1,878 research outputs found

    A Graphical Adversarial Risk Analysis Model for Oil and Gas Drilling Cybersecurity

    Full text link
    Oil and gas drilling is based, increasingly, on operational technology, whose cybersecurity is complicated by several challenges. We propose a graphical model for cybersecurity risk assessment based on Adversarial Risk Analysis to face those challenges. We also provide an example of the model in the context of an offshore drilling rig. The proposed model provides a more formal and comprehensive analysis of risks, still using the standard business language based on decisions, risks, and value.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Structural dynamics branch research and accomplishments for fiscal year 1987

    Get PDF
    This publication contains a collection of fiscal year 1987 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's four major work areas, Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods, are included in the report as well as a complete listing of the FY87 branch publications

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    A Survey on Trust Metrics for Autonomous Robotic Systems

    Full text link
    This paper surveys the area of Trust Metrics related to security for autonomous robotic systems. As the robotics industry undergoes a transformation from programmed, task oriented, systems to Artificial Intelligence-enabled learning, these autonomous systems become vulnerable to several security risks, making a security assessment of these systems of critical importance. Therefore, our focus is on a holistic approach for assessing system trust which requires incorporating system, hardware, software, cognitive robustness, and supplier level trust metrics into a unified model of trust. We set out to determine if there were already trust metrics that defined such a holistic system approach. While there are extensive writings related to various aspects of robotic systems such as, risk management, safety, security assurance and so on, each source only covered subsets of an overall system and did not consistently incorporate the relevant costs in their metrics. This paper attempts to put this prior work into perspective, and to show how it might be extended to develop useful system-level trust metrics for evaluating complex robotic (and other) systems

    Multidisciplinary Design Optimization for Space Applications

    Get PDF
    Multidisciplinary Design Optimization (MDO) has been increasingly studied in aerospace engineering with the main purpose of reducing monetary and schedule costs. The traditional design approach of optimizing each discipline separately and manually iterating to achieve good solutions is substituted by exploiting the interactions between the disciplines and concurrently optimizing every subsystem. The target of the research was the development of a flexible software suite capable of concurrently optimizing the design of a rocket propellant launch vehicle for multiple objectives. The possibility of combining the advantages of global and local searches have been exploited in both the MDO architecture and in the selected and self developed optimization methodologies. Those have been compared according to computational efficiency and performance criteria. Results have been critically analyzed to identify the most suitable optimization approach for the targeted MDO problem

    A Partially Randomized Approach to Trajectory Planning and Optimization for Mobile Robots with Flat Dynamics

    Get PDF
    Motion planning problems are characterized by huge search spaces and complex obstacle structures with no concise mathematical expression. The fixed-wing airplane application considered in this thesis adds differential constraints and point-wise bounds, i. e. an infinite number of equality and inequality constraints. An optimal trajectory planning approach is presented, based on the randomized Rapidly-exploring Random Trees framework (RRT*). The local planner relies on differential flatness of the equations of motion to obtain tree branch candidates that automatically satisfy the differential constraints. Flat output trajectories, in this case equivalent to the airplane's flight path, are designed using Bézier curves. Segment feasibility in terms of point-wise inequality constraints is tested by an indicator integral, which is evaluated alongside the segment cost functional. Although the RRT* guarantees optimality in the limit of infinite planning time, it is argued by intuition and experimentation that convergence is not approached at a practically useful rate. Therefore, the randomized planner is augmented by a deterministic variational optimization technique. To this end, the optimal planning task is formulated as a semi-infinite optimization problem, using the intermediate result of the RRT(*) as an initial guess. The proposed optimization algorithm follows the feasible flavor of the primal-dual interior point paradigm. Discretization of functional (infinite) constraints is deferred to the linear subproblems, where it is realized implicitly by numeric quadrature. An inherent numerical ill-conditioning of the method is circumvented by a reduction-like approach, which tracks active constraint locations by introducing new problem variables. Obstacle avoidance is achieved by extending the line search procedure and dynamically adding obstacle-awareness constraints to the problem formulation. Experimental evaluation confirms that the hybrid approach is practically feasible and does indeed outperform RRT*'s built-in optimization mechanism, but the computational burden is still significant.Bewegungsplanungsaufgaben sind typischerweise gekennzeichnet durch umfangreiche Suchräume, deren vollständige Exploration nicht praktikabel ist, sowie durch unstrukturierte Hindernisse, für die nur selten eine geschlossene mathematische Beschreibung existiert. Bei der in dieser Arbeit betrachteten Anwendung auf Flächenflugzeuge kommen differentielle Randbedingungen und beschränkte Systemgrößen erschwerend hinzu. Der vorgestellte Ansatz zur optimalen Trajektorienplanung basiert auf dem Rapidly-exploring Random Trees-Algorithmus (RRT*), welcher die Suchraumkomplexität durch Randomisierung beherrschbar macht. Der spezifische Beitrag ist eine Realisierung des lokalen Planers zur Generierung der Äste des Suchbaums. Dieser erfordert ein flaches Bewegungsmodell, sodass differentielle Randbedingungen automatisch erfüllt sind. Die Trajektorien des flachen Ausgangs, welche im betrachteten Beispiel der Flugbahn entsprechen, werden mittels Bézier-Kurven entworfen. Die Einhaltung der Ungleichungsnebenbedingungen wird durch ein Indikator-Integral überprüft, welches sich mit wenig Zusatzaufwand parallel zum Kostenfunktional berechnen lässt. Zwar konvergiert der RRT*-Algorithmus (im probabilistischen Sinne) zu einer optimalen Lösung, jedoch ist die Konvergenzrate aus praktischer Sicht unbrauchbar langsam. Es ist daher naheliegend, den Planer durch ein gradientenbasiertes lokales Optimierungsverfahren mit besseren Konvergenzeigenschaften zu unterstützen. Hierzu wird die aktuelle Zwischenlösung des Planers als Initialschätzung für ein kompatibles semi-infinites Optimierungsproblem verwendet. Der vorgeschlagene Optimierungsalgorithmus erweitert das verbreitete innere-Punkte-Konzept (primal dual interior point method) auf semi-infinite Probleme. Eine explizite Diskretisierung der funktionalen Ungleichungsnebenbedingungen ist nicht erforderlich, denn diese erfolgt implizit durch eine numerische Integralauswertung im Rahmen der linearen Teilprobleme. Da die Methode an Stellen aktiver Nebenbedingungen nicht wohldefiniert ist, kommt zusätzlich eine Variante des Reduktions-Ansatzes zum Einsatz, bei welcher der Vektor der Optimierungsvariablen um die (endliche) Menge der aktiven Indizes erweitert wird. Weiterhin wurde eine Kollisionsvermeidung integriert, die in den Teilschritt der Liniensuche eingreift und die Problemformulierung dynamisch um Randbedingungen zur lokalen Berücksichtigung von Hindernissen erweitert. Experimentelle Untersuchungen bestätigen, dass die Ergebnisse des hybriden Ansatzes aus RRT(*) und numerischem Optimierungsverfahren der klassischen RRT*-basierten Trajektorienoptimierung überlegen sind. Der erforderliche Rechenaufwand ist zwar beträchtlich, aber unter realistischen Bedingungen praktisch beherrschbar

