
Adapting Materialized Views after Rede�nitions�

Techniques and a Performance Study�

Ashish Guptay

IBM Almaden Research Center

ashish�almaden�ibm�com

Inderpal S� Mumick
AT�T Laboratories

mumick�research�att�com

Jun Raoz

Columbia University

junr�cs�columbia�edu

Kenneth A� Rossz

Columbia University

kar�cs�columbia�edu

Columbia University Technical Report CUCS�������
Mar� ��	 ����

Abstract

We consider a variant of the view maintenance problem� How does one keep a materialized
view up�to�date when the view de�nition itself changes� Can one do better than recomputing the
view from the base relations� Traditional view maintenance tries to maintain the materialized
view in response to modi�cations to the base relations� we try to 	adapt
 the view in response
to changes in the view de�nition�

Such techniques are needed for applications where the user can change queries dynamically
and see the changes in the results fast� Data archaeology� data visualization� and dynamic
queries are examples of such applications�

We consider all possible rede�nitions of SQL SELECT�FROM�WHERE�GROUPBY�HAVING� UNION�
and EXCEPT views� and show how these views can be adapted using the old materialization for
the cases where it is possible to do so� We identify extra information that can be kept with
a materialization to facilitate rede�nition� Multiple simultaneous changes to a view can be
handled without necessarily materializing intermediate results� We identify guidelines for users
and database administrators that can be used to facilitate e�cient view adaptation�

We perform a systematic experimental evaluation of our proposed techniques� Our evalu�
ation indicates that adaptation is more e�cient than rematerialization in most cases� Certain
adaptation techniques can be up to ���� times better� We also point out the physical layouts
that can bene�t adaptation�

�A preliminary version of this paper appeared as �GMR����
yResearch supported by NSF grants IRI�����		
	 and IRI������
��
zResearch supported by a grant from the AT�T Foundation� by a David and Lucile Packard Foundation Fellowship

in Science and Engineering� by a Sloan Foundation Fellowship� by NSF grants IRI������� CDA����
���� and by
an NSF Young Investigator award�

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


� Introduction

Many applications try to visualize views over data stored in a database� The view is materialized	
and a graphical display program may present the data in the view visually� If the user changes the
view de
nition	 the system must be able to recompute the view fast in order to keep the application
interactive� An interface for such queries in a real estate system is reported in �WS��	 where they
are called dynamic queries �AWS���

Data archaeology �BST���	 BST��� is another application where an archaeologist tries to
discover rules about data by formulating queries	 looking at the results of the query	 and then
changing the query iteratively as the archaeologist�s understanding improves�

We consider the problem of recomputing a materialized view in response to changes made to
the view de
nition	 that is	 in response to rede
nition of the view� We call this problem the �view
adaptation problem��

��� Motivating Example

Example ���� Consider the following relations E �employees�	 W �works�	 and P �projects��

E�Emp��Name�Address�Age�Salary��

W �Emp��Proj��Hours��

P �Proj��Projname�Leader��Location�Budget��

The key of each relation is underlined� Consider a graphical interface used to pose queries on
the above relations using SELECT	 FROM	 WHERE	 GROUPBY	 and other SQL constructs� For instance	
consider the following view de
ned by query Q��

CREATE VIEW V AS

SELECT Emp�	 Proj�	 Salary
FROM E � W
WHERE Salary � ����� AND Hours � ��

The natural join between relations E and W on attribute Emp� is speci
ed as a part of the
FROM clause using the ��� sign� Query Q� might be speci
ed graphically using a slider for the
Salary attribute and another slider for the Hours attribute� As the position of these sliders is
changed	 the display is updated to re�ect the new answer�

Say the user shifts the slider for the Salary attribute making the 
rst condition Salary � ������
The answer to this new query can be computed easily from the answer already displayed on the
screen� All those tuples that have Salary more than ����� but not more than �����	 are removed
from the display� This incremental computation is much more e�cient than recomputing the view
from scratch�

Not all changes to the view de
nition are so easily computable� For instance	 if the slider for
Salary is moved to lower the threshold of interest to Salary � �����	 then the above computation
is not possible� However	 we can still infer that �a� the old tuples still need to be displayed and �b�
some more tuples need to be added	 namely	 those tuples that have salary more than ����� but not
more than ������ Thus	 even though the new query is not entirely computable using the answer
to the old query	 it is possible to substantially reduce the amount of recomputation�

Now	 say the user decides to change Q� by joining it with relation P and then computing an
aggregate� That is view V now is de
ned by a new query Q��

CREATE VIEW V AS

SELECT Proj�	 Location	 SUM�Salary�
FROM E � W � P
WHERE Salary � ����� AND Hours � ��
GROUPBY Proj�	 Location

�



Thus Q� requires that Q� be joined with relation P on attribute Proj� and the resulting view
be grouped by Proj� and Location� Note that the key for relation P is Proj� and Proj� is already
in the answer to query Q�� Thus	 to compute Q� we need only look up the Location attribute from
the relation P using the value of Proj� for each tuple in the current answer set� The resulting set
of tuples is aggregated over the required attributes to compute the answer to query Q��

Finally	 say the user changes view V to compute the sum of salaries for each Location that
appears in Q�� The answer to this query �call it Q�� is computable using only the result of Q��
Because the grouping attributes of Q� are a superset of the grouping attributes of Q�	 each group of
Q� is a subgroup of a group in Q�� Thus	 multiple tuples in the result of Q� are combined together
to compute the answer to Q�� �

We focus on changing a single materialized view	 and on recomputing the new materialization
using the old materialization and the base relations� In this paper we do not consider how multiple
materialized views may be used to further assist the adaptation process�

��� Results

We de
ne the process of rede
ning a view as a sequence of local changes in the view de
nition� The
adaptation is expressed as an additional query or update upon the old view and the base relations
that needs to be executed to adapt the view in response to the rede
nition� We identify a basic
set of local changes so that a sequence of local changes can be maintained by concatenating the
maintenance process for each local change� In almost all cases	 this concatenation can be performed
without materializing the intermediate results	 yielding a single adaptation method for arbitrary
changes to a view de
nition�

We present a comprehensive study of di�erent types of local changes that can be made to a
view	 and present algorithms to maintain the views in response to these changes� These algorithms
integrate smoothly with a cost�based query optimizer� The optimizer considers the additional plans
provided by the algorithms and uses one of them if its cost is lower than the cost of rematerializing
the view�

We show that the maintenance in response to a rede
nition is facilitated by keeping a small
amount of extra information �beyond the view de
nition�s attributes themselves�� We only consider
information that can be maintained e�ciently	 and show how the adaptation process can be made
far more e�cient with this information�

Our work shows that �a� it is often signi
cantly better to use previously materialized views	 and
�b� if you know in advance that you might change the views in certain ways	 then you can include
appropriate kinds of additional information in the views�

We then present a thorough experimental evaluation of the adaptation techniques� The results
support our analysis and also lead to some interesting observations about physical design for
materialized views�

��� Related Work

The problem of rede
ning materialized views is related to the problem of optimizing an arbitrary
query given that the database has materialized a view V � The query can be considered to be
a rede
nition of the view V and one may compute the query by changing the materialization of
V � However	 there is an important di�erence� Consider a query that returns all the tuples in
the view except one� When framed as a query optimization problem	 the complexity of using the
view is O�jV j�	 where jV j is the cardinality of the materialization of V � When framed as a view
adaptation problem	 the complexity of the maintenance process is O�log�jV j�� since we can simply
delete one tuple from V � This will impact the choice of the strategies for query answering and

�



view adaptation di�erently� Further	 the view adaptation approach loses the old materialized view	
while the querying approach keeps the old view in storage� Thus view adaptation is not just a
special case of the problem of answering a query given some materialized views� If we omit in�place
updates	 this is a special case of answering queries using materialized views� But in�place updates
may lead to more e�cient solutions�

View adaptation di�ers from the problem of using materialized views to answer queries also
in that adaptation assumes the new view de
nition is �close� to the old view de
nition	 in the
sense that the view changes via a small set of local changes� There is no such assumption in the
query�answering problem	 which means that a query compiler�optimizer would have to spend a
considerable time determining how to use the existing views to correctly answer a given query�
Thus	 adaptation considers a smaller search space and yields a smaller but more e�cient set of
standard techniques that are easily incorporated in relational systems�

Classic �BBMR�� is a system developed at AT�T Bell Laboratories that allows users to
de
ne new concepts and optimizes the evaluation of their extents by classifying the concepts in
a concept hierarchy	 and then computing them starting with the parent concepts� This corresponds
to evaluating a new Classic query �the new concept�	 using information in several materialized
views �the old concepts�� Classic has been used for data archaeology�

�LY��	 YL�� look at the question of answering queries using cached results or materialized
views� �LY��	 YL�� show how to transform an SPJ �select�project�join� query so that it is expressed
completely using a given set of views	 without any reference to the base relations� They also have
the idea of augmented views where each view is extended with keys of the underlying base relations�

�CKPS�� tackle the broader problem of trying to answer any query given any set of view
de
nitions� Because they look at this more general problem	 they have a much larger search space
�exponential size� in their optimization algorithm� We have a simple small set of extra plans to
check� For the less general problem we can do more	 and do it more e�ciently�

�RSU��	 LMSS�� also tackle the problem of answering a query given any set of view de
nitions�
They do not consider aggregate queries� Subsequently	 �DJLS��	 GHQ�� discuss how to answer
aggregate queries using materialized aggregate views� Their results subsume the results presented
in Section ��

�TSI�� focuses on the broader issue of enhancing physical data independence using �gmaps��
They use a logical schema and then specify the underlying physical storage structures as results of
�gmap� queries on the logical schema� User queries on the logical schema are rewritten using one
or more gmap queries that each correspond an to access to a physical structures� The gmap and
user queries are SPJ expressions� Query translation is similar to using only existing views �gmaps�
to compute new views �user queries��

� The System Model

��� Notation

We consider simple SQL SELECT�FROM�WHERE views	 in addition to views de
nable using UNION	
di�erence �EXCEPT� and aggregation �GROUPBY�� We use a syntactic shorthand ��� to avoid having
to write down all the equality conditions in a natural join� �Equivalently	 one could use the
�NATURAL JOIN� keywords provided in SQL���

SELECT A�� � � � � An
FROM R� � � � � � Rm
WHERE C� AND � � � AND Ck�

When the relations in the FROM clause are separated by ampersands rather than commas	 we mean
that the relations R�� � � � � Rn are combined by a natural join over all attributes that are mentioned

�



in more than one relation� If we want an equijoin that is not a natural join	 we shall specify
the equijoin condition in the FROM clause rather than in the WHERE clause	 inside square brackets�
Join conditions that are not equijoins or natural joins will be speci
ed in the WHERE clause� The
conditions C�� � � � � Ck are basic	 i�e�	 non�conjunctive conditions� The order in which we write the
conditions or the relations is not important�

When we perform schema changes	 we use standard SQL� �ALTER TABLE� and �UPDATE�
statements�

Relations will be of two types � base relations and view relations� Base relations are physically
stored by the system	 and are updated directly� The view relations are de
ned as views �i�e	
queries� over base relations and other view relations� A materialized view relation has its extension
physically stored by the system� Materialized views are not updated directly� updates on the base
relations and other view relations are translated by a view maintenance algorithm into updates to
the materialized view�

De�nition ���� Key Attributes� A key of a relation R is a minimal subset of the attributes of
R that uniquely identi
es tuples in R� �

A relation may have several keys	 and any one of these could be used in any of the results we
derive� Key information will be used in the analysis for view changes�

Adaptation and Recomputation When view V is rede
ned	 let the new de
nition be called
V �� When the extent of V � is obtained utilizing the previously materialized extent of view V 	 the
process will be called adapting view V � When the extent of V � is obtained by evaluating the view
de
nition	 without utilizing the previously materialized extent of view V 	 the process will be called
recomputing view V � We can look upon a recomputation as a special case of adaptation where the
previously materialized extent of view V is not used pro
tably�

��� View Adaptation Issues

We make the minimalistic assumption that the rede
nition is expressed as a sequence of primitive
local changes� Each local change is a small change to the view de
nition� For example	 dropping
or changing a selection predicate	 adding an attribute to the result	 changing the grouping list	
and adding a join relation are all examples of local changes� We shall consider sequences of local
changes �without necessarily materializing intermediate results� in Section ��

Given a rede
nable view	 the system and�or the database administrator has to 
rst determine
�a� whether the view should be augmented with some extra information to help with later adapta�
tion	 �b� how the materialized view should be stored �maybe keep some free space for each tuple to
grow� maybe physically order the view by a particular attribute�	 and �c� whether the materialized
view should be indexed�

A view can be augmented only by adding more attributes and�or more tuples� Thus	 the original
view has to be a selection and�or projection of the augmented view� The additional attributes may
be useful to adapt the view in response to changing selections	 projections	 grouping	 and unions�

Next	 as the user rede
nes a view	 the rede
nition is translated into the sequence of primitive
changes	 and the system must analyze the augmented view and the rede
nition changes to determine
��� whether the augmented view can be adapted	 and ��� the various algorithms for adapting the
augmented view� The adaptation algorithms can also be expressed in SQL� For example	 the
rede
ned view can be materialized as an SQL query over the old view and the base relations�
Alternatively	 the rede
ned view can be de
ned by one or more SQL inserts	 deletes and updates
into the old materialization of the view	 or even by simply recomputing the view from base relations�
The system can use an optimizer to choose the most cost�e�ective alternative for adapting the view�

�



��� Primitive changes

We support the following changes as primitive local changes to a view de
nition�

� Addition or deletion of an attribute in the SELECT clause�

� Addition	 deletion	 or modi
cation of a predicate in the WHERE clause �with and without
aggregation��

� Addition or deletion of a join operand �in the FROM clause�	 with associated equijoin predicates
and attributes in the SELECT clause�

� Addition or deletion of an attribute from the GROUPBY list�

� Addition or deletion of an aggregation function to a GROUPBY view�

� Addition	 deletion	 or modi
cation of a predicate in the HAVING clause� Addition of the 
rst
predicate or deletion of the last predicate corresponds to addition and deletion of the HAVING
clause itself�

� Addition or deletion of an operand to the UNION and EXCEPT operators�

� Addition or deletion of the DISTINCT operator�

We will discuss each of these primitive changes	 and outline an algorithm to adapt the view
upon rede
nition with the primitive change� As we consider each primitive change	 we will build a
table of alternative techniques to do the adaptation�

��� In�place Adaptation

When view V is rede
ned to yield V �	 the new view must be materialized	 the old materialization
for V must be deleted	 and the new materialization must be labeled V � The adaptation process
can try to use the old materialization of V as much as possible to avoid copying tuples� Thus	
we consider adaptation methods that change the materialization of V in place� If a small number
of tuples are being changed	 then in�place adaptation is likely to be superior to constructing a
new version of the materialization� If every tuple is being changed	 then the relative merits of
in�place updates and constructing new versions will depend on the performance characteristics of
the system� In�place adaptation is done using SQL INSERT	 DELETE	 and UPDATE commands� We
use the following SQL syntax for updates�

UPDATE V SET A � �SELECT B
FROM R� � � � � � Rm
WHERE C� AND � � � AND Ck��

The conditions in the WHERE clause of the subquery can refer to the tuple variable V being
updated� The subquery is required to return only one value� It is possible that attribute A does
not appear in the old de
nition of view V 	 in which case an ALTER TABLE statement should precede
the UPDATE statement� An in place extension of the table may not be possible due to physical space
restrictions	 making the ALTER TABLE command expensive� On the other hand	 systems may choose
to keep some free space in each tuple to accommodate frequent adaptation	 or use space created
by deleted attributes�

� SELECT�FROM�WHERE Views

In this section we consider views de
ned by a basic SELECT�FROM�WHERE query and rede
nitions that
may change the SELECT	 the FROM	 and�or the WHERE clauses� For each type of possible rede
nition	
we show� �a� How to maintain the rede
nition	 and �b� What extra information may be kept to
facilitate maintenance�

A generic materialized view V may be de
ned as

�



CREATE VIEW V AS

SELECT A�� � � � � An
FROM R� � � � � � Rm
WHERE C� AND � � � AND Ck

As discussed in Section ���	 an equijoin is written in the FROM clause of a query� Thus	 changes
to the equijoin predicates are considered in the subsection on the FROM clause	 while changes to
other predicates are considered in the subsection on the WHERE clause�

��� Changing the SELECT Clause

Reducing the set of attributes that de
ne a view V is straightforward� In one pass of the old view
we can project out the unneeded attributes to get the new view� Alternatively	 one could simply
keep the old view V 	 and make sure that accesses to the new view V � are obtained by pipelining a
projection at the end of an access to V �

Adding attributes to a view is more di�cult� One solution	 is to keep more attributes than those
needed for V in an augmented relation W 	 and to perform the projection only when references to
V occur� In that case	 we can add attributes to the view easily if they are attributes of W �

The solution mentioned above may be appropriate for a small number of attributes� However	
when there are several base relations and many attributes	 keeping a copy of all of the attributes
may not be feasible� In such cases	 we shall prefer where possible to keep foreign keys into the base
relations�

Example ���� Suppose our database consists of three relations E	 W 	 and P as in Example ����
De
ne a view V as

CREATE VIEW V AS

SELECT Name	Projname
FROM E � W � P
WHERE Salary � ���� ���

Keeping all of the attributes in an augmented relation would require maintaining eleven ad�
ditional attributes� Alternatively	 we could just keep Emp� and Proj� in addition to Name and
Projname in an augmented relation	 say G�

Suppose we wished to add the Address attribute to the view� We could do this addition
incrementally by scanning once through relation G	 and doing an indexed lookup on the E relation
based on Emp�� This can be expressed as�

ALTER TABLE G ADD Address

UPDATE G SET Address � �SELECT Address

FROM E
WHERE E�Emp� � G�Emp���

The update could be done in place	 or it could be done by copying the result into a new version
of G� A query optimizer could also rewrite the update statement into a join between E and G and
modify the tuples of G as they participate in the join� In either case	 the cost of updating G is
easily estimated using standard cost�based optimization techniques	 and is likely to be far less than
recomputing the entire three�way join� �

Often the original view itself keeps the key columns for one of the base relations� Thus	 if view
V includes the key for a base relation R	 or the key of R is equated to a constant in the view
de
nition	 and a rede
nition requires additional columns of R	 then the view can be adapted by

�



using the keys present in the old materialization of the view to pick the appropriate tuples from
relation R�

Sometimes	 adaptation can be done even in the absence of a key for R in the view� A test
for the possibility of adaptation by joining the old view with the relation from which the extra
columns are to be obtained can be constructed as follows� De
ne query Q� to be the new view
de
nition� De
ne query Q� by joining the old view name with the relation R from which the extra
column�s� need to be obtained� All attributes in the old view that were derived or equated to
attributes from relation R are used as join attributes� The view is adaptable if queries Q� and Q�
are equivalent �Ull��	 GSUW��� The above test is similar to tests in �RSU��	 LMSS�� to check if
a query can be answered using views�

Changing the DISTINCT Quali�er� Suppose that a user adds a DISTINCT quali
er to the
de
nition of a view that did not previously have one� Thus we have to delete duplicate entries
from the old view to obtain the new view� This adaptation is fairly simply expressed as a
SELECT DISTINCT over the old view to obtain the new view� Deleting a DISTINCT quali
er is
more di�cult	 since it is not clear how many duplicates of each tuple should be in the new view�
A more detailed discussion appears in Section ����

��� Changes in the WHERE Clause �no aggregation	

In this section we discuss changes to a condition in the WHERE clause� We do not distinguish between
conditions on a single relation and conditions on multiple relations �i�e�	 �join conditions�� in the
WHERE clause�

Let C �
� be a new condition� �Without loss of generality	 we assume we are changing C� to C �

�

in our generic view�� We want to e�ciently materialize V �	 which could be de
ned as

CREATE VIEW V � AS

SELECT A�� � � � � An
FROM R� � � � � � Rm
WHERE C �

� AND � � � AND Ck
by taking advantage of the fact that V has already been materialized�

Algebraically	 V � � V � V � � V � where

SELECT A�� � � � � An
V � � FROM R� � � � � � Rm

WHERE C �
� AND NOT C� AND C� AND � � � AND Ck

SELECT A�� � � � � An
V � � FROM R� � � � � � Rm

WHERE NOT C �
� AND C�AND C� AND � � � AND Ck

If the attributes mentioned by C �
� are a subset of fA�� � � � � Ang	 then

V � � SELECT A�� � � � � An FROM V WHERE NOT C �
�

or
V � V � � SELECT A�� � � � � An FROM V WHERE C �

�

V can thus be adapted as follows�

DELETE FROM V WHERE NOT C �
�

INSERT INTO V
�SELECT A�� � � � � An
FROM R� � � � � � Rm
WHERE C �

� AND NOT C� AND C� AND � � � AND Ck�

�



Alternatively	 if the attributes of C �
� are not available in the view	 the view adaptation algorithm

for the SELECT clause could have materialized some extra attributes in an augmented relation W�
or obtained these attributes using joins with the relation containing the attribute	 as discussed in
Section ���� In this case	 even if C �

� mentioned an attribute not in fA�� � � � � Ang	 we could write
V � as above as long as all the attributes mentioned by C �

� were obtainable using the techniques of
the previous section�

Thus we can see that the cost of adapting V in either of the cases above is �at most� one
selection on V �or on the augmentation G� to adapt V into V � V �	 plus the cost of computing
V � for insertion into V � As we shall see	 in many examples the cost of computing V � will be small
compared with the cost of recomputing V �

Example ���� Let E and W be as de
ned in Example ���� Consider a view V de
ned by

CREATE VIEW V AS

SELECT  FROM E � W WHERE Salary � �����

Suppose that we wish to adapt V to

SELECT  FROM E � W WHERE Salary � �����

Let us refer to the new expression as V �� Using the terminology above	 we see that C� is �Salary �
������ and C �

� is �Salary � ������� Hence V � and V � can be de
ned as

V � � SELECT  FROM V WHERE

Salary � ����� AND Salary � �����
V � � SELECT  FROM E � W WHERE

Salary � ����� AND Salary � �����

V � is empty	 since its conditions in the WHERE clause are inconsistent with each other� Hence	
the cost of recomputing the view is �at most� one pass over V � Now suppose that V � is de
ned by

SELECT  FROM E � W WHERE Salary � ������

Then V � is empty	 and V � is given by

SELECT  FROM E � W WHERE Salary � ����� AND Salary � ������

If there is an index on salary in E	 then �with a reasonable distribution of salary values� V � V �

might be computed much more e�ciently than recomputing V � from scratch� The query optimizer
would have enough information to decide which is the better strategy� �

The same analysis holds even for join predicates� For example�

Example ���� Consider the view de
ned as

CREATE VIEW V AS

SELECT Emp�	 Salary	 Proj�	 Budget
FROM E � W � P
WHERE Salary � ��� � Budget�

The join condition �Salary � ��� � Budget� could be changed to either �Salary � ��� � Budget� or
�Salary � ��� � Budget� in a fashion similar to that of Example ���� �

Most queries that involve multiple relations use either equijoins or use single table selection
conditions� For example	 in one of our application environments	 making e�cient visual tools for
browsing data	 users are known to re
ne queries by changing the selection conditions on a relation
interactively� Thus	 it is likely that both the old condition C� and the new condition C �

� are single
table selection conditions on the same attributes� Thus	 the condition NOT C� AND C

�
� can be pushed

down to a single base relation	 making the computation of V � more e�cient�

�



Adding or Deleting a Condition We can express the addition of a condition C � in the WHERE
clause as a change of condition by adding some tautologically true selection to the old view de
nition
V 	 then changing it to C �� The analysis above then means that V � is empty	 and the new view can
be computed as V � V �	 i�e�	 as a 
lter on the extension of V �

Similarly	 the deletion of a condition is equivalent to replacing that condition by a tautologically
true condition� In this case	 V � is empty	 and the optimizer needs to compare the cost of computing
V � with the cost of computing the view from scratch�

��� Changing the FROM Clause

If we change an equijoin condition	 then it is not clear that V � is e�ciently evaluable� This
corresponds to our intuition	 which states that if an equijoin condition changes then there will be
a dramatic change in the result of the join	 and so the old view de
nition will not be much help in
computing the new join result� We note that it is unlikely that the users will change the equijoin
predicates �G� Lohman	 personal communication�

Nevertheless	 there are situations where we can make use of the old view to e�ciently compute
a new view in which we have either added or deleted relations from the FROM clause�

Adding a join relation Suppose that we add a new relation Rm�� to the FROM clause	 with
an equijoin condition equating some attribute A of Rm�� to another attribute B in Ri for some
� � i � m� Suppose also that we want to add some attributes D�� � � � �Dj from Rm�� to the view�

If B is part of the view	 then the new view can be computed as

SELECT A�� � � � � An� D�� � � � �Dj FROM V�Rm�� WHERE A � B�

If the joining attribute A is a key for relation Rm��	 or we can otherwise guarantee that A
values are all distinct	 then we can express the adaptation as an update �we generalize SQL syntax
to assign values to a list of attributes from the result of a subquery that returns exactly one tuple��
For each of the updates below	 we 
rst apply the command �ALTER TABLE V ADD D�� � � � �Dj ��

UPDATE V SET D�� � � � �Dj � �SELECT Rm���D�� � � � � Rm���Dj

FROM Rm��

WHERE Rm���A � V �B��

If B is not part of the view	 then it still may be possible to obtain B by joining V with Ri
�assuming that V contains a key K for Ri� and hence compute the new view either as

UPDATE V SET D�� � � � �Dj � �SELECT Rm���D�� � � � � Rm���Dj

FROM Rm��	 Ri
WHERE Rm���A � Ri�B AND V�K � Ri�K��

if A is a key in Rm��	 or as

SELECT A�� � � � � An� D�� � � � � Dj FROM V�Ri� Rm�� WHERE A � B AND V�K � Ri�K�

if A is not guaranteed to be distinct in Rm���

Example ���� Suppose we have a materialized view of customers with their customer data	 in�
cluding their zip�codes� If we want to also know their cities	 we can take the old materialized view
and join it with our zip�code�city relation to get the city information as an extra attribute� �

��



Deleting a join relation When deleting a join operand	 one has to make sure that the number
of duplicates is maintained correctly	 and also allow for dangling tuples� For R � S � T 	 when
the join with T is dropped	 the system ��� needs to go back and 
nd R � S tuples that did not
join with T 	 and ��� 
gure out the exact multiplicity of tuples in the new view� The former can
be avoided if the join with T is on a key of T and if the system enforces referential integrity� The
latter can be avoided if the view does not care about duplicates �SELECT DISTINCT�	 or if T is being
joined on its key attributes	 and the key of T is in the old view�

��� Adapting DISTINCT SELECT�FROM�WHERE views

Removing the DISTINCT quali�er It is usually di�cult to adapt the view in response to this
change� We discuss how adaptation may be done in some cases� If the old view contains a key for
some of the base relations R�� � � � � Rj 	 but no keys from Rj��� � � � � Rm	 then the tuple multiplicity
can be correctly determined by joining the old view with Rj��� � � � � Rm according to the original
join conditions on Rj��� � � � � Rm� If these original join conditions mention a nonkey attribute from
R�� � � � � Rj then the relations containing those attributes will also have to participate in the join�

An alternative is to augment the view so as to always keep a count of the number of derivations
for each tuple in the view� In this case	 changes to the DISTINCT quali
er can be handled easily by
either presenting the count to the user	 or by hiding the count�

Changing the SELECT clause These changes are handled exactly as when the SELECT�FROM�WHERE
view did not use a DISTINCT quali
er�

Changing a condition in the WHERE clause Recall that adapting a view in response to changes
to the WHERE clause involved computing a set V � and a set V �� Incorporating the set V �	 even if
it is computable	 is the di�cult part of adapting V if it uses the DISTINCT quali
er� The reason
is that if duplicates are eliminated from a view then deletions become di�cult in the absence of
counts� Thus	 the di�erence in handling SELECT�FROM�WHERE with DISTINCT as compared to views
without DISTINCT	 arises in the way V � is handled� Insertions are handled as before �albeit with
a duplicate elimination step that also correctly updates counts��

If the attributes of C �
� are not present in the SELECTclause then counts are retained with the

original view in order to correctly incorporate the value of V � computed as described in Section ����
If the attributes in C �

� are all present in the SELECT clause then the following query correctly updates
V �

DELETE FROM V WHERE NOT C �
�

Adding	deleting a condition in the WHERE clause If a condition is deleted then tuples are
only added to the view and thus the discussion of a non�DISTINCT view applies� However	 if a
condition is added	 then tuples are deleted from a view thus requiring counts to be maintained in
the original view�

Changing the FROM clause Changes to the FROM clause are handled as in the case when the
view did not use the DISTINCT quali
er�

��
 Summary� SELECT�FROM�WHERE Views

As described earlier	 the cost of the adaptation technique can be signi
cantly less than the cost
of recomputing from scratch� Also	 since the adaptation techniques are SQL style query�update

��



statements	 their cost can be estimated by the optimizer� Table � in Appendix A summarizes our
adaptation techniques for SELECT�FROM�WHERE queries� We assume that the initial view de
nition
is as stated at the beginning of Section �� For each possible rede
nition	 we give the possible
adaptations along with the assumptions needed for the adaptation to work� The assumptions are
listed separately in Table � in Appendix A�

Table � can be used in three ways� Firstly	 the query optimizer would use this table to 
nd the
adaptation technique �and compute its cost estimate� given the properties of the current schema vis�
a�vis the assumptions stated in the table� Secondly	 a database administrator or user would use this
table to see what assumptions need to hold in order to make incremental view adaptation possible
at the most e�cient level� Given this information	 the views can be de
ned with enough extra
information so that view changes can be computed most e�ciently� Note that di�erent collections
of assumptions make di�erent types of incremental computation possible	 so that di�erent �menus�
of extra information stored should be considered� Thirdly	 the database administrator could interact
with the query optimizer to see which access methods and indexes should be built	 on the base
relations and on the materialized views	 in order to facilitate e�cient adaptation�

Recommendations for Augmentation� Keep the keys of referenced relations from which
attributes may be added� Store the view with padding in each tuple for future in�place expansion�
Keep attributes referenced by the selection conditions in the view de
nition	 or at least keep the
keys of referenced relations from which these attributes may be added� Keep the count of the
number of derivations for each tuple�

� Aggregation Views

In this section	 we show how to adapt views when grouping columns and�or the aggregate functions
change in a materialized SQL aggregation view�

Example ���� Consider again the relations of Example ���� We could express the total salaries
charged to a project with the following materialized view� We assume that an employee is nominally
employed for �� hours per week	 and that if an employee works more or less	 a proportional salary
is paid� Thus the charge to a project for an employee is obtained by multiplying the salary by the
fraction of the �� hour week the employee works on the project�

CREATE VIEW V �Proj�� Location� Proj Sal� AS
SELECT Proj�	 Location	 SUM��Sal 	Hours�����
FROM E � W � P
GROUPBY Proj�	 Location

Suppose we want to modify V so that it gives a location�by�location sum of charged salaries� This
modi
cation corresponds to removing the Proj� attribute from the list of grouping variables and
output variables	 to give the following view de
nition�

CREATE VIEW V ��Location� Proj Sal� AS
SELECT Location	 SUM��Salary 	Hours�����
FROM E � W � P
GROUPBY Location

Using the commutativity properties of SUM	 the query optimizer can observe that V � can be
materialized as

SELECT Location	 SUM�Proj�Sal�
FROM V
GROUPBY Location

��



In this way we can use the original view to rede
ne the materialized view more e�ciently�
Next	 suppose we want to modify V to compute the sum of charged salaries for each Proj��

We can adapt V simply by dropping the Location attribute because Proj� is the key for relation
P and functionally determines Location� The rede
ned groups are the same as before� �

��� Dropping GROUPBY Columns

Given an aggregation view	 the set of tuples in the grouped relation that have the same values for
all the grouping attributes is called a group� Thus	 for the original view in Example ���	 there is
one group of tuples for each pair of �Proj��Location� values� For the rede
ned view	 there is one
group of tuples for each �Location� value�

When a grouping attribute is dropped	 each rede
ned group can be obtained by combining one
or more original groups	 so we can try to get the aggregation function over the rede
ned groups
by combining the aggregation values from the combined groups� For instance	 in Example ���	
after dropping the Proj� attribute	 the sum for the group for a particular �Location� value was
obtained from the sum Proj�Sal of all the groups with this Location� When we dropped the Location
attribute	 we inferred that each rede
ned group was obtained from a single original group� So no
new aggregation was needed

A materialized view can be adapted when grouping columns are dropped if�

� The dropped column is functionally determined by the remaining grouping columns	 or

� The aggregate functions in the rede
ned view are expressible as a computation over one
or more of the original aggregation functions and grouping attributes� Table � lists a few
aggregation functions that can be computed in such a manner�

Rede�ned Aggregation Adaptation using Original View

MIN�X� MIN�M� where M � MIN�X� was an original aggregation
column�

MAX�X� MAX�M� where M � MAX�X� was an original aggregation
column�

MIN�X� MIN�X�	 where X was an original grouping column�
MAX�X� MAX�X�	 where X was an original grouping column�
SUM�X� SUM�S� where S � SUM�X� was an original aggregation

column�
SUM�X� SUM�X	 C�	 where C � COUNT��� was an original aggre�

gation column	 and X was an original grouping column�
COUNT��� SUM�C� where C � COUNT��� was an original aggregation

column�
AVG�X� SUM�A 	 C��SUM�C� where C � COUNT��� and A �

AVG�X� were original aggregation columns�
AVG�X� SUM�X 	 C��SUM�C� where C � COUNT��� was an orig�

inal aggregation columns	 and X was an original grouping
column�

Table �� Aggregate functions for a group de
ned as functions of subgroup aggregates�

Table � is meant to be illustrative	 and not exhaustive� Several other aggregation functions may
be decomposed in this manner�

��



��� Adding GROUPBY Columns

In general	 when adding a groupby column	 we would need to go back to the base relations since we
are looking to aggregate data at a 
ner level of granularity� However	 in case the added attribute is
functionally determined by the original grouping attributes	 we can add it just like we add a new
projection column �Section �����

Example ���� Consider the aggregation view de
ned 
rst in Example ���	 and suppose we want
to add the leader of each project to the grouping column� The rede
ned view now is

CREATE VIEW V ��Proj�� Location� Leader�� Proj Sal� AS
SELECT Proj�	 Location	 SUM��Salary 	Hours�����
FROM E � W � P
GROUPBY Proj�	 Location	 Leader�

Since Leader� is functionally determined by Proj�	 we can adapt the original view to V � by�

ALTER TABLE V ADD Leader�

UPDATE V SET Leader� � �SELECT P �Leader�
FROM P
WHERE P �Proj� � V�Proj��

�

Another situation where we can add GROUPBY columns is when there was no grouping or
aggregation before� In that case	 the new view is formed simply by applying the grouping and
aggregation over the old view	 assuming that the attributes needed for the grouping and aggregation
are present in the old view� Even if the needed attributes are not present	 they can be added in
many cases	 as discussed previously�

��� The HAVING Clause

The HAVING clause behaves in a similar fashion to the WHERE clause in many ways	 from the point of
view of adaptation� Adding	 deleting	 or changing a conjunct in the HAVING clause can be handled
using the techniques of Section ���� If the HAVING clause refers to an aggregate that is not in the
view de
nition	 then one possible augmentation would be to keep that aggregate in the view� That
way	 one could adapt the view e�ciently if the condition in the HAVING clause was modi
ed�

The cost of adapting the HAVING clause may be higher than making a similar adaptation to the
WHERE clause� Consider the following example�

Example ���� Consider the following view based on the view of Example ���� The WHERE clause
restricts the view to projects with a budget of more than !����	 while the HAVING clause restricts
the view further to projects having more than � employees�

CREATE VIEW V �Proj�� Location� Proj Sal� AS
SELECT Proj�	 Location	 SUM��Sal 	Hours�����
FROM E � W � P
WHERE Budget � ����
GROUPBY Proj�	 Location
HAVING COUNT��� � �

��



Suppose that the view is augmented with the Budget attribute and the COUNT��� aggregate
for adaptation purposes� Changing Budget � ���� or COUNT��� � � to a stronger condition is
straightforward	 and can be expressed as a selection on the old view�

Changing Budget � ���� to Budget � ���	 say	 can be handled in an e�cient manner if an
index is available on the Budget attribute in the P relation� However	 it is unlikely that there is
any access method that would aid adaptation if COUNT��� � � was changed to COUNT��� � �	
for example� Without such an access method	 one may have to recompute the aggregate on all

groups that were not previously in the view� �

Example ��� suggests that it may be particularly important for views with aggregates to keep
additional tuples beyond those satisfying the view� In the example above	 we might materialize a
larger viewW that does not restrict the COUNT aggregate� V can then be expressed as a selection
and a projection on W � In this way we can more e�ciently adapt to changes in the HAVING clause�

��� Dropping�Adding Aggregation Functions

Adapting a view to drop an aggregation function is straightforward	 similar to the case where a
column is projected out �Section ����� However	 it is not possible to adapt to most additions of
aggregation functions	 unless the new function can be expressed in terms of existing functions	 or
unless the aggregation view is signi
cantly augmented�

One type of augmentation requires storing the key values �or tuples of key values� of all tuples
in each group in the view� For normalization reasons	 one would want to keep such keys in a
separate relation	 and so this kind of augmentation is more general than the kind of augmentation
considered elsewhere in this paper� Due to the size of the augmented view	 this particular kind of
augmentation is bene
cial for very limited kinds of adaptation� Hence	 we do not pursue it further
here�

��
 Changes in the WHERE Clause �in the presence of aggregates	

Familiar as it looks	 we are actually facing a di�erent problem from the one in Section ��� where
we considered changing the WHERE clause in a view without aggregates� In Section ���	 the old view
contains the individual tuples themselves� Here	 the old view contains only the aggregate of the
original qualifying tuples� In order to adapt the old view	 we need to access those tuples satisfying
the new criteria in the base tables	 compute the aggregate functions on them and then adjust the
old results� We consider adding and deleting a condition separately�

Adding a Condition Suppose we have the old view V and the new view V � de
ned as

CREATE VIEW V �A�� � � � � An�M�� � � � �Mj� AS
SELECT A�� � � � � An	 F��B��� � � � � Fj�Bj�
FROM R� � � � � � Rm
WHERE C� AND � � � AND Ck
GROUPBY A�� � � � � An

CREATE VIEW V ��A�� � � � � An�M�� � � � �Mj� AS
SELECT A�� � � � � An	 F��B��� � � � � Fj�Bj�
FROM R� � � � � � Rm
WHERE C� AND C� AND � � � AND Ck
GROUPBY A�� � � � � An

We can update the aggregate values in the old view using the formula�

��



Mi � Hi�Mi� "Fi�Bi��	
where "Fi�Bi� � SELECT Fi�Bi�

FROM R� � � � � � Rm
WHERE NOT C� AND C� AND � � � AND Ck AND

A� � V �A� AND � � � An � V �An
for each �A�� � � � � An� in the old view V �

Hi depends on the aggregate function Fi as shown in Table ��

Fi Corresponding Hi

COUNT Mi� "COUNT���
SUM Mi� "SUM�Bi�
AVG Mi � �Mi � Mj� "SUM�Bi����Mj� "COUNT����	 where Mj �

COUNT��� was an original aggregation column
MIN not available
MAX not available

Table �� Hi functions for Adding a Condition�

Given the expression above	 we can use an UPDATE statement to adapt the old view� But there
are situations where "Fi�Bi� returns a NULL value �no tuple satis
es the condition�	 which may
cause the 
nal results to be NULL if we do a naive update� What we want actually is to leave the
old value unchanged� So we need to specify that the UPDATE will only be done when necessary�

After the update	 those groups containing no tuple should be deleted� But this can�t be done
without the help of a COUNT� � in the original view �since you can�t distinguish whether a zero
means zero value or no tuples�� So the original view needs to be augumented when necessary�

Example ���� Let P be as de
ned in Example ���� Consider a view V de
ned by

CREATE VIEW V �Location	 Num� AS
SELECT Location	 COUNT���
FROM P
WHERE Budget � ��� ���
GROUPBY Location

Suppose that we de
ne the new view by changing the WHERE clause to

WHERE Budget � ��� ���

Here is the adaptation�

UPDATE V
SET Num � Num �

�SELECT COUNT� � FROM P
WHERE NOT �Budget � ��� ���� AND Budget � ��� ��� AND

P �Location � V �Location�
WHERE EXISTS �SELECT  FROM P

WHERE NOT �Budget � ��� ���� AND Budget � ��� ��� AND

P �Location � V �Location�
DELETE V
WHERE Num � �

The EXISTS predicate is used to eliminate the side e�ect of a NULL change� �

��



We can treat the situation when there are scalar aggregates �no groupby clause� in the view
de
nitions as a special case since there is only one group in the view� The DELETE clause is not
necessary since no group needs to be deleted� The details can be found in Table � in Appendix A�

Deleting a Condition If the new view V � is de
ned as

CREATE VIEW V ��A�� � � � � An�M�� � � � �Mj� AS
SELECT A�� � � � � An	 F��B��� � � � � Fj�Bj�
FROM R� � � � � � Rm
WHERE C� AND � � � AND Ck
GROUPBY A�� � � � � An

The tuples satisfying the deleted condition may belong to either the groups already in the old
view or some new groups� We can divide the tuples into two sets based on whether they belong to
the groups in the old view or not� We then adapt the old view in two steps� First	 we update the
aggregate values in the old view according to tuples in the 
rst set and then insert new groups into
the old view by using tuples in the second set� The update can be performed in a similar way�

Mi � H �
i�Mi� "Fi�Bi��	

where "Fi�Bi� � SELECT Fi�Bi�
FROM R� � � � � � Rm
WHERE NOT C� AND C� AND � � � AND Ck AND

A� � V �A� AND � � � An � V �An
for each �A�� � � � � An� in the old view V �

We summarize H �
i in Table �� The details of the technique are listed in Table � in Appendix A�

Fi Corresponding H �
i

COUNT Mi# "COUNT���
SUM Mi# "SUM�Bi�
AVG �Mi � Mj# "SUM�Bi����Mj# "COUNT����	 where Mj �

COUNT��� was an original aggregation column
MIN Mi �MIN�Mi� "MIN�Bi��
MAX Mi �MAX�Mi� "MAX�Bi��

Table �� H �
i functions for Deleting a Condition�

�� Summary� GROUPBY Views

We assume that the initial view de
nition is

CREATE VIEW V AS

SELECT A�� � � � � An	 F��B��� � � � � Fj�Bj�
FROM R� � � � � � Rm
WHERE C� AND � � � AND Ck
GROUPBY A�� � � � � Ap

where p � n�
The full list of adaptation techniques for aggregate views is given in Appendix A in Table ��

The assumptions used are listed in Table �� Table � can be used in the same ways as Table ��

��



Recommendations for Augmentation� Table � illustrates that rede
nition can be helped
tremendously if the views are augmented with a COUNT��� aggregate� If the HAVING clause
mentions an aggregate not in the view	 then augment the view with this aggregate�

� Union and Di�erence Views


�� UNION

A view V may be de
ned as the union of subqueries	 say V� and V�� If the de
nition of V changes
by a local change in either V� or V� but not both	 then it would be advantageous to apply the
techniques developed in the previous sections to incrementally update either the materialization of
V� or V� while leaving the other unchanged�

In order to do this	 we need to know which tuples in V came from V� and which from V�� With
this knowledge	 we can simply keep the tuples from the unchanged part of the view	 and update
the changed part of the view� Thus it would be bene
cial to store with each tuple an indication of
whether it came from V� or V�� Alternatively	 one could store V� and V� separately	 and form the
union only when the whole view V is accessed�

Example 
��� Consider the schema from Example ���� Suppose we want the names of employees
who either work on a project located in New York	 or who manage a project located in New York�
We can write this view V as V� UNION V� where V� and V� are as follows�

V� � SELECT Name	SubQ��V��
FROM E � W � P
WHERE Location�New�York

V� � SELECT Name	SubQ��V��
FROM E	 P �E�Emp� � P�Leader�
WHERE Location�New�York

�We would probably choose not to display the SubQ 
eld to the user	 but to keep it as an
attribute of a larger augmented relation�� If we wanted to change V� so that we get only employees
working more than �� hours per week	 then we could do so using techniques developed in the
previous sections for tuples in V with SubQ��V��	 and leave the other tuples unchanged� �

It is easy to delete a UNION operand if we keep track of which tuples came from which subqueries�
We simply remove from V all tuples with the SubQ attribute matching that of the subquery being
deleted�

Adding a union operand is also straightforward� The old union is unchanged	 and the new
operand is evaluated to generate the new tuples�


�� EXCEPT

Example 
��� Consider again the schema from Example ���� Suppose we want the names of
employees who work on a project located in New York	 but who are not managers� We can write
this view as V� EXCEPT V� where V� and V� are de
ned as follows�

CREATE VIEW V� AS

SELECT Name FROM E � W � P
WHERE Location�New�York

CREATE VIEW V� AS

��



SELECT Name FROM E	 P �E�Emp� � P�Leader�
WHERE Location�New�York

�

Unlike the case for unions	 the extension of V could conceivably be much smaller than the
extensions of either V� or V�� Thus	 we cannot argue that in general we should keep all of the V�
and V� tuples with an identi
cation of whether they came from V� or V��

However	 in two cases we can still use information in the old view to compute the new view
more e�ciently�

�� If V� is replaced by a view V �
� that is strictly weaker �i�e�	 contains more tuples� than V�	 then

we can observe that V �
� is empty	 and V � � V EXCEPT V �

� �

�� If V� is replaced by a view V �
� that is strictly stronger �i�e�	 contains fewer tuples� than V�	

then we can observe that V �
� is empty	 and V � � V EXCEPT V �

� �

If we want to subtract a new subquery V� from an existing materialized view V 	 then we can
do so e�ciently using the 
rst observation above� In that case	 the new view V � is V EXCEPT V�
and we can make use of the old extension of V �

In the general case	 there is another possibility that the optimizer can consider for computing
V �� Suppose that V� changes with both V �

� and V �
� nonempty� The new answer is V EXCEPT V �

�

UNION U where U is V� 
 V
�
� � While we probably have not materialized V�	 we can still evaluate

U by considering each tuple in V �
� and checking that it satis
es the conditions de
ning V�� If

V �
� and V �

� are small	 then this strategy will still be better than recomputing V � from scratch�
A symmetric case holds if V� changes rather than V�� In order for this strategy to be e�ective	
the query optimizer needs to estimate the sizes of V �

� and V �
� � For simple views V� this may be

achieved using selectivity information and information about the domains of the attributes� For
complicated queries	 it may be hard to estimate these sizes�


�� Summary� Views with Union and Di�erence

We assume that the initial view de
nition is either

CREATE VIEW V AS

V� UNION V�
or

CREATE VIEW V AS

V� EXCEPT V�

The full list of adaptation techniques for union and di�erence views is given in Appendix A in
Table �� The assumptions used are listed in Table ��� Table � can be used in the same ways as
Table ��

Recommendations for Augmentation� Keep an attribute identifying which subquery in a
union each tuple came from�

� Complex Changes to a View De�nition

It is conceivable that a user might want to make several simultaneous changes to a view de
nition�
One may easily concatenate several of the basic techniques to obtain the new view� However	 that
strategy would materialize all of the intermediate results	 which may not be necessary�

For example	 if more than one condition in the WHERE clause is simultaneously changed	 then
the analysis of Section ��� still applies	 but thinking of C� and C �

� as conjunctions of conditions�
Similarly	 one can add or delete multiple attributes from a view simultaneously using the techniques

��



of Section ��� without materializing intermediate results� Adding several relations to the FROM clause
follows the same pattern� the techniques of Section ��� can be applied for multiple added relations
without materializing the intermediate results�

It is less clear	 however	 how to combine several changes of di�erent types without unnecessarily
materializing intermediate results� For example	 is it possible to simultaneously change the SELECT
clause	 the FROM clause and the WHERE clause without storing intermediate relations$

If the updates are done in�place	 then there is little choice but to perform the individual
adaptations sequentially� However	 if the adaptations are done by creating a new version of the
materialized view then we have more �exibility� Note that each of the in�place updates has an
alternative expression as the creating of a new version� For example	

DELETE FROM V WHERE NOT C

can be expressed as inserting into a new version of the view the result of

SELECT  FROM V WHERE C�

The critical observation is that	 at the physical level	 it is always possible to avoid storing an
intermediate result if the intermediate result can be fully used as it is generated�

Example ���� Let us de
ne a materialized view V by

CREATE VIEW V AS SELECT A�B�C FROM R� � R� WHERE A � ���

Suppose that V is materialized� Suppose that we change the view de
nition by simultaneously �a�
changing A � �� to A � �� in the WHERE clause	 �b� adding a new relation R� to the FROM clause	
with a natural join between C in the view and C as an attribute of R�	 and �c� adding a new
attribute D from R� to the SELECT clause� The new view V � is then de
ned by

CREATE VIEW V � AS SELECT A�B�C�D FROM R� � R� � R� WHERE A � ���

The 
rst change of A � �� to A � �� would give the result

SELECT  FROM V WHERE A � ���

Using the expression above	 one could then express the full adaptation as

SELECT A�B�C�D FROM �SELECT  FROM V WHERE A � ��� � R��

The important characteristic of this expression is that the subquery �SELECT  FROM V WHERE

A � ��� does not have to be stored on secondary storage as an intermediate relation� The tuples
satisfying the subquery could be directly pipelined into a join algorithm for joining with R�� The
join algorithm must need to make only one pass over the pipelined relation� For example	 the
pipelined relation could be used as the outer loop relation in a nested�loop join	 but not as the
inner�loop relation�

A di�erent way of achieving the same result would be for the system to observe that

