49 research outputs found

    Computing the modular inverses is as simple as computing the GCDs

    Get PDF
    [[abstract]]In 1997, Calvez, Azou, and Vilbe´ proposed a variation on Euclidean algorithm, which can calculate the greatest common divisors (GCDs) and inverses for polynomials. Inspired by their work, we propose a variation on the Euclidean algorithm, which uses only simple modulo operators, to compute the modular inverses. This variant only modifies the initial values and the termination condition of the Euclidean algorithm. Therefore, computing the modular inverses is as simple as computing the GCDs. © 2007 Elsevier Inc. All rights reserved

    Computing the modular inverses is as simple as computing the GCDs

    Get PDF
    [[abstract]]In 1997, Calvez, Azou, and Vilbe proposed a variation on Euclidean algorithm, which can calculate the greatest common divisors (GCDs) and inverses for polynomials. Inspired by their work, we propose a variation on the Euclidean algorithm, which uses only simple modulo operators, to compute the modular inverses. This variant only modifies the initial values and the termination condition of the Euclidean algorithm. Therefore, computing the modular inverses is as simple as computing the GCDs. (c) 2007 Elsevier Inc. All rights reserved

    A comprehensive analysis of constant-time polynomial inversion for post-quantum cryptosystems

    Get PDF
    Post-quantum cryptosystems have currently seen a surge in interest thanks to the current standardization initiative by the U.S.A. National Institute of Standards and Technology (NIST). A common primitive in post-quantum cryptosystems, in particular in code-based ones, is the computation of the inverse of a binary polynomial in a binary polynomial ring. In this work, we analyze, realize in software, and benchmark a broad spectrum of binary polynomial inversion algorithms, targeting operand sizes which are relevant for the current second round candidates in the NIST standardization process. We evaluate advantages and shortcomings of the different inversion algorithms, including their capability to run in constant-time, thus preventing timing side-channel attacks

    FORM version 4.0

    Full text link
    We present version 4.0 of the symbolic manipulation system FORM. The most important new features are manipulation of rational polynomials and the factorization of expressions. Many other new functions and commands are also added; some of them are very general, while others are designed for building specific high level packages, such as one for Groebner bases. New is also the checkpoint facility, that allows for periodic backups during long calculations. Lastly, FORM 4.0 has become available as open source under the GNU General Public License version 3.Comment: 26 pages. Uses axodra

    TR-2012001: Algebraic Algorithms

    Full text link

    Harnessing the power of GPUs for problems in real algebraic geometry

    Get PDF
    This thesis presents novel parallel algorithms to leverage the power of GPUs (Graphics Processing Units) for exact computations with polynomials having large integer coefficients. The significance of such computations, especially in real algebraic geometry, is hard to undermine. On massively-parallel architectures such as GPU, the degree of datalevel parallelism exposed by an algorithm is the main performance factor. We attain high efficiency through the use of structured matrix theory to assist the realization of relevant operations on polynomials on the graphics hardware. A detailed complexity analysis, assuming the PRAM model, also confirms that our approach achieves a substantially better parallel complexity in comparison to classical algorithms used for symbolic computations. Aside from the theoretical considerations, a large portion of this work is dedicated to the actual algorithm development and optimization techniques where we pay close attention to the specifics of the graphics hardware. As a byproduct of this work, we have developed high-throughput modular arithmetic which we expect to be useful for other GPU applications, in particular, open-key cryptography. We further discuss the algorithms for the solution of a system of polynomial equations, topology computation of algebraic curves and curve visualization which can profit to the full extent from the GPU acceleration. Extensive benchmarking on a real data demonstrates the superiority of our algorithms over several state-of-the-art approaches available to date. This thesis is written in English.Diese Arbeit beschäftigt sich mit neuen parallelen Algorithmen, die das Leistungspotenzial der Grafik-Prozessoren (GPUs) zur exakten Berechnungen mit ganzzahlige Polynomen nutzen. Solche symbolische Berechnungen sind von großer Bedeutung zur Lösung vieler Probleme aus der reellen algebraischen Geometrie. Für die effziente Implementierung eines Algorithmus auf massiv-parallelen Hardwarearchitekturen, wie z.B. GPU, ist vor allem auf eine hohe Datenparallelität zu achten. Unter Verwendung von Ergebnissen aus der strukturierten Matrix-Theorie konnten wir die entsprechenden Operationen mit Polynomen auf der Grafikkarte leicht übertragen. Außerdem zeigt eine Komplexitätanalyse im PRAM-Rechenmodell, dass die von uns entwickelten Verfahren eine deutlich bessere Komplexität aufweisen als dies für die klassischen Verfahren der Fall ist. Neben dem theoretischen Ergebnis liegt ein weiterer Schwerpunkt dieser Arbeit in der praktischen Implementierung der betrachteten Algorithmen, wobei wir auf der Besonderheiten der Grafikhardware achten. Im Rahmen dieser Arbeit haben wir hocheffiziente modulare Arithmetik entwickelt, von der wir erwarten, dass sie sich für andere GPU Anwendungen, insbesondere der Public-Key-Kryptographie, als nützlich erweisen wird. Darüber hinaus betrachten wir Algorithmen für die Lösung eines Systems von Polynomgleichungen, Topologie Berechnung der algebraischen Kurven und deren Visualisierung welche in vollem Umfang von der GPU-Leistung profitieren können. Zahlreiche Experimente belegen dass wir zur Zeit die beste Verfahren zur Verfügung stellen. Diese Dissertation ist in englischer Sprache verfasst

    TR-2013009: Algebraic Algorithms

    Full text link
    corecore