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Abstract

In the field of computer vision, developing automated systems to recognize people

under unconstrained scenarios is a partially solved problem. In unconstrained sce-

narios a number of common variations and complexities such as occlusion, illumi-

nation, cluttered background and so on impose vast uncertainty to the recognition

process. Among the various biometrics that have been emerging recently, this

dissertation focus on two of them namely face and gait recognition.

Firstly we address the problem of recognizing faces with major occlusions amidst

other variations such as pose, scale, expression and illumination using a novel

PRObabilistic Component based Interpretation Model (PROCIM) inspired by key

psychophysical principles that are closely related to reasoning under uncertainty.

The model basically employs Bayesian Networks to establish, learn, interpret and

exploit intrinsic similarity mappings from the face domain. Then, by incorporating

efficient inference strategies, robust decisions are made for successfully recognizing

faces under uncertainty. PROCIM reports improved recognition rates over recent

approaches.

Secondly we address the newly upcoming gait recognition problem and show that

PROCIM can be easily adapted to the gait domain as well. We scientifically

define and formulate sub-gaits and propose a novel modular training scheme to

efficiently learn subtle sub-gait characteristics from the gait domain. Our results

show that the proposed model is robust to several uncertainties and yields sig-

nificant recognition performance. Apart from PROCIM, finally we show how a

simple component based gait reasoning can be coherently modeled using the re-

cently prominent Markov Logic Networks (MLNs) by intuitively fusing imaging,

logic and graphs.

We have discovered that face and gait domains exhibit interesting similarity map-

pings between object entities and their components. We have proposed intuitive

probabilistic methods to model these mappings to perform recognition under vari-

ous uncertainty elements. Extensive experimental validations justifies the robust-

ness of the proposed methods over the state-of-the-art techniques.
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Chapter 1

Introduction

1.1 Face Recognition

Biometrics is the science of automated methods for identifying people and a bio-

metric is a distinctive physiological (e.g., face, fingerprint, iris) or behavioral (e.g.,

gait, signature, voice) characteristic that can be used to identify a person [14].

Biometrics-enabled intelligence has rapidly become an accepted tool for solving

immediate identity problems as biometric identity data is readily indexed, sorted

and stored [15]. Intelligence analysts and law enforcement personnel use biometric

identity data as the central criteria to establish identity and as a basis to recom-

mend action. A key objective of machine vision researchers is to build automated

recognition systems that can compete and eventually surpass human visual intel-

ligence. A recent comprehensive survey [1] shown in Fig.1.1 depicts that annual

revenues from biometric industries are estimated to multiply about three times by

the year 2014, when compared to that of 2009. This motivates the fact that the

field of biometrics has a promising future.

1



Chapter 1. Introduction 2

Figure 1.1: Annual biometric industry revenues, 2009-2014 ($m USD), as
projected by International Biometrics Group [1].

Briefly the problem of machine recognition of faces can be defined as identifying

a set of face images from a stored face database that closely match a given probe

face image. In other words, for a given probe face, closely matching faces are

rank-listed by a Face Recognition (FR) system. FR differs from face detection

and face verification though all these terms are related to some extent. Face

detection is a technique that determines the locations and sizes of human faces

or a face in arbitrary digital images and thereby helps to specifically segment

face images or a face from the rest of the background. Face verification systems,

on the other hand, authenticate a person’s identity by comparing the captured

biometric characteristic with the person’s own biometric template(s) pre-stored

in the system, a one-to-one match to determine whether the identity claimed
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by the individual is true. Facial biometric information is fused with contextual

information to produce useful and actionable intelligence. The technology being

nonintrusive in nature has the unique advantage of answering important queries

such as:

* How can faces in the crowd be linked to other intelligence information?

* Is the presence of multiple people in the same location an event of interest?

* Can the anticipated presence of an individual be exploited?

Such crucial investigations are often carried out in unconstrained scenarios. While

humans have the natural ability to recognize faces in a complex scenario, the prob-

lem of recognizing faces amidst uncertainty elements such as occlusion and noise is

still only a partially solved problem in machine vision research. Two-dimensional

(2-D) FR is of interest in many verification and identification applications such as

crowd surveillance and access control [16, 17]. It has been widely used in critical

real world applications such as biometric passports, voting polls, criminal investi-

gation and so on. It is gradually becoming part and parcel of consumer products

and getting embedded into cars, ATMs, and mobile devices. Digital image orga-

nizers such as Google’s Picasa and Apple’s iPhoto are typical examples of popular

commercial applications which deploy face recognition technology. The pie chart

shown in Fig.1.2 clearly shows that FR systems have a market share next to

fingerprint technology [1]. Consumer industries which produce biometric featured

products would like to make their customers at ease without forcing constraints on

them, such as the removal of facial accessories (eg. sunglasses or cap). Moreover

it is sensitive or against the norms and practice of certain communities to remove

head covers for the need of adhering to the limitations of a technology. Hence

research on recognizing faces in unconstrained scenarios, specifically occlusion in-

variant FR approaches plays a vital role to not only aid the reduction of crime

rates, but also to protect social and human rights.
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Figure 1.2: The trend of biometric market for various biometric technologies
as reported by International Biometrics Group [1].

1.2 Gait Recognition

The literal meaning of gait is “manner of walking” [18] and the oldest gait analysis

is due to Aristotle [19]. The notion of using gait to recognize people has been even

mentioned by Shakespeare “For that John Mortimer...in face, in gait in speech

he doth resemble” (Henry IV/II) [20]. An evidence from biomechanics literature

[21] states that “A given person will perform his or her walking pattern in a

fairly repeatable and characteristic way, sufficiently unique that it is possible to

recognize that person at a distance using his/her gait”. The problem of identifying

individuals at a distance by observing their walking behavior when other features
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such as face and hand geometry are not clearly visible is a common task for the

human visual system. Applying computer vision techniques to automate this task

is formally known as Gait Recognition (GR).

Progress on this newly emerging biometric has been mainly initiated and con-

tributed by Defense Advanced Research Projects Agengy’s (DARPA’s) Human ID

at a Distance program led by Dr.Jonathon Phillips from National Institute of

Standards in Technology (NIST). The DARPA program focused on three main

biometrics viz., face, gait and new technologies. The HumanID gait challenge

problem provides a scientific basis for advancing and understanding automatic

gait recognition and processing. It offers a challenging data set, a set of experi-

ments in the increasing order of difficulty and a baseline algorithm. Purposefully,

DARPA’s gait challenge dataset was captured outdoors to force the development

of computer vision based gait algorithms to handle several uncertainty issues. Al-

gorithms have to handle complications generated from a person’s shadow from

sunlight and moving background. Factors that can affect a person’s gait in out-

door settings include surface type, shoe-wear type, weight carried and clothing.

Video data of gait is also dependent on the viewpoint. It is important to under-

stand the ability of gait recognition algorithms in the presence of these variations.

Further, gait recognition algorithms often perform poorly because of low resolu-

tion video sequences and subjective human motion. Despite these challenges, gait

recognition research is gaining momentum due to increasing demand and more

possibilities for deployment by the surveillance industry. Therefore every research

contribution which significantly improves this new biometric is a milestone.

1.3 Why a Probabilistic Model?

The underlying problem of recognizing faces and gaits in unconstrained scenarios,

obviously involves reasoning under uncertainty. Probability theory which acts as

a pivotal guidance to probabilistic models could be regarded as an extension of

Boolean logic to situations involving uncertainty [22]. The use of probabilistic
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models to represent uncertainty, however, is not a matter of ad-hoc choice, but is

inevitable if we are to respect common sense while making rational coherent infer-

ences. Probability theory provides a consistent framework for the quantification

and manipulation of uncertainty and hence forms one of the central foundations

for object recognition [23]. This consistency makes a probabilistic model feasible

to successfully cope up with uncertainties in the data, image preprocessing steps

such as alignment and normalization, data compression as a consequence of fea-

ture extraction and certain degrees of approximation associated with the ultimate

decision making process. The intricacies of the uncertain scenario where we in-

tend to capture faces and gaits imposes the reasoning system to consider different

possibilities. A conventional approach usually considers any state of the world

that is possible and could simply list all the possible outcomes without assigning

any priorities. In order to make meaningful decisions, a recognition system need

to reason not just about what is possible, but also about what is probable. The

calculus of probability theory provides us with a formal framework for considering

multiple possible outcomes and their likelihood. It defines a set of mutually ex-

clusive and exhaustive possibilities and associates each of them with a probability.

The liberating nature of probabilistic models allow us to make this fact explicit

and therefore provide a model which is more faithful to reality [24].

Primarily we will attack the problems using a prominent probabilistic graphical

model called Bayesian Network(BN). A BN (or a belief network) is a probabilistic

graphical model that represents a set of variables and their conditional indepen-

dencies via a Directed Acyclic Graph (DAG). Bayesian models have been applied

in various applications that work in unconstrained and realistic environments and

they are now the mainstay of the AI research field known as “reasoning under

uncertainty” [25]. Finally we will also provide a basic framework using a recently

growing technique called Markov Logic Network by fusing the imaging domain,

first-order logic and probabilistic graphical models.
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1.4 The Problem

Broadly this dissertation will focus on two vital problems in the field of biometrics

namely face and gait recognition under challenging real world scenarios. However

we will precisely outline the problems we undertake as follows:

Notwithstanding the enormous research effort that has been invested about two

decades to solve the problem of automatic face recognition, we are yet to witness

a robust face recognition system that can recognize faces with major occlusions

coupled with other uncertainty challenges thrown by the various intricacies in an

unconstrained environment. The only system that can successfully recognize faces

in a complex scenario is the human visual system which is complimented by two

eyes, the so called biological cameras and the extraordinary brain.

i) Hence it makes eminent sense as a first step to extend the research beyond

the pixel domain to investigate and identify “What are the key cognitive

psychology principles that governs the human visual system and enhances

visual intelligence in order to tackle this potential problem?”.

ii) Further we will investigate “While popular face recognition techniques such

as [26, 27] can successfully recognize faces in controlled conditions, Why are

they not feasible to recognize faces in unconstrained scenarios?”.

iii) Importantly how to scientifically transform the phenomenological human in-

tuitions and associated key psychological principles ( identified in (i)) into a

robust probabilistic FR model and validate it with defacto standard experi-

ments and datasets.

We have given the literal meaning and described the problem of gait recognition

in general terms in the introductory chapter 1.2. Scientifically the objective of

a gait recognition algorithm is to apply image processing and statistical pattern

recognition techniques to find who among the humans in a database of gait video

sequences closely resemble the gait of a given gait video sequence. Though the
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problem has been stated in simple terms, it is quite challenging for a machine

vision researcher to address this bulk video processing task using normal Personal

Computers.

iv) Many of the existing gait recognition techniques, manually label several parts

of a gait sequence such as head, torso and arms and then propose various

algorithms to represent these parts and process them to classify gaits. How

can we formulate an approach which will avoid such manual labeling but

at the same time extract and exploit useful information from various gait

components?

v) How can we design and incorporate a machine learning procedure to learn

subtle gait characteristics from the abstract pixel domain?

vi) Statistical relational techniques aim to attack complexity and uncertainty by

unifying two major paradigms namely, logic and probability. Additionally

can we formulate a fusion based architecture that can bridge the imaging

domain with first order logic and probabilistic graphical models to reason

gait recognition?

This dissertation will provide scientific means to answer these interesting research

questions.

1.5 Contributions

This dissertation presents novel methods based on probabilistic methods, inspired

by key psychophysical principles, to address the problems of recognizing faces and

gaits under unconstrained scenarios.

We have systematically synthesized, analyzed and presented an up-to-date overview

of various face and gait recognition models and clearly demonstrated where they

stand after being progressively evolved and improved over the past few years. We
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have investigated the strengths and limitations of various approaches. Impor-

tantly we have investigated the factors that affect some well known approaches,

specifically in unconstrained environments (problem (ii), section 1.4).

We have identified an optimal way of segmenting a face without loosing any in-

formation or without any redundancies as a vital income of a thorough literature

survey. We also propose an automatic segmentation scheme for the gait domain

which does not require manual labeling of components. We apply set theory nota-

tions which provide simple but yet efficient mathematical means to formulate the

proposed segmentation scheme.

We have defined an important phenomenon which we term “Influence Strength”

which intuitively quantifies how much strength is inherent in a particular com-

ponent of an object entity in order to influence the recognition mechanism of the

object itself. We have shown that this general phenomenon leads us to hypothesize

that “The face or gait pattern of the probe object being recognized by observing the

pattern of its component will be more similar to the corresponding gallery pattern,

if the magnitude of influence strength is high”.

This dissertation also contributes to the discovery of a concept called “Similarity

Mappings”. The proposed PRObabilistic Component Interpretation Model which

we abbreviate as (PROCIM) is based on a fundamental insight about human

pattern matching and memory. While reasoning with objects which are prone to

uncertainties, humans are often able to notice similarities between object com-

ponents and the objects that represent those objects. For example in complex

scenarios often the complete face of a subject is not visible due to the presence

of occlusions and other uncertainty factors such as pose. However, still humans

are often able to notice similarity between particular features or a combination of

features from the available cues in the face which can help them to identify (guess)

few faces. Similarly when we see a person walking at a distance, we may notice

a particular pattern of arm-swinging or hip movement as a characteristic of the

whole walking gait of that person. This similarity based reasoning is processed
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in such a way that it reveals inherent conditional independencies between object

entities. We have scientifically represented these independencies using Bayesian

Networks(BN) in this dissertation. Basically, here we contribute to address the

problems (i) and (iii), stated in section 1.4.

Further this thesis proposes a novel robust formula which will enable PROCIM to

make meaningful decision under uncertainty by bridging probability theory and

utility theory. This formula makes use of the probability distribution as well as

influence strengths entailed by the Bayesian Network to successfully classify probes

which are prone to complexities.

We have scientifically defined and formulated sub-gaits and various sub-gait op-

erators and modeled a novel modular training scheme which enables PROCIM to

learn and exploit subtle sub-gait characteristics from the gait domain. The for-

mulation of sub-gaits enable PROCIM to avoid manual labeling of several parts

of a gait sequence. This contribution will attack the problems (iv) and (v), which

have been stated in section 1.4. Further we have logically shown how to interpret

the combination of several sub-gait operators in order to reveal intrinsic charac-

teristics of gait patterns. It has been demonstrated that the proposed modularity

based reasoning aids PROCIM to mitigate the uncertainties encountered by the

objects.

Finally this thesis presents a basic framework to learn gait component relationships

by fusing three diverse domains viz., imaging, logic and graphs. This fusion based

framework shows, how a simple component based gait reasoning approach can be

coherently modeled using a newly upcoming statistical relational technique called

Markov Logic Networks. This fusion based contribution will address problem (vi)

stated in section 1.4.
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1.6 Awards / Publications

* Ibrahim Venkat and Philippe De Wilde. Research proposal - Bayesian Object

Recognition Ahead of HuMANs (BORAHMAN). Won a cash award for being

finalists of the Thales Scottish Technology Prize, Glasgow, December 2009.

* Ibrahim Venkat and Philippe De Wilde. Learning gait component relation-

ships by fusing logic and graphs using Markov Logic Networks. In S.Maskell

and S. Godsill, editors, Proceedings of FUSION2010. IET, London, July

2010.

* Ibrahim Venkat and Philippe De Wilde. Robust Gait Recognition by Learn-

ing and Exploiting Sub-gait Characteristics. Intl. Journal of Computer

Vision, August 2010 (www.springerlink.com).

* Ibrahim Venkat and Philippe De Wilde. Psychophysically inspired simi-

larity mappings to recognize faces with major occlusions in unconstrained

scenarios. Image and Vision Computing, Elsevier, under review.

Previous awards relevant to the Ph.D. problems

* Gold Medal from Ministry of Science,Technology & Innovation, Malaysia,Feb

2006

* Gold Medal from Korean Invention Association, Seoul Intl. Invention Fair,

Korea, Dec 2006

Both for the invention and innovation of Intelliface, an intelligent face recog-

nition system.

1.7 Dissertation Outline

This dissertation is organized as follows:

Chapter 2 provides the motivation gained from related work in the field of face

recognition. Beyond the pixel domain, various research works that address the
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problem of face recognition from psychology and neuroscience are presented ini-

tially. This is followed by an overview of various probabilistic models relevant to

the problem. Then literature specific to occluded face recognition is presented.

Finally the chapter clearly projects the present state of occlusion models.

Chapter 3 presents the theoretical constructs of the proposed PROCIM archi-

tecture. Based on the psychophysical findings an efficient segmentation scheme

that decomposes the faces into various subregions is presented initially. Then

how the phenomenological similarity mapping concept is realized from the facial

domain is presented. Further the standard way of learning parameters from the

Bayesian Network and a novel formula to make decision under uncertainty is pre-

sented. Finally performance evaluation of PROCIM using standard datasets and

experiments is demonstrated.

Chapter 4 presents an overview of the newly emerging gait recognition algorithm.

Initially a brief introduction to gait analysis techniques from diverse fields such

as medical, biomechanical and psychological literature is presented. This chapter

proposes a general classification scheme to organize various gait recognition algo-

rithms according to the basis of data acquisition and systematically briefs them.

Specific emphasis is given to video sensor based gait recognition algorithms.

Chapter 5 basically presents how the PROCIM architecture can be extended

to address the gait recognition problem. Using set theory notations, definition

and formulation of sub-gaits and the design of a modular training scheme are

presented in detail. Then the robustness of the proposed PROCIM technique

against common variations is analyzed. Further this chapter empirically shows

how potential sub-gaits are identified from the various possible sub-gaits. Finally

PROCIM has been experimentally validated and compared against state-of-the-

art gait recognizers at the end of this chapter.

Chapter 6 presents a basic fusion based framework to learn gait component

relationships. Initially an overview of Statistical Relational Learning (SRL) models

and related work on the newly upcoming SRL technique called Markov Logic
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Networks (MLNs) are presented. Then some basic concepts about first-order logic

relevant to the MLN techniques are introduced. This is followed by a briefing

about MLNs. Then a three stage architecture by fusing the imaging, logic and

graphical layers using MLN is proposed. Finally a comparison of the proposed

method with other standard methods is presented at the end.

Chapter 7 finally concludes this thesis by summarizing the contributions and

discusses future avenues of our research.



Chapter 2

Motivation from Related Work:

Face Recognition

2.1 Inspiration from Cognitive Psychology and

NeuroScience

Enhancing machine vision systems with psychophysical mechanisms enables vision

systems to take intelligent decisions on a par with the human mind, especially when

complexities such as occlusions are encountered. In other words, the twin enter-

prises of visual neuroscience and computer vision have deeply synergistic objectives

and an understanding of human visual processes involved in face recognition can

facilitate better computational models [28]. Psychologists are of the view that psy-

chologically feasible computational models exhibit clear and strong relationships

between behavior and properties of the domains which they intend to represent

[29]. Many successful face recognition and verification approaches [26, 30–33] have

derived their fundamental ideas from principles of cognitive psychology and neuro-

physiology. The earliest work on face recognition can be traced back at least to the

1950s in the field of psychology [34]. Many studies in psychology and neuroscience

have direct relevance to engineers interested in designing algorithms or systems

14
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for machine recognition of faces [16]. For example, findings in psychology [35, 36]

about the relative importance of different facial features have been noted in the

engineering literature [37]. On the other hand, machine systems provide tools for

conducting studies in psychology and neuroscience [38, 39].

Behrmann and Mozer [40] have performed a series of psychological experiments

to study how humans process occluded objects. Their study shows that humans,

in order to minimize the processing load, organize a complex occluded object into

subregions and then attend selectively to particular physical regions. This selec-

tive attentional spotlight focuses on areas of interest and facilitates preferential

processing of information from those chosen areas. This object-based mechanism,

in which complex visual input is parsed into discrete units for further process-

ing, has received considerable empirical, neuropsychological, and computational

support in recent years.

Vision is a subfield of cognitive science which involves psychological inferences

in the higher nervous system, based on learned models gained from experience

[41, 42]. It has been conjectured that the brain learns a generative model of how

scene components are put together to explain the visual input and that vision is a

process of inference in these models [41]. Among the many observations made by

Sinha et al. [28], “increasing familiarity” is an important factor which enables hu-

mans to recognize highly degraded face images, which they ascertain from [43–46].

Additionally, body structure and gait information are much less useful for identifi-

cation than facial information, even though the effective resolution in that region

is very limited. Recognition performance changes only slightly after obscuring the

gait or body, but is affected dramatically when the face is hidden. Even police

officers with extensive forensic experience perform poorly unless they are familiar

with the target individuals. Psychologists [45, 46] raised a precise fundamental

question: How does the facial representation and matching strategy used by the

visual system change with increasing familiarity, so as to yield greater tolerance

to degradations? Exactly what aspect of the increased experience with a given

individual leads to an increase in the robustness of the encoding; is it the greater
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number of views seen or is it the robustness an epiphenomenon related to some

biological limitations such as slow memory consolidation rates? The appropriate

benchmark for evaluating machine-based face recognition systems is human per-

formance with familiar faces. From the point of computer vision, we perceive that

computationally this familiarity aspect can be achieved by machines using efficient

machine learning strategies to familiarize known faces and gaits. This would en-

able the proposed model to tolerate the uncertainties including processing faces

and gaits from low resolution images and videos.

Many psychological investigations [47–53] have been attempting to find the re-

lationships between statistical properties of face images and the underlying psy-

chophysical aspects of human facial processing strategies. Recently it has been

empirically shown that facial identity information is conveyed largely via mech-

anisms tuned to horizontal visual structure of face images [54, 55]. Specifically,

humans perform substantially better at identifying faces that have been filtered

to contain just horizontal information compared to any other orientation band.

Dakin and Watt [54] have further shown that processing faces in terms of hori-

zontal structures has computational advantages. As for visual stimuli, face images

reveal a noticeable statistical regularity that comes as an approximately linear

decrease of their (logarithmically scaled) amplitude spectra as a function of spa-

tial frequency [56–58]. Numerous psychophysical experiments indicate that the

maxima in the amplitude spectra are caused by the compound effect of horizon-

tally oriented internal face features [55, 59]. Goffaux et al. [60] did a comparative

analysis between the vertical and horizontal relations of facial features. Their ex-

periments provide clear evidence that inversion dramatically disrupts the ability

to extract vertical relations between facial features but not horizontal relations.

These psychological findings motivate us to consider processing the face in term

of horizontally orientated structures.

Hulme and Zeki [61] have investigated the response of brain neural activity in

response to occluded faces. The authors have horizontally traversed the face im-

ages with an opaque rectangular block to occlude the faces in their experiments.
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Lu and Liu [62] have studied the human recognition memory with respect to ob-

jects including occluded faces. They have used randomly distributed rectangles

to occlude the face images. Such regular shape occlusions have enabled them to

quantify the presence of occlusions. “How faces are perceptually encoded within

the human visual system? ” This is hypothesized in [63] as follows. Faces are

represented by the local shapes of their distinctive features and the spatial rela-

tionships among these features. Wallis et al.[64] conclude that facial discrimination

tasks performed by the human visual cortex rely on the combination of multiple

local feature analyzers rather than global information.

Similarity is a basic concept in cognitive psychology which is utilized to explore

the principles of human perception [65]. Recent studies [66, 67] refer to the clas-

sical contrast model of similarity [68] which insists that perceived similarity is the

result of a feature-matching process. One of the fundamental hypothesis [69] as-

sociated with the perception and memory of faces states that, humans perceive

and remember faces chiefly by means of facial features. Psychological experiments

[69] that evaluate similarity judgments supports this hypothesis. Facial processing

algorithms used by popular imaging applications such as photofit and identikit are

based on this cognitive phenomenon.

2.2 Probabilistic Models for Reasoning under Un-

certainty

Remarkable progress in mathematics and computer science has led to a revolution

in the scope of probabilistic models. An exciting development over the last decade

has been the gradually widespread adoption of probabilistic models in many areas

of computer vision and pattern recognition. Computational approaches to sorting

out plausible explanations of data using Bayes rule were pioneered by Thomas

Bayes and Pierre-Simon Laplace in the 18th century, but it was not until the 20th
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century that these approaches could be applied to vision problems using comput-

ers [41]. The availability of computer power motivated researchers to tackle larger

problems and develop more efficient algorithms and consequently in the past two

decades, we have seen a flurry of intense, exciting, and productive research in com-

plex, large-scale probability models and algorithms for probabilistic inference and

learning. Probability theory always had a dual aspect, serving both as a normative

theory for correct reasoning about chance events, but also as a descriptive theory

of how people reason about uncertainty as providing an analysis, for example,

of the mental processes of an intelligent juror [70]. Due to uncertainty elements

such as multiple occlusions, same objects can result in the formation of different

images, and different objects can result in the formation of similar images. Prob-

abilistic models offer the promise to model natural images such as faces which are

often prone to such dual uncertainty [71, 72]. For the problem of image segmenta-

tion and image parsing, probabilistic models based on the principle of “Analysis

by synthesis”, where low-level cues combined with spatial grouping rules activate

hypotheses about objects have offered reliable solutions [73, 74]. Interestingly this

principle relates to the forward and backward projections in the brain [75–81].

Yuille et al. [82] has treated vision as an inverse inference problem where the goal

is to estimate the factors that have generated the image and which of those fac-

tors should be estimated. Notably they have applied Bayesian inference to design

theories of vision that deal with the complexity of images including faces using

recent examples from computer vision.

Krynski and Tenenbaum [83] have proposed Bayesian networks as tools to sys-

tematically analyze how humans make judgements under uncertainty. Intille and

Bobick [84] have demonstrated how highly structured, multi-person action, prone

to multiple sources of visual perceptual uncertainties, can be recognized using a

Bayesian framework. Dahyot and Heitz [85] have suggested a Bayesian approach

inspired by probabilistic principal component analysis to detect objects subject to

cluttered backgrounds coupled with occlusions.

Tong et al. [86] have proposed a Bayesian model to recognize facial expressions
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when faces are subject to uncertainties such as occlusions, pose and illumination

variation. Their model is capable of representing relationships among facial action

units with conditional dependence links. The performance of facial action unit

recognition algorithms gets affected by errors encountered during the feature ex-

traction and face alignment process due to uncertainties such as occlusions. The

authors claim that their model, by exploiting intrinsic relationships among the fa-

cial action units, could compensate these errors considerably. Bayesian graphical

models have been investigated in a number of face recognition studies[87–90].

Similarity measures play a crucial role in theories of recognition, identification,

and categorization of objects, where a common assumption is that the greater the

similarity between a pair of objects, the more likely the objects are closer within

their feature space. Typical similarity metrics such as the Euclidean distance met-

ric correspond to a standard template-matching approach to address recognition.

Contrast to such conventional metrics, Moghaddam et al. [27] introduced a proba-

bilistic similarity measure based on a Bayesian analysis of image differences. This

measure is based on the following assumption. The probability that the image-

based differences denoted by d(I1, I2), of two face images I1, I2, are characteristic

of typical variations in appearance of the same object. Moghaddam et al. dis-

covered and exploited two mutually exclusive classes of variations that naturally

exist in the facial domain called intra-personal and extra-personal variations. The

first one, ΩI , correspond to variations in the appearance of the same individual,

due to factors such as different expressions or pose. The later one denoted by,

ΩE, account for variations that exist between different individuals. The similarity

measure S(I1, I2) has been defined as

S(I1, I2) = P (ΩI |d(I1, I2)), (2.1)

where P (ΩI |d(I1, I2)) is the a posteriori probability given by Bayes rule, using

estimates of the likelihoods P (d(I1, I2)|ΩI) and P (d(I1, I2)|ΩE). These likelihoods

have been derived from the training face images using a subspace method for

density estimation of high-dimensional data [91]. This probabilistic framework
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is particularly advantageous in that the intra/extra density estimates explicitly

characterize the type of appearance variations which are critical in formulating a

meaningful measure of similarity. For example, the differences corresponding to

facial expression changes (which may have high error norms) are, in fact, irrel-

evant when the measure of similarity is to be based on identity. The subspace

density estimation method used for representing these classes thus corresponds to

a learning method for discovering the principal modes of variation important to

the classification task. Furthermore, by equating similarity with the a posteriori

probability, an optimal non-linear decision rule for matching and recognition has

been obtained which makes the approach significantly unique from methods which

use linear discriminant analysis techniques (Eg.[37, 92]) for object recognition.

Vast uncertainty is encountered as a consequence of pose variations and prob-

abilistic approaches have been proven to be good in recognizing and detecting

faces amidst pose variations [93–99]. The Bayesian probabilistic approach pro-

posed by Sarfraz and Hellwich [93] initially finds a generative function for several

pose variations and then use a view-point discriminative method to model the

appearance variations corresponding to each pose explicitly. The goal is to create

a model that can predict how a given face will appear when viewed at different

poses which seems to be an intuitive formulation for the recognition task espe-

cially in unconstrained scenarios. Similarities between extracted features of faces

at frontal and all other views have been computed and the distribution of these

similarities is then used to obtain the likelihood functions of the form P (Ig, Ip|C),

where C refers to classes when the gallery Ig and probe Ip images are similar, S,

and dissimilar, D, in terms of a subject’s identity. The authors approximate the

joint likelihood of a probe and gallery face as

P (Ig, Ip|C, φg, φp) ≈ P (γpg | C, φg, φp) (2.2)

where φ is the pose angle for the corresponding gallery and probe face and γpg is

the similarity between gallery and probe image. The goal is achieved by learning
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the approximated joint probability distribution of a gallery and probe image at

different poses.

Probabilistic frameworks have also been applied to recognize people from facial

video information. Stochastic tracking and recognition approaches are based on

a unified probabilistic framework, in which individuals are simultaneously tracked

and recognised by estimating the posterior probability density function of a Time

Series State Space Model (TSSSM) [100–102]. Tracking is formulated as a Bayesian

inference problem, and it is solved as a probability density propagation problem

(due to the temporal nature of tracking itself); recognition is obtained by applying

the MAP rule on the posterior probabilities.

The idea of developing a generic approach using particle filtering [103] was first

introduced by Li and Chellapa [104] for stochastic tracking and verification of

humans. They implemented a simplified TSSSM with no identity variable, in

which only the tracking motion vector was estimated and propagated. They also

proposed two facial representations for the observations: the common intensity

images of the face, and an Elastic Graph Matching (EGM) representation of the

facial landmarks. Their work unfortunately failed to provide any experimental

evaluations. Then, Zhou et al. [105] improved the approach of Li and Chellappa,

by including both the tracking motion vector and the identity variable in the

TSSSM. They also considered several observation likelihoods, and introduced a

more complex one by explicitly modelling: the appearance changes within videos

using a truncated Laplacian and the intra-personal appearance variations using a

probabilistic subspace density, proposed by Moghaddam [106]. More interestingly,

the authors developed a probabilistic learning approach to automatically build

user models from video frames.

By deriving an adaptive version, Zhou et al. [107] successfully refined their previ-

ous recognition system. They modified the observation likelihood by modeling the

appearance changes within videos using an adaptive appearance model, the intra

and extra-personal appearance variations using a probabilistic subspace density
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model[106], and suitably weighting frontal view frames using a different proba-

bilistic subspace density model. Then the authors proposed an adaptive motion

model, which consisted of: an adaptive velocity model which is derived using a

first-order linear predictor based on the appearance difference between the incom-

ing observation and the previous particle configuration; an adaptive noise compo-

nent function to compute the prediction error and an adaptive technique to adjust

the number of particles based on the degree of uncertainty in the noise component.

Further, they included an occlusion handling technique based on robust statistics

[108–110] to reduce the influence of outliers on the estimation process.

Apart from TSSSM which aims to simultaneously track and recognize individuals,

a novel probabilistic appearance manifold approach has been proposed by Lee et

al. [111] which is an extension of the approach introduced by Murase and Nayar

[112]. The authors applied Bayesian inference to include the temporal coherence

of human motion in the distance calculation; in fact, they replaced the conditional

probability by using the joint conditional probabilities, which were recursively es-

timated using the transitions between sub-manifolds. In the experimental results

obtained using a small database (20 individuals), the proposed approach outper-

formed standard image-based recognition techniques. It showed better robustness

and stability than a majority voting strategy or a similar system without temporal

coherence. Further the approach was able to detect identity changes and handle

large pose variations.

2.3 The Occlusion Challenge for Face Recogni-

tion Systems

Recently the importance of occlusion invariant face recognition has received con-

siderable attention by the machine vision community as well as from other fields

such as cognitive psychology and neuroscience. Face images are often prone to

occlusion coupled with other common variations such as illumination, scale and
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pose in unconstrained environments. In this section we will investigate briefly the

scientific basis, strengths and limitations of core occlusion models reported in the

literature. On the basis of processing, FR algorithms can be broadly classified into

either holistic or component-based models.

2.3.1 Holistic Models

Holistic approaches which are also known as appearance-based methods process

the entire face as a whole entity. In holistic template-matching systems each

template could be a prototype face, a face like gray-scale image, or an abstract

reduced-dimensional feature vector that has been obtained through processing the

face image as a whole [37]. Generally, this category of algorithms operate directly

on instances of face objects and processes the images as 2D holistic patterns, avoid-

ing therefore the difficulties associated with 3D modeling and landmark detection.

While the traditional image-based approaches require many training face images

in order to recognize faces in a variety of viewing conditions, the key aspect of

the appearance-based scheme is the use of only a small amount of data (the most

representative samples) for recognition, thus leading to low memory requirement

and high speed processing [113].

The importance of the occlusion problem has been foreseen and specifically illus-

trated at the earlier stage of automated face recognition research [26]. Turk and

Pentland who demonstrated the first successful automatic face recognition sys-

tem using the eigenface technique stated that occlusions can gracefully degrade

recognition performance. This widely used PCA based technique treats the whole

face image as a point in a low dimensional space. Each individual face has been

represented as a linear combination of uncorrelated orthogonal components known

as eigenfaces. For a set of N face images x1, x2, · · · , xN with the mean face being

µ, the objective is to determine the orthogonal projection φ in

yk = φTxk, k = 1, · · · , N (2.3)
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that maximizes the determinant of the total scatter matrix ST of the projected

samples

y1, y2 · · · , yN , where

ST =
N∑
k=1

(xk − µ)((xk − µ)T (2.4)

The primary advantage of this technique is that it aids in significant data com-

pression while being sensitive to facial occlusion.

The Bayesian approach proposed by Moghaddam et al. [27], which won the

FERET face recognition competition in 1996, uses probabilistic similarity mea-

sures by comparing the intrapersonal and extrapersonal variations of face images.

The similarity measure S(I1, I2) between a pair of images is defined in terms of

the intrapersonal a posteriori probability. The approach is robust to expression

and illumination variation. However the presence of occlusions increases the di-

mensionality of the subspaces and degrades the density model which eventually

results in misclassification of faces.

Bartlett et al. [31] applied Independent Component Analysis (ICA), an appearance-

based technique, for the problem of face recognition. While PCA decorrelates the

input data using second-order statistics and thereby generates compressed data

with minimum mean-squared reprojection error, ICA minimizes both second-order

and higher-order dependencies in the input. It is intimately related to the blind

source separation (BSS) problem, where the goal is to decompose an observed

signal into a linear combination of unknown independent signals. The objective of

ICA is to find the mixing matrix A or the separating matrix W to yield an output

vector U using

U = Wx = WAs (2.5)

where x = As is the mixing model. The sparsity property of ICA basis images

makes the performance of ICA better than PCA in terms of robustness to partial

occlusions and local distortions, such as changes in facial expression, because spa-

tially local features only influence small parts of facial images [114]. However, ICA

basis images do not display perfectly local characteristics in the sense that pixels
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that do not belong to locally salient feature regions still have some non-zero weight

values. These pixel values in non-salient regions appear as noise and contribute to

the degradation of the recognition performance specifically when faces are prone

to occlusions.

The holistic Linear discriminant Analysis (LDA) which is also known as Fisher

Discriminant Analysis (FDA) classifies face images of unknown classes based on

training samples with known classes. It aims to maximize between-class variance

and minimize within-class variance. Both off-line feature extraction and on-line

feature computation can be done at high speeds, and recognition can be done in

almost real time using LDA. Mathematically, it calculates the projection matrix W

that maximizes the Fisher’s Linear Discriminant (FLD) criterion [115] as follows:

JFLD(Wopt) = arg max
W
| W TSbW | / | W TSwW | (2.6)

where Sw and Sb are respectively the within-class scatter matrix and the between-

class scatter matrix. When compared to LDA[37], the Efficient Pseudoinverse

LDA (EPLDA) [116] is better in handling occlusions as it uses QR decomposition

and Discriminant Common Vectors to tackle the singularity problem posed by

LDA. But both LDA and EPLDA yields less than 80% recognition rates in the

presence of occlusions such as sunglasses or scarf.