SELECT A�B�C�D FROM �SELECT  FROM V WHERE A � ��� � R�

can be rewritten as

SELECT A�B�C�D FROM V � R� WHERE A � ���

which it can then execute in a cost�optimal fashion� �

��



Given the discussion above	 the question to ask of each basic technique is whether it can be
applied with a single pass over the previously materialized view� If this were true of some collection
of techniques	 then we could cascade basic view changes by applying pipelining�

When one looks at the techniques developed earlier it turns out that	 with one exception	 all
use of previously materialized views can be done in a single pass� The exception is the use of a
previously materialized view V within an aggregation that is grouped on an attribute that is not the
�physical� ordering attribute of V � Thus	 for changes other than this one exception	 it is possible
in principle to cascade changes without materializing intermediate results�

We thus have three choices for adaptation between which the optimizer can choose� �a� applying
successive in�place updates	 �b� cascading the adaptations as above	 or �c� recomputing the view
from base relations� Even though the in�place adaptations materialize the intermediate relations	
choice �a� may still be the best	 since the cost of the in�place adaptation is sometimes less than the
cost of scanning the whole of the old view�

	 Experimental Validation and Explanations

In this section	 we experimentally compare some of our adaptation techniques with rematerializa�
tion� We also give physical design suggestions for making adaptation more e�cient�

��� Description of the environment

SQL Parser

Adaptation Analyzer

DB Interface Tuple Generator

File

Command
Block

Internal SQL
representation

DB

View definitions in SQL
(both old and new)

SQL code for 
adaptation and 
rematerialization

Statistical
Information

Statistical 
Information

Statistical
Information

Figure �� Architecture of our testing system

We implemented a system described in Figure � to do all the experiments� First	 the view de
nitions
are sent to an SQL parser and transformed into some internal representations� Next	 the SQL code
for adaptation and for rematerialization is generated	 passed to a commercial database system
and executed there� We start a timer before sending the SQL code and stop the timer when
we get the results back� The time we measured is wall time� �Response time	 as measured by
the database server	 was always within � second�s interval from the wall time�� To ensure the

��



results were accurate	 we �ushed the memory bu�er in the database before doing any adaptation
or rematerialization and also force�wrote all the dirty pages�

We used two separate disks	 each of size �GB	 one for data and the other for indices and log

les� The database system was running on a Sun �m ����M��� machine with ���M of memory�
The experiments were run at night when the load on the machine from other users was small� In
order to get rid of transient �uctuations	 we repeated the experiments two or three times and took
the minimal time�

The sample tables we used are from the TPC�D benchmark �TPC��� Most of the view
de
nitions come directly from TPC�D queries� Considering the fact that TPC�D queries are very
complex	 we also designed some simpler test cases�

Some of the techniques have both in�place and non�in�place versions� Rematerialization is done
by using the �select into� clause that doesn�t perform logging� Some adaptation techniques �the
in�place versions� will need to do logging for recovery� there was no easy way to turn o� logging in
our database� Although logging doesn�t take much time when the amount of update is small	 our
setup actually favors rematerialization a little bit�

��� TPC�D Tables

PART �p��

SF����K

partkey

name

mfgr

brand

type

size

containter

retailprice

comment

SUPPLIER �s��

SF���K

suppkey

name

address

nationkey

phone

acctbal

comment

PARTSUPP �ps��

SF�	��K

partkey

suppkey

availqty

supplycost

comment

CUSTOMER �c��

SF��
�K

custkey

name

address

nationkey

phone

acctbal

mktsegment

comment

LINEITEM �l��

SF�����K

orderkey

partkey

suppkey

linenumber

quantity

extendedprice

discount

tax

return�ag

linestatus

shipdate

commitdate

receiptdate

shiptdate

shipinstruct

shipmode

comment

ORDER �o��

SF��
��K

orderkey

custkey

orderstatus

totalprice

orderdate

orderpriority

clerk

shippriority

comment

NATION �n��

�


nationkey

name

regionkey

comment

REGION �r��




regionkey

name

comment

Figure �� Tables of TPCD Benchmark

There are eight tables in the database shown in Figure �� For each table	 we show the name of the
table	 its cardinality �some are factored by SF	 the Scale Factor� and the attributes �with primary

��



keys underlined�� The parentheses following each table name contain the pre
x of the column
names for that table�

��� Design of test sets

We designed 
ve test sets	 each testing a group of related adaptation techniques� In the 
gures
�Figure �	 �	 �	 �	 ��� showing those test sets	 the SQL code in the box corresponds to a view
de
nition� The label on the arrow represents the number of the adaptation technique �as listed in
Appendix A� that can be used to adapt from an old view to a new view following the direction of the
arrow� Enclosed in brackets are those substitution parameters that we�ll change to speci
c values
within the range� All the substitution parameters are randomly chosen as speci
ed in TPC�D�

Here are the ranges of the attributes related to our test sets�

� SUPPLIER�s�acctbal ���	������ ��� ��	������

� LINEITEM�l�shipdate ����������� ��� ����������

� LINEITEM�l�quantity �� ��� ��

� LINEITEM�l�discount ����� ��� ����

� PARTSUPP�ps�partkey �� ��� ��	���

� ORDER�o�orderdate ����������� ��� ����������

� ORDER�o�orderpriority ��	 �	 �	 �	 �

All the tables are populated at scale factor ��� �size of the quali
cation database speci
ed in
TPC�D	 ���M of data in total�� But for the simple test sets in Figure � and �	 the tables we use
will be too small at scale factor ��� and therefore are populated at scale factor �� All the base
tables are physically ordered by their primary keys�

��� Changes in the SELECT Clause

1

2

7 

select SUPPLIER.s−suppkey,
         SUPPLIER.s−name,
         SUPPLIER.s−address,
         SUPPLIER.s−phone,
         SUPPLIER.s−acctbal,
         SUPPLIER.s−comment,
from SUPPLIER
where s−acctbal > [bal1] 

         SUPPLIER.s−nationkey,

select SUPPLIER.s−suppkey,
         SUPPLIER.s−name,
         SUPPLIER.s−address,

         SUPPLIER.s−phone,
         SUPPLIER.s−acctbal,
         SUPPLIER.s−comment,
from SUPPLIER
where s−acctbal > [bal1] [bal2]

select SUPPLIER.s−suppkey,
         SUPPLIER.s−name,
         SUPPLIER.s−address,
         SUPPLIER.s−nationkey,
         SUPPLIER.s−phone,
         SUPPLIER.s−acctbal,
         SUPPLIER.s−comment,
from SUPPLIER
where s−acctbal > 
      (bal2 > bal1)

10

Figure �� Test Set �

��



1

2

(enddate2 < enddate1)

7

10

n1.n−regionkey,

’[enddate2]’

s−nationkey = N1.n−nationkey and
c−nationkey = N2.n−nationkey and
((N1.n−name = ’[nation1]’ and 
  N2.n−name = ’[nation2]’ ) or
 (N1.name = ’[nation2]’ and
  N2.n−name = ’[nation1]’)) and
l−shipdate >= ’[startdate]’ and
l−shipdate <= ’[enddate1]’

s−nationkey = N1.n−nationkey and
c−nationkey = N2.n−nationkey and
((N1.n−name = ’[nation1]’ and 
  N2.n−name = ’[nation2]’ ) or
 (N1.name = ’[nation2]’ and
  N2.n−name = ’[nation1]’)) and
l−shipdate >= ’[startdate]’ and
l−shipdate <= ’[enddate1]’

s−nationkey = N1.n−nationkey and
c−nationkey = N2.n−nationkey and
((N1.n−name = ’[nation1]’ and 
  N2.n−name = ’[nation2]’ ) or
 (N1.name = ’[nation2]’ and
  N2.n−name = ’[nation1]’)) and
l−shipdate >= ’[startdate]’ and
l−shipdate <= 

select n1.n−nationkey,
 
          n2.n−name, l−shipdate, 
          l−extendedprice*(1 − l−discount)
          as Value
from SUPPLIER, LINEITEM, ORDER, 
       CUSTOMER,  NATION N1, 
       NATION N2
where  s−suppkey  = l−suppkey and
      o−orderkey  = l−ordekey and
      c−custkey   = o−custley and

select n1.n−nationkey, 
          n2.n−name, l−shipdate, 
          l−extendedprice*(1 − l−discount)
          as Value
from SUPPLIER, LINEITEM, ORDER, 
       CUSTOMER,  NATION N1, 
       NATION N2
where  s−suppkey  = l−suppkey and
       o−orderkey  = l−ordekey and
       c−custkey   = o−custley and

select n1.n−nationkey, 
          n2.n−name, l−shipdate, 
          l−extendedprice*(1 − l−discount)
          as Value
from SUPPLIER, LINEITEM, ORDER, 
       CUSTOMER,  NATION N1, 
       NATION N2
where  s−suppkey  = l−suppkey and
       o−orderkey  = l−ordekey and
       c−custkey   = o−custley and

Figure �� Test Set �

We use Test Set � and � �Figure � and �� to measure the performance of adaptation techniques �
and � for handling changes in the SELECT clause� Graphs in Figure ��a����d� summarize our results�
Figure ��a� and ��c� are based on Test Set � �Techniques � and ��� The graphs are derived by varying
�bal�� from ��	������ to ��	������� The x�axis is measured as the fraction of tuples from SUPPLIER

that�ll be included in the view� Figure ��b� and ��d� are based on Test Set � �Techniques � and
��� �nation�� and �nation�� are chosen as %CHINA� and %JAPAN�	 respectively� �startdate�

is chosen as %������������� The graphs are derived by varying �enddate�� from %����������� to
%������������ The x�axis is measured as the fraction of tuples from LINEITEM participating the join�

Adding a column Figure ��a� shows that for select�project views �no join�	 the adaptation
technique only wins within a small range �i�e�	 around �&� of tuple involvement� This is because
adaptation does a look�up for each tuple in the old view� Since those tuples are randomly distributed
in the pages of the base table	 we need almost one page access per tuple� On the other hand	
rematerialization needs just one scan through the base relation� Analytically	 the crossover point
can be calculated to be when the proportion of tuples involved in the view is ���&	 which agrees
with our experiment �Figure ��a���

The results are strikingly di�erent for SPJ views as shown in Figure ��b�� Adaptation wins by
a wide margin over rematerialization� The reason is that rematerialization needs to do a six�way
join	 while adaptation only has to do look�ups from one base table� In both ��a� and ��b�	 the
non�in�place version is always better than the in�place version� Although not shown here	 the size
of the base table where the new column being added to the view comes from also plays a role�

Dropping a column Figure ��c� shows that adaptation outperforms rematerialization� This
is because rematerialization needs to read in the whole base table but adaptation only has to
read from the old view which is smaller� In Figure ��d�	 adaptation wins signi
cantly because
rematerialization needs to do an expensive join while adaptation just accesses the old view�

�We have chosen a di�erent set of values and rerun the experiments� The results remain the same�

��



0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples involved from base table

Adaptation(in-place)
Adaptation(non-in-place)

Rematerialization

1

2

3

4

5

6

7

8

9

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

tim
e(

s)

fraction of tuples involved from base table

Adaptation(in-place)
Adaptation(non-in-place)

Rematerialization

�a� Adding a column �without join�

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples involved from base table

Rematerialization

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples involved from base table

Adaptation(in-place)
Adaptation(non-in-place)

�b� Adding a column �with join�

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples involved from base table

Adaptation
Rematerialization

�c� Dropping a column �without join�

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples involved from base table

Rematerialization

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples involved from base table

Adaptation

�d� Dropping a column �with join�

Figure �� Changes in the SELECT Clause

��



��
 Changes in the WHERE Clause �no aggregation	

We measure the performance of adaptation techniques � and �� for handling changes in the WHERE
clause using again Test Set � and � �Figure � and ��� Graphs in Figure ��a����d� summarize the
results� Figure ��a�	 ��b� and ��d� are based on Test Set � �Techniques � and ���� For Figure ��a�
and ��b�	 �bal�� is 
xed at ������� and �bal�� varies from ������� to ��	������� For Figure ��d�	
�bal�� is 
xed at ������� and �bal�� varies from ������� to ��	������� The two lines of the
adaptation in Figure ��a�	 ��b� and ��d� correspond to no clustering in the old view and clustering
on s�acctbal in the old view �i�e�	 the old view is physically ordered by s�acctbal�� Clustering
is achieved by building a clustering index on s�acctbal� Figure ��c� and ��e� are based on Test
Set � �Techniques � and ���� For Figure ��c�	 �enddate�� is 
xed at %����������� and �enddate��

varies from %����������� to %������������ For Figure ��e�	 �enddate�� is 
xed at %����������� and
�enddate�� varies from %����������� to %������������

Adding a condition As shown in Figure ��a�	 rematerialization time goes down from left to
right because the higher the fraction of deletions	 the smaller the size of the output� When the old
view is not clustered	 adaptation has to read in all the pages of the old view� Adaptation time 
rst
goes up rapidly	 and then the slope decreases after the fraction of deletion reaches ���� The reason
is that the old view is not physically ordered by s�acctbal	 so almost all the pages of the old view
will contain at least one tuple to be deleted �and thus need to be written back� when the deletion
percentage reaches a certain point� There is also a drop of adaptation time after the fraction of
deletion reaches ���� This is because that deletion percentage is now so high that many of the pages
will have no data to be written back� When the old view is physically ordered by s�acctbal	 only
those pages having tuples to be deleted need to be read in�	 which lowers the cost of adaptation�
The result here says that if the range of an attribute in a view de
nition is known to shrink quite
often in the future	 it is worthwhile to build a clustered index on it� It should be noted that the
clustered index is built on the old materialized view	 not on the base table� Additionally	 in both
cases	 adaptation loses to rematerialization when the fraction of deletions is high�

Figure ��b� looks di�erent from its in�place counterpart due to their di�erent implementations�
Without an index in the old view	 adaptation always outperforms rematerialization� The reason
is that adaptation only needs to read from the old view rather than a base table which is larger�
Adaptation loses to rematerialization in the presence of a clustered index on the old view �in most
cases�	 because the non�in�place version needs to rebuild the clustered index from scratch �the old
view will be removed�� The non�in�place version has the feature of doing better in the whole range	
but having an index on the view is not a good idea� Figure ��c� shows a dramatically di�erent
result� Since rematerialization needs to do a six�way join while adaptations �both the in�place and
the non�in�place version� only need to access the old view	 adaptations win considerably�

Deleting a condition In Figure ��d�	 both adaptation and rematerialization need to read from
the base table� But adaptation saves the time of writing out those tuples already in the old view�
This explains why adaptation wins when there is no clustered index in the view� With a clustered
index in the old view	 it costs adaptation some time to maintain the index� That�s the reason
why adaptation time becomes longer	 but it can still beat rematerialization when the fraction of
tuples to be inserted is small �i�e�	 less than ��&�� The slope of the adaptation �not clustered� is
higher than that of rematerialization since in addition to the output	 the amount of logging is also
proportional to the fraction of insertions� In Figure ��e�	 the time to perform the join is dominant�
Although adaptation also needs to perform a six�way join as for rematerialization	 it can trim down
the size of one of the base tables considerably	 making itself more e�cient�

�The cost of maintaining the clustered index is included in the time we measured�

��



1

2

3

4

5

6

7

8

9

10

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples deleted from the old view

Adaptation(not clustered)
Adaptation(clustered)

Rematerialization

0

2

4

6

8

10

12

14

16

18

20

22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples deleted from the old view

Adaptation(not clustered)
Adaptation(clustered)

Rematerialization

�a� in�place version �b� non�in�place version
Adding a condition �without join�

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples deleted from the old view

Rematerialization

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples deleted from the old view

Adaptation(in-place)
Adaptation(non-in-place)

�c� Adding a condition �with join	 in�place and non�in�place version�

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples inserted into the old view

Adaptation(not clustered)
Adaptation(clustered)

Rematerialization

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples inserted into the old view

Adaptation
Rematerialization

�d� without join �e� with join
Deleting a condition

Figure �� Changes in the WHERE Clause �no aggregation�

��



�� Changes in the FROM Clause

12

select SUPPLIER.s−suppkey,
         SUPPLIER.s−name,
         SUPPLIER.s−address,
         SUPPLIER.s−nationkey,
         SUPPLIER.s−phone,
         SUPPLIER.s−acctbal,
         SUPPLIER.s−comment,

         PARTSUPP.ps−availqty

          SUPPLIER.s−suppkey =
          PARTSUPP.ps−suppkey

         SUPPLIER.s−phone,
         SUPPLIER.s−acctbal,
         SUPPLIER.s−comment,
from SUPPLIER
where s−acctbal > [bal1] 

select SUPPLIER.s−suppkey,
         SUPPLIER.s−name,
         SUPPLIER.s−address,
         SUPPLIER.s−nationkey,

from SUPPLIER, 
where s−acctbal > [bal1] and

PARTSUPP

Figure �� Test Set �

0

500

1000

1500

2000

2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples involved from base table

Adaptation
Rematerialization

Figure �� Adding a table

We use Test Set � �Figure �� to measure the performance of adaptation technique �� for adding
a table in the FROM clause� The result is shown in Figure �� The graph is derived by varying
�bal�� from ��	������ to ��	������� The x�axis is measured as the fraction of tuples selected from
SUPPLIER�

Rematerialization needs to join two base tables while adaptation only joins one base table with
the old view� When the fraction of tuple involvement is low	 the old view is much smaller than the
base table	 which makes adaptation more e�cient�

It should be noted that adaptation always performs a two�way join regardless of the number of
tables in the view de
nitions� So when there are more than two tables in the new view de
nition	
adaptation will win signi
cantly in a larger range by doing a cheaper join�

��� Changes in the GROUPBY Clause

We use Test Set � �Figure �� to measure the performance of adaptation techniques �� to �� for
handling changes in the GROUPBY clause� Graphs in Figure ���a�����d� summarize our results� The
graphs are derived by choosing �nation� as %CHINA� and varying �partkey� within the range�
The x�axis is measured as the fraction of tuples from PARTSUPP participating the join�

All the graphs in Figure �� look similar� Since rematerialization needs to perform a three�
way join while all the adaptations only need to access the old view	 adaptations win signi
cantly�
Additionally	 adaptations in Figure ���b� and ���c� also save computation time for the groupby
clause� An interesting observation is that when the fraction of tuple involvement reaches ���	 the
optimizer changes its plan which causes the bumps in the graphs�

��



18

19

20

21

22 23

n−nationkey,

n−nationkey,n−regionkey, 

n−regionkey, 

sum

group by ps−partkey

[sum1]

[sum2]

select n−nationkey,
  
          ps−partkey,
          sum(ps−suppcost*ps−availqty)
          as Value
from PARTSUPP, SUPPLIER, NATION
where ps−suppkey = s−suppkey and
         s−nationkey = n−nationkey and
         n−name = ’[nation]’ and
         ps−partkey < [partkey]
group by n−nationkey,
              
              ps−partkey

select                      
          ps−partkey,
          sum(ps−suppcost*ps−availqty)
          as Value
from PARTSUPP, SUPPLIER, NATION
where ps−suppkey = s−suppkey and
         s−nationkey = n−nationkey and
         n−name = ’[nation]’ and
         ps−partkey < [partkey]
group by                          
                ps−partkey

select ps−partkey, 
                  (ps−suppcost*ps−availqty)
         as Value
from PARTSUPP, SUPPLIER, NATION
where ps−suppkey = s−suppkey and
         s−nationkey = n−nationkey and
         n−name = ’[nation]’ and
         ps−partkey < [partkey]

select ps−partkey, 
          ps−suppcost*ps−availqty
         as Value
from PARTSUPP, SUPPLIER, NATION
where ps−suppkey = s−suppkey and
         s−nationkey = n−nationkey and
         n−name = ’[nation]’ and
         ps−partkey < [partkey]

select ps−partkey, 
          sum(ps−suppcost*ps−availqty)
          as Value
from PARTSUPP, SUPPLIER, NATION
where ps−suppkey = s−suppkey and
         s−nationkey = n−nationkey and
         n−name = ’[nation]’
group by ps−partkey
having sum(ps−suppcost*ps−availqty) 
           > 

select ps−partkey, 
          sum(ps−suppcost*ps−availqty)
          as Value
from PARTSUPP, SUPPLIER, NATION
where ps−suppkey = s−suppkey and
         s−nationkey = n−nationkey and
         n−name = ’[nation]’
group by ps−partkey
having sum(ps−suppcost*ps−availqty)
           >
          (sum2 > sum1) 

Figure �� Test Set �

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples invloved from base table

Adaptation
Rematerialization

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples involved from base table

Adaptation
Rematerialization

�a� Dropping a groupby column ���� �b� Dropping a groupby column ����

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples involved from base table

Adaptation(in-place)
Adaptation(non-in-place)

Rematerialization

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples involved from base table

Adaptation
Rematerialization

�c� Adding a groupby column �d� Adding the groupby clause

Figure ��� Changes in the GROUPBY Clause

��



��� Changes in the HAVING Clause

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of groups deleted from the old view

Adaptation(in-place)
Adaptation(non-in-place)

Rematerialization

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of groups inserted into the old view

Adaptation
Rematerialization

�a� Adding a conjunct �b� deleting a conjunct

Figure ��� Changes in the HAVING Clause

We also use Test Set � �Figure �� to measure the performance of adaptation techniques �� and ��
for handling changes in the HAVING clause� Graphs in Figure ���a�����b� summarize the results�
For Figure ���a� �Technique ���	 �sum�� is 
xed to include all the groups� �sum�� is chosen as
di�erent values to include a speci
c percentage of groups� The x�axis is measured as the fraction
of groups deleted from the old view� For Figure ���b� �Technique ���	 �sum�� is 
xed as the value
such that half of the groups will be selected� �sum�� is chosen as di�erent values to insert a speci
c
percentage of groups� The x�axis is measured as the fraction of groups inserted into the old view�

Figure ���a� shows a signi
cant win by adaptation when adding a conjunct� This is because
rematerialization has to do an expensive three�way join but adaptation only needs to delete some
tuples from the old view� Additionally	 rematerialization needs to recompute a groupby clause
which is also very expensive� But Figure ���b� gives a totally di�erent result for deleting a conjunct�
Adaptation time is almost the same as that of rematerialization� The reason is that adaptation
needs to perform the same join and groupby as rematerialization� Only the size of the output is
smaller	 which is less signi
cant here� This suggests that if there are groups to be inserted	 it�s
better to store all the groups and then select those groups needed� Although not shown here	 a
clustered index on the aggregate column in the old view may help �similar to Section �����

��



��� Changes in the WHERE Clause �in the presence of aggregates	

24 25 26 27

[quantity1]

’[enddate1]’ 

[quantity2]

select sum(l−extendedprice*l−discount) as Revenue
from LINEITEM
where l−shipdate >= ’[startdate]’ and
         l−shipdate < ’[enddate]’ and
         l−discount between [discount] − 0.01 and [discount] + 0.01 and
         l−quantity < 

select o−orderpriority, count(*) as Order−count
from ORDER
where o−orderdate < 
group by o−orderpriority

’[enddate2]’ 

select o−orderpriority, count(*) as Order−count
from ORDER
where o−orderdate < 
group by o−orderpriority
                  (enddate2 < enddate1)

select sum(l−extendedprice*l−discount) as Revenue
from LINEITEM
where l−shipdate >= ’[startdate]’ and
         l−shipdate < ’[enddate]’ and
         l−discount between [discount] − 0.01 and [discount] + 0.01 and
         l−quantity < 
                             (quantity2 < quantity1)

Figure ��� Test Set �

We use Test Set � �Figure ��� to measure the performance of adaptation techniques �� to �� for
handling changes in the WHERE clause in the presence of aggregates� Graphs in Figure ���a�����d�
summarize the results when there are only scalar aggregates in the view de
nition �Techniques ��
and ���� Graphs in Figure ���a�����d� and Figure ���a�����d� show the results when there exists
a GROUPBY clause in the view de
nition �Techniques �� and ����

Scalar Aggregates For all graphs in Figure ��	 �startdate� and �enddate� are chosen as
%������������ and %����������� respectively� �discount� is chosen as ����� For Figure ���a� and
���b�	 �quantity�� is 
xed at �� and �quantity� varies from � to ��� For Figure ���c� and ���d�	
�quantity�� is 
xed at �� and �quantity�� varies from �� to ��� For Figure ���b� and ���d�	 a
clustered index is built on l�quantity in base table LINEITEM �i�e�	 LINEITEM is physically ordered
by l�quantity�� The x�axis is measured as the ratio of the number of tuples satisfying the where
clause in the new view 	 but not the old view and the number of tuples satisfying the where clause
in the old view�

The graphs here are di�erent from those in Section ���	 This is because we have only one tuple'
the aggregation results in the old view� So	 while some techniques in Section ��� only need to delete
some tuples from the old view	 all the techniques in this section have to access the base table�

In Figure ���a�	 adaptation also needs to read in all the pages of the base table as rematerializa�
tion	 since the base table is not physically ordered on l�quantity� When the deletion percentage
is low	 the computation time for adaptation is less than for rematerialization and when deletion
percentage is high	 the opposite� But the computation time here is less signi
cant than the I�O time	
which explains why the di�erence is small� In Figure ���b�	 both adaptation and rematerialization
can take advantage of the clustered index in the base table� When deletion percentage is small	
adaptation saves a lot of I�O time� So does rematerialization when deletion percentage is large�
In Figure ���c�	 adaptation always beats rematerialization by a small fraction since it saves the
time to recompute the aggregation results already in the old view� Figure ���d� shows that the
gap between the two lines is much wider� The reason is that with the help of the clustered index	
adaptation also saves the time of reading in those tuples in order to compute the aggregation results
already in the old view�

The situation will change when there are joins in the view de
nitions� Although adaptation
techniques here need to perform the same join as rematerialization	 one of the base tables �the one
containing the attribute in the changing predicate� can be restricted to include only the di�erence�
The join for adaptation is cheaper than that for rematerialization	 especially when the di�erence is
small� We expect adaptation will outperform rematerializtion �in a way similar to Figure ��e���

��



0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples deleted

Adaptation
Rematerialization

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples deleted

Adaptation
Rematerialization

�a� clustered index on key �b� clustered index on l�quantity

Adding a condition

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples inserted

Adaptation
Rematerialization

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples inserted

Adaptation
Rematerialization

�c� clustered index on key �d� clustered index on l�quantity

Dropping a condition

Figure ��� Changes in the WHERE Clause �in the presence of scalar aggregates�

��



0

20

40

60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples deleted

Adaptation
Rematerialization

0

20

40

60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples deleted

Adaptation
Rematerialization

�a� clustered index on key �b� clustered index on o�orderdate

Adding a condition

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples inserted

Adaptation
Rematerialization

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples inserted

Adaptation
Rematerialization

�c� clustered index on key �d� clustered index on o�orderdate

Deleting a condition

Figure ��� Changes in the WHERE Clause �in the presence of the groupby clause	 � groups�

With Groupby For Figure ���a� and ���b�	 �enddate�� is 
xed at %����������� and �enddate��

varies from %����������� to ������������� For Figure ���c� and ���d�	 �enddate�� is 
xed at %�����
������ and �enddate�� varies from %����������� to ������������� For Figure ���b� and ���d�	 a
clustered index is built on o�orderdate in base table ORDER �i�e� ORDER is physically ordered by
o�orderdate�� The x�axis is measured in the same way as in Figure ��� There are only 
ve groups
in the view�

The adaptation techniques in this section also need to access the base table� In Figure ���a�	
both adaptation and rematerialization need to read in the whole base table� The computation
time for adaptation is less than that for rematerialization when deletion percentage is small� In
Figure ���b�	 since the base table has special physical order	 only the needed pages will be read in
by both adaptation and rematerialization� Adaptation wins within a wider range� In Figure ���c�	
both subqueries in the adaptation technique need to access the base table� Although the two access
patterns are quite similar	 the optimizer didn�t recognize it� The base table has to be read in twice	
resulting in the poor performance of adaptation� In Figure ���d�	 for the same reason	 adaptation
loses in most cases� But adaptation still wins when the fraction of insertion is below ���� The
reason is that by having the clustered index on the base table	 only the needed pages will be read
in� When those pages can still 
t into the memory	 the second subquery can utilize it without
accessing the disk� We would expect better performance with the help of a multiquery optimizer�

Additionally	 the adaptation techniques here are sensitive to the number of groups involved in

��



the view� We repeated the test on a di�erent groupby attribute'O�CUSTKEY ���K distinct values�
and obtained the results in Figure ��� The result suggets that the adaptation techniques here are
not suitable for a large number of groups�

This situation when there are joins in the view de
nitions is similar to that of scalar aggregates�

0

100

200

300

400

500

600

700

800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples deleted

Adaptation
Rematerialization

0

100

200

300

400

500

600

700

800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples deleted

Adaptation
Rematerialization

�a� clustered index on key �b� clustered index on o�orderdate

Adding a condition

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples inserted

Adaptation
Rematerialization

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

fraction of tuples inserted

Adaptation
Rematerialization

�c� cluster index on key �d� clustered index on o�orderdate

Deleting a condition

Figure ��� Changes in the WHERE Clause �in the presence of the groupby clause	 ��K groups�

���� Summary

What do we learn from the experiments$ First	 the �common wisdom� that adaptation will always
win is not true� We have seen cases that adaptation performs comparably or even worse than
rematerialization� Second	 adaptation can do better with the help of certain physical layouts� Here
are the high�level conclusions we have reached�

� Adaptation can help in most cases�

� Adaptation is more e�cient when

� there are joins in the view de
nitions�

� there exists an appropriate physical order on the view�

� there exists an appropriate physical order on the base tables�

��



� the changes in the view de
nitions are small�

The idea of having a particular physical order on the view is practical	 but it may not be
practical to have a particular physical order on the base tables since the base tables themselves
may already be clustered on some other attributes for various reasons�

Due to the limitation of space here	 we omitted trivial adaptation techniques �such as remove
DISTINCT� and techniques that have similar syntax to those we have tested� We also omitted the
techniques in the presence of UNION and EXCEPT 	 since they are the combination of some other
techniques�


 Conclusions

When the de
nition of a materialized view changes we need to bring the materialization up�to�date�
In this paper we focus on adapting a materialized view	 i�e�	 using the old materialization to help
in the materialization of the new view� The alternative to adaptation is to recompute the view
from scratch	 making no use of the old materialization� Often	 it is more e�cient to adapt a view
rather than recompute it	 sometimes by an order of magnitude� a number of examples have been
described in this paper�

A number of applications	 like data�archaeology and visualization	 require interactive	 and thus
quick	 response to changes in the de
nition of a materialized view�

We have provided a comprehensive list of view adaptation techniques that can be applied for
basic view de
nition changes� Each of these adaptation techniques is itself expressed as an SQL

query or update that makes use of the old materialization� Because the adaptation is itself expressed
in SQL	 it is possible for the query optimizer to estimate the cost of these techniques using standard
cost�based optimization� In some cases there may be several adaptation alternatives	 and each of
the alternatives would be considered in turn�

Our basic adaptation techniques correspond to local changes in the view de
nition� We also
describe how multiple local changes can be combined to give an adaptation technique for changes
to several parts of a view de
nition� Almost all techniques for adapting a view in response to a
local change can be pipelined thereby eliminating the need to store intermediate adapted views
when multiple local changes are combined�

Often it is easier to adapt a view if certain additional information is kept in the view� Such
additional information includes keys of base relations	 attributes involved in selection conditions	
counts of the number of derivations of each tuple	 additional aggregate functions beyond those
requested	 and identi
ers indicating which subquery in a union each tuple came from� Depending
on the type of anticipated change	 the view can be de
ned to contain the appropriate additional
information� Additionally	 it can be bene
cial to reserve some physical space in each record to
allow in�place adaptation involving addition of attributes�

We have derived tables of adaptation techniques �see Appendix A for a complete list� that
can be used in three important ways� Firstly	 the query optimizer can use the tables to 
nd the
adaptation technique �and compute its cost estimate� given the properties of the current schema
vis�a�vis the assumptions stated in the table� Secondly	 a database administrator or user can use the
tables to see what assumptions would need to be satis
ed in order to make view adaptation possible
at the most e�cient level	 and de
ne the view accordingly� Thirdly	 the database administrator
can interact with the query optimizer to build appropriate access methods and indexes on the base
relations and on the materialized views	 in order to facilitate e�cient adaptation�

We have implemented a view adaptation prototype on top of a commercial relational database
system and measured the relative speeds of adaptation versus rematerialization� The results give
strong support for most of the adaptation techniques�

��



The main contributions of this paper are �a� the derivation of a comprehensive set of view
adaptation techniques	 �b� the smooth integration of such techniques into the framework of cur�
rent relational database systems using existing optimization technology	 �c� the identi
cation of
guidelines that can be provided to users and database administrators in order to facilitate view
adaptation	 and �d� the experimental validation of quantitative improvements under a variety of
conditions�

Acknowledgments

We thank Arun Netravali for pointing out the importance of rede
nition to data visualization	 and
Shaul Dar and Tom Funkhouser for discussions of the relationship between view maintenance and
data visualization� Justin Vallon wrote much of the code used in the view maintenance experiments�

References

�AWS��� Christopher Ahlberg� Christopher Williamson� and Ben Shneiderman� Dynamic Queries for information
exploration� an implementation and evaluation� In Ben Shneiderman� editor� Sparks of Innovation in

Human�Computer Interaction� Ablex Publishing Corp� �����

�BBMR��� Alex Borgida� et al� CLASSIC� A structural data model for objects� In ACM�SIGMOD� pages ���	��
June �����

�BST���� Ronald J� Brachman� et al� Knowledge representation support for data archaeology� In First International
Conference on Information and Knowledge Management� pages 
���
	
� November �����

�BST���� Ronald J� Brachman� et al� Integrated support for data archaeology� International Journal of Intelligent
and Cooperative Information Systems� ���������� �����

�CKPS��� Surajit Chaudhuri� Ravi Krishnamurthy� Spyros Potamianos� and Kyuseok Shim� Optimizing queries
with materialized views� To appear in Proceedings of International Conference on Data Engineering�
�����

�DJLS��� Shaul Dar� H�V� Jagadish� Alon Levy� and Divesh Srivastava� Answering SQL queries with aggregation
using views� AT�T technical report� �����

�GHQ��� Ashish Gupta� Venky Harinarayan� and Dallan Quass� Aggregate�Query Processing in Data Warehousing
Environments� In VLDB� �����

�GMR��� Ashish Gupta� Inderpal Singh Mumick� and Kenneth A� Ross� Adapting materialized views after
rede�nitions� In SIGMOD� pages �������� �����

�GMS��� Ashish Gupta� Inderpal Singh Mumick� and V� S� Subrahmanian� Maintaining views incrementally� In
SIGMOD� pages �����	�� �����

�GSUW�
� Ashish Gupta� Yehoshua Sagiv� Je�rey D� Ullman� and Jennifer Widom� Constraint Checking with
Partial Information� In PODS� pages 
����� ���
�

�LMS�
� Alon Levy� Inderpal Singh Mumick� and Yehoshua Sagiv� Query optimization by predicate movearound�
In Bocca et al� VLDB� pages �	���� ���
�

�LMSS��� Alon Y� Levy� Alberto O� Mendelzon� Yehoshua Sagiv� and Divesh Srivastava� Answering queries using
views� To appear in PODS� �����

�LY��� P� A� Larson and H�Z� Yang� Computing queries from derived relations� In VLDB � pages �����	�� �����

�MPR�� I� S� Mumick� H� Pirahesh� and R� Ramakrishnan� The magic of duplicates and aggregates� In VLDB�
����

�RSU��� Anand Rajaraman� Yehoshua Sagiv� and Je�rey Ullman� Answering queries using templates with binding
patterns� To appear in PODS� �����

�TPC��� TPC�D Benchmark Standard Speci�cation �Revision ���� May� �����

�TSI�
� Odysseas G� Tsatalos� Marvin H� Solomon� and Yannis E� Ioannidis� The GMAP� A versatile tool for
physical data independence� In Bocca et al� VLDB� pages �	������ ���
�

�Ull��� Je�rey D� Ullman� Principles of Database and Knowledge�Base Systems� Volume �� Computer Science
Press� �����

��



�WS��� Christopher Williamson and Ben Shneiderman� The Dynamic HomeFinder� evaluating Dynamic Queries
in a real� estate information exploration system� In Ben Shneiderman� editor� Sparks of Innovation in

Human�Computer Interaction� Ablex Publishing Corp� �����

�YL��� H� Z� Yang and P� A� Larson� Query transformation for PSJ�queries� In VLDB� pages �
����
� �����

A Tables of Adaptation Techniques

In this section we present the complete tables of adaptation techniques� The initial view for each
table is described in the corresponding section of the text �Section ��� for Table �	 Section ��� for
Table �	 and Section ��� for Table ��� The rede
ned view shows what the view looks like after
the rede
nition� The adaptation technique will either update the old materialization V 	 or insert
tuples into a relation called New V which represents the new materialization� In the event that
basic adaptations are pipelined	 the tuples may not actually be stored in an intermediate relation�

We omit symmetric cases such as for the two arguments of unions�

��



No� Redened View Adaptation Technique Assumptions

�
SELECT A�A�� � � � � An

FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck

ALTER TABLE V ADD A

UPDATE V SETA � � SELECT A

FROM S

WHERE S�K � V�K	

��	

�
SELECT A�� � � � � An

FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck

ALTER TABLE V DROP A�

�
SELECT DISTINCT A�� � � � � An

FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck

INSERT INTO New V

SELECT DISTINCT 

FROM V

�
SELECT DISTINCT A�� � � � � An

FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck

Mark view as being distinct� ��	

 Remove a DISTINCT quali�er�

INSERT INTO New V

SELECT A�� � � � � An

FROM V � Ri� � � � � Rj � Rj��� � � � � Rm �C�
WHERE Cp AND � � � AND Ck

��	

� Remove a DISTINCT quali�er� Mark view as having duplicates� ��	

�
SELECT A�� � � � � An

FROM R� � � � � � Rm

WHERE C�
�
AND � � � AND Ck

DELETE

FROM V

WHERE NOT C�
�

C�
�
� C�� ��	

�
SELECT A�� � � � � An

FROM R� � � � � � Rm

WHERE C�
�
AND � � � AND Ck

DELETE

FROM V

WHERE NOT C�
�

INSERT INTO V

SELECT A�� � � � � An

FROM R� � � � � � Rm

WHERE C�
�
AND NOT C�

AND � � � AND Ck

C�
�
�� C�� ��	

�
SELECT A�� � � � � An

FROM R� � � � � � Rm

WHERE C� AND C� AND � � � AND Ck

DELETE

FROM V

WHERE NOT C�

��	

��
SELECT A�� � � � � An

FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck

INSERT INTO V

SELECT A�� � � � � An

FROM R� � � � � � Rm

WHERE NOT C� AND C� AND � � � AND Ck

��
SELECT A�� � � � � An�D�� � � � � Dj

FROM R� � � � � � Rm � Rm��

WHERE C� AND � � � AND Ck

ALTER TABLE V ADD D�� � � � �Dj

UPDATE V

SET D�� � � � �Dj � � SELECT Rm���D�� � � � � Rm���Dj

FROM Rm��

WHERE Rm���A � V �B	�

�����	

��
SELECT A�� � � � � An�D�� � � � � Dj

FROM R� � � � � � Rm � Rm��

WHERE C� AND � � � AND Ck

INSERT INTO New V

SELECT A�� � � � � An� D�� � � � �Dj

FROM V�Rm��

WHERE A � B

���	

��
SELECT A�� � � � � An�D�� � � � � Dj

FROM R� � � � � � Rm � Rm��

WHERE C� AND � � � AND Ck

ALTER TABLE V ADD D�� � � � �Dj

UPDATE V SET D�� � � � �Dj �
�SELECT Rm���D�� � � � � Rm���Dj

FROM Rm��� Ri

WHERE Rm���A � Ri�B AND V�K � Ri�K	�

�����	

��
SELECT A�� � � � � An�D�� � � � � Dj

FROM R� � � � � � Rm � Rm��

WHERE C� AND � � � AND Ck

INSERT INTO New V

SELECT A�� � � � � An� D�� � � � �Dj

FROM V�Ri� Rm��

WHERE A � B AND V�K � Ri�K

���	

�
SELECT A�� � � � � An

FROM R� � � � � � Rm��

WHERE C� AND � � � AND Ck

No adaptation needed� �����	

��
SELECT A�� � � � � Aj

FROM R� � � � � � Rm��

WHERE C� AND � � � AND Ck

ALTER TABLE V DROP Aj��� � � � � An j � n� �����	

Table �� Adaptation Techniques for SELECT�FROM�WHERE Views

��



�� Attribute A is from relation S and the key K for S is in view V �

�� The view contains keys for R�� � � � � Rj 	 Cp� � � � � Ck and C are the join conditions relating
attributes of Rj��� � � � � Rm to each other and to R�� � � � � Rj 	 and Ri� � � � � Rj are those relations
in R�� � � � � Rj that have an attribute both mentioned by Cp� � � � � Ck or C and not in A�� � � � � An�

�� An augmented view that keeps a count of number of derivations of each tuple is used�

�� Attribute of condition is either an attribute of the view	 or of a wider augmented stored view�

�� D�� � � � �Dj and A are attributes of Rm��	 and the join condition is A � B�

�� B is an attribute of V �

�� A is a key for relation Rm���

�� B is an attribute of Ri	 K is a key of Ri	 and K is an attribute of V �

�� Join with Rm is on a key of Rm�

��� Either V contains a SELECT DISTINCT	 or the join of Rm is on a key attribute that is also present
in V �

Table �� Assumptions for the Adaptation Techniques in Table �

��



No� Redened View Adaptation Technique Assumptions

��

CREATE VIEW V AS

SELECT A�� � � � � An� F��B�	� � � � � Fj�Bj	
FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck
GROUPBY A�� � � � � Ap��

INSERT INTO New V

SELECT A�� � � � � An� G��E�	� � � � � Gj�Ej	
FROM V

GROUPBY A�� � � � � Ap��

��	

��

CREATE VIEW V AS

SELECT A�� � � � � An� F��B�	� � � � � Fj�Bj	
FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck
GROUPBY A�� � � � � Ap

INSERT INTO New V

SELECT A�� � � � � An� G��E�	� � � � � Gj�Ej	
FROM V

GROUPBY A�� � � � � Ap

��	

��

CREATE VIEW V AS

SELECT A�� � � � � An��� F��B�	� � � � � Fj�Bj	
FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck
GROUPBY A�� � � � � Ap��

ALTER TABLE V DROP An ��	

��

CREATE VIEW V AS

SELECT A�� � � � � An� Ap��� F��B�	� � � � � Fj�Bj	
FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck
GROUPBY A�� � � � � Ap� Ap��

ALTER TABLE V ADD Ap��

UPDATE V

SET Ap�� � �SELECT Ri�Ap��

FROM Ri

WHERE Ri�Aj � V�Aj	

��	

��

CREATE VIEW V AS

SELECT A�� � � � � An� G��D�	� � � � �Gq�Dq	
FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck
GROUPBY A�� � � � � Ar

INSERT INTO New V

SELECT A�� � � � � As�G��D�	� � � � � Gq�Dq	
FROM V

GROUPBY A�� � � � � Ar

��	

��

CREATE VIEW V AS

SELECT A�� � � � � An� G��D�	� � � � �Gq�Dq	
FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck
GROUPBY A�� � � � � Ar

HAVING H� AND H� AND � � � AND Hp

DELETE

FROM V

WHERE NOT H�

�	

��

CREATE VIEW V AS

SELECT A�� � � � � An� G��D�	� � � � �Gq�Dq	
FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck
GROUPBY A�� � � � � Ar

HAVING H� AND � � � AND Hp

INSERT INTO V

SELECT A�� � � � � An�G��D�	� � � � �Gq�Dq	
FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck
GROUPBY A�� � � � � Ar

HAVING NOT H� AND H� AND � � � AND Hp

�	

Table �� Adaptation Techniques for Aggregate Views

��



No Redened View Adaptation Technique Assumptions

��

CREATE VIEW V �M�� � � � �Mn	 AS
SELECT F��A�	� � � � � Fn�An	
FROM R� � � � � � Rm

WHERE C� AND C� AND � � � AND Ck

UPDATE V

SET Mi � Hi�Mi�
SELECT Fi�Ai	
FROM R� � � � � � Rm

WHERE NOT C� AND C� AND � � � AND Ck	
WHERE EXISTS �SELECT 


FROM R� � � � � � Rm

WHERE NOT C� AND C� AND � � � AND Ck	

��	

�

CREATE VIEW V �M�� � � � �Mn	 AS
SELECT F��A�	� � � � � Fn�An	
FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck

UPDATE V

SET Mi � H�
i�Mi�

SELECT Fi�Ai	
FROM R� � � � � � Rm

WHERE NOT C� AND C� AND � � � AND Ck	
WHERE EXISTS �SELECT 


FROM R� � � � � � Rm

WHERE NOT C� AND C� AND � � � AND Ck	

��	

��

CREATE VIEW V �A�� � � � � An�M�� � � � �Mj	
AS

SELECT A�� � � � � An� F��B�	� � � � � Fj�Bj	
FROM R� � � � � � Rm

WHERE C� AND C� AND � � � AND Ck
GROUPBY A�� � � � � An

UPDATE V

SET Mi � Hi�Mi�
SELECT Fi�Bi	
FROM R� � � � � � Rm

WHERE NOT C� AND C� AND � � � AND Ck AND

A� � V �A� AND � � � An � V �An	
WHERE EXISTS �SELECT 


FROM R� � � � � � Rm

WHERE NOT C� AND C� AND � � � AND Ck AND

A� � V �A� AND � � � An � V �An	
DELETE V

WHERE Mm � �

��� �	

��

CREATE VIEW V �A�� � � � � An�M�� � � � �Mj	
AS

SELECT A�� � � � � An� F��B�	� � � � � Fj�Bj	
FROM R� � � � � � Rm

WHERE C� AND � � � AND Ck
GROUPBY A�� � � � � An

UPDATE V

SET Mi � H�
i�Mi�

SELECT Fi�Bi	
FROM R� � � � � � Rm

WHERE NOT C� AND C� AND � � � AND Ck AND

A� � V �A� AND � � � An � V �An	
WHERE EXISTS �SELECT 


FROM R� � � � � � Rm

WHERE NOT C� AND C� AND � � � AND Ck AND

A� � V �A� AND � � � An � V �An	
INSERT INTO V

SELECT A�� � � � � An� F��B�	� � � � � Fj�Bj	
FROM R� � � � � � Rm

WHERE NOT C� AND C� AND � � � AND Ck AND

NOT EXISTS �SELECT 
 FROM V

A� � V �A� AND � � � An � V �An	
GROUPBY A�� � � � � An

��� �	

Table �� Adaptation Techniques for Aggregate Views	 Continued

��



�� Each of the aggregation functions F��B��� � � � � Fj�Bj� are decomposable into the
functions G��E��� � � � � Gj�Ej� over the attributes of the view V 	 as listed in Table ��

�� The dropped attribute	 Ap � An is functionally determined by the remaining grouping
attributes A�� � � � � Ap���

�� The added attribute	 Ap�� is functionally determined by a grouping attribute Aj
which is the key for relation Ri�

�� There was no previous aggregation or grouping	 i�e�	 p � j � �	 and the grouping
attributes Ai	 and aggregated attributes Di are present in V � Also r � s�

�� Attribute of conjunct in HAVING clause is either an attribute of the view	 or of a wider
augmented stored view�

�� The choices of Hi and H
�
i are described in Table � and ��

�� Mm � COUNT��� is either an attribute of the view	 or of a wider augmented stored
view�

Table �� Assumptions for the Adaptation Techniques in Table � and �

No� Redened View Adaptation Technique Assumptions

�� V� UNION V �
�

INSERT INTO New V�
BB�

SELECT 

FROM V

WHERE V�SubQ � �V��
UNION

Other adaptation tech�
nique applied to
SELECT 

FROM V

WHERE V�SubQ � �V��

�
CCA

����	

�� V�

DELETE 

FROM V

WHERE V�SubQ � �V��
��	

�� V� UNION V� UNION V�

INSERT INTO V

SELECT � � �� SubQ � �V��
FROM � � �

WHERE � � �

����	

�� V� EXCEPT V �
�

DELETE

FROM V

WHERE V �
 IN SQL�V �

�
	

����	

�� V� EXCEPT V �
�

DELETE FROM V WHERE V �
 IN SQL�V �

�
	

INSERT INTO V �SQL�V �
�
	 INTERSECT SQL�V�		

��	

�� V �
�
EXCEPT V�

DELETE

FROM V

WHERE V �
 IN SQL�V �
�
	

���	

�� V �
�
EXCEPT V�

DELETE FROM V WHERE V �
 IN SQL�V �
�
	

INSERT INTO V �SQL�V �

�
	 EXCEPT SQL�V�		

��	

� V� EXCEPT V� EXCEPT V�

DELETE

FROM V

WHERE V �
 IN SQL�V�	
��	

Table �� Adaptation Techniques for Union and Di�erence Views

��



�� An extra attribute determining which argument of the union the tuple came from is
kept as part of the view�

�� If the other adaptation technique for V� can be expressed as an in�place update	 then
so can the adaptation technique for the union�

�� The given SQL outline is the de
nition of V��

�� V �
� can be shown to be weaker than V�	 i�e�	 V� � V �

� �

�� V �
� can be shown to be stronger than V�	 i�e�	 V

�
� � V��

�� SQL�Vi�	 SQL�V �
i � and SQL�V �

i � correspond to the SQL code for Vi	 V
�
i and V �

i

respectively�

Table ��� Assumptions for the Adaptation Techniques in Table �

��


