13 research outputs found

    The First Order Truth Behind Undecidability of Regular Path Queries Determinacy

    Get PDF
    In our paper [Gluch, Marcinkowski, Ostropolski-Nalewaja, LICS ACM, 2018] we have solved an old problem stated in [Calvanese, De Giacomo, Lenzerini, Vardi, SPDS ACM, 2000] showing that query determinacy is undecidable for Regular Path Queries. Here a strong generalisation of this result is shown, and - we think - a very unexpected one. We prove that no regularity is needed: determinacy remains undecidable even for finite unions of conjunctive path queries

    Power efficiency through tuple ranking in wireless sensor network monitoring

    Get PDF
    In this paper, we present an innovative framework for efficiently monitoring Wireless Sensor Networks (WSNs). Our framework, coined KSpot, utilizes a novel top-k query processing algorithm we developed, in conjunction with the concept of in-network views, in order to minimize the cost of query execution. For ease of exposition, consider a set of sensors acquiring data from their environment at a given time instance. The generated information can conceptually be thought as a horizontally fragmented base relation R. Furthermore, the results to a user-defined query Q, registered at some sink point, can conceptually be thought as a view V . Maintaining consistency between V and R is very expensive in terms of communication and energy. Thus, KSpot focuses on a subset V′ (⊆ V ) that unveils only the k highest-ranked answers at the sink, for some user defined parameter k. To illustrate the efficiency of our framework, we have implemented a real system in nesC, which combines the traditional advantages of declarative acquisition frameworks, like TinyDB, with the ideas presented in this work. Extensive real-world testing and experimentation with traces from University of California-Berkeley, the University of Washington and Intel Research Berkeley, show that KSpot provides an up to 66% of energy savings compared to TinyDB, minimizes both the size and number of packets transmitted over the network (up to 77%), and prolongs the longevity of a WSN deployment to new scales

    MASCARA (ModulAr Semantic CAching fRAmework) towards FPGA Acceleration for IoT Security Monitoring

    Get PDF
    With the explosive growth of the Internet Of Things (IOTs), emergency security monitoring becomes essential to efficiently manage an enormous amount of information from heterogeneous systems. In concern of increasing the performance for the sequence of online queries on long-term historical data, query caching with semantic organization, called Semantic Query Caching or Semantic Caching (SC), can play a vital role. SC is implemented mostly in software perspective without providing a generic description of modules or cache services in the given context. Hardware acceleration with FPGA opens new research directions to achieve better performance for SC. Hence, our work aims to propose a flexible, adaptable, and tunable ModulAr Semantic CAching fRAmework (MASCARA) towards FPGA acceleration for fast and accurate massive logs processing applications

    The Implementation and Performance Evaluation of the ADMS Query Optimizer: Integrating Query Result Caching and Matching

    Get PDF
    In this paper, we describe the design and evaluation of the ADMS optimizer. Capitalizing on a structure called Logical Access Path Schema to model the derivation relationship among cached query results, the optimizer is able to perform query matching coincidently with the optimization and generate more efficient query plans using cached results. The optimizer also features data caching and pointer caching, different cache replacement strategies, and different cache update strategies. An extensive set of experiments were conducted, and the results showed that pointer caching and dynamic cache update strategies substantially speedup query computations and, thus, increase query throughput under situations with fair query correlation and update load. The requirement of the cache space is relatively small and the extra computation overhead introduced by the caching and matching mechanism is more than offset by the time saved in query processing. (Also cross-referenced as UMIACS-TR-93-106

    Automatic physical database design : recommending materialized views

    Get PDF
    This work discusses physical database design while focusing on the problem of selecting materialized views for improving the performance of a database system. We first address the satisfiability and implication problems for mixed arithmetic constraints. The results are used to support the construction of a search space for view selection problems. We proposed an approach for constructing a search space based on identifying maximum commonalities among queries and on rewriting queries using views. These commonalities are used to define candidate views for materialization from which an optimal or near-optimal set can be chosen as a solution to the view selection problem. Using a search space constructed this way, we address a specific instance of the view selection problem that aims at minimizing the view maintenance cost of multiple materialized views using multi-query optimization techniques. Further, we study this same problem in the context of a commercial database management system in the presence of memory and time restrictions. We also suggest a heuristic approach for maintaining the views while guaranteeing that the restrictions are satisfied. Finally, we consider a dynamic version of the view selection problem where the workload is a sequence of query and update statements. In this case, the views can be created (materialized) and dropped during the execution of the workload. We have implemented our approaches to the dynamic view selection problem and performed extensive experimental testing. Our experiments show that our approaches perform in most cases better than previous ones in terms of effectiveness and efficiency

    Monitoring Network Data Streams

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore