:  

1. A  must be unimodular, i.e. determinant should be 1 [50]  

2. Elments in one row of A  must have integer coefficients [51].  

 

The goal is to derive the optimum luminance and chrominance channel represented by a 

weighted average and difference of the inputs respectively. The sum of terms in the chrominance 

weight should be equal to zero, which ensures the gray colours have no chrominance value. Let 

the first row in A represents the weighted average while the second row represents the colour 

difference. This is reflected in the denotation of the transformed components in this thesis, where 

W represents the weighted average component and D refers to difference component. 

Considering the constraints for reversibility, the following two relationships can be formulated: 

 
11 12 1a a   and    21 22 0a a   (2-2) 

   

From the unimodular constraint and eqn (2-2), the condition to achieve lossless transformation 

can be found as: 

 
21 22 1a a         (2-3) 

So for each line, determining the ORCT translates to determining the coefficient 11a  that will 

define the optimum colour space:- 

 
11 111

1 1

a a
A

 
  

 
   (2-4) 

The goal is to minimize the lossless rate which largely depends on the variance of the 

error signal for prediction coding [49]. Therefore, the variance of the error signal is taken as the 

cost of the prediction model. Now if the error signal P, Q, W, and D are ∆P, ∆Q, ∆W, and ∆D 

respectively, then the relationship between the error signals can be established as:- 
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11 11(1 )W a P a Q      , and D P Q     (2-5) 

Then the prediction cost as the normalized error variance can be written as:- 

 

 
    

 

22 2 2

11 11

1 1

11 2

max

11 11

1

1 1
1 ( ) 1 1 ( )

1

1
2 (1 ) 1 ( ) ( )

N N

i i
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i

a P i a Q i
N N

J a
I

a a P i Q i
N

 



 
       

 
 

    
 

 



    (2-6) 

Here N denotes the number of samples and Imax denotes the maximum intensity value. To 

measure the inter-colour correlation, the Pearson correlation coefficient is calculated between the 

error signals from transformed colour space as below:- 

 
   

   

( ) ( )

1( ) ( , )
11

2 2
( ) ( )

1 1

N
W i W D i D

iJ a Corr W D
corr N N

W i W D i D

i i

   
   

    
 

                  (2-7) 

Here N denotes the number of samples. These two cost functions are then combined using eqn 

(2-8): 

R R R

Total pred corrJ J J                (2-8) 

 

 Figure 2-3.  Variation of cost functions and entropy with respect to 11a for Hats image (a) 

Normalized Error Variance; (b) Correlation; (c) Total Cost (d) Entropy of Error Signal in all 

cases minima occurs at 11 0.5a   

 

Here,   is the Lagrange multiplier that controls the trade-off between prediction error and 

correlation. Heuristically, the value of   is set as 0.02 to keep the order of the two cost functions 

 

            (a)                                 (b)                                   (c)                                (d) 
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compatible. To illustrate the cost function constitutes a convex optimization problem, the error 

signal of ‘Hats’ image in the Kodak dataset is calculated. Then using the error signal, R

TotalJ , 

R

corrJ , 
R

predJ  as a function of 11a  are plotted in Figure 2-3. The optimum value of 11a  can be found 

from the local minima of Figure 2-3(c). The entropy of error signal is plotted in Figure 2-3(d) to 

reaffirm that minima of the cost function essentially provides the best compression performance 

since the minimum entropy index coincides with minima of TotalJ . In the following section, two 

different ways are presented to derive colour space using the optimization method. 

 

2.2.2 ORCT-1: Raster Order and Offline Optimization 

 

In the first method, the optimum transformation matrix is determined separately for R-

line and B-line according to the rules set out in eqns (6)-(8). The goal is to reduce the 

redundancy in the horizontal direction in raster order data.  The optimization model is derived 

based on Kodak dataset in this experiment. Two prediction models are applied on the dataset: 

DPCM and Median Edge prediction (MEP). DPCM is a very efficient low-complexity prediction 

model used in multiple applications for lossless medical image coding [52]. On the other hand, 

MEP is the prediction model used in JPEG-LS, which can efficiently code both edge and smooth 

regions [14]. After generating the prediction error for R-line and B-line, an exhaustive search is 

applied to find the value of 11a  that minimizes the cost function TotalJ . To avoid division 

operation, the parameter is searched only on the integer multiple of 
1

256

, which ensures a low 

complexity colour transformation matrix. The results for MEP and DPCM are shown in eqn (2-

9) and (2-10) respectively:- 

 

123 133

256 256

1 1

r

r

W Gr

D R

 
             

   and 

122 134

256 256

1 1

b b

b

W G

D B

 
             

                              (2-9) 
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                (2-10) 
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 Since 11a  is close to 0.5 in all cases, the coefficients can be further simplified, and so the 

parameters for both models become the same as shown below in eqn (2-11): 

 

1 1

2 2

1 1

r

r

W Gr

D R

 
             

 

 and

    

1 1

2 2

1 1

b b

b

W G

D B

 
             

      (2-11)  

To validate this approximation, the average entropy of the transformed signal is measured in 

Kodak dataset using eqns (2-9), (2-10) and (2-11), which are 6.6542 bpp, 6.6535 bpp, and 6.6548 

bpp respectively, indicating an increase of only 0.02% due to the simplification. It shows that the 

simplification does not significantly reduce the coding performance and yet allows it to be 

implemented using a lifting structure (as shown in Figure 2-4). This enables simple and efficient 

hardware implementation with only adders and shifters. 

 

 

 

In previous works on Bayer CFA [46] [47], similar difference components as given in 

equation (11) were used to make the signal smoother. However, instead of using the neighboring 

green pixel, these works utilized interpolated green value in the position of R and B to calculate 

the difference component. Table 2-1 compares the entropy of the difference signal using the 

interpolation (HP, ACD) and without using the interpolation (ORCT-1). From the table, it can be 

seen that the colour difference component estimated using interpolation has a reduction of 

entropy by 0.9% than the difference component in ORCT-1. As both HP and ACD transmit the 

green channel unaltered as the luminance channel, the entropy of green component, and the 

weighted average component Wr and Wb are compared in Table 2-2, which shows 2% reduction 

 

Table 2-2: Comparison of entropy (bpp) for Y and Green channels 

 Airplane Baboon House Lena Pepper Average 

Green 6.79 7.47 6.53 7.59 7.49 7.18 

Wr /Wb 6.64 7.42 6.39 7.37 7.44 7.05 

 

Table 2-1: Comparison of entropy (bpp) for different methods 

 Airplane Baboon House Lena Pepper Avg 

ACD[47] 5.40 7.33 6.08 6.62 7.36 6.56 

HP [46] 5.74 7.58 6.33 6.82 7.46 6.79 

ORCT-1 5.48 7.40 6.17 6.70 7.37 6.62 
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in the entropy in the W channel in ORCT than the green component. Therefore, ORCT-1 can 

provide a better compression by reducing the bit rate for the weighted average channel. 

Furthermore, the interpolation step increases the computational complexity and buffer memory 

requirement (Section 2.3- Table 2-4).  

 

 Figure 2-4. Flowgraph of the proposed reversible colour transformations ORCT-1 and 

ORCT-2. 

 

 

Figure 2-5. Block diagram of the proposed schemes 

 

2.2.3 ORCT-2: Cascaded Offline Optimization 

 

This method is an extension of ORCT-1. So far, R-line and B-line is considered as 

independent. However, the weighted average components of these two lines exhibit a strong 

correlation in the vertical direction(Fig.6-(g-i)). So a cascaded framework is proposed to exploit 

the redundancy between two W components in ORCT-1. The block diagram is shown in Figure 

2-5.  
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In this case, Wr and Wb from ORCT-1 are taken as the input components for determining 

the error signal using MEP and DPCM. Then using the equation (6)-(8), the optimum colour 

space was determined. The results for MEP and DPCM are given respectively in eqn (2-12) and 

(2-13):- 

122 134

256 256

1 1

b

w r

Y W

D W

 
             

                      (2-12) 
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256 256

1 1

b

w r

Y W

D W

 
             

                      (2-13) 

The transformation models can be further simplified by taking 11a  approximated to 0.5. Then the 

original 2x2 block in Bayer pattern can be easily converted to a lossless integer transform by the 

procedure defined in equation (2-14). The corresponding signal flow graph is shown in Figure 

2-4:- 
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      (2-14) 

   

Figure 2-6 shows examples of the application of ORCT-1 and ORCT-2 by expressing the colour 

components in quarter size sub-image. The third row is the sub-images generated by ORCT-1, 

where the redundancy is much lower than RGB sub-images. Finally, the fourth row shows the 

sub-images produced by ORCT-2, where redundancy between the weighted average components 

is minimized.  
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(a) (b)

(d) (e)

(h)(g)

(j) (k)

(c)

(f)

(i)

(l)  

Figure 2-6. Visual Comparison of ORCT-1 and ORCT-2 : (a)-(c) Bayer CFA image, (d)-

(f) Deinterleaved RGB components in clockwise order R-Gb-B-Gr , (g)-(i) Deinterleaved 

components in ORCT-1 in clockwise order Cr-Cb-Yb-Yr , (j)-(l) Deinterleaved components in 

ORCT-2, clockwise order Cg-Cb-Cr-Y 

 

2.3 Experimental Results  

 

To evaluate the performance of the proposed colour transformation, several experiments 

are conducted using the simulated CFA images from Kodak, Olympus E-P1, and NIKON D90 

datasets[46]. For raw CFA images, the REAL-CFA database presented in [46] is used. The 

results are compared with original RGB colour space, YDgCoCg [48], HP [46] and ACD [47].  
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First, the performance of ORCT-1 and ORCT-2 is evaluated in reducing the entropy and 

average inter-colour correlation from the error signal. The results are shown in Table 2-3. Here 

the DPCM and MEP represents the error signal generated by these prediction models. As 

expected, the colour space ORCT-1 and ORCT-2, both reduce the inter-colour correlation and 

entropy in the error signal as well as in the original signal. 

 

Second, the complexity of the different methods in terms of an average number of 

operations required per pixel is listed in Table 2-4. Operations that are considered are addition 

(A), multiplication, comparison, bit-shift, and measuring the absolute value (B). The memory is 

calculated as the minimum number of rows required to store to do the corresponding colour 

transformation in a raster order Bayer CFA data.  

  

Both HP and ACD methods require a high number of operation including floating 

multiplication and division, and a significant amount of memory requirement. It is evident that 

ORCT-1 has the lowest complexity and memory requirement as it can work directly on the raster 

Table 2-3: The comparison between Correlation and Entropy  in Kodak Dataset 

  RGB ORCT- 1 ORCT-2 

Original 
Correlation 0.81 0.36 0.28 

Entropy 7.11 6.65 6.39 

DPCM 
Correlation 0.48 0.23 0.16 

Entropy 5.78 5.56 5.49 

MEP 
Correlation 0.28 0.11 0.09 

Entropy 5.75 5.52 5.49 

 

Table 2-4: Complexity and Memory requirement for different methods 

Method A M C S B Total Mem 

YDgCoCg[48] 1.5 0 0 0.75 0 2.25 1 

HP[46] 18 1.5 0 1 7 27.5 5 

ACD[47] 6 2.5 1 0.5 5 15.0 5 

ORCT-1 1 0 0 0.5 0 1.50 0 

ORCT-2 1.5 0 0 0.75 0 2.25 1/2 
A – adder; M – multiplier, C- comparator, S- shift, B- absolute value; Mem - memory 
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order data. In ORCT-2, as the cascaded stage only requires the luminance value generated in the 

first stage, the line buffer is reduced to half than that of YDgCoCg. 

 

Table 2-5: Prediction Gain for different colour transformations (two best results are 

marked in bold) 

 

 In the next experiment, the performance of different methods in reducing the prediction 

error is measured using prediction gain (
pG ). Prediction gain is defined as the ratio between the 

variance of the original signal, and the variance of the error signal and is given in eqn (2-15)  

[49]. The higher the prediction gain, the lower the variance of the error signal. 

10log ori
p

pred

G



              (2-15)  

Here, ori and
pred represent the variance of the original signal and the variance of the 

prediction error in transformed colour space respectively. It is seen from  

Table 2-5 that using a colour transformation improves the prediction gain, signifying a 

reduction in the variance of the signal. It can be seen that YDgCoCg, ORCT-1, and ORCT-2 

methods provide better results than applying the colour difference signal. The second method, 

ORCT-2, provides the best performance consistently in all cases since it reduces the variance by 

decorrealting the colour components in both vertical and horizontal directions. 

 

 

 

Model Database RGB 
YDgCoCg 

[48] 

HP 

[46] 

ACD 

[47] 
ORCT-1 ORCT-2 

DPCM 

Kodak Dataset 7.70 7.92 7.77 7.85 7.85 8.15 

Real CFA 12.91 13.57 13.14 13.13 13.18 13.60 

D90 15.65 17.01 15.57 15.92 16.49 17.08 

E-P1 13.83 15.39 14.46 12.57 14.64 15.37 

Standard Image 7.45 7.94 6.63 7.07 7.53 7.91 

MEP 

Kodak Dataset 8.08 8.06 7.94 8.57 8.58 8.77 

Real CFA 13.56 14.22 13.50 14.21 14.06 14.48 

D90 16.93 18.13 16.74 16.90 18.11 18.70 

E-P1 14.95 16.53 15.59 13.19 16.16 16.93 

Standard Image 9.34 9.43 7.71 8.52 9.64 9.91 
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Table 2-6: Average compression ratios (Bits per pixel) for different Datasets (Two best 

results are marked in bold) 

 

In the final experiment, the performance of the proposed colour transformation with 

standard compression codecs such as JPEG-2000, JPEG-LS, and JPEG-XR is compared. In each 

codec, the colour components are separated and compressed individually. The average 

compression rate in bpp is shown in Table 2-6. Like before, the proposed method ORCT-2 with 

cascaded colour transformation outperforms all other colour transformation methods. 

 

2.4 Conclusion 

In this chapter, two reversible colour transformation models based on prediction error of 

input signal are presented. These models take advantage of inter-channel correlations of four 

Bayer colours. Both colour transformations are lossless and cost much less hardware compared 

with many other methods. Experimental results show that both ORCT-1 and ORCT-2 colour 

spaces can effectively reduce the spectral correlations and improve the compression performance 

on the deinterleaved colour space.  

Compression 
Image 

Datebase  
RGB 

YDgCoCg 

[48] 

HP 

[46] 

ACD 

[47] 

ORCT-

1 

ORCT-

2 

JPEG 2000 

Kodak_Dataset 5.24 5.11 5.26 5.23 5.09 5.03 

Real CFA 4.54 4.47 4.60 4.58 4.53 4.49 

D90 3.97 3.84 3.97 4.03 3.88 3.81 

E-P1 4.35 4.12 4.40 4.33 4.12 4.01 

Standard Image 5.44 5.47 5.58 5.40 5.36 5.33 

JPEG LS 

Kodak_Dataset 5.03 4.93 5.06 5.05 4.93 4.89 

Real CFA 4.36 4.34 4.45 4.39 4.39 4.32 

D90 3.85 3.70 3.85 4.08 3.77 3.72 

E-P1 4.23 3.97 4.20 4.21 3.99 3.89 

Standard Image 5.24 5.26 5.32 5.30 5.16 5.15 

JPEG-XR 

Kodak Dataset 5.46 5.28 5.45 5.21 5.29 5.16 

Real CFA 4.81 4.66 4.82 4.68 4.75 4.66 

D90 4.28 4.06 4.23 4.04 4.13 4.04 

E-P1 4.68 4.40 4.70 4.38 4.43 4.30 

Standard Image 5.69 5.65 5.82 5.64 5.59 5.54 
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Chapter 3 -  YLMN Based Lossless Image Compressor for WCE 

The chapter includes a manuscript entitled ‘YLMN Based Lossless Image Compressor 

for Wireless Capsule Endoscopy’ by Shahed K. Mohammed, KMM Rahman, and Khan A. 

Wahid. The previous chapter proposed an optimization method to derive reversible and lossless 

colour transformation for CFA image. In this chapter, the optimization method is applied to 

derive optimum colour transformation for CE image, which works as the core component of the 

proposed lossless compression algorithm.  



29 

 

 

 

Abstract— This chapter introduces a lossless colour filter array (CFA) image compression 

algorithm for wireless capsule endoscopy (WCE) system. The proposed pipeline consists of a 

novel YLMN colour transformation, a raster order prediction model, and a single context 

adaptive Golomb-Rice encoder to code the residual signal with variable length coding. An 

optimum reversible colour transformation derivation model is presented, which incorporate the 

prediction model to find the optimum colour transformation. This model has derived the YLMN 

colour transformation, which is optimized for capsule endoscopic image compression for the 

raster order prediction model. After the colour transformation, each colour component has been 

independently encoded with the low complexity raster order prediction model and Golomb-Rice 

encoder. The proposed algorithm is realized by VLSI technique, which shows the proposed 

algorithm can reduce the gate count by 38.9% and the memory requirement by 71.2% compare 

to the state-of-the-art. Extensive experimentation is performed using the full resolution sample 

capsule endoscopic image to validate the performance. The experiment illustrates the proposed 

algorithm can outperform existing lossless and near-lossless compression algorithm for capsule 

endoscope. 

Keywords—Wireless Capsule Endoscopy, Colour Filter Array, Lossless Image 

Compression, Reversible Colour Transformation. 

  

3.1 Introduction 

Wireless capsule endoscopy (WCE) is a small pill size camera which is swallowed by the 

patient. The camera travels the gastrointestinal tract in a similar fashion to ingested food, 

captures images along the entire journey and sends these images wirelessly to the recorder 

outside [53]. WCE has been playing a pivotal role in gastrointestinal disease management by 

allowing non-invasive patient friendly monitoring of gastrointestinal tract. Particularly, WCE 

serves as the first line modality in the diagnosis of obscure gastrointestinal bleeding (OGIB), 

unexplained iron deficiency anaemia (IDA), small-bowel mucosal lesions, Chron’s disease and 

Celiac disease [2]. With researches going on the development of next-generation wireless 

capsule with tools to perform biopsies, drug-delivery and active locomotion , WCE has the 

potential to replace diagnostic standard endoscopy within the next 15 years [54]. However, the 
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bottleneck of both commercial and research capsule is the image quality, image transmission 

power and the battery life [55]. Preserving the image quality by the use of lossless image 

compression could yield better performance from both manual and computer assisted reviewing 

process [42]. The self-powered battery and the long transit time limits the image resolution and 

the frame rate of the wireless capsule endoscopy. Therefore, keeping the image quality high 

while reducing the transmission power low and within the limitation of available bandwidth is a 

daunting challenge for the image compression system.  

The image sensors in wireless capsule endoscopy mostly utilize Bayer colour filter array 

(CFA) to capture the colour information with only one image sensor plane [56]. A pre-

processing method called demosaicking stage transfer the CFA image into a full-colour image 

through interpolation of the missing colour information. In compression perspective, 

demosaicking stage increases the redundancy in the image without adding any information. On 

the other hand, application of a suboptimal low complexity demosaicking stage severely 

degrades the image quality by introducing artificial colour artifacts particularly in the edge 

regions [41]. In wireless capsule endoscopy, this leads to degradation of critical findings in the 

mucosa layer, villous pattern, aphthous ulceration  and underlying blood veins [57], [58]. A 

lossless compression of the raw CFA data allows the use a high complexity edge preserving 

demosaicking algorithm in the decoder after the transmission. On the other hand, as these images 

contain medical diagnostics, archiving them according to Picture Archiving and Communication 

system requires the lossless distortion [59]. However, standard lossless compression engine such 

as JPEG-LS, JPEG-2000, JPEG-XR or HEVC intra coding are not feasible due to their 

computationally expensive design and  inferior performance in coding CFA image. Therefore a 

dedicated lossless compression for endoscopic images is sought in many of the works.  

There were several lossless compression for wireless capsule endoscopy in the recent years 

[19], [59]. However, this method operates on the full-colour image and ignores the error 

generated and complexity added in the demosaicking stage. There are few near-lossless 

compression methods proposed for CFA endoscopic images that utilize JPEG-LS lossless 

algorithm along with a deinterlacing filter to independently code the different colour components 

in CFA image [20], [25], [34] . However, these algorithm requires a buffer memory for storing 

the context model. As well as the correlation between colour components in not sufficiently 

exploited in this algorithm. Recently, Malvar et. al. has proposed an optimum colour 
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transformation termed as YDgCoCg based on Karhunen Loeve Transform of natural CFA image 

[60]. By exploiting the inter-colour correlation in the CFA image through colour transformation, 

this algorithm has demonstrated an inspiring lossless compression rate for transform based code 

such JPEG-2000 and JPEG-XR. Similarly, an optimum colour transformation that can capture 

the unique characteristics in endoscopic CFA image can lead to a better image compression with 

a simple encoder. 

 In this chapter, a low complexity image compression system for CFA endoscopic image is 

proposed based on the optimization model proposed in Chapter 2. This derivation model is 

utilized to give a separable colour space transformation for completely exploiting the inter-colour 

correlation between the colour components in CFA image. Since the colour transformation is 

separable, it can work directly on the raster order data and leads to a very efficient circuit. Based 

on the lossless colour space transformation, a low complexity image compression system for 

wireless capsule endoscopy system is proposed. This compression system can significantly 

reduce the transmission power while transmitting the image in a lossless manner to the decoder. 

The proposed encoder uses a simple delta pulse coded modulation based prediction model with a 

low complexity adaptive Golomb rice encoder to entropy code the residual signal. The exclusion 

of high complexity prediction models such as median edge prediction, context modeling, and 

Huffman encoder lower the hardware implementation cost in terms of computational resource 

and memory.  

 

Figure 3-1. A typical CFA image in capsule endoscopy, (a) Bayer Pattern, (b) Mosaic 

Image, (c) Sub-images generated by separating the colour components, (d) Line plot showing the 

colour channel along row 100 in each sub-image to show the inter-colour redundancy. 
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In the experiments, the proposed method is compared with different lossless compression 

algorithms for both RGB and CFA endoscopic image, which demonstrates the best performance 

among the existing method and standard lossless engine. Performances are evaluated for some 

simulated CFA image of high-quality endoscopic images, as well as low contrast WBI images 

with various conditions such as ulcer, celiac disease. The compression shows that the proposed 

method outputs the lowest lossless bit rate on all the images. 
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Figure 3-2. Workflow of different colour transformation: (a) Non-separable and (b) 

Separable 

3.2 Mathematical Derivation of ORCT Derivation:- 

 

A natural way to compress the CFA image generated by for example with Bayer pattern as 

shown in Figure 3-1(a) is to separate the image into several sub-images consisting of the 

different colour space. For example, by taking a pixel from each 2x2 macroblock, four sub-

images comprising two green images, one red image, and one blue image can be generated. 

These sub-images exhibit a high degree of correlation between them similar to the correlation 

between the colour channel in RGB image. For example, row 100 for each sub-image has been 
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plotted in Figure 3-1 (d), showing that the similarity in the colour components. The goal of the 

colour space transformation is to reduce the redundancy between these sub-images and improve 

the performance of prediction based coding. To this end, the optimum colour derivation method 

presented in Chapter 2 is applied for deriving the colour space transformation for CE image. 

 

3.2.1 ORCT for WCE 

 

Deriving image-wise ORCT will introduce a substantial increase in computational overhead 

in the capsule compression system. Instead, an extensive endoscopic image dataset is employed 

to derive the optimum colour transformation in offline. The dataset contains 200 images taken 

for different condition and location in capsule endoscopy from Gastrolab [61]. To derive the 

colour transformation, the model is first applied for deriving the row transformation matrix for 

R-line and B-line in the CFA image. The residual error signal was determined using the DPCM 

predictor. The results are shown in eqn:-  

1 1

2 2

1 1

r r

r

W G

D R

 
              

                                                                    (3-1) 

1 1

2 2

1 1

b b

b

W G

D B

 
              

                             (3-2) 

Y

N

Gr

R M

NB

Gb Y

L

1
 
2 

-1

-1
1
 

2 

-1
1
 

2 

Wr

Wb

L

M R

B

Gb

Gr

-1
  
 2 

-1
  

 2 

-1
 

2 

Wr

Wb

Forward Transform
Backward Transform

 

Figure 3-3. Flowgraph of the proposed reversible YLMN colour transformation  
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To calculate the column transformation matrix, the output of the row transformation matrix is 

fed to the derivation model as inputs. The results showed that for difference signal, the original 

signal contains the lowest entropy. This indicates that R-G and G-B have a lower correlation. 

However, the weighted signal contains a high amount of correlation, which can be reduced by 

using the column transformation matrix. So the column transformation is shown in eqn (3-3) and 

(3-4). 
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b
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                     (3-3) 

                                                        (3-4) 

 

The colour transformation is denoted as YLMN. The signal flow graph of the proposed 

lossless YLMN colour transformation is shown in Figure 3-3.  Figure 3-4 shows the four 

resultant sub-images after the ORCT colour transformation for the image given in Figure 3-1. 

(a) (b)

Y L

M N

 

Figure 3-4. Colour decomposition in the proposed YLMN colourspace. (a) The colour 

components, (b) The line plots showing the row 100 in each sub-images to demonstrate the 

reduction in correlation between the transformed colour space 

 

3.3 YLMN Based Lossless Image Compression for WCE 
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Figure 3-6 illustrates the block diagram of the proposed lossless encoder based on the 

proposed YLMN colour transformation. The encoder consists of YLMN colour transformation, 

structure separation, a simple delta pulse coded modulation prediction model and a single context 

adaptive Golomb-Rice encoder. For the input Bayer CFA image shown in Figure 3-1(b), first 

each R-line and B-line is transformed using the row transformation matrices defined in eqn (3-1) 

and (3-2) respectively. The difference signal generated in this step are sent directly to the 

prediction model. On the other hand, the weighted average signals are stored in buffer memory 

for further processing using the column transformation matrix defined in eqn (3-3). This 

transformation reduces the inter-colour redundancy between the colour components. After the 

colour transformation, a structure separation stage divides the images into four sub-images, 

where each sub-image contains pixels from one colour-plane. This step removes the artificial 

discontinuities between the pixels. Then each sub-images pass through a DPCM prediction 

model, which produces the prediction error signal dY ,  dL  , dM  and  dN . Note that, the 

prediction model works in raster order fashion and does not require any line buffer. Therefore 

dM  and  dN , which are generated in raster order fashion, can be processed in raster order 

fashion. The details of the colour transformation, structure separation, and prediction model will 

be discussed in this section. Finally, a low complexity but efficient Golomb-Rice Encoder code 

the error signal generated by the prediction model to produce the bit stream. The bit stream is 

then sent wirelessly using the RF transmitter to the data recorder located outside of the body. 
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Figure 3-5. Surface plot of the colour components: Original GRBG (top row) and 

transformed YLMN (bottom).  

 

 

3.3.1 Structure Separation 

After the YLMN colour transformation, the proposed scheme deinterleaves the colour 

components into four sub-images. As previously mentioned in Section 3.2, direct compression of 

CFA image is not efficient as the mosaic arrangement of the colour pixel produces artificial high 

frequencies. By deinterleaving the CFA image, four downsampled sub-images, each of which 

consists of pixels in the single colour channel, can be extracted. This deinterleaved procedure 

removes the artificial high frequencies and therefore improves the compression performance. In 

the previous study in image compression for CE images [25], structure separation was achieved 

by shifting the G components to the left of the frame and shifting the R and B components to the 

right of the frame as shown in Figure 3-7(a). However, due to the requirement of buffer memory, 

this arrangement is not suitable for hardware implementation. Therefore, instead of rearranging 

the components in original CFA image, the prediction model is modified to generate prediction 

from same colour components as shown in Figure 3-7(b). This reduces the frame memory 

requirement and leads to a low-memory implementation in VLSI.  
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Figure 3-6. Block Diagram of the Proposed Lossless Compression Algorithm 
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Figure 3-7. Different structure separation methods : (a) Structure Separation using 

rearrangement of the pixels, (b) Structure separation achieved by modifying the prediction 

template 

 

3.3.2 DPCM 

The compression efficiency of predictive coding depends on how accurate the prediction 

model can predict. Simple linear predictor often generates significant error around the edge 

areas. To achieve high prediction performance in the edge area, high complexity techniques such 

as template matching [62], hierarchical prediction [63] and context matching [47] has been 

employed in lossless CFA compression. However, these techniques require a high amount of 

frame memory and computational complexity. On the other hand, CE images generally have a 

larger smooth area than natural images [21]. Therefore, in comparison to simple prediction 

model, the improvement of coding performance by high-complexity prediction technique is not 

significant enough to justify the increase in compression overhead. Simple prediction model such 

as delta pulse coded modulation (DPCM) prediction model has shown impressive performance in 

terms of computational complexity and lossless compression ratio in capsule endoscopic image 

[64][59]. The proposed prediction model achieves a high prediction performance by exploiting 

the smoothness of the endoscopic CFA image after the YLMN colour transformation. It utilizes 

the horizontal prediction to handle the pixel in a conventional raster scan order without any 

buffer memory. In order to address the discontinuity between the neighboring pixels in CFA 

images, the predicted value is generated from nearest pixel from the same colour plane in the 
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horizontal direction. If the CFA image after YLMN transformation is denoted as X, then the 

residual prediction error is measured in the following way:-  

( , ) ( , ) ( , 2)dX i j X i j X i j                                 (3-5) 

As the application of YLMN transformation takes into account the inter-colour correlation, 

independent encoding of the deinterleaved sub-images using eqn. (3-5) yields near optimal 

compression performance for CE images. 

   

3.3.3 Golomb-Rice Encoder 

This section presents the single context Golomb-Rice encoder for the proposed compression 

system. In designing a prediction encoder, it is important to reduce the energy of the residual 

signal as much as possible. The YLMN transformation and the DPCM prediction model 

accomplish this goal by reducing the intra-spectral and inter-spectral redundancy. In addition, if 

the probability distribution function (pdf) of the residual signal can be correctly estimated, 

further reduction of the entropy can be achieved. Therefore, a single context is used for each sub-

images, to estimate the pdf of a residual signal continuously while coding the residual signal. 

The principal of the Adaptive Golomb-Rice coder used here is similar to JPEG-LS encoding 

[14]. However, instead of using 365 contexts for each colour plane, the proposed encoder only 

utilizes one context for each colour plane. This modification results in a drastic reduction of 

computational complexity and memory. The algorithmic description is given in Figure 3-8. 

As the different colour components in the YLMN colour space have different characteristics 

and statistical properties, they are encoded separately with separate context. First, the residual 

signal is converted to a non-negative number using a mapping function as shown in the 

algorithm. Then the Golomb-Rice coding [65] represents the number into two strings. The first 

strings is an unary representation of the quotient 
2k

M 
 
 

 as the prefix, while the second string is the 

fixed length code of the remainder. The length for coding residual error dX  is 
2

1
2k

dX
k

 
  

 
. 
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Figure 3-8. Pseudo-code for residual signal encoding. It shows the encoding of the Y 

components. The encoding of L, M, and N also follows a similar procedure with different Nc and 

Ac values to store their context. Here, the function returns the bitstream to code the value M with 

parameter k using a Golomb-Rice entropy coder.  

Algorithm:- Encoding of Residual Error 

Inputs: i jdY : Prediction Error  

Outputs: 
YS   : Bitstream for Y 

%% Mapping to Non-Negative Integers 

if 0ijdY   Then 

 2 ijM dY    

else  

 2 ( ) 1ijM abs dY     

end 

%% Parameter k  Estimation for Golomb-Rice 

0k    

while 2k

c cN A   do 

1k k    

end 

%% Golomb Rice Coding to convert into variable length bitstream 

_ ( , )YS Golomb Rice M k   

%%Update Context Parameter Nc and Ac 

1c cN N    

( )c c ijA A abs dY    

if(
c ThresholdN N ) Then 

2

c
c

N
N    

2

c
c

A
A   

end 
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The parameter k is continuously updated based on the statistics of the signal using two 

registers to count the number of occurrences (Nc) and accumulate the error (Ac). In order to keep 

the cost of implementation low, a threshold value NThreshold=8 was used. If Nc becomes greater 

than this threshold value, both Nc and Ac were halved. 

3.3.4 Corner Clipping 

The corner clipping mechanism presented in [17] is utilized in this work to discard the dark 

corner regions in the CE images. This allows to code the corner regions without any bits. As the 

size of the image and the shape of the corner region is known, the decoder can reconstruct the 

image using the bitstream. Therefore, this is an essentially a lossless mechanism.  

 

3.4 Performance Analysis 

In this section, the performance of the proposed image compression algorithm is assessed and 

compared with other lossless compression method developed for capsule endoscopy compression 

as well as lossless compression method such as JPEG-LS and JPEG-2000. Experiments are 

carried out using 100 images taken from KID Database [9]. 20 example images are shown in 

Figure 3-9. This database is chosen because it is a publicly available and contains capsule 

endoscopic images taken from a wide variety of location from the human gastrointestinal tract. 

All the images in the database are captured using Mirocam and stored in full resolution of 

360x360 [42]. The full-colour RGB images in the database are sampled by the Bayer CFA 

pattern to produce the simulated CFA grayscale image. Performances of different lossless 

methods are evaluated by comparing compression rate (CR). The CR is reported in bits per pixel 

(bpp), which is defined as the ratio of the output bitstream in bits and the total number of pixels 

in the image. 
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Figure 3-9. Example images from KID Dataset : 20 (out of 100) test images taken from 

[9] 

 

 

3.4.1 Comparison of the GRBG and YLMN Colour Space 

This section compares the compression performance of the original GRBG channels and the 

proposed YLMN colour space. For the first 5 test images in the database, Figure 3-10 shows bar 

chart of the standard deviation of each sub-images in GRBG colour space and the YLMN colour 

space. The height of each bar represents the standard deviation of the corresponding sub-image. 
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The figure shows that YLMN colour transformation significantly reduces the standard deviation 

of the sub-images, particularly for L, M and N channels. As lower standard deviation indicates 

smooth image, it is expected that L, M, and N-channel will result in a lower compression bitrate. 

As shown in  

Table 3-1, the lossless compression rate is reduced particularly for L and N channels. 

 

Figure 3-10. Comparison of standard deviation between the colour components in 

original colour space and YLMN colour space. 

 

Table 3-1: Lossless bitrate of different color components (using the proposed compression 

scheme) 

Image Gr R B Gb Y L M N 

1 4.33 4.34 4.26 4.32 4.21 3.84 4.31 4.15 

2 4.08 4.21 3.98 4.05 3.95 3.70 4.16 3.97 

3 4.00 4.04 3.88 3.99 3.87 3.57 3.98 3.91 

4 4.31 4.38 4.12 4.25 4.14 3.80 4.23 4.21 

5 3.75 3.96 3.83 3.72 3.66 3.44 3.89 3.74 

 

3.4.2 Comparison of Various Prediction Model 

In this work, the prediction model is chosen based on the trade-off between computational 

complexity and prediction accuracy. In order to investigate the influence of the prediction model 

on coding performance, two median edge prediction (MEP) model is examined in this section. 
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First median edge predictor, denoted as MEP1, is widely used as a part of the JPEG-LS 

compression engine [14]. MEP1 consists of a flat region detector along with a causal template 

based median edge detection circuit to predict the current pixel from the neighboring pixels. In 

addition,  the median edge prediction model presented in [11], which is denoted as MEP2, is also 

assessed. MEP2 discards the flat region detection to reduce the computational complexity. Both 

these two model is applied on the original CFA image where the context model is modified 

according to Figure 3-7. The proposed prediction model is applied on the original CFA image 

and on the YLMN image. Figure 3-11 shows the performance in terms of prediction gain and 

entropy of the residual signal. 

The prediction gain is defined as the ratio between the variance of the original signal to the 

residual signal measured as shown in eqn (3-6):- 

10log ori
p

pred

G



                                      (3-6)  

where, 
ori  and  

pred   are the variance of the original signal and residual signal respectively. On 

the other hand, the entropy of the image can be determined by eqn (3-7):- 

2

1

log
n

i i

i

H P P


                                   (3-7) 

where 
iP  is the probability of occurrence of intensity value i . Since the entropy of image date 

dictates the theoretical lower bound of lossless compression rate achievable, it assesses the 

efficiency of different prediction models. The proposed method with the YLMN colour 

transformation demonstrates the highest prediction gain and the lowest entropy, indicating a 

potential high compression efficiency. MEP2 can give a comparable result to the proposed 

method. However, as shown in Figure 3-7, the prediction model in MEP2 requires storing two 

line of data for the prediction, while DPCM needs no buffer memory. Therefore, the prediction 

model is expected to have lower memory requirement.    
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Figure 3-11. Comparison of (a) Prediction Gain and (b) Entropy of sample images from 

the KID database with various prediction model 

 

 

      

(a) 

                                                                                       

(b) 
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Table 3-2 lists the computational complexity in terms of normalized operations, such as 

addition (ADD), shift (SHF), comparison (CMP). The buffer memory (MEM) requirement is 

also considered for the colour space transformation and prediction computation.  As expected, 

DPCM with horizontal prediction provides the lowest complexity and memory requirement. 

However, Figure 3-11 (b) shows the entropy is highest for DPCM model as the simple model 

cannot exploit the inter-colour correlation sufficiently. Both MEP1 and MEP2 offers better 

compression performance with an increase in computational complexity and buffer memory. 

However, by employing the YLMN colour transformation, the proposed method smoothens the 

L, M and N channels. As a result, it can give the best entropy and prediction gain. The increase 

in the computational complexity and buffer memory due to YLMN colour transformation can be 

considered tolerable given that the proposed method yields reduction in average lossless bitrate 

of 0.2bpp as shown in Figure 3-11 (b).  

Table 3-2: Number of operation per pixel required for various prediction model 

Prediction Model ADD SHF CMP Total MEM 

MEP1 2 0 7 9 2 x Width 

MEP2 3 1 4 8 2 x Width 

DPCM 1 0 0 1 0 

           Proposed Method 2.5 0 0 2.5 ½ x Width 

 

3.4.3 Compression Performance 

This section compares the coding performance of proposed algorithm with standard lossless 

engine such as JPEG-2000 (J2K) and JPEG-LS (JLS), and also with recently proposed lossless 

compression algorithms for CE: cost-efficient lossless compression (CELC) [28], 

computationally efficient image compressor (CEIC) [11], lossless image compression system 

(LICS) [10], and lossless low-power image compressor (LLIC) [29]. As JPEG-2000, JPEG-LS, 

LICS, LLIC and CEIC works on the full-colour image, bilinear interpolation is applied to 

interpolate the full-colour image from the original CFA image. Then the full-colour image is fed 

to these compression schemes, and the compression rate is measured by considering the size of 

original CFA image. Both CELC and proposed method works directly on raw CFA image, 

therefore demosaicking is not used in these cases.  
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Table 3-3: Lossless bitrate of various lossless compression scheme for CE 

Image 

JPEG 

2000 

[66] 

JPEG 

LS 

[14] 

Khan 

2014 

[59] 

Fante 

2015 

[19] 

Chen 

2015 

[32] 

Proposed 

DPCM 

+GR 

YLMN+ 

DPCM+GR 

YLMN+DPCM 

+GR+Clipping 

1 7.01 5.71 7.07 9.98 4.15 4.31 4.13 3.87 

2 6.50 5.21 6.73 9.44 3.90 4.08 3.95 3.69 

3 6.18 4.95 6.54 9.03 3.72 3.98 3.83 3.56 

4 6.93 5.67 7.14 9.72 4.13 4.27 4.10 3.85 

5 6.06 4.82 6.22 8.64 3.67 3.81 3.68 3.43 

6 6.71 5.42 6.96 9.64 4.07 4.28 4.03 3.77 

7 6.31 5.03 6.64 9.19 3.88 4.06 3.86 3.59 

8 6.67 5.36 6.76 9.49 3.96 4.08 3.94 3.68 

9 5.62 4.52 6.17 8.16 3.46 3.68 3.53 3.27 

10 4.91 3.94 5.67 7.18 3.02 3.33 3.15 2.89 

11 5.33 4.30 5.92 7.84 3.20 3.47 3.32 3.07 

12 5.06 4.08 5.65 7.29 3.00 3.21 3.12 2.88 

13 6.00 4.82 6.19 8.68 3.57 3.79 3.68 3.41 

14 6.56 5.28 6.67 9.45 3.94 4.11 3.93 3.67 

15 4.78 3.87 5.61 6.85 2.74 2.89 2.88 2.65 

16 5.63 4.49 6.07 8.21 3.35 3.70 3.43 3.28 

17 6.33 5.08 6.62 9.26 3.84 4.09 3.82 3.66 

18 6.68 5.40 6.96 9.68 4.10 4.35 4.09 3.81 

19 6.72 5.43 7.12 9.97 4.06 4.36 4.04 3.88 

20 7.07 5.71 7.27 10.11 4.20 4.41 4.18 3.92 

Avg 6.25 5.05 6.58 8.99 3.75 3.95 3.73 3.53 

      

Except for JPEG-2000, all the other methods employ a predictive coding technique for 

lossless encoding. In LLIC, an RGB demosaicked image is first mapped to YUV colour space. 

Then, a static DPCM prediction model is used for computing the residual signal, which is 

encoded by a Golomb-Rice encoder. A clipping scheme is also employed for removing the 
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corner regions. LICS improved upon LLIC by proposing a dedicated colour space YEF, which 

can capture the unique characteristics of endoscopic image compression. YEF colour 

transformation reduces the complexity of colour transformation as well as significantly improves 

the coding performance of the chrominance channel. Note should be taken that both YUV and 

YEF colour transformation is not integer reversible and requires up to 3 additional fraction bits 

for lossless colour transformation. The lossless compression scheme in CEIC consists of a 

reversible colour transformation YrUrVr, DPCM, and corner clipping.  In CELC, the framework 

of JPEG-LS is modified for designing a cost-efficient image compressor for raw CFA image 

based on MEP2. The context template in the prediction model was modified to take account of 

the interleaved pixels in the raw CFA image. A hybrid encoder consists of Huffman and 

Golomb-Rice coder is used for efficient encoding of the residual error. 

The output compression bitrates for CE images from KID Database achieved by various 

methods is listed in Table 3-3.  The results clearly illustrate that the algorithms based on a full-

colour image are not efficient for lossless encoding of raw CFA image.  This indicates the 

compression stage cannot completely remove the redundancy added by the demosaicking stage. 

Among these methods, JPEG-LS gives the best result in terms of compression efficiency, 

outperforming second best LICS by 0.7 bpp. 

On average, the proposed algorithm, with YLMN colour transformation, Golomb-Rice 

coding, and clipping, can outperform all the other methods by achieving the lowest lossless 

compression of 3.53 bpp. Even without clipping, the proposed method has comparable results 

with CELC, which has a higher computational complexity as shown in Figure 3-11. Comparison 

of (a) Prediction Gain and (b) Entropy of sample images from the KID database with various 

prediction model 

 

 

Table 3-4 shows the comparison of the proposed method with other existing works on 

image compression for CE. Table 3-4 also lists different feature of these algorithms such as: 

whether the algorithm uses demosaicking-first compression-later (DC) scheme or compression-

first demosaicking-later scheme (CD), the colour transformation (CT) used and the core 

compression algorithm used. In order to distinguish between the colour transformation for full-

colour image and CFA image, three components are used for full-colour image, and four 
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components are used for CFA colour transformation. For example, the original colour space in 

full-colour images is expressed as RGB, while the companion colour transformation in CFA is 

expressed as GRBG. From the observed results, it is evident proposed algorithm can give the 

lowest bitrate among all the other lossless compression algorithm. The lossless bitrate of 

proposed algorithm is greater than or comparable to the near-lossless (PSNR>46dB) bitrate 

achieved by [67], [19], [25] and [20].  

Table 3-4: Comparison with other compression schemes 

Type Work 

DC 

/ CD 

CT Algorithm BPP PSNR 

Lossy 

 

Wahid et. al. [26] CD GRBG DCT 1.03 32.9 

Turzca et. al. [68] CD YCoCgY DCT 0.77 36.5 

Lin et. al.  [69] CD GRBG DCT 1.63 32.5 

Dung et. al. [28] CD GRBG DCT 1.44 36.2 

Li et. al. [67] DC RGB DCT 5.91 47.7 

Lin et. al. [70] CD GRBG DCT 1.42 40.7 

Chen et. al. [25] CD GRBG Pred. 3.46 46.4 

Turzca et. al. [12] CD YCuCvY DCT 0.70 35.7 

Liu et. al. [20] CD GRBG Pred. 3.46 46.3 

Fante et al.  [19] DC YUV Pred. 6.33 40.6 

Lossless 

Khan et al. [17] DC YUV LPC 6.48 ∞ 

Khan et al.  [59] DC YEF Pred. 5.28 ∞ 

Fante et al. [19] DC YUV Pred. 6.33 ∞ 

Chen et al. [32] CD GRBG Pred. 5.49 ∞ 

Proposed CD YLMN Pred. 3.53 ∞ 
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Apart from the lossless bitrate, the computational complexity of the proposed compression 

method is also assessed. To this end, this work was realized by using a hardware description 

language (HDL) Verilog and an EDA tool Design Compiler was used to synthesize the proposed 

design by TSMC 65 nm CMOS process. The gate counts of this work are only 3.78 k, and the 

core area is 29,627.28 (um x um). The power consumption of this work is 0.9 mW simulated by 

using SYNOPSYS Design Compiler when it operated at 250 MHz. The ASIC implementation of 

the design is built to check the utilization of resources and compare with the other algorithm. The 

resolution of the image used in this implementation is 640 x 640. Table 3-5 shows the 

comparison with other lossless and near-lossless encoder for CE. This implementation reduces 

the gate counts by 38.9% and memory requirement by 71.2% than the previous design. The 

underlying reasons can be summarize as: (i) application of low complexity DPCM prediction 

model with a low complexity YLMN colour transformation to exploit both spectral and spatial 

redundancy, (ii) usage of a memory efficient Golomb-Rice coder instead of a Huffman Coder,  

(iii) application of a low complexity corner clipping mechanism to cut the uninformative regions 

in the corner. 

Table 3-5: Comparison with other lossless encoders for CE1 

 [21] [22] [19] [14] [18] [23] 
This 

Work 

Year 2009 2007 2009 2007 2010 2014 2016 

Process(um) 0.180 0.180 FPGA 0.180 0.180 0.180 0.065 

Frequency 20~24 20 21 183 200 200 250 

Resolution 640 640 640 640 640 640 640 

Gate Counts 19.5 50 37.3 27.68 11.57 5.54 3.78 

                                                 

 

1 The proposed algorithm was implemented in Hardware description language by KMM Rahman  
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Memory(k) 17.5 29 146 20.81 15.2 10.2 2.93 

Power(mW) 1.3 3.5 NA NA 4.1 2.2 0.94 

Normalized area 5.16 13.23 9.86 7.30 3.06 1.46 1 

Note: The normalized core area is normalized by the NAND-equivalent gate counts. 

3.5 Conclusion 

In this chapter, a novel lossless image compression scheme is proposed for wireless capsule 

endoscopy system. The proposed system utilizes an optimum reversible colour transformation to 

reduce the spectral redundancy in the image and adopts a low memory raster order DPCM 

prediction model to reduce the spatial redundancy in the image. Generated residual signal are 

then compressed by an adaptive Golomb-Rice encoder with a single context, that effectively 

encode the signals with very low computational complexity and memory requirement. A low 

complexity corner clipper scheme reduces the lossless bitrate by removing the uninformative 

corner regions in the image. Experimental results show that the proposed algorithm outperforms 

other lossless compression algorithms in terms of lossless compression rate, gate counts, and 

memory requirement.  
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Chapter 4 -  Low-Bitrate and High-Quality Image Compressor 

for Wireless Capsule Endoscopy 

The chapter includes a manuscript entitled ‘Low-Bitrate and High-Quality Image 

Compressor for Wireless Capsule Endoscopy’ by Shahed K. Mohammed and Khan A. Wahid. 

The previous chapter proposed a lossless compression algorithm. The algorithm is able to 

transmit images in a lossless manner within the bandwidth requirement for a frame rate of 6 

frames per second. This chapter presents a lossy compression algorithm that enables high-quality 

image transmission with higher frame rate, which is a necessary condition for integrating 

accurate remote manipulation and therapeutic maneuvers in the WCE.     
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Abstract—This chapter presents a dedicated image compressor for wireless capsule endoscopy 

system that works directly on raw colour filter array (CFA) images. The proposed method 

involves a novel low complexity YEFD colour transformation to decorrelate the colour 

components in CFA image, a structural separation to reduce the artificial high frequencies 

between the pixels, a low complexity DCT like image transformation and visually optimal 

quantization matrix to reduce the spatial redundancy, and run-length coder along with adaptive 

Golomb-Rice entropy coder to efficiently encode transformed coefficients. A fast and high-

performance demosaicking algorithm is presented to reproduce the colour image from the 

reconstructed CFA image. This algorithm takes into account the error generated by the lossy 

compression algorithm to reduce the error propagation in the demosaicking stage. The 

experimental results demonstrated that the proposed algorithm could achieve compression ratio 

up to 12 with peak signal to noise ratio as high as 40dB. The proposed algorithm can outperform 

all the other state-of-the-art image compression algorithm in terms of compression ratio and 

image quality.    

Index Terms—Colour filter array (CFA), colour transformation, demosaicking, lossy 

compression. 

 

4.1 Introduction 

In a small timeframe of 15 years, wireless capsule endoscopy (WCE) has created a 

paradigm shift in gastrointestinal (GI) disease management [1]. Initially launched as a tool to 

visualize the small-bowel,  WCE has now become a patient friendly non-invasive alternative to 

screen the entire GI tract [2]. The pill size device consists of a relatively low-resolution image 

sensor, an LED-based illumination system, a data processing unit, a battery and a radio 

transmitter. After being swallowed by the patient, the capsule travels GI tract using the peristalsis 

motion, captures images and transmits them wirelessly to the recorder outside throughout the 

journey which can span up to 8 hours [71]. Current research efforts are focusing on incorporating 

functionality to obtain the biopsy and perform therapeutic maneuvers, implementing automatic 

detection of regions of interest to reduce the reading time, and introducing active locomotion to 

control the capsule movement [2], [42], [71]. Accurate remote manipulation required for 

therapeutic intervention and obtaining biopsy necessitates a higher frame rate and image 



53 

 

 

resolution. Therefore, the improvement of image resolution and frame rate while keeping the 

battery size low plays a pivotal role in the development of next generation capsule.   

The image quality in terms of resolution and frame rate is limited by the power 

consumption due to wireless communication in the capsule [10]. Moreover, the available 

bandwidth for transmitting data through the human body is restricted to 2~3 Mbps by Federal 

Communications Commission [11]. Therefore, the compression of the data before transmission 

is essential for improving the image quality and increasing the battery life. Keeping these 

constraints in mind, the compression rate required to send 512x512 images in 8-bit raw CFA 

format should be between 6 to 15 depending on the frame rate. Such high compression ratio is 

not feasible in lossless compression. So currently, lossy compression is preferred in WCE [42]. 

On the other hand, as these images contain medical data, the image should be transmitted with 

little or no distortion so that the clinically relevant information are preserved to aid both manual 

and automated diagnosis. 

Most of the image sensors capture the frame using a single sensor array with a Bayer 

colour filter array (CFA) placed in front of each pixel to capture different colour in different 

pixel [56]. As standard compression algorithms such as JPEG, JPEG 2000, MPEG or H.264 are 

designed for full-colour image, a demosaicking stage interpolates the missing colour information 

before compression. This framework is defined as the demosaic-first scheme, where the 

compression occurs on the full-colour image. Two major issues arise due to the use of a 

demosaic-first scheme in WCE. First, the low complexity demosaicking stage introduces 

significant colour artifacts particularly in the region at the boundaries, that will cause distortion 

of clinically relevant findings. By using an appropriate edge preserving algorithm, the image 

quality can be significantly improved, but it will increase the computational complexity of the 

compressor [41]. Second, from a data compression perspective, the demosaicking stage adds data 

without any new information leading to a sub-optimum compression performance. On the other 

hand, compressing the raw CFA image and transmitting the image to the receiver allows the 

utilization of effective post-processing methods such as edge preserving interpolation and 

denoising. Therefore, a compression-first lossy algorithm is ideal for WCE that will reduce the 

computational complexity as well as increase the compression rate for the endoscopic system 

[12], [26], [28], [32], [38], [39], [69], [72], [73]. 
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Although there are few low-complexity prediction-based systems, their compression ratio 

is sub-optimum for WCE. Therefore, most of the lossy algorithms [12], [26], [28], [38], [39], 

[69] on WCE employ transform coding based on discrete cosine transform (DCT) similar to 

JPEG and H.264 compression engine. DCT has a very high energy packing efficiency which 

allows the image compressor to represent the image with a few coefficients with performance 

comparable to optimal transform coding such as Karhunen Loeve Transform (KLT). However, 

these methods transform the image in original colour space (RGB) or use colour transformation 

optimum for natural images rather than endoscopic image. With the distinct red hue, endoscopic 

images occupy a narrow band in the natural image. A compression scheme adapted based on 

natural image colour transformation cannot sufficiently exploit the inter-colour correlation and 

characteristics in endoscopic images.  

This chapter presents a new image compression algorithm for WCE.  This work focuses 

on raw endoscopic images sampled with Bayer CFA pattern due to its popularity in the industry. 

The proposed method consists of colour transformation, colour channel separation, integer 

discrete cosine transformation, visually optimum quantization and adaptive Golomb-Rice (AGR) 

coding. The decoding circuit includes inverse transform and a modified demosaicking method to 

increase the image quality.   

The contributions of this work are listed below. First, this work introduces a new colour 

space transformation optimum for endoscopic image compression. The proposed colour space 

transformation operates on the 2x2 macroblock in CFA image to reduce the redundancy of the 

colour components and separate the structure for efficient compression of the mosaic image. 

Besides, the proposed method packs the majority of variance into one plane and therefore 

enables the unequal bit allocation by the application of quantization in the following stages. 

Secondly, a low complexity DCT like transformation is employed here which can effectively 

pack the energy in individual colour components. For the transformation, rate-distortion 

optimized quantization matrices are derived from the endoscopic images. The coefficients are 

encoded using a low-complexity context adaptive Golomb-Rice run-length encoder. A modified 

demosaicking algorithm is proposed to denoise and demosaic the colour image simultaneously.  

This chapter is organized as follows. First, section 4.2 provides a brief overview of the 

proposed system. In section 4.2.1-4.2.5 outlines the image compressor algorithm. The 
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performance of the image compressor and the results of its comparison to JPEG and JPEG-2000 

are described in section 4.3. Section 4.4 contains the conclusion. 

 

4.2  Proposed Algorithm 

Figure 4-1 illustrates the proposed image encoding and decoding method for WCE. In 

CFA image, adjacent pixels come from different colour components. So the resultant interleaved 

image contains significant amounts of energy in the high-frequency spectrum. Therefore, direct 

compression of CFA image cannot achieve high compression ratio and produce repeating 

distortion pattern in the reconstructed image [17]. To overcome this issue, this work employed 

structure separation by deinterleaving and downsampling the colour components in the CFA 

image. The proposed system also employs a colour transformation to map each 2x2 Bayer cell in 

original CFA to one luminance channel and three chrominance channels. The transformed 

components have lower inter-spectral redundancy than that of original components. After the 

colour transformation, this work employed a structure separation to extract four sub-images from 

the original CFA image. Then each sub-image is processed by block-based transform coding to 

efficiently pack the energy of each block in a few coefficients and reduce the spatial redundancy 

in each sub-images. This work has chosen the optimum block-based transform through 
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Figure 4-1. Block Diagram of the (a) Proposed Image Encoder and (b) Decoder 
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experiments on energy packing efficiency and computational cost. An integer approximation of 

the optimum transformation is employed to reduce the computational complexity. The 

transformed coefficients are then quantized to achieve optimum rate-distortion performance as 

well as to avoid loss of clinically relevant findings. Then the quantized AC coefficients are 

processed using run-length encoder along with a low complexity adaptive Golomb-Rice encoder. 

On the other hand, the DC coefficients are encoded using delta pulse coded modulation (DPCM) 

followed by adaptive Golomb-Rice (AGR) encoder. 

In the companion decoder (Fig. 1(b)), the generated sub-images undergo inverse colour 

transform to produce the original CFA layout. Finally, an edge preserving demosaicking 

algorithm reconstructs the full-colour image. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4-2. Comparison of histograms of the three colours : red(left), green (center) and 

blue (right) for Natural Images taken from Kodak Dataset (Above) and Capsule Endoscopy 

Images taken from Gastrolab (Below) 

 

4.2.1  YEFD Colour Transformation: 

This section explains the derivation of the proposed YEFD colour transformation. In 

CFA input data, individual sub-images generated by structure separation exhibits a high inter-

spectral correlation similar to the colour components in the full-colour image. Therefore, 

individual encoding of the sub-images does not provide the best result as the correlation between 



57 

 

 

the colour components is not sufficiently exploited. In previous work on endoscopic 

compression, it has been shown that colour transformation can be utilized to exploit the unique 

characteristics of the endoscopic image, leading to superior compression system [64], [74]. To 

decorrelate the sub-images and capture the unique characteristics of capsule endoscopy (CE) 

image, a YEFD colour transformation method is proposed. 

 

To illustrate the distinctness of CE from natural images, the intensity distribution of 24 

natural images taken from the popular Kodak Dataset [75] and 24 CE images from Gastrolab 

database [61] is compared. The CE images were taken from different locations in the 

gastrointestinal tract from esophagus to anus. For each image, the corresponding CFA image is 

simulated using a sampling pattern mimicking the Bayer pattern. Then using structure separation, 

sub-images for R, G, and B are generated. The aggregated histogram for each colour component 

is shown in Figure 4-2. As can be seen, the histograms in the CE has a much regular shape than 

the natural images. This is expected as the CE images only represent a narrow spectrum of the 

natural image. Therefore, to capture the unique characteristics of CE, principal component 

analysis (PCA) [76] is applied to derive the optimum colour transformation. For this purpose 200 

images taken from 20 different location of the gastrointestinal tract is used [61]. The dataset 

contains normal finding images as well as disease condition such as cancer, polyp, coeliac 

disease, Crohn's disease, ulcer. The result is shown in eqn (4-1): 
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Figure 4-3. Implementation of the proposed colour 

transformation 
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0.2688 0.1752 0.2870 0.2689

0.0653 0.6158 0.2538 0.0652

0.2481 0.1106 0.3953 0.2460

0.4982 0.0005 0.0015 0.4998
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          (4-1) 

where the colour transformation achieved by applying eqn (4-2) 
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             (4-2) 

As can be seen from eqn (4-1), the resultant transformation contains floating point 

operation. To avoid floating point operation, the approximated transform is obtained by rounding 

the scaled coefficients of the transform matrix. To select the optimum transformation, the local 

coding gain (LCG) measure [19] is used. LCG is defined as the average of the ratio of arithmetic 

mean to geometric mean of the variance of the transformed components in a NxN block of the 

image.   

1010 log
AM

LCG
GM

 
   

 
                                                                       (4-3) 

 

Table 4-1: Comparison of local coding gain of different approximations (using 4x4 

blocks)  

Transformation LCG Transformation LCG Transformation LCG 

A  2.72  
1

8
8

A  2.88  
1

64
64

A  2.71 

 
1

2
2

A  0.90  
1

16
16

A  2.74  
1

128
128

A  2.71 

 
1

4
4

A  2.28  
1

32
32

A  2.72 Eqn (5) 2.89 

 

The higher the gain, the higher compression is achieved in the transformation. The local coding 

gain is calculated in 4x4 blocks for each approximation as shown in Table 4-1. Here the    

indicates the rounding operation. It is evident that the local coding gain is maximum with a 

multiplication of 8, in which case, the eqn (4-1) can be written as:- 
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 Figure 4-4.   Comparison of sub-images in original and transformed colour components  (a) 

Original Image in Bayer Format, with the bottom image showing the zoom of the image inside the 

black window. (b)-(d) Respectively the red, green and blue sub-images generated by separating the 
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colour components in the original image, while €-(g) are their respective histogram. The correlation 

between the sub-images is clearly visible. (h)-(k) the sub-images formed by separating the 

transformed colour components using the proposed colour space and (l)-(o) are their respective 

histogram. All the details are condensed in one sub-image Y, while the other components are very 

smooth as evident from both the image and histogram. 

 

To ease the hardware implementation further, the following simplification as shown in 

eqn (4-5) is proposed. This simplified colour transformation can be implemented using only 

seven adders as depicted in Figure 4-3. Moreover, this approximation leads to increase in the 

local coding gain further as shown in Table I.  
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           (4-5) 

A visual comparison of the YEFD colour components and the original colour components 

is shown in Figure 4-4, which indicates that the proposed colour transformation yields good 

decorrelation capability through which most of the details of the image are concentrated in the 

luminance channel Y. On the other hand, the three chrominance channels contain less 

information and smoother surfaces, which are ideal for high compression. 

 

The proposed YEFD colour space has several interesting properties. First, the luminance 

channel in the proposed colour space is a weighted sum of the four original values. The Y 

component holds the information for texture such as blood veins, mucosa structure. Disease 

condition such as angiodysplasia, chicken skin, celiac disease, Crohn's disease, polyp, and tumor 

are clearly discernible in this channel. The E channel is dominated by the red colour. Therefore  

underlying blood vessels and micro-vessels are better visible in this channel. F channel is the 

difference between the luminance and the average of the two green values. It has been shown in 

[74] that the luminance channel and the green channel has similar intensity distribution. 

Therefore, the resultant difference colour space has a very smooth surface with very small 

variance. The fourth channel (D) contains the difference between the two green channels. In a 
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smooth image, this channel will have a flat distribution and therefore a small entropy. It can be 

noted that the second channel is not required to reconstruct the green channel.  

4.2.2 Structure Separation 

After the YEFD colour transformation, the proposed scheme deinterleaves the colour 

components into four downsampled sub-images, each of which has only pixels from single 

colour components as shown in Figure 4-5. 

  

Figure 4-5: Bayer CFA colour transformation and structure separation method.  The bold 

arrow represents the colour transformation of a 2x2 macroblock, while the thin line represents 

the structure separation procedure for Y sub-image. The other three sub-images can be generated 

in a similar manner. 

 

Let us consider a H W   grayscale CFA image is represented by a matrix Z, where each 

2 2   macroblock has been transformed using the YEFD colour space; then the structure 

separation step can be implemented using the following way:- 

( , ) (2 1,2 1)Y i j Z i j     

( , ) (2 1,2 )E i j Z i j                  (4-6) 

( , ) (2 ,2 1)F i j Z i j   

( , ) (2 , 2 )D i j Z i j  

where 1,2,........,
2

H
i   and 1,2,........,

2

W
j  .  The obtained images are all of the quarter sizes of 

the original image. As each sub-image contains pixel from the same colour plane, the subsequent 

block-based transform can effectively exploit the spatial redundancy in the individual sub-

images. 
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4.2.3 Image Transformation 

The compression efficiency of transform coding depends on the ability of the 

transformation to pack energy into a few coefficients. Linear orthogonal transforms such as 

discrete cosine transform (DCT), discrete wavelet transform (DWT), discrete Walsh-Hadamard 

(DWHT) or discrete sine transform (DST) have demonstrated excellent decorrelation and energy 

compaction capability from a block of pixels. Particularly, DCT has shown to achieve 

comparable performance to the optimal transform, the Karhunen-Loeve transform (KLT), for 

natural images. 

Table 4-2: Comparison of coding gain of different linear transformation in compressing 

different colour components 

Transformation Y E F D Complexity 

KLT 9.96 7.92 5.27 1.52 96fa+192fm 

DCT 9.94 7.97 5.32 1.42 72fa+8fm 

DST 6.54 6.71 5.34 0.95 56fa+192fm 

Hadamard 8.36 6.88 4.67 1.34 64a 

H.264 8.53 7.16 4.79 1.53 64a+16s 

IBT-4[21] 3.73 3.63 3.01 1.36 48a 

HEVC 8.23 7.01 4.79 1.54 64m+56a 

fm: float point multiplication, fa: float point addition, a: integer addition, m: integer multiplication, s: shift operation 

  

Another factor in determining the optimum transformation is the block size. The buffer 

size required converting the progressive raster order data to block-wise data directly depends on 

the block size. In this work, the 4x4 block size is chosen for two reasons. First, due to the nature 

of CFA image, the 4x4 block in individual colour component represents an 8x8 block in the full-

colour image. In previous work, it has been shown that the energy packing efficiency of 16x16 

block is only marginally better than 8x8 block for full-colour image [12]. Therefore, 4x4 block 

size is chosen for CFA images as it gives a good trade-off between complexity and energy 

packing efficiency. Secondly, the ringing artifacts are more prominent in 8x8 blocks than 4x4 

blocks as a result most recent video coding utilizes 4x4 image blocking such as H.264 [77]. To 

find the optimum 4x4 transformation for different colour space, the coding gain (GTC) [78] of 

each transformation is calculated using eqn (4-7):- 
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Where 2

x  is the variance of the input signals, 
2

yi is the variance of the i-th transformed 

coefficients and 
2

if  is the L2-norm of the i-th synthesis basis function of the transform matrix. 

The results are shown in Table 4-2.  It is evident from the results, DCT has a comparable 

performance to the optimum transformation for all the colour components. Among the different 

integer approximation of DCT, IBT-4 [21] has the lowest complexity with lowest coding gain. It 

is evident the H.264 transformation has the highest coding gain with a comparatively low 

complexity.  

Based on the experiments, the 4x4 H.264 transformation is selected for all the colour 

components. As described in [77], the 2D DCT of a 4x4 pixel blocks X can be computed as:- 

( )T

DCT F F FX C XC S                         (4-8) 

where represents the Hadamard product and T denote the transposition. Here CF is the core 

transform of the integer approximation of 1-D DCT for forward transform, while SF is a scaling 

matrix required for ensuring the orthogonality. To reduce the implementation cost, SF is 

incorporated with the quantization matrix. The core transform used here is defined as below: 
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                    (4-9) 

Once the transformed coefficients are obtained, they are quantized using an optimized 

quantization table using eqn. (4-10)  

Quantized DCTX X Q              (4-10) 

Where Q is quantization table and   represents a Hadamard division. The goal is to achieve 

optimum rate distortion while keeping the implementation cost of scaling matrix and 

quantization matrix low. To this end, the scaling matrix is incorporated with the quantization 

matrix using the following formula:- 
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F FFQ Q S


              (4-11) 

Then quantization table FQ


 is optimized based on the rate-distortion theory with a simple 

optimization algorithm [79]. The computational cost is minimized by forcing the quantization 

step to be a power of 2. First using the near-optimal algorithm presented in [79], the convex hull 

for rate-distortion profile is obtained. Then the bisection method is applied to find the 

quantization table to keep the peak signal to noise ratio greater than 40dB.  The obtained 

quantization matrix for different colour components are shown below:- 
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After quantization, the transformed coefficients are zigzag scanned to transform the 

coefficients in the run-length format following the JPEG baseline standard. Then a low 

complexity but efficient adaptive Golomb-Rice encoder [12] similar to LOCO-I [33] standard is 

used for encoding the run-length values. For DC coefficients, the redundancy between the 

consecutive blocks is reduced by using DPCM coder before transforming them into run-length 

levels. The inverse transform is expressed by:- 

T

i Quantized ii
X C X Q C
  
  

 
           (4-13) 

Where iC is the core transform of the inverse transformation and iQ


 is the quantization matrix 

incorporated with the scaling matrix iS  for the inverse transform. It can be expressed as:-  

F ii F
Q S S Q
  
  
 

           (4-14)  

where  
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                          (4-15) 

         

4.2.4 Corner Clipping 

The human gastrointestinal tract is cylindrical in shape, while the lens in the capsule has a 

circular shape. However, the sensor array captures the image in a rectangular grid. As a result, 

there are black areas in the corner of the image, which does not contain any diagnostic 

information. To discard these pixels from processing, the corner clipping mechanism proposed in 

[17] is utilized. The mechanism is modified to use in block-based coding. With the 2 2  YEFD 

colour transformation followed by 4 4  linear transformation of individual colour components, 

the proposed algorithm effectively works on 8 8  blocks. For each  8 8  block, the corner clipping 

algorithm [17] first calculates the number of pixels in the non-corner region in that block. After 

the calculation, blocks with a number of pixels in the non-corner region greater than zero are 

processed, while blocks with zero non-corner pixels are dropped. Figure 4-6 demonstrates the 

corner clipping procedure.   
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Figure 4-6. Modification of the corner clipping mechanism for block based coding 
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Figure 4-7: Proposed demosaicking filters: (Top) Filter coefficients to interpolate missing 

green components, (Middle) filter coefficients to interpolate red components, (Bottom) filter 

coefficients to interpolate blue components 

 

4.2.5 Demosaicking 

As stated previously, the compression-first scheme allows the use of high complexity 

demosaicking algorithm that can effectively reconstruct the colour image as well as reduce the 

artifacts produced by the compression algorithms. This section proposes a modified high-quality 

linear interpolation for capsule endoscopy (HQLI-CE) filter to capture the unique characteristics 
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of the capsule endoscope image and suppress the artifacts resulted by the compression algorithm. 

The filter followed the similar principle of high- quality linear interpolation (HQLI) filter 

proposed in [80]. First, using bilinear interpolation, an approximation of the missing colour 

components are generated. Then a correction term generated from the gradient term are added 

with the approximation terms to produce the final colour values. Both the bilinear interpolation 

and gradient correction can be achieved using the linear filtering of the raw CFA pixels. The 

optimum filter coefficients are calculated using a dataset of capsule endoscopy image [61] using 

the Weiner approach. The resultant filter coefficients are shown in Figure 4-7. Unlike the 

original HQLI derived for demosaicking the natural image [80], the filter coefficients differ from 

the R components and B components.  

4.3 Experimental Results  

Experiments are carried out using 1943 RGB images from the KID database [9]. This 

database contains a wide variety of full resolution CE image from different locations with 

varying conditions. All images were taken using Mirocam and stored using a near-lossless 

compression method. Therefore, they are suitable for assessment of the proposed algorithm. The 

full-colour RGB images in the database are sampled by the Bayer CFA to produce the simulated 

CFA grayscale image. The CFA images are then processed by the proposed pipeline and 

compressed into bitstream format. The reconstructed CFA images are generated by applying the 

decoding algorithm to the compressed data. The RGB image is reconstructed by applying the 

proposed demosaicking algorithm. 

In order to evaluate the quality of image reconstruction, the Peak Signal to Noise Ratio is 

used. The colour transformation was assessed based on local coding gain and entropy. For 

assessing the performance of the demosaicking algorithm, colour peak signal to noise ratio 

(CPSNR) and structural similarity index (SSIM) are used.  

4.3.1 Colour Transformation 

This section compares the performance of the proposed YEFD colour transformation to 

the original colour channels as well as two colour transformations used in [12]. They will be 

denoted in this chapter as YYCoCg and YYCuCv colour transformations to distinguish them 

from their full-colour counterpart YCoCg and YCuCv colour transformations.   
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Table 4-3: Comparison of coding gain and local coding gain of proposed colour space 

with other colour space used in compression system for Endoscopic Image 

 

First, the coding gain (GTC), as defined in eqn (4-8), is computed. It represents the 

reduction in quantization noise by quantizing the transformed domain. To capture the 

improvement in block-based coding, the local coding gain (LCG) is also computed by computing 

the variance from NxN non-overlapping blocks and using the mean of the standard deviation in 

the formula defined in eqn. (4-3).  

Table 4-3 shows that the proposed colour space has a significantly higher coding gain 

than the other colour transformation. This observation holds true for the block based local coding 

gain. It implies that the condensation of the variance into one luminance channel Y reduces the 

variance in the chrominance channels L, M, and N significantly in the proposed colour 

transformation. Therefore, it is expected that more efficient compression can be achieved by 

compressing the low variance chrominance channels.   

Table 4-4: Comparison of Energy Packing Efficiency of the color space transformation 

 RGB YYCuCv YYCoCG Proposed 

EPE1 17.70 44.85 45.96 86.04 

EPE2 72.79 89.55 91.80 98.11 

EPE3 82.38 90.98 93.10 99.84 

 

Colour Transform 
Coding Gain, 

Db 

Local Coding Gain 

2x2 

Block 

4x4 

Block 

8x8 

Block 

16x16 

Block 

Image dependent 

KLT 
6.79 1.68 2.32 3.02 3.91 

YYCoCg 3.88 1.12 1.31 1.41 1.55 

YYCuCv 4.28 1.17 1.42 1.62 1.86 

Original Eqn. 6.03 1.98 2.72 3.41 3.80 

Proposed Colourspace 6.27 2.31 2.86 3.41 4.05 
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Table 4-4 demonstrates that the proposed color transformation effectively packs 86% of 

the energy into one luminance channel. As both YYCuCv and YYCoCg contains two luminance 

channel, their energy packing efficiency is lower than the proposed color transformation. 

 

Figure 4-8: Boxplot of the Entropy in the dataset for different color space 

Figure 4-8 shows the boxplot for the entropy of the color components for 100 images 

taken from KID database. Entropy is a measure of information in the data and is the theoretical 

minimum bound for lossless coding. The entropy of an image can be determined using the 

equation:- 

2

1

log
n

i i

i

H P P


              (4-17) 

here, 
iP  is the probability of the occurrence of intensity level i . The entropy is expressed in 

terms of bits per pixel (bpp). We have measured the entropy of each sub-images and taken the 

weighted mean of the entropy to get the entropy of each image. The weight was measured based 

on the size of the sub-image compared to the original CFA image. For example, for the proposed 

color space, where each sub-image is a quarter of the original image, the weight is ¼ for each. 

While for Green channel in RGB color space and luminance channel in YYCoCg and YYCuCv, 

the weight is ½. Within each box of the boxplots, the central mark signifies the median and the 

edge shows the 25th and 75th percentile. Whiskers of each box indicate the 5th percentile and 95th 

percentile. Outliers are marked as red plus sign. As evident from the boxplot, the proposed color 

space consistently provides the least entropy. The median of the proposed method is less than the 

95th percentile of all the other color space. The proposed color space can yield an average 

entropy of 5.25 bits per pixel (bpp) while the average entropy of the original color space is 7 bpp.  
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Figure 4-9. Test Images for Comparing Demosaicking Algorithm 

 

4.3.2 Demosaic Filter Performance 

After decoding the CFA image, it is necessary to interpolate the missing colour to 

generate the full-colour image. In order to investigate the effect of demosaicking technique on 

the image quality, several interpolation techniques is examined including low complexity 

techniques such as bilinear interpolation (BI), high quality linear interpolation (HQLI) [80], fully 

pipelined colour demosaicking (FPCD) [81], and high complexity techniques such as residual 

interpolation (RI) and adaptive residual interpolation (ARI) [82].  For all these techniques, the 

original RGB images are first sampled using Bayer pattern and then compressed using the 

proposed compression system. After decoding, the interpolation techniques were used for 

regenerating the full-colour image, which is compared with the original RGB image in terms of 

structural similarity (SSIM) index [83]. SSIM is used to compare the perceptual quality of the 

image which matches closely with subjective evaluation. Table 4-5 lists the SSIM for 6 test 

images given in Figure 4-9. To measure the computational complexity, the computational time of 

the proposed algorithm is compared with fast computational algorithm BI and FPCD. All these 

algorithms were implemented in MATLAB R2016a and the computational times are obtained on 

an Intel Core i7 3.4GHz computer. The results are shown in Table 4-6. 

Table 4-5: Comparison of Different demosaicking algorithm in terms of SSIM 

Image BI HQLI RI ARI FPCD Proposed 

1 0.9673 0.9918 0.9922 0.9919 0.9881 0.9926 

2 0.9838 0.9943 0.9958 0.9957 0.9922 0.9948 

3 0.9896 0.9960 0.9974 0.9973 0.9942 0.9962 

4 0.9895 0.9973 0.9988 0.9987 0.9958 0.9976 

5 0.9574 0.9804 0.9572 0.9568 0.9503 0.9815 

6 0.9739 0.9914 0.9922 0.9920 0.9874 0.9921 
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As can be seen, the computational time for proposed algorithm is very low and 

comparable to the BI. The observation shows that the proposed low-complexity demosaicking 

algorithm can offer a good trade-off between the image quality and computational cost. With a 

computational complexity slightly higher than bilinear interpolation, this method can provide a 

comparable subjective image quality to high-complexity algorithms. Therefore, it is suitable to 

implement in the data recorder for real-time viewing option in WCE system. 

 

Table 4-6: Comparison of the complexity of low-complexity demosaicking algorithm 

 BI FPCD Proposed 

PSNR 31.29 34.70 35.96 

SSIM 0.9818 0.9864 0.9926 

Executing Time 0.034 0.035 0.035 

 

4.3.3 Compression Results 

This section compares the coding performance of the proposed compression scheme with 

JPEG and JPEG-2000 standard engine as well as CFA compression scheme described in the 

literature. As JPEG and JPEG-2000 operate on the full-colour image only, the RGB image space 

is interpolated prior to compression. To investigate the effect of low complexity demosaicking 

algorithm, the bilinear interpolation (BI) algorithm is applied for interpolation. The output 

compression rate, CPSNR, and SSIM for the KID dataset is shown in Table 4-7. The results 

clearly illustrate that the standard engine cannot achieve high compression ratio while preserving 

high image quality due to the use of a sub-optimal demosaicking algorithm. Among the two 

standard engine, JPEG is superior to JPEG-2000 in terms of compression performance and 

achievable CPSNR. However, as it can be seen, a higher compression ratio can be achieved by 

removing the interpolation stage before compression.  

The proposed method provides a compression ratio 10.56 on average. Use of the corner 

clipping increases the average compression ratio rose to 11.83. The image quality is sufficiently 

high with CPSNR around 40dB and SSIM greater than 0.99. Table 4-8 lists the compression 

performance reported by other CFA image compression system for capsule endoscopic system. 