Other approaches that mostly capture global features of face images such as Sup-

port Vector Machines (SVMs) [117, 118], Kernel Methods [119, 120] and Neural

Networks [121, 122] have been used to construct a suitable set of face templates.

These approaches suffer recognition performance when faces are prone to occlu-

sions [5, 123] mainly due to the following reasons

* They are characterized by the lack of a-priori decomposition of the image

into semantically meaningful components.

* Global features are influenced easily by noise or occlusion.
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2.3.2 Component Based Models

Component-based models otherwise known as local models subdivide the object

under study into components, then process and manipulate these components, to

finally classify them based on one-to-many and many-to-one mappings.

One of the pioneer contributions in recognizing faces with partial occlusions was

by Martinez et al. [124, 125]. Firstly they developed a huge dataset with more

than 3200 subjects with face images containing real occlusions (Sunglasses and

Scarf), which has been used by researchers for experimental validations till now.

Secondly the component based Martinez Localization Algorithm (MLA) [125] to

recognize partially occluded faces with frontal views serve as a benchmark test

[126]. This component based model divides each face into six local regions which

are analyzed discretely. A weighted eigenspace representation has been built to

overcome expression and occlusion variations. The authors have shown that the

method is robust to recognize faces with about one third occlusion (sunglasses

or scarf). The method has been better able to handle eye occlusions than mouth

occlusions. It demands high computation time due to the use of mixtures of Gaus-

sian distributions. Also the technique relies on manually extracting the ground

truth of several facial locations for want of warping the faces.

Kalocsai et al. [39] performed a face recognition experiment in which the perfor-

mance of a local feature based system, using Gabor-filters, and a global template

matching based system, using a combination of PCA (Principal Component Anal-

ysis) and LDA (Linear Discriminant Analysis) was correlated with human perfor-

mance. Both systems showed qualitative similarities to human performance and

the experimental results indicated an important outcome that the preservation

of local feature based representation might be necessary to achieve recognition

performance similar to that of humans.

As an extension of ICA [31] which has been described in section 2.3.1, Kim et

al. [114] have proposed a part-based Locally Salient ICA (LS-ICA) approach

to recognize faces with partial occlusions. The authors have stressed that the
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“Recognition by parts” paradigm is essential to recognize occluded faces. The

kurtosis of U in eq.(2.5) has been defined as

kurt(U) =| E{(U)4} − 3(E{(U)2})2 | (2.7)

The objective of LS-ICA is to maximize the kurtosis defined in eq.(2.7) in order

to eliminate non-local modulation imposed on the ICA architecture. The method

has been shown robust for recognizing a minor occlusion content of about 10%.

The validity of the approach for robustness to a moderate occlusion content is not

evident.

Kumar et al. [17] have proposed Correlation Filters (CF) [127, 128] also known

as spatial frequency domain methods for face recognition robust to common vari-

ations, especially occlusions, as they offer “graceful degradation” owing to the

integrative nature of the matching operation they deploy. The cross correlation

between a reference pattern r(x, y) and a test pattern t(x, y) for possible shifts τx

and τy has been defined as

c(τx, τy) =

∫ ∫
t(x, y)r(x− τx, y − τy)dxdy (2.8)

where the limits of integration are based on the support of t(x, y). Often, as these

two patterns being compared exhibit relative shifts, selecting its maximum as a

metric of the similarity between the two patterns yields the discrimination poten-

tial for robust pattern recognition tasks such as face recognition. Further Laia et

al. [129], motivated by the adaptive beam-forming technique, have proposed com-

ponent based CFs that can adapt and automatically tune out the actual occlusion

(noise/distortion) from test data without making any arbitrary assumptions. CFs

have the advantage of yielding a stable correlation peak that changes very little

even when there is a large change in the strength of the distortion/noise. If some

of the pixels are occluded, they simply do not contribute to the correlation peak,

thus decreasing the overall peak. However, no single pixel in the image domain

is critical in that recognition can be still carried out successfully. As the filters
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used are linear, the technique has limitations to learn and classify face images that

are not linearly separable. CFs can be computationally complex due to carrying

out multiple 2D Fast Fourier Transforms. The class-dependence feature analysis

method proposed by Kumar et al. [17] attempts to mitigate this complexity to

a certain extent. CFs are not suitable to apply in situations where the training

data is sparse. A further drawback is that CFs do not take advantage of domain-

specific knowledge about face images. Hence future research should focus on fusing

image-domain approaches with feature-based approaches.

The initial occlusion model proposed by Zhang et al. [130] using Local Gabor

Binary Patterns (LGBP) failed to recognize faces with upper occlusions as the

occluded probability of local regions were not taken into account. As a remedy the

Kullback-Leiber Divergence (KLD) based LGBP approach [131] has been recently

proposed to estimate the probability of occlusion and uses weights of local regions

for the final feature matching process. However the main drawback of the approach

is its high dimensionality.

Hotta et al. [123] have presented an approach using SVM with Local Gaussian

Summation Kernel (SVM-LGSK) for recognizing faces with partial occlusion. The

SVM determines the optimal hyperplane which maximizes the margin, where the

margin is the distance between the hyperplane and its nearest sample. For the

training set and its label denoted as S = {(xi, yi), · · · , (xL, yL)}, the optimal hyper

plane is defined as

f(x) =
∑
i∈SV

αiyix
T
i x+ b, (2.9)

where SV is a set of support vectors, b is a threshold and the non-zero support

vectors are represented by α. In the proposed method, local kernels are arranged

at all positions on the face. Each local kernel plays the role of visual cells spe-

cialized for local features of each person’s face. In order to develop the visual

cells specialized for local features, the stimulus selectivity of a Gaussian kernel is

suitable. Hence, a Gaussian kernel is used as the local kernel. The local Gaussian



Chapter 2. Motivation from Related Work: Face Recognition 29

kernel is defined by

Kp((x(p), y(p)) = exp

(
− ‖ x(p)− y(p) ‖2

2σ2
p

)
(2.10)

where x(p) and y(p) are the local features centered at label of position p and σ2
p

is the local variance at p. The optimal hyperplane of SVM with local Gaussian

summation kernel is defined by

f(x) =
∑
i∈SV

αiyi
1

N

N∑
p

exp

(
− ‖ x(p)− y(p) ‖2

2σ2
p

)
+ b, (2.11)

where N is the number of local kernels. With this formulation, keeping SVM as a

binary classifier, face recognition is performed. Unlike the global kernel, the local

Gaussian summation kernel is not influenced by noise or occlusion and hence the

approach is feasible for occluded face recognition. The selection of an appropriate

size of the local kernel depends on the position and recognition target which seems

to be a bottle-neck in the proposed method.

A Selective Local Non-negative Matrix Factorization (S-LNMF) technique has

been proposed by Oh et al. [132] to attack the occlusion problem. The basic idea

is that local occlusion affects only the coefficients of the corresponding local bases

and hence the error caused by occlusions are local and not global in nature. By

using the LNMF bases for occlusion-free regions exclusively, occlusions have been

detected. Each face image,Ω, has been divided into six local disjoint patches and

their PCA coefficients are computed by

Ωi,k = ET
k (Xi,k − ψk), i = 1, 2, · · ·N, k = 1, 2, · · · 6, (2.12)

where Xi,k is the kth patch of the ith image, ψk, Ek are the mean image and the

eigen-matrix of the kth patch and N is the total number of training images. The

occlusion detection for each patch is accomplished by comparing the coefficient

vectors of occlusion-free images with that of the test image in the correspond-

ing eigenspace. To detect the bases in the occluded regions, an occluded energy
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measure per basis image has been defined as

Ei
Occlusion =

∑
x,y∈W I2

i (x, y)∑C
x=1

∑R
y=1 I

2
i (x, y)

, i = 1, 2, · · · , N (2.13)

where C × R is the image size, Ii(x, y) is the value of the ith LNMF basis at

(x, y), W is the detected occluded region. The occluded energy value serve as

a clue to know whether an LNMF basis image has been occluded or not. By

excluding the coefficients of occluded parts, the effect of occlusion in the final

match is minimized. The approach shows improved recognition rates over many

standard techniques including LFA[133], R-PCA [134] and LNMF[135]. The main

drawback of the approach is that the computation of occluded energy eq.(2.13)

demands huge computing time (100 times more than PCA).

The algorithm proposed by Wright et al. [136] exploits the fact that errors caused

by occlusion typically corrupt only a fraction of the image pixels and hence yield a

sparse representation which aids in better manipulation of occlusions. The linear

representation of a probe face y has been represented as y = Axo + eo where A is

a matrix which linearly spans the training samples, xo is a coefficient vector and

eo is a vector of errors. It has been assumed that eo can be sparsely represented as

eo = Aeuo where uo is some sparse vector. While this Sparse Representation based

Classification (SRC) approach attacks the occlusion problem well, it has a draw-

back to handle pose variations as the number of training samples to represent the

pose variation can be prohibitively large. In the future, one may adopt the Active

Appearance Model (AAM) [137] which is capable of tracking face images which

are prone to occlusion as well as pose variations for the occluded face recognition

problem.

Kanan et al. [126] have proposed a component model based on Adaptively Weighted

Sub-Gabor Array (AWSGA) when only one sample image per enrolled subject is

available. The proposed algorithm utilizes a local Gabor array to represent faces

partitioned into sub-patterns. For a given face f(x, y) of dimensions N × N at

orientation θ and radial center frequency ω0 which is segmented into sub-patterns
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of height W , its SGW representation has been defined as

SGW P
ωo,θ(x, b) = F−1{F{f(x,W (p− 1) + b)}F{ψω0,θ(x, y)}} (2.14)

where S = N/W , 1 ≤ p ≤ S, F, F−1 are Fourier and inverse Fourier transforms

respectively and ψ is a 2D Gabor Wavelet which is defined as

ψω0,θ(x, y) = Sωo,θ(x, y)Wω0,θ(x, y) (2.15)

The general idea behind the proposed method relies on the observation that oc-

clusions appear as local distortions away from a general face representing human

population. This distortion measurement is utilized in the proposed approach for

weighting individual Sub-Gabor elements. A Sub-Gabor Wavelet (SGW) opera-

tion is performed on a partitioned image to form an Augmented SG Array (ASGA)

of the face image. While the approach can slightly improve lower face occlusions,

still it suffers from upper face occlusions.

The above findings show the ”divide and rule” phenomenon adopted by component

based face recognition models. In essence, component based approaches have two

main common features. Firstly they can efficiently represent specific components

of an object as discrete entities. Secondly they have sound integrating mechanisms

to relate these components to determine the object class. This unique way of

modularly processing objects leads to recognizing objects subject to uncertainties

including occlusions.

2.3.3 What is the State of Present Occlusion Models?

The dataset developed by Martinez [124] has been used by number of researchers

especially to validate an algorithm against two real occlusions namely sunglasses

and scarf. We have compared the performance of the following state-of-the-art face

recognition models with respect to this standard occlusion test and chronologically

projected them in Fig.2.1:
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Figure 2.1: Comparison of State-of-the-art Occlusion Models using the AR
Face Dataset

i) Adaptively Weighted Sub-Gabor Array (AWSGA) [126]

ii) Sparse Representation based Classification (SRC) [136]

iii) Selective Local Non-negative Matrix Factorization (S-LNMF) [132]

iv) Support Vector Machine with Local Gaussian Summation Kernel (SVM-

LGSK) [123]

v) Modular Principal Component Analysis (M-PCA) [138]
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vi) Martinez Localization Algorithm (MLA) [125]

vii) Independent Component Analsysis (ICA) [31]

viii) Local Non-negative Matrix Factorization (LNMF) [135]

ix) Robust Principal Component Analysis (R-PCA) [134]

x) Local Feature Analysis (LFA) [133]

xi) Principal Component Analysis (PCA) [26]

The chart provides a bird’s eye view of how various algorithms can tolerate oc-

clusions. Further the chart shows the fact that significant improvement has been

seen as a result of evolving occlusion models since the commencement of the first

automated face recognition system in 1991 [26] till today. However even under

control conditions, for a data set of around 3000 face images, the current state-

art-of-the-art cannot yet yield promising recognition rates when face images are

prone to occlusions such as sunglasses or scarf. We see that algorithms that are

good in handling lower face occlusions need not have to be good in handling upper

face occlusions and vice versa.

2.4 Summary

We have seen that psychologically feasible computational models exhibit clear

and strong relationships between behavior and properties of the domains which

they intend to represent. Psychological experiments reveal that humans have

the ability to recognize complex occluded objects by processing them in terms of

subregions. This object-based mechanism has been adapted by many computer

vision techniques that address uncertainty issues such as occlusion. Psychophysical

studies indicate that humans as well as machines benefit by processing faces in

terms of horizontal orientation. Some of the popular imaging applications that use

face processing algorithms are based on the principles of cognitive psychology. A
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widespread adoption of probabilistic models in many areas of computer vision and

pattern recognition has been witnessed over the last decade. Bayesian graphical

models have been applied by a number of computer vision applications that work

in unconstrained and realistic environments and they are now the mainstay of the

AI research field known as “uncertain reasoning”.

Our literature review reveals that, technically, holistic methods intend to classify

objects by relying on some linear or nonlinear transformations on the holistic image

vectors used for training and are shown to be robust against global variations such

as lighting or aging effect. However, they may not fit well with images with par-

tial occlusions because of the fact that the resulting holistic representations are

usually deviated far from the normal patterns. Hence, to handle occlusions and

other intricacies of real world scenarios such as noise and cluttered background,

research focus has shifted from holistic processing to component based representa-

tions. Literature shows that component based approaches provide robust means to

counter the occlusion problem by efficient representation, reasoning and intelligent

decision making mechanisms under uncertainty.

Further, we have systematically synthesized, analyzed and presented an up-to-

date overview of various occlusion models and clearly demonstrated where they

stand after being progressively evolved and improved over the past few years.

Notwithstanding the progressive research effort that has gone into the modeling

of occluded face recognition algorithms, we are yet to see a system that can be

deployed effectively to recognize faces which are prone to multiple occlusions in

an unconstrained setting. Still, recognizing faces with partial occlusions remains a

partially solved problem. Lessons learnt from related work, as an outcome of this

chapter, motivate and spearhead us to formulate a robust face recognition model,

the details which we will present in Chapter 3.



Chapter 3

PROCIM for Robust Face

Recognition

3.1 Introduction

In this chapter, we will provide the theoretical constructs of the proposed PROba-

bilistic Component Interpretation Model (PROCIM). In chapter 2 we have iden-

tified some of the core principles from cognitive psychology and neuroscience dis-

cipline with relevance to reasoning under uncertainty. Based on these principles

we will initially present a conceptual human model to understand how humans

recognize complicated objects and then gradually transform this model into a

psychologically plausible probabilistic model using Bayesian Networks.

3.2 How do Humans Recognize Complex Objects?

Though a major portion of a face is occluded, a human being, by evidencing small

subregions of the face, could still recognize the face. This remarkable recognition

ability is governed by the following key principles which we recall from Section

2.1.

35
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* Humans, in order to minimize the processing load, organize a complex oc-

cluded object into subregions and then attend selectively to particular phys-

ical regions. This selective attentional spotlight focuses on areas of interest

and facilitates preferential processing of information from those chosen areas

[40].

* Humans perform substantially better at identifying faces that have been

filtered to contain just horizontal information compared to any other ori-

entation band and processing faces in terms of horizontal structures has

computational advantages [54].

* Similarity is a basic concept in cognitive psychology which is utilized to ex-

plore the principles of human perception [65]. Recent studies [66, 67] that

refer to the classical contrast model of similarity [68] insist that perceived

similarity is the result of a feature-matching process. A fundamental hypoth-

esis associated with the perception and memory of faces states that, humans

perceive and remember faces by means of facial features [69].

* Facial discrimination tasks performed by the human visual cortex rely on

the combination of multiple local feature analyzers rather than global infor-

mation [64].

* “Increasing familiarity” is an important factor which enables humans to

recognize highly degraded face images [28].

The above principles reveal the fact that humans gaze at ambiguous faces in

stages to gather cues and map them with the facial domain (numerous faces they

remember) to recall similar faces. In this way they could recall (shortlist) a subset

of faces which closely resembles the features of these subregions, out of the huge

number of known faces. With prior beliefs about faces assimilated from experience,

humans finally rank-list the most probable faces from the shortlisted faces with

preferences. An example of this scenario is depicted in Fig. 3.1. When a human

observer encounters a face with major occlusions like the one shown in Fig. 3.1,
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Figure 3.1: A typical scenario depicting human reasoning based on similarity
mapping; A human observer gaze the probe face and recalls few faces. Uncer-
tainty factors such as occlusion can muddle up the order(ranks) in which faces
are recalled. It is not necessary that every gaze should recall the correct face
in the first instance (rank). Finally the human might make a decision amidst

uncertainty by analysing influence strengths

where leaves of a tree occludes the probe face, uncertainty arises as few cues of

the facial features are visible. For example, let the probe face be gazed (observed)

at three horizontal subregions (top, mid and bottom as separated by red lines in

Fig. 3.1) by the human observer. The human observer might counter the uncer-

tainty by establishing and exploiting similarity maps between the subregions of the

occluded face and the huge number of faces, which is the face domain, he or she
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knows. These similarity mappings in turn influence a restricted subset of short-

listed faces and the degree of uncertainty gets considerably reduced. Referring to

the recalled (shortlisted) faces in Fig. 3.1, the actual suspect’s face is influenced

by the top most subsample in the first rank because of the fact that more visual

cues are present in the subsample. More occlusions leads to more ambiguities in

the cues, as shown by the mid subsample. Consequently the actual suspect’s face

has been influenced in the second rank by the mid subsample. As the severity of

occlusions increase the actual suspect is not influenced at all by the bottom most

subsample, which is the worst case. In the context of face recognition, the actual

suspect need not always be in the first rank [2]. As long as the actual suspect

is within an acceptable range, a solution is still arrived at. Finally a decision is

made by probabilistic means by manipulating the influence strengths exhibited

by the shortlisted faces and a few are rank listed as being recognized. We will

scientifically define influence strengths in the following section (3.3). The study

of such human reasoning reveals an important hypothesis. That is by mapping

intrinsic similarities between the set of subsamples of the probe face and the set

of faces in the facial domain and analysing the influence strengths, humans might

be able to recognize faces with major occlusions reasonably well.

3.3 Framework of the Proposed PROCIM

Basically PROCIM intends to map similarities between two main object entities.

The first entity is a set of sparse components of the probe face image. The sec-

ond entity comprises a bulk set of known face images that are stored in the face

database which are known as gallery samples. Few faces are recalled for each of

the sparse components as a consequence of this similarity based reasoning. Fur-

ther this reasoning reveals inherent conditional independence properties between

the recalled face images. These independencies could be scientifically represented

by Bayesian Networks (BNs) as mentioned by Nilsson [139]. Formally a BN is a

Directed Acyclic Graph(DAG) where the nodes represent variables and the arcs
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encode conditional independencies between the variables. BNs serve as fundamen-

tal tools in tackling uncertainty problems as they characterize intuitive notions of

human reasoning. In other words, PROCIM employs BNs to establish and learn

intrinsic similarity mappings that are inherent in the face domain. Then PROCIM

takes robust probabilistic decisions by exploiting the mappings established.

We will briefly present the framework of the proposed PROCIM with the aid of

the flow-chart shown in Fig.3.2. Firstly, face images in the database have been en-

hanced with standard preprocessing techniques. We have adapted the techniques

proposed by [31] to preprocess face images. Standard datasets provide ground

truth data of eye and mouth coordinates. Basically these coordinates were used

to center and align the face images, and then crop and scale them to standard

dimensions without the need of manual intervention. This image preprocessing

enables the face images to be independent of variations such as scaling, transla-

tion, rotation and so on. Then the feature space (low dimensional face space)

is constructed from the gallery (training set) of face images available in the face

database using Principal Component Analysis (PCA). PROCIM further learns

conditional probability potentials which provide information about how well a

face can be influenced given that a particular face component or a combination of

face components has been observed. As the DAG of a BN is called the structure

and the values in the conditional probability distributions are called the param-

eters, learning the conditional probability potentials otherwise means parameter

estimation. This learning process is done offline from the gallery face images, that

is when computing resources are free.

Each node of a BN has a set of probable values for each variable which are known

as belief states. These belief states are propagated between nodes of the BN ef-

fectively. A BN is good at mapping intrinsic relationships that are inherent in a

domain in terms of parent and child nodes. The intuitive meaning of an arrow (arc)

from a parent node to a child node(s) indicates that the parent node has influenced

the child node(s)[140]. The learned belief states are stored in Conditional Proba-

bility Tables (CPTs). Thus PROCIM is capable of learning prior information and
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Figure 3.2: Flowchart showing the various stages of the proposed PROCIM
architecture
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experience about facial domains. A given probe face is enhanced using similar

preprocessing techniques which were applied to the gallery samples and subject

to horizontal segmentation. Then the PCA features of facial entities, acquired

by combining probe face components over the gallery face images, are extracted

and projected over the feature space using an inheritance mechanism which will

be described in Section 3.5.1. Further probable subjects are shortlisted by means

of similarity mapping based processing. For a given probe, a BN is generated

whose child node variables represent the belief states of short-listed subjects and

the parent nodes represent the belief states of corresponding components which

influenced them. Finally faces are rank-listed using a face score formula which will

be derived in Section 3.7.

3.4 Building the Bayesian Network from a Simple

Component Based Scheme

We have portrayed systematically how humans might exploit the similarity map-

pings that exists naturally in the face domain to recognize faces with major oc-

clusions in Section 3.2. In this section we will present the feasibility of application

of BNs to counter uncertainties and gradually show how they aid in scientifically

modeling the intuitive similarity mappings. The application of BNs to uncertainty

problems offers the following advantages:

i. They provide a simple way to visualize the structure of an abstract prob-

abilistic model and can be used to design and motivate new models. The

benefit lies in the way such a structure can be used as a compact represen-

tation for many naturally occurring complex domain problems, specifically

recognizing occluded faces and gaits in unconstrained environments.

ii. Insights into the properties of the model, including conditional independence

properties, can be obtained by inspection of the graph. We will shortly show
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in Section 3.8 that the BN generated by PROCIM aids us to visualize and

analyze the impact of occlusion and other variations coherently.

iii. Complex computations, required to perform inference and learning in sophis-

ticated models, can be expressed in terms of graphical manipulations, in

which underlying mathematical expressions are carried along implicitly.

iv. It is intuitively easier for a human to understand the network structures and

the local distributions via BNs than complete joint distributions. Further

BN structures provide the flexibility to modify them, if necessary, in order

to obtain better predictive models.

v By adding utility functions, the BN model can be extended to decision

networks for decision analysis. We will shortly show in Section 3.7, how

PROCIM can take a meaningful decision amidst uncertainty.

An important concept for probability distributions over multiple variables is that

of conditional independence [141]. Conditional independence properties play an

important role in using probabilistic models for pattern recognition by simplifying

both the structure of a model and the computations needed to perform inference

and learning under that model. An important and elegant feature of graphical

models is that conditional independence properties of the joint distribution can be

read directly from the graph without having to perform any analytical manipula-

tions. By manipulating the belief states in the BN, the state of a particular node

can be queried from other nodes with the aid of probabilistic inference techniques.

In our case we would like to query the belief state of an occluded probe face

or a gait subjected to complexities by observing the probabilities entailed by its

subsamples (components).

Diverse sources of information content are possessed in various subregions of a

face. Owing to this variation, though we segment the face into equal horizontal

rectangular subregions, not all these subregions will have the same probability

of influencing the face to be recognized([142–145] as referred in [28]). These ref-

erences show that the order of influence strengths ranges from eyes, followed by
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mouth and then the nose. Therefore each subsample (in statistical sense a sub-

sample refers to a subregion) of the face will have different belief states. The more

unique features a subsample might contain, the more strength it might be have

to influence the face. This is the key reason why human beings, by just seeing a

small portion of a face, while other salient portions of the face might be occluded,

can recognize faces with major occlusions. We define the strength of a subsample

which crucially contributes in influencing the recognition mechanism of the face

as Influence Strength and denote it as Z. We will define subscripts of Z later.

How well a subsample can influence the face which encodes it depends upon the

physical properties of the subsample. The definition of Z here strongly conveys

the physical phenomenon associated with the recognition mechanism. This leads

us to hypothesize that “The face being recognized by observing a subsample of an

occluded probe face will be more similar to the probe, if Z’s magnitude is high”.

Figure 3.3: The proposed psychologically plausible segmentation scheme
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We have seen in Section 2.1 that cognitive and neuroscience literature reveals cer-

tain principles such as selective attention, advantages of processing faces in terms

of horizontal structures and human visual cortex’s reliance on the combination

of multiple local features. These facts have been further reinforced in Section

3.2 which portrays human strategies about reasoning under uncertainty. Further

in Section 2.3.1 we have seen that global features are influenced easily by noise

or occlusion as they are characterized by the lack of a-priori decomposition of

the image into semantically meaningful components. The above findings show

the “divide and rule” phenomenon adopted by component based face recognition

models. After a thorough review of component based models in section 2.3.2 it is

evident that these local approaches can efficiently represent specific components of

an object as discrete entities and they have sound integrating mechanisms to relate

these components to determine the object class. This unique way of modularly

processing objects leads to recognizing objects subject to uncertainties including

occlusions. We consolidate all these findings gradually into PROCIM’s architec-

ture as follows.

Let the probe face be segmented into k equal horizontal rectangular subregions.

Let the k subsamples of the probe face be represented by S = {S1, S2, S3, · · · , Sk}.

A typical face subjected to horizontal segmentation for the case of k = 3 is shown

in Fig. 3.3. Let F = {F1, F2, F3, · · · , Fn} represent the training face set which

has face images of n subjects. Suppose that a subsample Si ⊂ S, 1 ≤ i ≤ k,

has influenced the recognition of a set of faces f = {Fp, Fq, Fr} ⊂ F , where p, q

and r represent unique integers between 1 and n. Let Zip, Ziq and Zir represent

the corresponding influence strengths as shown in Fig. 3.4. We refer to Fig.3.3

where a typical face image, say I(x, y) has been segmented into three subsamples.

Let O(x0, y0), h, w respectively represent the co-ordinates of the bottom left point,

height and width of I(x, y). We will use the set theory notation [146] which is

widely referred to in the literature to define the subsamples S1, S2, S3, · · · , Sk as

follows:

S1(I(x, y)) =
{

(x, y)|x0 ≤ x ≤ x0 + w, (y0 + h)− h
k
≤ y < y0 + h

}
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Figure 3.4: Proposed DAG model showing mappings between a subsample
and the faces being recognized as a consequence of its influence; This Markov

conditioned DAG is nothing but a BN.

S2(I(x, y)) =
{

(x, y)|x0 ≤ x ≤ x0 + w, (y0 + h)− 2h
k
≤ y < (y0 + h)− h

k

}
... (3.1)

Sk(I(x, y)) =
{

(x, y)|x0 ≤ x ≤ x0 + w, y0 ≤ y < (y0 + h)− (k−1)h
k

}
Interestingly a basic understanding of graph theory fundamentals will reveal that

the graph shown in Fig. 3.4 will constitute a Directed Acyclic Graph (DAG) [147].

The pair (S,E) constitutes a directed graph, where S is a finite, nonempty set

whose elements are called nodes (or vertices), and E is a set of ordered pairs of dis-

tinct elements of S. For the graph shown in Fig. 3.4, E = {(Si, Fp), (Si, Fq), (Si, Fr)},
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where elements of E are called edges (or arcs). ∀(X, Y ) ∈ E,X and Y are each in-

cident to the edge (X, Y ). Suppose we have a set of nodes [X1, X2, · · · , Xk], where

k ≥ 2, such that (Xi−1, Xi) ∈ E for 2 ≤ i ≤ k. We call the set of edges connecting

the k nodes a path from X1 to Xk. The nodes X2, · · · , Xk−1 are called interior

nodes on path [X1, X2, · · · , Xk]. The subpath of path [X1, X2, · · · , Xk] from Xi

to Xj is the path [Xi, Xi+1, · · · , Xj], where 1 ≤ i ≤ j ≤ k. A directed cycle is a

path from a node to itself. A simple path is a path containing no subpaths which

are directed cycles. A directed graph G is called a DAG if it contains no directed

cycles. Given a DAG G = (V,E) and nodes X and Y in V , Y is called a parent

of X if there is an edge from Y to X. However, Y is called a descendent of X

and X is called an ancestor of Y if there is a path from X to Y . Y is called a

nondescendent of X if Y is not a descendent of X.

In Fig. 3.4, since Si is influencing the recognition of f , we draw edges from Si to

the elements of f , to form the graph shown in Fig.3.4(b). The above definitions

(from graph theory), clearly justifies that this graph is a DAG. This DAG helps

us to establish mappings from the set of subsamples (Si) to the subset of faces

activated (f). Conceptually these faces will be nearly similar to the probe face

which represents these subsamples and hence we call these mappings as similarity

mappings. In the DAG shown in Fig.3.4 each face is conditionally independent of

the other faces given its parent. That is IP ({Fp}, {Fq, Fr}|Si), Ip({Fq}, {Fr, Fp}|Si)

and Ip({Fr}, {Fp, Fq}|Si), where we denote independence of random variables by

IP . This can be precisely written in the following general form

P (Fj|Fc, Si) = P (Fj|Si), i = 1, . . . , k, j = 1, . . . , n. (3.2)

where Fc = F \Fj. Let the DAG shown in Fig. 3.4 be named as D and its under-

lying probability distribution be named as P . Then (D,P ) satisfies the Markov

condition provided by (3.2), as each element of D is conditionally independent of

the set of all its nondescendents given the set of parents. Such a Markov condi-

tioned DAG leads to what is known as a Bayesian Network by definition [147].

The graphical nature of PROCIM model helps us to visualize the abstract intrinsic
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similarity relationships that exists in a facial domain, as a consequence of mapping

a subsample Si to the set of faces f .

Figure 3.5: Ghost like eigenfaces of some typical face images; Technically these
are the principal components extracted from face images by applying PCA

3.5 Principal Component Analysis (PCA) based

Feature Space

The proposed PROCIM model can be fitted into any suitable feature space pro-

jection technique (eg. PCA, ICA, LDA and so on). For example’s sake we have

chosen the well known PCA architecture. As PROCIM will inherit the PCA ar-

chitecture for its component based face processing, it is fundamental to describe
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the basics of PCA here within the scope of the Face Recognition (FR) problem.

PCA or Karhunen-Loeve transformation [148] is a standard technique used in

statistical pattern recognition and image processing for data reduction and fea-

ture extraction [149]. As the input pattern often contains redundant information,

mapping it to a feature vector can get rid of this redundancy and yet preserve

most of the intrinsic information content of the pattern. These extracted features

have a great role in distinguishing input patterns. Hence PCA has been employed

as a core technique by most of the successful face recognition techniques such as

eigenfaces [26], holons [150] and local feature analysis [133]. PCA based feature

space method [151, 152] which is also called as eigenface technique [26, 153] is an

appearance-based technique widely used for the dimensionality reduction which

has shown a great performance in face recognition.

A face image in two dimensions with size N × N can also be considered as one

dimensional vector of dimension N2. For example, a typical face image with a

resolution of 112 × 92 can be considered as a vector of dimension 10,304, or

equivalently a point in a 10,304 dimensional space. An ensemble of images maps

to a collection of points in this huge space. Images of faces, being similar in overall

configuration, will not be randomly distributed in this huge image space and thus

can be described by a relatively low dimensional subspace. The main idea of the

PCA is to find the vectors that best account for the distribution of face images

within the entire image space. These vectors which define the feature space of

face images, is also called face space in FR terminology. Each of these vectors,

is a linear combination of the original face images. Because these vectors are the

eigenvectors (principal components) of the covariance matrix corresponding to the

original face images, and because they are face-like or ghost-like in appearance,

they are called eigenfaces [26] though they do not necessarily correspond to features

such as eyes, ears and noses. Typical eigenfaces generated from the AT & T face

dataset (more details will be provided in Section 3.9.1.1) are shown in Fig. 3.5.

Recognition is performed by projecting a new image into the subspace spanned by

the feature space. Each face can be approximated using only the eigenfaces which
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have the largest eigenvalues, that is the best eigenfaces, and therefore account for

the most variance within the set of face images. The best M eigenfaces span an

M -dimensional feature space of all possible face images.

The mathematical formulation of the PCA approach is as follows: If the gallery

set of face images is represented by Γ1,Γ2,Γ3, · · · ,ΓM , then their mean face Ψ can

be computed using

Ψ =
1

M

M∑
n=1

Γn (3.3)

Each face differs from the average by the vector

Φi = Γi −Ψ (3.4)

This set of huge vectors is then subject to PCA, which seeks a set of M ortho-

normal vectors, un, which best describes the distribution of the data. The kth

vector, uk, is chosen such that

λk =
1

M

M∑
n=1

(uTkΦn)2 (3.5)

is a maximum. The vectors uk and scalars λk are the eigenvectors and eigenvalues,

respectively, of the covariance matrix C which is given by

C =
1

M

M∑
n=1

ΦnΦT
n (3.6)

= AAT (3.7)

where the matrix A = [Φ1Φ2 · · ·ΦM ]. The matrix C, however is N2 × N2, and

determining the N2 eigenvectors and eigenvalues is a computationally expensive

task. But the practical applicability of eigenfaces stems from the possibility to

compute the eigenvectors of C using an efficient strategy proposed by Turk and

Pentland [26], which is as follows. The rank of the covariance matrix is limited

by the number of training examples: if there are M training examples, there will

be at most M − 1 meaningful eigenvectors with non-zero eigenvalues. By solving
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for the eigenvectors of an M by M matrix and then taking appropriate linear

combinations of the face images Φi, the computations are greatly reduced. Thus

the associated eigenvalues allow us to rank the eigenvectors according to their

significance in characterizing the variation among the images.

3.5.1 Inheriting Similarity Mappings from the PCA based

Feature Space

Here we will show how the above phenomenological similarity mapping concept

can be brought into reality in a facial (pixel) domain. As the eigenspace is built

with the eigenfaces, we cannot directly project the subsamples Si which do not

represent the whole face into this feature space. Building feature spaces for each

of the samples is a tedious and roundabout process as well. Rather we strategi-

cally combine the subsamples into each of the faces in the FDB and project this

combined face, say Xij, onto the eigenspace. Fig. 3.6 shows how a subsample of a

typical occluded face has been combined with faces in the training face set. Hence

Xij is given by

Xij = Si ∪ Fj, i = 1, . . . , k, j = 1, . . . , n. (3.8)

Finally a set of r similar faces from the FDB of n face images are shortlisted.

That is we intend to shortlist r similar faces (closely resembling the probe face)

from the FDB which is a consequence of the influence of the subregions of the

probe face. By means of this technique we can predict the faces influenced by

the horizontal subregions of the probe face by inheriting the PCA architecture

described in the above section (3.5). Let the similarity measure between two faces

Fi, Fj be denoted by SM(Fi, Fj) ∈ [0, 1]. If i = j then SM(Fi, Fj) will be 1.

Otherwise 0 ≤ SM(Fi, Fj) < 1. Faces influenced (Ξ) by k subsamples can be

computed by

Ξ = arg min
Fj

SM(Xij, Fj), i = 1, . . . , k, j = 1, . . . , n. (3.9)
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Figure 3.6: The process of generating combined faces from a subsample of
a typical occluded face being illustrated; Face images from FERET [2] dataset

has been used.

We construct the eigenspace (face space) off-line from the gallery set of face sam-

ples of the FDB. Since Si are components of the probe face I , we have that

I = S1 ∪ S2 . . . ∪ Sk (3.10)
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which mathematically conveys that a face image is a combination of its facial

components (subsamples). The following equation is used to project the combined

face Xij into the eigen-space.

ωij = uTj (Xij −Ψ), i = 1, . . . , k, j = 1, . . . , n, (3.11)

where ωij , uj and Ψ are respectively the weight vectors, eigenvectors and the

mean face of the FDB. The face space projection Φf can be computed by

Φf =
n∑
j=1

ωijuj, i = 1, . . . , k. (3.12)

The Euclidean distance betweenXij and the face space projection can be computed

using

εij =‖ (Xij −Ψ)− Φf ‖ (3.13)

Let Es represent the sorted Euclidian distances of εij. Consequently the r face

classes that correspond to the first r Euclidean distances of Es will yield the

faces influenced by each of the horizontal subregions of the probe face. Similar to

how a human might recall some faces by observing portions of a face, the above

formulation aids the machine to shortlist faces by observing subsamples of a face

via psychophysical means.

3.6 Learning the Parameters of the BN from

FDB

Since the FDB is readily available, the prior belief states of the subsamples, which

are the parameters of the proposed BN, can be computed off-line before the probe

face is observed. The belief states of a subsample Si intuitively represent how

effectively it can contribute to the recognition of faces. Dirichlet density functions

are widely used in Bayesian statistics as they provide intuitive means in repre-

senting prior beliefs which can be updated gradually by observing evidence [147].
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The prior belief states of the proposed BN can be quantified using the following

Dirichlet density function

ρ(f1, f2, f3, . . . , fr−1) =
Γ(N)

Πr
k=1Γ(ak)

fa1−1
1 fa2−1

2 · · · far−1
r (3.14)

where f1, f2, f3, . . . , fr−1 are values of random variables F1, F2, F3, . . . , Fr−1, 0 ≤

fk ≤ 1,
∑r

k=1 fk = 1, a1, a2, a3, . . . , ar are integers ≥ 1 and N =
∑r

k=1 ak.

The gama function used in (3.14) is computed by

Γ(x) = (x− 1)! x > 0 (3.15)

The prior belief states of the parameters which are the fundamental building

blocks of the BN are updated by a machine learning procedure called parameter

estimation. Out of several such procedures available, two of them, Maximum-

Likelihood Estimation (MLE) and Bayesian estimation are considered most often

by researchers [154]. When compared to Bayesian estimation, MLE is simpler.

MLE has been recommended by [155] as it has many optimal properties in estima-

tion including asymptotic consistency and unbiased nature. MLE demands large

training samples. Fortunately as the BN can be realized through large samples

available in the facial domains, MLE will converge to precise estimates enabling

the distribution of the parameters to be normal. Consequently many of the in-

ference methods in statistics such as Chi-square test, Bayesian methods, Akaike

information criterion [156] and Bayesian information criteria [157] are developed

based on MLE. Equation (2.6) reveals that the Markov condition has been satis-

fied by the probability distribution entailed by the DAG of the proposed PROCIM

model. Hence we have

P (F |Si) = Πn
j=1P (Fj|Si), i = 1, . . . , k. (3.16)

Recall from Section 3.4 that F represents the n faces in the gallery (training) set

and S represents the k subsamples of the probe face. We mathematically define
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the influence strength Zij of a subsample Si as

Zij = (n− `)/n (3.17)

where ` is the rank in which the face Fj is being recognized by the subsample Si.

This clearly shows that F depends on Zij; without a gallery of faces, it would be

impossible to define Zij.

The objective of MLE is to estimate the unknown parameter Zij that best agrees

with the observed gallery set of face images. MLE of Zij is by definition the value

of Ẑij that maximizes lnP (F |Si), the log likelihood of the parameter set Zij with

respect to the training face set F . The log likelihood is dependent on Zij, but we

do not show this, to simplify the notation. The parameter Ẑij can be computed

by

Ẑij = arg max
Zij

ln P (F |Si). (3.18)

To be a maximum, the shape of the log-likelihood function should be convex in the

neighborhood of Ẑij which can be checked by computing the second derivatives of

the log likelihoods. Note that

lnP (F |Si) =
n∑
j=1

lnP (Fj|Si). (3.19)

With this, equation (3.18) becomes

Ẑij = arg max
Zij

n∑
j=1

lnP (Fj|Si). (3.20)

For large values of n, Zij defined in (3.17) becomes nearly continuous. The max-

imization in (3.20) can be performed by a gradient descent, provided that the

numerical algorithm has a steplength that is not lower than the largest difference

between two Zij, or that the algorithm uses a suitable interpolation routine. By

using a gradient method, a set of necessary conditions for the maximum-likelihood
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estimate for Zij can be obtained from the set of k equations

n∑
j=1

∇Zi ln P (Fj|Si) = 0 i = 1, . . . , k (3.21)

where the gradient operator ∇Zi is given by

∇Zi ≡


∂

∂Zi1

∂
∂Zi2

...

∂
∂Zin

 i = 1, . . . , k (3.22)

Remember that Zi is a vector with n components Zij, j = 1, . . . , n. The equations

above are similar to the standard equations for MLE, as can be found for example

in [154]. The only difference is that the standard equations have a simple vector

of parameters, and that our parameter vector Zi is dependent on the subsample.

Indeed, we perform a standard MLE, but we do it for all subsamples i = 1, . . . , k.

The BN employed in PROCIM learns the belief states of conditional probability

potentials systematically from the training face images using the MLE approach

outlined above. The learnt belief states are stored in the form of Conditional

Probability Tables (CPTs). For k number of subsamples, the BN yields a CPT

comprising 2k − 1 rows. A typical CPT for the case of k = 5 is shown in Table

3.1. The conditional probabilities in Table 3.1 give the likelihood measures of faces

given their various subsample or subsample combinations being observed. Usually

when all the subsamples together are observed, the probability of faces being recog-

nized is larger. But this general behavior is not always applicable and varies from

individual to individual, as different individuals can be characterized by a specific

combination of facial features. For example, by referring to the last column of the

table, we observe that conditional probabilities P (F10|S1) and P (F10|S1, S3) are

relatively higher. This reveals the fact that the face recognition of subject F10 is

highly characterized by a specific subregion or a specific combination of subregions.

However the conditional probabilities P (F10|S4), P (F10|S5) and P (F10|S4, S5)

being low indicate that subject F10 is poorly characterized by these subregion(s).
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Table 3.1: Learnt belief states that represent the likelihood of typical faces
(chosen from FERET dataset) by observing subsample combinations for k = 5

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

S1 0.933 0.950 0.950 0.633 0.392 0.950 0.917 0.158 0.792 0.933

S2 0.933 0.883 0.950 0.317 0.233 0.900 0.792 0.775 0.633 0.600

S1S2 0.950 0.950 0.950 0.600 0.317 0.950 0.883 0.742 0.758 0.792

S3 0.342 0.500 0.850 0.517 0.425 0.900 0.633 0.583 0.708 0.375

S1S3 0.950 0.758 0.950 0.475 0.583 0.950 0.917 0.883 0.633 0.917

S2S3 0.583 0.708 0.950 0.533 0.600 0.950 0.792 0.867 0.633 0.583

S1S2S3 0.950 0.867 0.950 0.567 0.675 0.950 0.900 0.850 0.633 0.775

S4 0.125 0.917 0.708 0.375 0.125 0.867 0.633 0.758 0.775 0.125

S1S4 0.692 0.950 0.950 0.617 0.408 0.950 0.883 0.933 0.633 0.775

S2S4 0.408 0.917 0.917 0.533 0.408 0.950 0.792 0.792 0.633 0.500

S1S2S4 0.775 0.950 0.950 0.550 0.500 0.950 0.792 0.883 0.742 0.775

S3S4 0.125 0.792 0.850 0.300 0.267 0.950 0.742 0.850 0.742 0.233

S1S3S4 0.817 0.950 0.950 0.617 0.517 0.950 0.792 0.933 0.633 0.775

S2S3S4 0.300 0.917 0.950 0.500 0.533 0.950 0.792 0.867 0.633 0.408

S1S2S3S4 0.850 0.933 0.950 0.550 0.583 0.950 0.792 0.883 0.633 0.775

S5 0.567 0.900 0.725 0.108 0.125 0.775 0.775 0.317 0.883 0.125

S1S5 0.950 0.950 0.933 0.550 0.683 0.950 0.933 0.425 0.775 0.883

S2S5 0.933 0.933 0.900 0.533 0.283 0.933 0.933 0.458 0.758 0.517

S1S2S5 0.950 0.950 0.933 0.625 0.300 0.950 0.950 0.425 0.758 0.867

S3S5 0.625 0.792 0.883 0.567 0.342 0.933 0.758 0.408 0.758 0.408

S1S3S5 0.950 0.950 0.933 0.442 0.442 0.950 0.933 0.692 0.742 0.867

S2S3S5 0.850 0.917 0.917 0.583 0.500 0.950 0.775 0.642 0.633 0.533

S1S2S3S5 0.950 0.950 0.933 0.583 0.767 0.950 0.950 0.550 0.725 0.850

S4S5 0.267 0.917 0.725 0.533 0.125 0.917 0.883 0.408 0.883 0.125

S1S4S5 0.883 0.950 0.933 0.533 0.425 0.950 0.933 0.658 0.742 0.833

S2S4S5 0.642 0.950 0.917 0.583 0.283 0.950 0.917 0.567 0.725 0.392

S1S2S4S5 0.917 0.950 0.933 0.300 0.425 0.950 0.950 0.658 0.758 0.758

S3S4S5 0.300 0.900 0.883 0.283 0.142 0.950 0.792 0.317 0.758 0.342

S1S3S4S5 0.917 0.950 0.933 0.583 0.442 0.950 0.933 0.817 0.633 0.742

S2S3S4S5 0.500 0.950 0.917 0.517 0.517 0.950 0.883 0.533 0.633 0.408

S1S2S3S4S5 0.900 0.950 0.933 0.583 0.625 0.950 0.900 0.642 0.742 0.742
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Thus the proposed framework allows to characterize subtle subsample relation-

ships and exploit them to mitigate the vast uncertainties imposed by occlusions

and other common variations.

3.7 Deciding on the most Probable Faces

In section 3.5.1, we have formulated a procedure to shortlist a reduced set of faces

influenced by horizontal subsamples of a face image from the huge FDB. Here we

will propose a formula to rank-list these shortlisted faces in order to decide the

most probable (winner) faces. Say C number of faces have been influenced for a

given probe face after the horizontal subregions have been processed. The formula

which we intend to formulate will yield a score for each of the C number of faces.

This score will aid to rank-list the faces.

By exploiting the graphical structure of the BN, the probability distribution over

Fm, 0 < m ≤ C can be computed by

P (Fm) =
∑
Si

P (Si)P (Fm|Si) i = 1, . . . , k (3.23)

where P (Si) is the prior probability of subsamples and P (Fm|Si) is the probability

of a face given the condition that some subsamples (or a subsample) has influenced

it.

Figure 3.7: A typical occluded probe face from AR face set
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Figure 3.8: Comparison of Probability Distribution Vs. Face Score; Mere
probability theory is not adequate to make a meaningful decision; The pro-
posed Face Score formula which is based on probability as well as utility theory
discriminates the winner face better than a formula which just uses probabilities.

Consider the case where an occluded probe face shown in Fig. 3.7 has been

subjected to similarity mapping based processing. By applying the procedures

formulated in section 3.5.1 faces have been short listed. The probability distribu-

tion of these faces are shown in the left most bar chart of Fig.3.8. We see that

the probability of F4 (the gallery instance of the probe) falls somewhere in the
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middle. Also the probabilities of faces (F18,F26,...,F54) which are higher than the

probability for F4, fetch similar values without much discrimination. This reveals

that mere probabilities are not adequate enough to make a meaningful decision.

To counter this problem we consider the well known rule of thumb given by Russel

and Norvig [140] which emphasizes that “Probability theory and utility theory

together constitute decision theory”. By utilizing the crucial influence strengths

Z defined in Section 3.4 to weigh the prior probability of subsamples, logically the

face score will yield meaningful results if it is a function of the following two vital

factors,

i. The probability distribution of the faces and their subsamples.

ii. Weighted influence strength between faces influenced and their subsamples.

Consolidating the above factors, the face score µ of a mth face can be computed

using

µ(Fm) =
∑
Si

P (Si)P (Fm|Si) +
∑
Si

ZimP (Si) (3.24)

If a subsample has not influenced a face, due to severe uncertainty, Z would fetch

a zero. This will inturn nullify the face score if we use a product operation. Hence

the face score appropriately uses an addition operation. With the aid of this

face score, faces have been rank-listed as shown by the right most bar chart of

Fig.3.8. The chart shows that the face score discriminates the winner faces well

and the probe face has been well classified (rank 1). The decision process involved

in MLA [125] relies on the probability of a given local match which is directly

associated with a distance metric. However, the decision process employed in

the proposed PROCIM model makes use of the influence strength in conjunction

with the probabilities entailed in the model. Such a consolidated decision process

enables the model to gain discrimination power.
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3.8 Understanding Similarity Mappings by Visualizing

the Model

Though humans can communicate sensibly by establishing and exploiting similar-

ity mappings in a knowledge domain, it may be difficult to fully understand its

philosophical aspects. Visualizing the graphical structure of the proposed model

enables the reader to understand the abstract similarity mapping phenomenon in-

tuitively. The three instances of a typical probe face being subjected to Nil, Minor

and Major occlusions are shown in Fig.3.9.

Figure 3.9: A typical probe face being subjected to nil, minor and major occlu-
sion has been taken to study the relationships between occlusion and similarity

maps

The corresponding BNs generated by PROCIM and the bar chart showing Face

Score Vs. Rank-listed Faces are shown in Figures 3.10,3.11,3.12,3.13,3.14 and

3.15. When there are no occlusions, the gallery instance F4 of the given probe

is mapped by all the subsamples as shown in Fig.3.10. As the occlusion content

increases the mappings tend to reduce (less number of subsamples map to F4 as

shown in Fig.3.12 and Fig.3.14. This shows that there exists strong relationships

between occlusions and similarity mappings. Occlusions are capable of muddling

intrinsic similarity relationships that exists in facial domains.
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Figure 3.10: BN generated by PROCIM for the case of probe face with nil
occlusion; When the probe face is not prone to occlusion, its gallery instance

F4 is mapped by more subsamples
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Figure 3.11: Rank-listed faces for the case of recognizing the probe face with
nil occlusion; The winner subject F4 is well discriminated from other faces
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Figure 3.12: BN generated by PROCIM for the case of probe face with minor
occlusion; When compared to the BN shown in Fig. 3.10, F4 is mapped by less

number of subsamples
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Figure 3.13: Rank-listed faces for the case of recognizing the probe face with
minor Occlusion; Despite the presence of minor occlusion, still F4 is well dis-

criminated by the proposed Face Score formula
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Figure 3.14: BN generated by PROCIM for the case of probe face with major
Occlusion; When compared to the BNs shown in Fig.3.10 and Fig.3.12, F4 is
mapped by very less number of subsamples; This shows that occlusions are

capable of muddling similarity mappings
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Figure 3.15: Rank-listed faces for the case of Recognizing the Probe Face with
Major Occlusion; As a consequence of major occlusion F4 has been pushed from

rank 1 to rank 3;

PROCIM learns vital information about the likelihood measures of various sub-

samples and the faces that encode them and store them systematically in condi-

tional probability tables. Further during the training process PROCIM learns the

prior belief states of subsamples. For the case of faces rank-listed while recogniz-

ing the face with major occlusions shown in Fig. 3.9 the conditional probabilities

that have been learnt from the training data set are shown in Fig. 3.16. Due

to the uncertainty caused by major occlusions only few subsamples contribute

to the recognition of F4 as shown by the BN in Fig. 3.14. Further the influ-

ence strength achieved by F47, F10, F25 and F12 are higher than F4 as seen in

Fig.3.17. But the conditional probabilities (likelihoods) and the prior belief states

(Please see Fig.3.16 and Fig.3.18) of subsamples which have been learnt from the
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training dataset compromise the strengths diluted by occlusions. Consequently

F4 is reasonably classified as seen in Fig.3.15. This intelligent trade off between

the learnt information and observed mappings enables PROCIM to recognize faces

with major occlusions.

Figure 3.16: Represent the conditional probability potentials learnt from the
AR training dataset for the first 15 winner faces associated with Fig. 3.14
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Figure 3.17: Corresponding influence strengths observed from the graph which
have been duly weighted by priors for the first 15 winner faces associated with

Fig. 3.14
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Figure 3.18: Prior belief states of subsamples learnt from data; As a face
contains diverse source of information at various subregions, naturally the belief

states of these subregions are also different

To mitigate the localization errors, MLA [125] attempts to find the subspace within

the eigen-space where the localization error is minimal. The abstract nature of

learning of such a subspace for each of the components and how well all these

component based processing is collectively represented, is hard to visualize and

interpret in the MLA approach. PROCIM learns and exploits intrinsic similarity

relationships that are inherent in the facial domain to tackle the uncertainties. The

graphical nature of the PROCIM enables us to visualize the similarity mappings

inherent in various subsamples and how they jointly contribute to the recognition

mechanism. Furthermore, how they gradually vary with respect to the presence of

varied degrees of occlusions is clearly demonstrated using the proposed BN oriented
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PROCIM architecture. This transparency is due to the intuitive psychophysical

nature of the model.

3.9 Evaluation of PROCIM

We have implemented the proposed PROCIM model using MATLAB on Intel

Pentium IV Core 2 Duo 2.39Ghz CPU with 2GB of RAM. We have made use of

the routines offered by [158] and [159] to build the PCA feature space and BN

respectively. We have evaluated the performance of PROCIM model using a series

of experiments on standard datasets, the details of which are given in Section 3.9.1.

As the nature of the underlying problem is identification and not verification, the

performance of PROCIM is evaluated using a closed universe model which insists

that all the probes need to have a match in the gallery. Such an evaluation model

allows us to ask “How good is an algorithm at identifying a probe image?” [2].

The emphasis here is not always “is the top match correct?” but “is the correct

answer in the top n matches?”. To consider this vital emphasis, we report the

performance statistics as recognition rates and Cumulative Match Characteristics

(CMCs). CMC is a measure of identification performance which shows rank order

statistics. In other words CMC indicates the probability that the gallery subject

will be among the top n matches, for a given probe.

3.9.1 Details of Face Databases (FDBs) used in our Ex-

periments

As a general practice in pattern recognition, it is accepted that using at least 10

times as many training samples per class as the number of features is a good prac-

tice to follow [160]. This ratio needs to be larger for more complex classifiers [161].

Based on these guidelines we have used the following widely used FDBs in order

to evaluate and compare the PROCIM model with other standard techniques.

Fig.3.19 shows some sample images of these FDBs.
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Figure 3.19: Sample face images typically chosen from the AT&T, AR and
FERET FDBs

3.9.1.1 AT&T FDB

Initially we have used this FDB which is also known as AT&T FDB [62]. This

FDB was formerly known as “The ORL Database of Faces”, provided by AT&T

Laboratories of Cambridge. We have used this FDB in order to compare our results

with [114]. There are ten different images varying in scale, pose and expression for

each of the 40 distinct subjects available in the FDB. The images are taken against

a dark homogeneous background. In our experiments 50% of the face images were

reserved as gallery set and the rest 50% were used as probe set. In other words

gallery set is the set of known faces used for training, whereas the faces used to

test the model are known as probe set.
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3.9.1.2 AR FDB

We have used the huge AR FDB [124] which consists of over 3200 color images of

126 subjects. Images feature frontal view faces with different facial expressions,

illumination conditions, and realistic occlusions (sun glasses and scarf). Each

person participated in two sessions, separated by two weeks time. Per subject we

have used four frontal view images chosen at random for training.

3.9.1.3 FERET FDB

To investigate the generalization ability of the proposed model we have used the

FERET (FacE REcognition Technology) FDB [2, 162] which contains face im-

ages collected under the FERET program sponsored by the DOD counter drug

Technology Development Program Office. It is managed by the Defense Advanced

Research Projects Agency (DARPA) and the National Institute of Standards and

Technology (NIST). The FERET FDB has enabled researchers to develop and eval-

uate algorithms on a common large database of facial images that was gathered

independently from the algorithm developers. This FDB has been designed to

advance the state of the art in face recognition and as such face images were taken

in real world settings in order to simulate typical unconstrained scenarios. Face

images are subject to diverse variations such as pose, illumination, scale and ro-

tation. For our experiments we have taken a subset of FERET consisting of 2184

face images with 8 variations per subject. We use five face images for training and

three for testing. The training and test images have been chosen at random for

each subject. We categorize the images into three different scenarios as summa-

rized in Table 3.2. The term duplicate in the table, in the context of biometrics,

refers to the probe image of a person whose corresponding gallery image was taken

from a different image set. Usually, a duplicate is taken on a different day than

the corresponding gallery image.
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Table 3.2: FERET FDB Details

Category FERET Notation Description

Dataset A Fa & Fb Frontal view images including

duplicates with variations

in expression, illumination and scale

Dataset B Above + ql & qr Above variations

+ pose variations (rotation)

Dataset C Above + b-series Above variations

+ different settings of camera

and lighting

3.9.2 Performance Evaluation

Figure 3.20: PROCIM compared with state-of-the-art techniques; Occlusion
patch size: 10 × 10 pixels
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Papers on recognizing occluded faces, such as [114, 123, 125, 132], suggest to

simulate synthetic occlusions at random locations on the probe set of face images in

terms of continuous white or dark (square/rectangular) patches. We have termed

this test as Continuous Random Occlusion Test (CROT). Kim et al. [114] have

taken into consideration occluded patch sizes from 10 x 10 to 30 x 30 to evaluate

their proposed LS-ICA method with other techniques viz., PCA [26], ICA I & II

[31], LNMF[135] and LFA[133]. We have compared the recognition performance

of the proposed PROCIM model with these techniques as well using the AT&T

FDB and projected the results in Figures 3.20, 3.21 & 3.22. The x-axis in these

figures represent the dimensionality, that is the number of principal components

that had been taken into consideration.

Figure 3.21: PROCIM compared with state-of-the-art techniques; Occlusion
patch size: 20 × 20 pixels
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Figure 3.22: PROCIM compared with state-of-the-art techniques; Occlusion
patch size: 30 × 30 pixels

It can be seen that PROCIM outperforms other techniques. While the other tech-

niques degrade gradually as the occlusion content increases, PROCIM is stable.

This stability is because of the fact that it can efficiently establish and exploit

the similarity mappings inherent in facial domains to counter the uncertainties

imposed by the occlusions.
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Figure 3.23: The Discrete Random Occlusions Test(DROT); In unconstrained
scenarios, face images could be prone to multiple discrete occlusions and DROT

simulates this reality
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Figure 3.24: Estimating optimal number of subsamples using DROT; Few
number of subsamples are sufficient to get optimal recognition performance.
This means less computing resources are sufficient to run PROCIM. Half the
length of the error-bars represent σ/

√
N , the standard-error, where σ is the

standard-deviation of recognition rates for N number of trial-runs.

Contrary to CROT, in reality not always a single square occludes a face. For

example a person could cover his face with a cap and sun glasses and not necessarily

the entire upper face or lower face. To counter such multiple discrete occlusions we

have simulated dark patches over various portions of the probe face set at random

locations as shown in Fig.3.23 and performed recognition tests. We have named

this test as “Discrete Random Occlusions Test (DROT)”. Firstly we have used

DROT to estimate the optimal number of subsamples required to achieve peak

recognition performance. Secondly a face recognition model which can pass such an

intuitive DROT will also be successful in recognizing faces with real occlusions such

as cap, sun glasses and scarf possibly covering the face one at a time. The pie chart
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in Fig.3.23 quantifies these complex occlusions. Occlusion content of about 60%

cover the probe face sets and only about 40% of cues are left out. The challenge

is to exploit the minimal information (cues) available and predict winner faces.

Initially DROT had been performed on the FERET dataset A by iterating the

number of subsamples which will have an impact on the parameter size of the BN.

From the graph shown in Fig.3.24 it is evident that by segmenting the face into just

a few number of subsamples peak recognition rates can be achieved. Consequently

this will minimize the usage of computing time and resources considerably. Though

major occlusions are present, PROCIM has yielded a promising recognition rate

of 86.3% with minimal number of parameters against DROT.

Further, the error bars in the graph indicate the measure of uncertainty inherent

in the estimated subsamples with respect to the recognition rates. The error bars

shown in the graph represent a description of confidence that the mean represents

the true recognition rate with respect to the number of subsamples. The estimates

where the error bars are shorter is an indication that the confidence levels at these

estimates are higher and vice versa. We see that when the number of subsamples

are between five to seven, the confidence level tend to be higher than the rest of

the subsamples.

We have compared PROCIM with the very recently proposed Adaptively Weighted

Sub-Gabor Array(AWSGA) approach [126] and Martinez’s Localization Algorithm

(MLA) [125] on the AR FDB where face images have been subjected to two types

of real occlusions namely sunglass and scarf. Except the first two ranks, in the

majority of the tests, PROCIM eventually outperforms both MLA and AWSGA

as shown by the CMC graphs in Fig.3.25 and Fig.3.26. For example, referring to

the graphs of Sunglass experiments, PROCIM reaches more than 90% recognition

rate within ranks 5 and 7 respectively for the non-duplicate and duplicate test sets.

But for MLA this happens only at ranks 8 and 11 respectively and for AWSGA it

never happens even before 20 ranks, though both of them have the advantage of

using one training sample per class. This means that PROCIM can recognize the

actual suspect within less range of ranks which is crucial in criminal investigations,
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though more training samples per class are required. It is reported in [2, 125] that

recognition tests on non duplicate images are tougher. Even against these tougher

tests, PROCIM reports promising recognition rates of about 90% within 6 ranks.

Figure 3.25: PROCIM versus MLA non-duplicate set
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Figure 3.26: PROCIM versus MLA duplicate set

Further we have compared PROCIM with MLA against synthetic occlusions. Mar-

tinez [125] represent a whole face in terms of 6 local areas (elliptical components)
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and considers different occlusion sets, denoted as occh with h = {2, 3, 4}. However

what is the psychological plausibility or atleast the scientific basis of segmenting

the face image into elliptical components is not evident. Respectively the ele-

ments 2, 3, 4 in the set indicate the increasing quantity of occlusions, that is any

two, three, four out of six local areas of a given probe face have been occluded.

This in turn infers that about 33%, 50% and 66% of synthetic occlusions have been

simulated on the probe face images at various possible combinations. The CMC

response of MLA and PROCIM for these occlusion sets are shown in Fig.3.27. The

graphs show that for the first two ranks, MLA performs better than PROCIM. But

gradually PROCIM advances and converges to perfect recognition (100%) even in

the presence of major (> 50%) occlusions within 10 to 12 ranks. MLA has the

advantage of using one training sample per class but with the drawback that it

does not converge within reasonable ranks. However PROCIM provides a solution

within 12 ranks which is a significant improvement.
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Figure 3.27: PROCIM versus MLA duplicate set
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We subjected the FERET datasets A,B and C to CROT and their CMC response

are shown in the graphs of Fig.3.28,3.29 and 3.30 respectively.

Figure 3.28: PROCIM subjected to CROT on FERET dataset A
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Figure 3.29: PROCIM subjected to CROT on FERET dataset B
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Figure 3.30: PROCIM subjected to CROT on FERET dataset C

We have quantified the occlusion content simulated over the probe face images in

terms of percentage and classify the continuous random occlusion test (CROT)

into two categories viz., I and II. I represents probe images subject to minor to

moderate occlusion content comprising 10%, 20% and 30% occlusions and that of

II represents major occlusion content of 35%, 45% and 55%. As the occlusions are

simulated on random locations, the performance may not be directly proportional

to the occlusion content. Hence in order to have a fair evaluation, the mean

performance of occlusion contents (each of I and II) are reported. The overall

performance for the three datasets yielded by PROCIM for I and II are 94.3% and

90.1% respectively within the top three ranks. We have compared the proposed

PROCIM model with PCA against DROT which are shown by the graphs in

Fig.3.31.
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Figure 3.31: PROCIM subjected to DROT on FERET datasets A,B and C

For the discrete random occlusion test (DROT), PROCIM reports an overall 82.7%

performance within the top three ranks. These results show that DROT throws
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a major challenge compared to CROT. The wide gap seen in the graphs between

PROCIM and the conventional PCA justifies the fact that component based object

models perform much better than unified object models when a high number of

uncertainties including occlusions are present.

3.10 Summary

We have discovered that faces exhibit interesting similarity mappings. The pro-

posed framework intuitively exploit these intrinsic mappings to recognize faces

when they are prone to major occlusions coupled with other variations. The pro-

posed PROCIM model encapsulates key psychophysical principles fundamental

to reasoning under uncertainty, by means of statistical machine learning tech-

niques. Compared to the state-of-the-art techniques, PROCIM reports improved

recognition rates. The fact that PROCIM has the ability to converge to peak

performance within a few top ranks indicates that PROCIM promises to recognize

the actual suspect whose face contains major occlusions within a smaller number

of ranks. If a biometric enabled security system can provide such an ability, it

will give the criminal investigation team a considerable advantage, which is a sig-

nificant advancement in the field of biometrics. The Discrete Random Occlusion

Test (DROT) introduced in this chapter is more practicably feasible and proves

to be tougher than conventional tests which simulate occlusions in terms of single

continuous blocks. Hence DROT would serve as a better validation measure to

evaluate future occlusion models. Further we have shown that less parameters

are sufficient to build the model and hence PROCIM does not demand special

computing resources.
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Overview of Gait Recognition

4.1 Introduction

Though the development of biometric algorithms started in the mid-1960’s with

work on fingerprint, face and speaker recognition, computer vision based recogni-

tion approaches to gait were first developed only in the early 1990s. If we recall the

comparative analysis of biometric technologies by market share (Fig.1.2) which we

presented in Section 1.1, it is clear that Gait Recognition (GR) technology is yet

(even in 2009) to explicitly yield any significant commercial contribution. However,

interest on GR research is driven and promoted actively by “DARPA’s Human ID

at a distance program”. The reason is that gait as a biometric offers the unique

advantage of recognizing people at a distance from low resolution videos unob-

trusively, where application of other biometrics are not feasible. GR differs from

gait classification which classifies human motion into categories such as walking,

running and jumping. Recognizing human emotion, that is identifying whether

a human is in one of the states of anger, disgust, fear, joy, sadness and surprise,

using gait data is another active research area which comes under gait analysis.

Though each individual is characterized by some unique walking behavior, gait is

a complex spatio-temporal biometric and not very distinctive. It is gradually get-

ting well accepted as a biometric for surveillance applications. Recent advances in

88
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computing technology, especially high-speed processors, bulk storage and memory

resources, are enabling gait as a practicable biometric right now, although the idea

has emerged decades ago [163].

Figure 4.1: Flowchart showing the typical stages of a GR identification system

In the class of object recognition problems, identification is considered to be harder

than verification [164]. Although gait can disclose more than identity, it is increas-

ingly being applied to identification tasks [165]. Though there exists many GR

approaches, they usually follow the stages shown in Fig.4.1. The sensor serves

as an interface between the real world and the GR system. Its role is to acquire
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all the necessary data. The raw data acquired by the sensor need to be prepro-

cessed. This includes removal of artifacts, background noise, minimize variations

caused by illumination variation and so on. Then, most discriminative features

are extracted from the preprocessed data by discarding redundant information

and a database of feature exemplars, training samples, are formed. A given probe

image sequence undergoes similar stages like the gallery ones until probe features

are extracted. Finally, probe features are compared with gallery features using

similarity measures and subjects are identified. We don’t address the verification

problem where a single probe is matched with a single gallery, a one-to-one match.

Rather we focus on the identification problem which matches a given probe gait

sequence against a set of gallery gait sequences, a one-to-many match.

4.2 Motivation from other fields

Literature reveals that several computer vision based GR techniques have de-

rived their basis from cross disciplinary areas such as psychology, biomechanics

and medical analysis. Computer vision oriented gait recognition is inspired by

some historical work on human locomotion research. Borelli(1608-1679), who is

regarded as the father of biomechanics, showed interests on the mechanical prin-

ciples of locomotion. His study is considered as a starting point for the study of

biomechanics of locomotion [20]. Later, Weber brothers (1836) investigated hu-

man gait, on aspects of both walking and running with simple instrumentation,

and suggested that the lower limbs act like a pendulum. However, these awaited

scientific justification. More advanced mathematical techniques and reliable in-

strumentation were necessary to probe into the study of locomotion. Muybridge

was the first to employ photographic techniques extensively to record locomotion

[166].

Literature shows that in the early 1970’s medical studies have first tried to treat

gait as a discriminating trait [167]. The task of classification of gait components
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plays a vital role in medical research in order to aid the treatment of pathologi-

cally abnormal patients. Murray et al. [3] introduced a cost effective way using

reflective strips to specific anatomic landmarks of human body to generate gait

patterns. Although, in the perspective of today’s standards, this appeared to be a

crude method, the sagittal plane joint angle measurements of normal subjects in

her publications are very similar to those obtained with current technology. She

compared the gait patterns of pathologically normal people with that of patholog-

ically abnormal patients. The periodic behavior of hip motion computed from gait

sequences of a typical individual is shown in Fig.4.2, where the upper and lower

curves indicate standard deviation. In the first half of the gait cycle, the hip is in

continuous extension as the trunk moves forward over the supporting limb. In the

second half, once the weight has been passed onto the other limb, the hip flexes

in preparation for the swing phase. Her study revealed that the hip (pelvic) and

thorax (thigh) rotations highly varied from one subject to another. Many recent

biometric research works capitalize on these findings [168–172].
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Figure 4.2: A typical result from early medical research ([3]) still serves as
a basis for many gait based biometric research. The graph shows that hip
motion within a gait period exhibits some regularity. Even recent GR techniques

capitalize on this idea.

The ability of humans to recognize gaits has long been of interest to psychologists.

Johansson [167] showed that humans can quickly (in less than one second) identify

that a pattern of moving lights, called a moving light display (MLD), corresponds

to a walking human. However, when presented with a static image from the MLD,

humans are unable to recognize any structure at all. For example, without knowing

that the dots in a single frame of the sequence shown in Fig.4.3 are on the joints

of a walking figure, it is difficult to recognize them as such. Further it is difficult

to show in a print medium, that within a fraction of a second after the dots move,

one can recognize them as being from a human gait.
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Figure 4.3: Frames from a moving light display of a person walking [4]. People
can quickly identify that the motion is a gait from the moving sequence, but
have difficulty with static frames. Decades back, the results of this psychological
study revealed that people can recognize their friends from motion but motion

alone is not sufficient to be a reliable form of identification.

Johansson’s findings have been even referred in recent GR papers (Eg.[173, 174])

as they provide an empirical method that allows one to view motion extracted from

other contextual information. Kozlowski and Cutting [175] showed that humans

can recognize the gender of a walker from an MLD. However, for short exposures

to the MLD (two seconds or less), humans could recognize gender at a recognition

rate of only 50%. It required longer exposures, on the order of four seconds, for

humans to perform a better recognition. Even then, a recognition rate of about

66% only has been recorded. Cutting and Kozlowski [4] also showed that people

can recognize their friends from MLDs. The experiment involved six students who
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knew each other well. Experimenters recorded MLDs for the six students. Then,

at a later date, the original six, plus a seventh one, who has been also a friend, tried

to recognize their friends from the MLDs. This yielded a recognition rate of 38%

which is significantly better than recognizing a friend at random (17%). These

results concluded an important fact that people can recognize their friends from

motion, but motion alone is not sufficient to be a reliable form of identification.

Later work showed that point light displays aided to classify gaits as different

types of motion such as jumping and dancing [176]. Later, Binham [177] showed

that point light displays are sufficient for the discrimination of different types of

object motion and that discrete movements of parts of the body can be perceived.

As such, human vision appears adept at perceiving human motion, even when

viewing a display of light points. Indeed, the redundancy involved in the light

point display might provide an advantage for motion perception [178] and could

even offer improved performance over video images. A recent study [179], using

video rather than point light displays, has shown that humans can indeed recognize

people by their gait, and learn their gait for purposes of recognition. As an outcome

of this study, it has been confirmed that, even under adverse conditions, gait could

still be perceived.

Boyd [180] proposed a psychologically plausible GR technique which has been

derived based on principles from psychology and biomechanics. He used phase-

locked loops, a technique which applied the following three important properties

of human perception about gaits hypothesised by Bertenthal and Pinto [181]:

* Frequency entrainment: The various components of the gait must share a

common frequency.

* Phase locking: The phase relationships among the components of the gait

remain approximately constant. The lock varies for different types of loco-

motion such as walking versus running.

* Physical plausibility: The motion must be physically plausible human mo-

tion.
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Boyd’s interpretation is as follows. There are motions at different frequencies

within a gait. However, the overall gait has a fundamental frequency that corre-

sponds to the complete cycle. Other frequencies are multiples of the fundamental

frequency. This phenomenon is termed as frequency entrainment which infers

that it is not possible to walk with component motions at arbitrary frequencies.

When the motions are at entrained frequencies, the phase of the motions must be

locked, i.e., the timing patterns of the motions are fixed. In a typical gait, the

left arm swings in phase with the right leg and opposite in phase with the left leg,

a pattern that is fixed throughout the gait called phase locking. Further, Boyd

gathered evidence from biomechanics literature [182–185] and hypothesized the

following related to gait perception:

* People have an internal gait model that is used to synthesize their own gait.

