115 research outputs found

    A Fast Algorithm for the Inversion of Quasiseparable Vandermonde-like Matrices

    Get PDF
    The results on Vandermonde-like matrices were introduced as a generalization of polynomial Vandermonde matrices, and the displacement structure of these matrices was used to derive an inversion formula. In this paper we first present a fast Gaussian elimination algorithm for the polynomial Vandermonde-like matrices. Later we use the said algorithm to derive fast inversion algorithms for quasiseparable, semiseparable and well-free Vandermonde-like matrices having O(n2)\mathcal{O}(n^2) complexity. To do so we identify structures of displacement operators in terms of generators and the recurrence relations(2-term and 3-term) between the columns of the basis transformation matrices for quasiseparable, semiseparable and well-free polynomials. Finally we present an O(n2)\mathcal{O}(n^2) algorithm to compute the inversion of quasiseparable Vandermonde-like matrices

    Quasiseparable Hessenberg reduction of real diagonal plus low rank matrices and applications

    Full text link
    We present a novel algorithm to perform the Hessenberg reduction of an n×nn\times n matrix AA of the form A=D+UV∗A = D + UV^* where DD is diagonal with real entries and UU and VV are n×kn\times k matrices with k≤nk\le n. The algorithm has a cost of O(n2k)O(n^2k) arithmetic operations and is based on the quasiseparable matrix technology. Applications are shown to solving polynomial eigenvalue problems and some numerical experiments are reported in order to analyze the stability of the approac

    Differential qd algorithm with shifts for rank-structured matrices

    Full text link
    Although QR iterations dominate in eigenvalue computations, there are several important cases when alternative LR-type algorithms may be preferable. In particular, in the symmetric tridiagonal case where differential qd algorithm with shifts (dqds) proposed by Fernando and Parlett enjoys often faster convergence while preserving high relative accuracy (that is not guaranteed in QR algorithm). In eigenvalue computations for rank-structured matrices QR algorithm is also a popular choice since, in the symmetric case, the rank structure is preserved. In the unsymmetric case, however, QR algorithm destroys the rank structure and, hence, LR-type algorithms come to play once again. In the current paper we discover several variants of qd algorithms for quasiseparable matrices. Remarkably, one of them, when applied to Hessenberg matrices becomes a direct generalization of dqds algorithm for tridiagonal matrices. Therefore, it can be applied to such important matrices as companion and confederate, and provides an alternative algorithm for finding roots of a polynomial represented in the basis of orthogonal polynomials. Results of preliminary numerical experiments are presented

    Multilevel quasiseparable matrices in PDE-constrained optimization

    Get PDF
    Optimization problems with constraints in the form of a partial differential equation arise frequently in the process of engineering design. The discretization of PDE-constrained optimization problems results in large-scale linear systems of saddle-point type. In this paper we propose and develop a novel approach to solving such systems by exploiting so-called quasiseparable matrices. One may think of a usual quasiseparable matrix as of a discrete analog of the Green's function of a one-dimensional differential operator. Nice feature of such matrices is that almost every algorithm which employs them has linear complexity. We extend the application of quasiseparable matrices to problems in higher dimensions. Namely, we construct a class of preconditioners which can be computed and applied at a linear computational cost. Their use with appropriate Krylov methods leads to algorithms of nearly linear complexity

    Solving rank structured Sylvester and Lyapunov equations

    Full text link
    We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off-diagonal blocks. This comprises problems with banded data, recently studied by Haber and Verhaegen in "Sparse solution of the Lyapunov equation for large-scale interconnected systems", Automatica, 2016, and by Palitta and Simoncini in "Numerical methods for large-scale Lyapunov equations with symmetric banded data", SISC, 2018, which often arise in the discretization of elliptic PDEs. We show that, under suitable assumptions, the quasiseparable structure is guaranteed to be numerically present in the solution, and explicit novel estimates of the numerical rank of the off-diagonal blocks are provided. Efficient solution schemes that rely on the technology of hierarchical matrices are described, and several numerical experiments confirm the applicability and efficiency of the approaches. We develop a MATLAB toolbox that allows easy replication of the experiments and a ready-to-use interface for the solvers. The performances of the different approaches are compared, and we show that the new methods described are efficient on several classes of relevant problems

    Computing with quasiseparable matrices

    Get PDF
    International audienceThe class of quasiseparable matrices is defined by a pair of bounds, called the quasiseparable orders, on the ranks of the maximal sub-matrices entirely located in their strictly lower and upper triangular parts. These arise naturally in applications, as e.g. the inverse of band matrices, and are widely used for they admit structured representations allowing to compute with them in time linear in the dimension and quadratic with the quasiseparable order. We show, in this paper, the connection between the notion of quasisepa-rability and the rank profile matrix invariant, presented in [Dumas & al. ISSAC'15]. This allows us to propose an algorithm computing the quasiseparable orders (rL, rU) in time O(n^2 s^(ω−2)) where s = max(rL, rU) and ω the exponent of matrix multiplication. We then present two new structured representations, a binary tree of PLUQ decompositions, and the Bruhat generator, using respectively O(ns log n/s) and O(ns) field elements instead of O(ns^2) for the previously known generators. We present algorithms computing these representations in time O(n^2 s^(ω−2)). These representations allow a matrix-vector product in time linear in the size of their representation. Lastly we show how to multiply two such structured matrices in time O(n^2 s^(ω−2))

    Fast Hessenberg reduction of some rank structured matrices

    Full text link
    We develop two fast algorithms for Hessenberg reduction of a structured matrix A=D+UVHA = D + UV^H where DD is a real or unitary n×nn \times n diagonal matrix and U,V∈Cn×kU, V \in\mathbb{C}^{n \times k}. The proposed algorithm for the real case exploits a two--stage approach by first reducing the matrix to a generalized Hessenberg form and then completing the reduction by annihilation of the unwanted sub-diagonals. It is shown that the novel method requires O(n2k)O(n^2k) arithmetic operations and it is significantly faster than other reduction algorithms for rank structured matrices. The method is then extended to the unitary plus low rank case by using a block analogue of the CMV form of unitary matrices. It is shown that a block Lanczos-type procedure for the block tridiagonalization of ℜ(D)\Re(D) induces a structured reduction on AA in a block staircase CMV--type shape. Then, we present a numerically stable method for performing this reduction using unitary transformations and we show how to generalize the sub-diagonal elimination to this shape, while still being able to provide a condensed representation for the reduced matrix. In this way the complexity still remains linear in kk and, moreover, the resulting algorithm can be adapted to deal efficiently with block companion matrices.Comment: 25 page
    • …
    corecore