In general, pixel by pixel prediction scheme (e.g. Chen et. al [25]) outperforms the other methods 

in terms of PSNR and buffer memory requirement.  
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(a) 

 

(b) CR=11.28, PSNR=40.30 

 

(c) CR=12.51, PSNR=40.30 

 

(d) 

 

(e) CR=11.06, PSNR=40.96 

 

(f) CR=12.47, PSNR=40.96 

 

(g) 

 

(h) CR=11.16, PSNR=40.67 

 

(i) CR=12.58, PSNR=40.67 

 

(j) 

 

(k) CR=10.48, PSNR=40.32 

 

(l) CR=11.78, PSNR=40.32 

Figure 4-10. Visual comparison of reconstructed images 
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Methods that works directly on the original colour space [26], [28], [69] offer lower 

compression efficiency since these methods only reduce the intra-spectral redundancy in the 

image. As evident from the results in [12], the use of colour transformation significantly 

increases the compression ratio. However, as it can be seen, higher image quality can be 

achieved by exploiting the intra-spectral redundancy in CE image by using a dedicated colour 

transformation such as YEFD. The use of clipping increases the compression ratio closer to 12. 

A visual comparison of the reconstructed image with the original image is shown in Figure 4-10. 

Table 4-7: Compression Results for KID Dataset2 

Image Dataset (No 

of Images) 

JPEG JPEG-2000 Proposed Method 

CR CPSNR SSIM CR CPSNR SSIM 

CR 

without 

Clipping 

CR with 

Clipping 
CPSNR SSIM 

Ampula (19) 4.49 39.1 0.9902 3.25 37.6 0.9945 8.53 9.41 39.3 0.9939 

Inflammatory(227) 3.56 39.6 0.9941 2.64 37.8 0.9946 9.52 10.65 39.8 0.9942 

Normal Colon 

(169) 
5.47 39.2 0.9879 3.12 38.1 0.9919 9.09 10.09 39.4 0.9925 

Normal 

Esophagus(282) 
2.63 39.2 0.9924 2.94 36.8 0.9875 11.69 13.16 40.8 0.9889 

Normal Small-

bowel(300) 
3.53 39.6 0.9939 2.68 37.8 0.9930 12.95 14.75 41.1 0.9900 

Normal Stomach 

(599) 
5.87 40.0 0.9913 5.59 39.4 0.9925 10.45 11.63 40.0 0.9941 

Polypoid (44) 6.03 39.2 0.9840 3.12 38.1 0.9932 9.51 10.59 39.8 0.9937 

Vascular (303) 4.65 39.8 0.9933 2.54 37.6 0.9924 9.25 10.29 39.6 0.9931 

Average (1943) 4.47 39.8 0.9918 3.64 38.1 0.9921 10.56 11.83 40.1 0.9924 

 

In addition to the compression performance, Table VIII compares the computational 

complexity in terms of normalized operation such as addition (a), multiplication (m), shift (s) and 

division (d). The complexity in terms of the number of operations per pixel before encoding. The 

comparison illustrates only the method based on algebraic integer quantization (AIQ) based DCT 

[26] has a lower complexity than the proposed method. The increase in complexity is due to the 

use of YEFD colour transformation. However, the increase is only 0.3 addition per pixel. Such a 

marginal increase in computational cost is considered to be tolerable since the use of YEFD 

colour transformation significantly improves the compression performance. 
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Table 4-8: Comparison with other CFA compression techniques 

Algorithm Colour Space CR PSNR 

Computational Complexity 

Before 

Encoding 
Encoding 

Lin et al. [69] GRBG 4.9 32.5 33a+1s LZ77 

Wahid et al. [26] GRBG 7.8 32.9 5.5a+1s LZ77 

Dung et al. [28] GRBG 5.5 36.2 9.4a+4.1s CAVLC 

Chen et al. [25] GRBG 2.7 46.4 6a+1s Golomb 

Turcza et al. [12] YCoCgY 11.4 35.7 6a+3s Golomb 

Proposed Without Clipping YEFD 10.6 40.1 5.8a+3.5s Golomb 

Proposed With Clipping YEFD 11.8 40.1 5.8a+3.5s Golomb 

 

4.4 Conclusion 

This chapter presents a high-quality lossy compression algorithm to compress Bayer CFA 

images in WCE system. The proposed system employs a novel colour space transformation to 

decorrelate the colour components in the CFA image, separates the colour components into four 

sub-images and compress the sub-images using an integer DCT transform. A novel 

demosaicking algorithm was proposed to reduce the noise while improving the image quality in 

the encoder after decompression of the image. Experimental result demonstrates that the 

proposed scheme effectively reduce both spatial and spectral redundancies, delivering superior 

compression efficiency in terms of compression ratio and perceptual image quality. 
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Chapter 5 -  Conclusion and Future Work 

The advancement of wireless capsule endoscopy would require solving the bottleneck 

between the image quality and power consumption, as both these plays a major role in the 

inclusion of active locomotion and therapeutic capabilities. The intention of my research was to 

contribute to this research area by designing techniques to optimize the performance of both 

lossy and lossless low complexity image compression algorithm for the next generation wireless 

capsule endoscopy system.  

 In Chapter 2, a novel optimization method was introduced for the derivation of reversible 

lossless colour transformation that works on CFA image. The reversible colour transformation 

reduces the inter-colour correlation in the prediction error signal to provide error signal with 

lower variance and lower entropy. The optimization method was used for the derivation of two 

separate reversible colour transformation of natural image: ORCT1 and ORCT2. These have 

varying level of computational complexity and compression performance. ORCT1 works 

directly on raster order data therefore can be implemented without any buffer memory. On the 

other hand, ORCT2 yields the optimum compression performance with a negligible increase in 

the computational complexity. The results show that proposed method can provide an optimum 

colour transformation with a very low computational complexity. It is also demonstrated that the 

proposed method can improve the prediction based coding by reducing the inter-colour 

correlation and the entropy of the signal. Experiments with standard lossless compression engine 

such as JPEG-LS, JPEG-2000 and JPEG-XR demonstrated that the proposed colour 

transformations provide the superior performance compared to other colour transformation for 

CFA image. The optimization method is used in Chapter 3 to develop optimized colour 

transformation for CE image. 

 In Chapter 3, the goal was to design an optimized lossless compression algorithm for 

WCE. A low complexity DPCM prediction model was used along with an optimized reversible 

colour transformation YLMN to exploit the redundancy in both spatial and spectral domain from 

the CE image in CFA format. The result is a low variance error signal with low inter-colour 
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correlations. The error signal was then entropy encoded using a single context adaptive Golomb-

Rice encoder. A lossless corner clipper mechanism was used to discard the corner regions in the 

CE image that has no diagnostically relevant information. The results showed that the proposed 

compression model has a very low computational complexity as it avoids the computationally 

expensive demosaicking algorithm. Experiments with previous works demonstrated that the use 

of optimized colour transformation enables the proposed method to achieve the best lossless 

compression performance with the lowest implementation cost. 

 In Chapter 4, a novel on cost-effective lossy CFA compression algorithm was proposed 

for WCE. Each of the stage in lossy compression pipeline right from the colour transformation to 

demosaicking in the decoder was optimized for obtaining the best compression result for WCE. 

First, a low complexity colour transformation of different CFA components was derived in CE 

image using the principal component analysis (PCA). Each of the colour components is then 

transformed using a 4x4 integer DCT transform and quantized using optimized quantization 

table. The quantization table was optimized for low complexity and highest performance, where 

all the divisions are achieved using shift operation. In order to remove the dark corner regions 

from processing and transmission in the CE image, a modified corner clipping mechanism for 

the block based coding was employed. Finally in the decoder, a high-quality linear filter was 

used. The coefficient of the filter was optimized for demosaicking the full-colour image from 

lossy CFA image and was utilized for high fidelity reconstruction of the full-colour image. 

Experimental results showed that the proposed colour and linear transformation has an excellent 

energy packing efficiency. It also demonstrates that the quantized table can selectively omit the 

uninformative frequencies and provide a very high image compression. Comparison with 

previous state-of-the-art compression algorithms shows that the proposed method can outperform 

all of them in terms of compression rate and image quality.   

 

5.1 Contribution 

 The contribution of this thesis is summarized as follows:- 

 A novel reversible colour derivation model is developed for CFA image. The main advantage 

of the model is that it incorporates the prediction model in the derivation and hence can be 

used for deriving the optimized colour transformation for a specific prediction model in a 

specific application. This model reduces the inter-colour correlation in the CFA image 
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thereby enabling the independent encoding of colour components in order to achieve optimal 

compression performance. In this way, it removes the need for high computational inter-

colour correlation reducing mechanism proposed in the lecture. As the resultant colour 

transformation is lossless, it can be easily integrated with any prediction based lossless 

compression algorithm to improve the compression rate. 

  Two new reversible colour transformations for lossless encoding of natural images have 

been proposed. These colour transformations have very low computational complexity and 

excellent prediction gain performance. Integration of these colour transformations with the 

standard lossless engine has shown significant improvement over other colour 

transformations.  

 A new reversible colour transformation YLMN was derived for lossless encoding of capsule 

endoscopic image. An image compression pipeline based on YLMN was developed, which 

yield the best lossless compression performance both in terms of computational complexity 

and compression performance for CE image. 

 A lossy compression pipeline optimized for coding the CE image in Bayer CFA format has 

been developed. An optimized colour transformation YEFD has been derived by taking the 

principal component analysis (PCA) of the different colour components of the CFA images 

taken from a large dataset of endoscopic images. The optimized quantization table for 

transformed coefficient from each colour components has been developed. The quantization 

table has a very low computational complexity as all the division operations have been 

replaced with the shift operations. A modified high-quality linear filter demosaicking 

algorithm has been derived to reconstruct the colour image from the lossy CFA data in the 

decoder. 

5.2 Future Work 

Looking to the future, the lossless system can be incorporated with a lossy compression 

system to improve the power consumption as well as the diagnostic yield of WCE. To further 

improve the image compression system the following research directions are proposed: 

 The proposed reversible colour transformation derivation model that works 

offline when no analytical solution is available for the optimization.  An 

analytical solution would allow the online optimization of the reversible colour 
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transformation, which can be useful in adaptively changing the colour 

transformation for different locations in the gastrointestinal tract. One may try to 

find a simplified optimization model with an analytical solution that can be 

incorporated in the image compression system to find the optimized colour 

transformation adaptively.  

 The lossless compression method utilizes the DPCM prediction model which has 

the ability to work in raster order. One may also try to find the optimum 

prediction model by taking the prediction model parameter as a parameter in the 

optimization model.  

 In this thesis, the lossy and lossless compression algorithms are designed 

separately. These methods share some common blocks such as colour 

transformation, DPCM, adaptive Golomb-Rice and corner clipping. A progressive 

lossy to lossless system, similar to the proposed for JPEG-XR [48], can be 

adapted to WCE. 

 In this thesis, the work was concerned with reducing the redundancy of a single 

frame. More compression can be achieved by exploiting the redundancy between 

consecutive frames.  One may try to incorporate colourization based video coding 

as proposed in [84] and [85] along with the proposed lossy compression 

algorithm. 

 Finally, for accurate assessment of the image compressor, image compression 

algorithm can be implemented in CE prototype and tested in a real-world 

situation.  
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clipping algorithm, designing the experiments and writing the manuscript. KM Rahman helped 
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