    Recognizing complex faces and gaits via novel probabilistic models

    Get PDF
    In the field of computer vision, developing automated systems to recognize people under unconstrained scenarios is a partially solved problem. In unconstrained sce- narios a number of common variations and complexities such as occlusion, illumi- nation, cluttered background and so on impose vast uncertainty to the recognition process. Among the various biometrics that have been emerging recently, this dissertation focus on two of them namely face and gait recognition. Firstly we address the problem of recognizing faces with major occlusions amidst other variations such as pose, scale, expression and illumination using a novel PRObabilistic Component based Interpretation Model (PROCIM) inspired by key psychophysical principles that are closely related to reasoning under uncertainty. The model basically employs Bayesian Networks to establish, learn, interpret and exploit intrinsic similarity mappings from the face domain. Then, by incorporating e cient inference strategies, robust decisions are made for successfully recognizing faces under uncertainty. PROCIM reports improved recognition rates over recent approaches. Secondly we address the newly upcoming gait recognition problem and show that PROCIM can be easily adapted to the gait domain as well. We scienti cally de ne and formulate sub-gaits and propose a novel modular training scheme to e ciently learn subtle sub-gait characteristics from the gait domain. Our results show that the proposed model is robust to several uncertainties and yields sig- ni cant recognition performance. Apart from PROCIM, nally we show how a simple component based gait reasoning can be coherently modeled using the re- cently prominent Markov Logic Networks (MLNs) by intuitively fusing imaging, logic and graphs. We have discovered that face and gait domains exhibit interesting similarity map- pings between object entities and their components. We have proposed intuitive probabilistic methods to model these mappings to perform recognition under vari- ous uncertainty elements. Extensive experimental validations justi es the robust- ness of the proposed methods over the state-of-the-art techniques.

    Optimal Control Methods for Missile Evasion

    Get PDF
    Optimal control theory is applied to the study of missile evasion, particularly in the case of a single pursuing missile versus a single evading aircraft. It is proposed to divide the evasion problem into two phases, where the primary considerations are energy and maneuverability, respectively. Traditional evasion tactics are well documented for use in the maneuverability phase. To represent the first phase dominated by energy management, the optimal control problem may be posed in two ways, as a fixed final time problem with the objective of maximizing the final distance between the evader and pursuer, and as a free final time problem with the objective of maximizing the final time when the missile reaches some capture distance away from the evader.These two optimal control problems are studied under several different scenarios regarding assumptions about the pursuer. First, a suboptimal control strategy, proportional navigation, is used for the pursuer. Second, it is assumed that the pursuer acts optimally, requiring the solution of a two-sided optimal control problem, otherwise known as a differential game. The resulting trajectory is known as a minimax, and it can be shown that it accounts for uncertainty in the pursuer\u27s control strategy. Finally, a pursuer whose motion and state are uncertain is studied in the context of Receding Horizon Control and Real Time Optimal Control. The results highlight how updating the optimal control trajectory reduces the uncertainty in the resulting miss distance
    corecore