This model is a combination of a person’s own kinematic structure that has

an innate ability to walk and a control system that produces variations of

the gait as needed.

* Humans use this internal gait model to perceive the gaits of others.

The above hypotheses suggested him a way to build a GR technique that perceive

gaits by synchronizing an external stimulus with an internal gait model. The tech-

nique used arrays of phase-locked loops, called video phase-locked loops (vPLLs)

to synchronize a system with the oscillations in pixel intensities that occur when

viewing a gait or other oscillating stimulus. A recent GR approach proposed by

Wagg and Nixon [186] derived its basis from biomechanical literature [21]. This

study investigates discriminatory potential of various gait components such as hip

and ankle width. The PROCIM framework proposed in this thesis too investi-

gates discriminatory potential of various gait components, but in the context of

a computer vision perspective. Hence we will provide relevant insight into Wagg

and Nixon’s work in Section 4.3.1.2 and 5.5.2.
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4.3 Related Work

In order to provide a systematic overview of related work in GR, we shall first

propose a flexible classification scheme and then present various research works

as per this scheme. Based on a narrow scope of a selection of automatic GR

approaches, Nixon et al. [171] have figured out a taxonomy of GR models as shown

in Fig.4.4. A model-based analysis usually involves fitting a model representing

various aspects of the human anatomy to the video data and then extracting

and analyzing its parameters (Eg.[186, 187]). On the other hand, a model-free

approach utilizes the description of instantaneous motion from moving shape or

integrates shape and motion within the description (Eg. [188, 189]). Nixon et al.

have shown that it is hard to define boundaries between these two categories. For

example the human intuition based approach proposed by Boyd [180] attempts

to bridge the gap between the model-free and model-based domains. As Boyd’s

approach straddles the boundary between the two domains it does not fit well into

the scheme shown in Fig.4.4.

Figure 4.4: Nixon et al.’s taxonomy based on selected automatic GR ap-
proaches. The authors state that this classification scheme is unclear as a num-

ber of approaches straddle the boundaries.
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However, on the basis of data acquisition, we propose a general classification

scheme as shown in Fig.4.5 which is a hybrid of classification schemes proposed

by Liu et al. [9] and Gafurov et al. [168]. This scheme aims to encompass a wide

range of approaches and hence has a broader scope than the scheme proposed by

Nixon et al. [171]. We will briefly present an overview of GR algorithms based on

this taxonomy as follows:

Figure 4.5: Proposed classification scheme of GR approaches based on acqui-
sition of gait data. This scheme has a broader scope when compared to Nixon

et al.’s scheme shown in Fig.4.4
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4.3.1 Video Sensor(VS)-based GR approaches

VS-based GR can be further classified into three sub-categories namely temporal

alignment-based, static parameter-based and silhouette shape-based [9].

4.3.1.1 Temporal alignment-based approaches

This category of approaches considers both shape and dynamics and treats gait

sequences as time series-based patterns. Potential sources for gait biometrics can

be seen to derive from two aspects viz,, shape and dynamics. Shape refers to the

configuration or shape of the people as they perform different gait phases. On

the other hand dynamics refers to the rate of transition between these phases and

is usually the aspect one refers to gait in traditional problem contexts, such as

biomechanics or human motion recognition.

A classical example which falls under this category is the population Hidden

Markov Model (pHMM) proposed by Liu and Sarkar [9]. The proposed GR algo-

rithm attempts to compensate the uncertainty encountered by the model, caused

as a result of factors such as varying walking speed, noise and so on by normalizing

the gait dynamics based on a population-based generic walking model. For each

gait sequence, Viterbi decoding of the gait dynamics is applied to arrive at normal-

ized gait cycles of fixed length. Each gait cycle is chosen to begin at the right heel

strike phase of the walking cycle through to the next right heel strike. The states

of the pHMM is represented by gait stances over one gait cycle and the silhouettes

of the corresponding gait stances are considered as observations of the model. The

model is trained on a set of manually created silhouettes and the exemplar sets are

initialized by equally partitioning the frames in one gait cycle into Ns number of

segments. Formally the pHMM is specified by the possible states, qt ∈ 1, · · · , Ns,

which basically represent gait stances and the triple parameters, λ = (A,B, π),

which respectively represent the state transition matrix, an observation model and

priors. For a given input silhouette frame, ft, the number of observation variables

were in proportion to the number of exemplars. The observation model comprises
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a model for each state,

B = {bj(ft) | j = 1, · · · , Ns}, (4.1)

where

bj(ft) = P (ft | qt = j) (4.2)

is the conditional probability of the observed silhouette, ft, at time t given that

the state at time t is j. The observation model is chosen to be exponential in

terms of the observation variable

bj(ft) =
1

µj
e
−D(ft,Ej)

µj , (4.3)

where D is the Tanimoto distance between any given silhouette, ft, Ej is the mean

of the state exemplars and

µj =

∑
fi∈Ej D(fi, Ej)

| Ej |
(4.4)

The similarities between any two gait sequences is computed by applying a distance

metric between the two corresponding dynamics-normalized gait cycles. The dis-

tance metrics computed between an observed silhouette and the silhouettes in the

exemplar set serve as observation variables. The distance between two vertically

scaled and horizontally aligned silhouettes, fi and fj, is defined as:

S(fi, fj) =
fTi fj

fTi fi + fTj fj − fTi fj
(4.5)

Distances between two silhouettes from the same generic gait stance is computed

in the linear discriminant analysis space so as to maximize the discrimination be-

tween persons, while minimizing the variations of the same subject under different

conditions. This aided the approach to handle variations in silhouette shape, due

to dilations and erosions that could occur with changing imaging conditions. The

authors conclude that shape is more significant than dynamics (kinematics) for
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person identification as dynamics is vulnerable to uncertainty factors. The au-

thors stress that due to high intrasubject variability, dynamics might not be a

stable source for biometric information.

Veeraraghavan and Chowdhury [10] have compared the role of shape and kine-

matics in automated gait-based person authentication. They have proposed a

Dynamic Time Warping (DTW) algorithm. The objective is to learn the dynam-

ics of shape changes in a gait sequence using the distance measures between shape

sequences. They have applied autoregressive moving average models. The DTW

algorithm which is based on dynamic programming computes the best nonlinear

time normalization of the test sequence in order to match the template sequence

by performing a search over the space of all allowed time normalizations. The

algorithm derives geometric information of the walking person from several land-

mark points which are manually marked on the gait video. The space of all time

normalizations allowed is cleverly constructed using certain temporal consistency

constraints which are specified as follows:

* The beginning and the end of each sequence is rigidly fixed. For example,

if the template sequence is of length N and the test sequence is of length

M , then only time normalizations that map the first frame of the template

to the first frame of the test sequence and also map the Nth frame of the

template sequence to the Mth frame of the test sequence are allowed.

* The warping function (mapping function between the test sequence time to

the template sequence time) should be monotonically increasing. In other

words, the sequence of events in both the template and the test sequences

should be the same.

* The warping function should be continuous.

The distance D(A(t), B(t)) between two shape sequences A(t) and B(t), is defined

as

D(A(t), B(t)) = DTW (A(t), B(t)) +DTW (B(t), A(t)), (4.6)
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where

DTW ((A(t), B(t)) = 1/T
T∑
t=1

d(A(f(t)), B(g(t))), (4.7)

where f and g are the optimal warping functions, d is a distance function based

on Procrustes shape analysis [190, 191]. The preshape vector extracted by the

method lies on a spherical manifold. Therefore, a concept of distance between

two shapes must include the non-Euclidean nature of the shape space. Keeping

this in view, a Procrustes distance metric has been applied which serves as a

similarity measure between sequences of deforming shapes. Ultimately, the DTW

function aims to normalize shape sequences based on a fixed time frame of T

units. Such a distance between shape sequences is commutative. The isolation

property, i.e., D(A(t), B(t)) = 0 iff A(t) = B(t), is enforced by penalizing all non-

diagonal transitions in the local error metric. The results of this analysis suggests

that kinematics helps to boost recognition performance but it is not sufficient as a

stand-alone feature for person identification; Human body shape-based algorithms

perform better than purely kinematics-based algorithms. The authors conclude

that shape is more significant for person identification than kinematics.

The alignment process which plays a key role in temporal alignment-based ap-

proaches has been modeled using several techniques such as simple temporal cor-

relation [12, 189], dynamic time warping [10], hidden Markov models [10, 188],

phase locked-loops [180] and Fourier analysis [192].

4.3.1.2 Static parameter-based approaches

This second category of approaches characterize the human motion based on pa-

rameters such as stride length, cadence and stride speed. Sometimes static body

parameters, such as the ratio of sizes of various body parts are considered in

conjunction with these parameters. A typical GR approach which falls under

this category is the one proposed by BenAbdelkader et al. [193]. The proposed

method aims to automatically estimate the spatio-temporal parameters of gait

(stride length and cadence) of a walking person from video. Stride and cadence
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estimates computed based on body height, weight and gender are used as biomet-

rics for the problem of human identification and verification. Cadence is estimated

using the periodicity of a walking person. Using a calibrated camera system, the

stride length is estimated by first tracking the person and estimating their distance

traveled over a period of time. By counting the number of steps (using periodicity)

and assuming that subjects are walking at constant-velocity, strides are estimated.

The proposed technique [193] makes the following assumptions:

* People walk on a known plane with constant velocity (i.e. in both speed and

direction) for about 10-15 seconds (i.e. the time for 20-30 steps).

* The camera is calibrated with respect to the ground plane.

* The frame rate is greater than twice the walking frequency.

Initially the walking subject in each frame is tracked, binary silhouettes are ex-

tracted, and the subject’s 2D position in the image is computed. Once a person

has been tracked for a certain number of frames, the gait period T , in frames per

cycle, the distance W traveled, in meters, are estimated. Then the cadence C, in

steps per minute and stride length, in meters, are computed using:

C =
120× Fs

T
, (4.8)

L =
W

n/T
, (4.9)

where n is the number of frames and Fs is the frame rate (in frames per second),

n/T is the number of gait cycles traveled over the n frames. Assuming that the

subject is walking in a straight line, the total distance traveled, which is simply

the distance between the first and last 3D positions on the ground plane is given

by

W =‖ Pn − P1 ‖ (4.10)

The subject’s 3D position, (Xg, Yg, Zg), is computed from the 2D position image,

(xg, yg) as follows. Given the camera matrices, K, E and the parametric equation
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of the plane of motion,

P : aX + bX + cZ + d = 0, (4.11)

and assuming perspective projection a linear system of equation is formulated

using 
k11 0 −xg + k13

0 k22 −yg + k23

â b̂ ĉ

E


Xg

Yg

Zg

 =


0

0

−d

 , (4.12)

where

(â, b̂, ĉ, d̂) = (a, b, c, d)E−1 (4.13)

and kij is the (i, j)th element of K. One of the main problems with the above

formulation is that the equation 4.12 does not have a unique solution if the person

is walking directly towards or away from the camera (i.e. along the optical axis).

With a small database of 17 people and 8 samples of each, the authors report

that a person is verified with an Equal Error Rate (EER) of 11%, and correctly

identified with a probability of 40%. Static parameter-based based approaches

have not reported good performance on common databases, partly due to their

need for 3D calibration information [9].

Collins et al. of Carnegie Mellon University (CMU), presented a simple GR algo-

rithm for human identification from body shape and gait. This CMU algorithm

is based on matching 2D silhouettes extracted from key frames across a gait cycle

sequence. These key frames are compared to training frames using normalized

correlation, and subject classification is performed by nearest neighbor matching

among correlation scores. The approach implicitly captures biometric shape cues

such as body height, width, and body-part proportions, as well as gait cues such

as stride length [11].

Wagg and Nixon [186] proposed a GR approach, guided by biomechanical anal-

ysis [21], which explicitly uses structural body components as part of generating

shape models consistent with normal human body proportions. Based on the
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results from a statistical analysis of the extracted gait parameters, this study

suggests that recognition capability, is primarily gained from cadence and from

static shape parameters, although gait is the cue by which these parameters are

derived. Images acquired from gait video sequences are pre-processed using a

Gaussian averaging filter for noise suppression, followed by Sobel edge detection

and background subtraction (the background is computed as the temporal me-

dian of neighbouring frames). This removes all static objects, leaving only edges

belonging to moving objects. Then, an estimate of human shape is derived by

shifting and accumulating the edge images according to

Av(i, j) =
N−1∑
t=0

Et

(
i+ v

(
N

2
− t
)
, j − dyt

)
(4.14)

where Av is the accumulation for velocity v (in pixels per frame), Et is the edge

strength image at frame t, i and j are coordinate indices, N is the number of

frames in the gait sequence and dyt is the y-displacement of the subject from their

center of oscillation at frame t. Each moving object in the scene will appear as a

peak in a plot of maximal accumulation intensity against velocity. If the subject

is the most significant moving object in the scene (in terms of edge strength and

visibility), their velocity can be inferred by selecting the highest peak in this

plot. The subject is then extracted by matching a coarse person-shaped template

which is constructed from data, gathered from biomechanical source [21], scaled

to subject’s height. Basic geometrical shapes viz., a trapezium, line segments

and rectangles are employed to capture body components such as legs, foot, torso

and the head. The segmentation technique is constrained by mean anatomical

proportions. Gait frequency is determined by finding the frequency and phase

that minimizes the error function computed using

Xs =
N−1∑
t=0

(
St − Assin2

(
ωit+ φj +

π

11

))2

(4.15)

where Xs is the energy function to be minimized, N is the number of frames,

St is the normalized signal magnitude at frame t, As is the sinusoid amplitude,
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ωi and φj are the proposed gait frequency and phase. The offset phase deter-

mined empirically has been used to align the sinusoids. The initial estimates of

the shape parameters derived from hip, knee and angle are computed as fixed pro-

portions of the subject’s height. Some subjects might wear loose clothings such

as baggy trousers or skirts. This might hinder the accuracy of shape parame-

ters. By applying Hough transforms for each frame within the upper and lower

leg regions, improved estimates were obtained in order to mitigate the uncertainty

factors. However, a significant reduction in discriminatory capability in features,

extracted from the outdoor dataset compared to those from the indoor dataset

has been observed. Further an overall estimate of leg width is computed as a

mean of the best line parameters from each frame, weighted by accumulation in-

tensity. The experimental results of this study reported in terms of cumulative

match characteristics exhibit Correct Classification Rates (CCR) of 84% and 64%,

for the indoor and outdoor datasets, respectively. The result of this study shows

an important fact that recognizing gaits under outdoor settings is more difficult

than that of indoor settings.
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4.3.1.3 Silhouette-based approaches

Figure 4.6: The key stages of a background subtraction technique being illus-
trated using the CMU Mobo data set [5] : a) A scene of a gait video frame b)
The built background model of the scene c) The final binary silhouette extracted

by background subtraction.

Intuitively the silhouette, which represents the binary map of walking humans,

forms a robust feature to represent gait. Silhouettes representing human walks are

extracted from gait videos using a procedure called background subtraction, the

process of segmenting foreground pixels representing the walking human, from the

background of the image sequence. A given video frame, its background model and
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the finally segmented binary silhoutte image are shown in Fig. 4.6. Standard gait

dataset providers such as, the Chinese academy of sciences [194], offer a silhouette

database. Hence silhouettes form the core input of many GR algorithms (Eg.

[195, 196]). Silhouette-based gait recognition techniques are gaining much interest

among current gait recognition researchers [165, 195, 197]. The reason is that they

do not need any further information such as color, texture or gray-scale metrics

and they capture the motion of most of the body parts [188]. Recent studies

[11, 198] have shown that silhouette shape has equal, if not more, recognition

potential than gait kinematics as referred by [164].

The baseline GR algorithm proposed by Sarkar et al. [12] (University of South

Florida) extracts silhouettes using an expectation maximization (EM) procedure

and performs recognition by temporal correlation of silhouettes. For a given gait

video frame, Sarkar et al.[12] define the silhouette as the region of pixels from

a person. Initially bounding boxes around the moving subject in each frame of

the gait sequence are manually defined. Then silhouettes are extracted from the

bounding boxes as follows. Initially a gait sequence is parsed and its background

statistics of the RGB values at each image location, (x, y), using pixel values

outside the manually defined bouding boxes are computed. For pixels within the

bounding box of each frame, the Mahalanobis distance for the pixel value from

the estimated mean background value is computed. At each pixel, indexed by k,

a two-class Gaussian mixture model, {Foreground = ω1, Background = ω2}, is

imposed based on observing the Mahalanobis distance, dk as,

P (dk) =
2∑
i=1

P (ωi)p(dk | ωi, µi, σi) (4.16)

where the class likelihood is computed using

p(dk | ωi, µi, σi) =
1

σi
√

2π
e
−(dk−µi)

2

2σ2
i (4.17)

The posterior estimate P (ω1|dk) is estimated using the EM procedure. The EM
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process is initialized by choosing class posterior labels based on the observed dis-

tance; the larger the Mahalanobis distance of a pixel from the mean, the greater is

the initial posterior probability of the pixel being away from the foreground which

is formulated as,

P (0)(ω1 | dk) = min(1.0, dk/255) (4.18)

P (0)(ω2 | dk) = 1− P (0)(ω1 | dk) (4.19)

Though most of the silhouettes extracted using the above formulation are in good

quality, some of the silhouettes are noisy due to segmentation errors. These seg-

mentation errors occur due to the following factors:

* Shadows formed as a result of illumination variation encountered in typical

unconstrained scenarios.

* Some parts of the subject are misclassified as background (Eg. hair color

could merge with the background color)

* Moving objects in the background (Eg. moving grass leaves when the subject

is walking on grass)

* Lingering compressing artifacts near the boundary regions of the subject

Once silhouettes are extracted, they are normalized in terms of gait cycles, which

is a crucial step in GR. This is performed by detecting the gait period using the

following strategy. The number of foreground pixels in the silhouette in each frame

is computed. This number will reach a maximum when the two legs are farthest

apart (full stride stance) and drop to a minimum when the legs overlap (heels

together stance). As a strategy to increase the sensitivity, the bottom half of the

silhouette contributing to the leg portion, is taken into account. Then gait cycles

are formed with the set of silhouettes between two consecutive strides.

Gaits are then classified based on comparing similarity scores between all the

gallery and probe gait sequences. Similarity scores are computed by spatial-

temporal correlation. The similarity between two silhouette frames, Si, Sj, is
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computed as the ratio of the number of pixels, Num, in their intersection to

their union. This measure is called as Tanimoto similarity measure, Tanimoto,

which is given by:

Tanimoto(Si, Sj) =
Num(S(i) ∩ S(j))

Num(S(i) ∪ S(j))
(4.20)

The proposed baseline algorithm yielded a recognition rate of 72% when tested on

the CMU Mobo dataset [5]. Notably the CMU Mobo dataset is popular as it has

gait sequences recorded with a speed variation. Interestingly, the subjects were

asked to walk over a treadmill which enables GR researchers to perform speed

controlled gait recognition studies. In Chapter 6 of this thesis, we will present our

results relevant to the GR speed challenge.

Wang and Tan et al. [189], Chinese Academy of Sciences (CAS), proposed a GR

method based on spatiotemporal silhouette analysis. This is another typical study

which further reinforces that, gait recognition via analysing, “How does silhouette

shape of a walking individual change over time?”, is a sensible paradigm. The

authors perceived gait motion as a sequence of static body poses; distinguish-

able signatures with respect to those static body poses are extracted in terms

of contours of silhouette sequences and finally recognition has been performed

by considering temporal variations of those observations. Instead of considering

full silhouette images, the authors analyze silhouette contours, that is the outer

boundary of silhouettes and further convert them to associated 1D signals. Sil-

houettes are extracted from gait video using a background subtraction procedure,

which applies the Least Median of Squares method(LMedS) [199], to construct the

background from a small portion of image sequences, including moving objects as

follows. If I represent a gait sequence including N images, then the resulting

background bxy is computed by

bxy = arg min
p
medt(I

t
xy − p)2, (4.21)

where p is the background brightness value to be determined for the pixel location
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(x, y), med represents the median value, and t represents the frame index ranging

within 1 − N . In image processing, the change in brightness is usually obtained

through differencing between the background and current image. In the case

of low contrast images, the selection of a suitable threshold for binarilization is

difficult as most of the moving objects might be missed out. This is because the

brightness change is too low to distinguish regions of moving objects from noise.

The following extraction function is used to solve this issue to indirectly perform

differencing

f(a, b) = 1−
2
√

(a+ 1)(b+ 1)

(a+ 1) + (b+ 1)
.
2
√

(256− a)(256− b)
(256− a) + (256− b)

, (4.22)

where a(x, y) and b(x, y) are the brightness of current image and the background

at the pixel position (x, y), respectively, 0 ≤ a(x, y), b(x, y) ≤ 255, 0 ≤ f(a, b) < 1.

The objective of this function is to detect the change sensitivity of the difference

value according to the brightness level of each pixel in the background image. For

each image Ixy, the distribution of the above extraction function f(a(x, y), b(x, y))

over x and y can be easily obtained. Then, the moving pixels can be extracted

by comparing such a distribution against a threshold value. After the moving

silhouette of a walking figure has been tracked, its outer contour is obtained using a

border detection algorithm and the centroid of the silhouette (xc, yc) is determined.

By choosing the centroid as a reference origin, the outer contour is unwrapped

counterclockwise to turn it into a distance signal

S = d1, d2, · · · , di, · · · , dNb , (4.23)

that is composed of all distances di, for Nb number of boundary pixels, between

each boundary pixel (xi, yi) and the centroid, where di is computed using

di =
√

(xi − xc)2 + (yi − yc)2. (4.24)

Thus the original 2D silhouette shape has been compactly transformed to a signal
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in the 1D space. Finally by applying PCA, predominant components of gait signa-

tures are computed and gaits are classified using the standard lower-dimensional

eigenspace technique. Though a reasonable recognition rate of 75% has been

demonstrated on a small indigenous database of 20 subjects, the authors report

only a mean recognition rate of 39.6% with respect to the HumanID gait challenge

experiments on the USF dataset [12]. Further, the method highly relies on the

quality of silhouettes to perform a contour based reasoning, but in reality the sil-

houettes extracted are noisy, as reported by many GR approaches (Eg. [12, 200]).

Hence the approach yields an inferior recognition rate.
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Figure 4.7: Typical approaches that use silhouette based features; a) An
approach [6] that uses width of the silhouette b) A typical frieze pattern [7]
based gait representation that maps a video sequence of silhouettes into a pair of
two-dimensional spatio-temporal patterns b) Application of angular transform

on binary silhouettes [8].

Kale et al. [6] suggested a GR approach where the information gained from width

of silhouettes were used to discriminate gaits. The width w(i) of a silhouette is

defined as the horizontal distance between the leftmost and rightmost foreground

pixels in each row i of the silhouette, as shown in Fig.4.7(a). Although the calcula-

tion of width signals imposes minimal processing load on a gait system, algorithms
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that use this feature are vulnerable to spurious pixels, that often render the iden-

tification of the leftmost and rightmost pixels inaccurate. For this reason, the

authors in [6] proposed a postprocessing technique to smooth and denoise the

feature vectors, prior to their deployment in gait recognition. Interestingly, the

width coefficients that exhibit the greatest variance are the coefficients derived

from the leg and arm area. It has been noticed in this study that shadows result

in inaccurate computation of the width coefficients in the feet area.

To address GR, Liu et al. [7] proposed “frieze patterns”, a representation that

maps a video sequence of silhouettes into a pair of two-dimensional spatio-temporal

patterns that are periodic along the time axis (ps. see Fig.4.7(b)). Spatio-temporal

gait representations are generated by projecting the body silhouette along its

columns and rows, then stacking these 1D projections over time to form 2D pat-

terns that are periodic along the time dimension. Such a 2D pattern that repeats

along one dimension is defined as a frieze pattern. Several binary silhouettes that

represent a gait sequence are denoted as

s[i, j], i = 0, · · · ,M − 1, j = 0, · · · , N − 1, (4.25)

where M,N represent the number of rows and columns of the silhouette, respec-

tively. Conversely

s[i, j] =

 1 if (i,j) belongs to the foreground

0 otherwise
(4.26)

Using the above definitions, the horizontal and vertical projections of silhouettes

are expressed as

ph[i] =
N−1∑
j=0

s[i, j], i = 0, · · · ,M − 1 (4.27)

pv[j] =
M−1∑
i=0

s[i, j], j = 0, · · · , N − 1 (4.28)

The efficiency of this feature is based on the fact that it is sensitive to silhouette
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deformations, since all pixel movements are reflected in the horizontal or vertical

projection as shown in Fig. 4.7(b). Although this feature is similar to the width

of the silhouette (note the similarity between the width vector and the horizontal

projection vector), it is more robust to spurious pixels. An additional advantage is

that it is fast and hence can be computed in real time. With the help of a walking

humanoid avatar, the authors explored the variation in gait frieze patterns with

respect to the viewing angle. It has been found that the frieze groups of the gait

patterns and their canonical tiles could be applied to estimate viewing direction

as well. However, an important consideration here is that, the silhouettes must be

centered, prior to the computation of the feature, since misplaced silhouettes will

result in shifted projections.

An angular transform of the silhouette has been proposed by Boulgouris et al. [8]

where the transform divides the silhouettes into angular sectors and computes the

average distance between foreground pixels and the center (ic, jc) of the silhouette

as shown in Fig. 4.7(c). This transform is computed using

A(θ) =
1

Nθ

∑
(i,j)∈Fθ

s[i, j]
√

(i− ic)2 + (j − jc)2, (4.29)

where θ is an angle, Fθ is the set of the pixels in the circular sector [θ−(∆θ/2), θ+

(∆θ/2)], and Nθ is the cardinality of Fθ. The transform coefficients were shown to

be a linear function of the silhouette contour. This feature is, in general, robust

since it obviates the need for detection of contour pixels. Each human silhouette

in a gait sequence is transformed into a low dimensional feature vector consisting

of average pixel distances from the center of the silhouette. The sequence of

feature vectors corresponding to a gait sequence is used for identification based on

a minimum-distance criterion between test and reference sequences.

Lee and Grimson [192] proposed a component based GR approach, where the sil-

houettes of gait sequences are subdivided into seven regions, fitted into ellipses

and a set of moment related features are computed. The authors report improved
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recognition and gender classification rates using a small dataset, captured at in-

doors. Bauckhage et al. [165] proposed a method to establish homeomorphisms

between 2D lattices and binary silhouettes. This method provides a robust vector

space embedding of segmented body silhouettes. Feature vectors obtained from

this scheme show improved detection of abnormal gait. Li et al. [174] proposed

a component based approach by segmenting silhouettes into seven components,

namely head, arm, trunk, thigh, front-leg, back-leg and feet. The effectiveness of

these components for gait recognition and gender recognition has been analyzed.

The approach relies on manually selected control points. Zhou et al. [187] pro-

posed a Bayesian framework based on a simple human intuition which assumes

that all humans have a head and two legs and each leg is joined at the knee. A

2D articulated model which is a crude approximation to a real walker is fitted to

gait silhouettes. The gait images were manually labeled to find out sections of gait

cycles. The objective of this approach is to determine the likelihood of the image

given the model. The authors claim that their approach tackles well uncertainties

such as occlusion and noise.

In most cases, it appears that the silhouette is at least as efficient as the low-

dimensional features that can be extracted from a silhouette. This is intuitively

expected since the feature extraction step is a lossy operation, i.e., in general, the

silhouette cannot be reconstructed from the feature. However, feature extraction

could dramatically reduce the high complexity imposed by silhouette features.

Hence in the pursuit of the majority of the Video sensor-based GR approaches,

the silhouette feature provides a useful target for gait performance. Motivated by

these approaches, we will propose silhouette-based GR approaches in Chapters 5

and 6 of this thesis.

4.3.2 Floor Sensor(FS)-based GR approaches

Basically in this category of approaches, a set of sensors are installed in the floor,

and gait-related data are measured. The use of floor sensors for gait analysis is
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commonly employed by physiologists. Middleto et al. [201] presented a prototype

system for acquisition of footfall data. Eventually the system has been designed

to study GR by applying an alternate modality. The three main components of

the system comprised: a large sensor mat, a hardware interface, and an analysis

software. The system consisted of 1536 individual sensors, arranged in a 3m×0.5m

rectangular strip with an individual sensor area of 3cm2. The sensor floor has

been designed to operate at a sample rate of 22 Hz. The sensor itself uses a simple

design inspired by computer keyboards and is made from low cost, off the shelf

materials. Application of the sensor floor to a small database of 15 individuals

has been performed. Three features have been extracted viz., stride length, stride

cadence, and time on toe to time on heel ratio. Two of these measures have

been adapted from video based gait recognition while the third is new to this

analysis. These features proved sufficient to achieve an 80% recognition rate. In

60% of the subjects the heel to toe measure alone has been found to be sufficient

to recognise their identity. Hence the authors argue that the dynamic behaviour

of the foot is a potent biometric in itself. But further research with large number

of subjects is required to justify this claim. The authors suggest that future

efforts can concentrate on how to increase the sensor resolution whilst keeping the

cost down and the construction process simple. Ground reaction forces generated

during normal walking have recently been used to identify and/or classify indivi-

duals based upon the pattern of the forces observed over time [202]. Body mass

extracted from vertical ground reaction forces has been recently experimented

by Jenkins and Ellis [202]. A recognition rate of about 40% with a data set of

less than 70 subjects is reported which shows that more research is required to

make FS-based GR approaches appealing. Further, FS-based approaches rely on

weakly identifying biometrics such as the actual body mass. These quantities

can gradually change over a short period of time. Let us assume that such weak

biometrics, fused with other reliable biometrics, were to be applied in biometric

featured passports. This will lead to the process of periodically updating biometric

featured passports, in intervals of months, which is not practicably feasible as per

current biometric standards.
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4.3.3 Wearable Sensor(WS)-based GR approaches

This category of GR approaches are relatively recent compared to the other two

approaches discussed above [168]. Usually motion recording sensors are worn

or attached to various places on the body of a subject such as shoe and waist

[203–205]. Examples of the recording sensors can be accelerometer, gyro sensors,

force sensors, bend sensors, and so on that can measure various characteristics

of walking. The movement signal recorded by such sensors is then utilized for

person recognition purposes. Previously, the WS-based gait analysis has been

used successfully in clinical and medical settings to study and monitor patients

with different locomotion disorders [206]. In medical settings, such approaches

are considered to be cheap and portable, compared to the stationary vision based

systems [207]. Despite successful application of WS-based gait analysis in clinical

settings, only recently these approaches have been applied for person recognition

[204]. Unlike Video Sensor-based GR, no public data-set on WS-based gait is

available, which makes it difficult for researchers to do empirical evaluations on a

common dataset.

4.4 Summary

An insight into gait analysis techniques from diverse fields such as medical, biome-

chanics and psychology will aid to enhance machine vision based GR techniques.

Decades back, the results of psychological studies revealed that people can rec-

ognize their friends from motion but motion alone is not sufficient to be a re-

liable form of identification. Lessons learnt from biomechanical literature infer

that various gait components contribute to the overall gait recognition process in

various proportions. However, various components of the gait of a subject must

share a common frequency. There are motions at different frequencies within a

gait. However, the overall gait has a fundamental frequency that corresponds to
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the complete gait cycle. Other frequencies are multiples of the fundamental fre-

quency. This phenomenon is termed as frequency entrainment which infers that it

is not possible to walk with component motions at arbitrary frequencies. Recent

advances in computing technology, especially high-speed processors, bulk storage

and memory resources, are enabling gait as a practicable biometric right now,

although the idea has emerged decades ago. In the class of object recognition

problems, identification is considered to be harder than verification.

Static parameter-based based approaches have not reported good performance

on common databases, partly due to their need for 3D calibration information.

Recognizing gaits under outdoor settings is more difficult than that of indoor

settings.

Several studies conclude that shape is more significant than dynamics (kinematics)

for person identification as dynamics is vulnerable to uncertainty caused as a result

of high intrasubject variability. Silhouette-based gait recognition techniques are

gaining much interest among current gait recognition researchers. The reason is

that they do not need any further information such as color, texture or gray-scale

metrics and yet they capture the motion of most of the body parts. Recent studies

have shown that silhouette shape has equal, if not more, recognition potential than

gait kinematics. This has inspired us to propose silhouette-based GR approaches,

which will be presented in Chapters 5 and 6.



Chapter 5

Extending PROCIM for Robust

Gait Recognition

5.1 Introduction

In this chapter we intend to propose a probabilistic sub-gait interpretation model

to recognize gaits. A sub-gait is defined by us as part of the silhouette of a moving

body. Binary silhouettes of gait video sequences form the basic input of our ap-

proach. A novel modular training scheme has been introduced in this chapter to

efficiently learn subtle sub-gait characteristics from the gait domain. For a given

gait sequence, we get useful information from the sub-gaits by identifying and ex-

ploiting intrinsic relationships using Bayesian networks. Finally, by incorporating

efficient inference strategies, robust decisions are made for recognizing gaits. Our

results show that the proposed model tackles well the uncertainties imposed by

typical covariate factors and shows significant recognition performance.

Our PRObabilistic Component Interpretation Model which we abbreviate as

(PROCIM) is based on a fundamental insight about human pattern matching

and memory. While reasoning with objects which are prone to uncertainties, in

our case visual processing of gaits, humans are often able to notice similarities

119
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between sub-gaits and gaits. When we see a person at a distance, we may notice

a particular pattern of arm-swinging or hip movement as a characteristic of the

whole walking gait of that person. A formal definition of sub-gait is given in equa-

tions (2.6)-(3.11) of Section 5.2. First a set of sparse components or sub-gaits of

the cluttered gait pattern is perceived, this is the probe. These are then matched to

a bulk set of gait patterns, the gallery, that are remembered. This reasoning based

on similarity mapping is processed in such a way to reveal inherent conditional

independencies between gaits. In our study we intend to scientifically represent

these independencies using Bayesian Networks (BN). BNs serve as fundamental

tools in tackling uncertainty problems as they characterize intuitive notions of

human reasoning. In other words, PROCIM employs BNs to find out and learn

intrinsic sub-gait mappings that naturally exist in gait patterns. We derive robust

probabilistic decisions by exploiting the mappings established. We have identified

three potential sub-gaits among the possible sub-gaits of a gait silhouette, by ex-

perimental evaluation. Selecting potential sub-gaits is based on how significantly

they contribute to the recognition mechanism of gaits. We will provide details in

Section 5.5.2.

We briefly present PROCIM’s architecture with the aid of the flow diagram shown

in Fig.5.1. Firstly we decompose the gallery silhouettes into sub-gaits and subject

them to an appropriate feature extraction process to construct a low dimensional

feature space. PROCIM is a generic model which could be applied to any feature

space (subspace) projection technique, such as PCA or SVM. For demonstration

sake we have used the recently proposed MPCA feature space [196].
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Figure 5.1: Framework of the proposed PRObabilistic Sub-gait
Interpretation Model (PROCIM)

PROCIM further learns subtle sub-gait characteristics using a novel modular train-

ing scheme introduced in this study. Also using standard machine learning proce-

dures, PROCIM estimates the parameters of the BN. All these preliminary activ-

ities are performed off-line to make minimal use of computing resources. Secondly

the probe silhouettes are decomposed into similar sub-gaits and their extracted

features are projected onto the feature space. Then gaits are shortlisted with the

aid of similarity mapping-based reasoning. The intrinsic relationships between

the sub-gaits and gaits are represented intuitively using BNs. Finally gaits are

recognized by exploiting these relationships using robust probabilistic inference

techniques.
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The rest of the chapter is organized as follows. Section 5.2 formally present the pro-

posed sub-gait segmentation scheme. We propose a novel modular training scheme

in Section 5.3. Section 5.4 demonstrates the robustness of PROCIM against some

common variations. We discus experimental results and evaluate its performance

in Section 5.5. Section 5.6 summarizes this chapter.

5.2 Sub-gait Segmentation

Segmenting specific body components such as head, torso, arms and legs demands

manual labeling. However, manual labeling may not guarantee accurate marking

of the body components on video sequences. This is because of factors such as

low-image quality due to overall intensity, occlusion of feet when walking on grass,

similarity of dark skin tones of some subjects with the background, occlusion

of the arms due to various viewing angles, and the presence of dark or baggy

clothing[164]. We intend to avoid such manual labeling and at the same time utilize

the information from those body components. Hence we strategically segment

the silhouettes into sub-gaits viz., Upper Gait(U), Mid Gait (M), Lower Gait(L),

LeFt Gait(LF) and Right Gait (R). We will represent the set of sub-gaits by

S = {U,M,L, LF,R}. By manipulating the binary files that represent silhouettes,

we compute the bounding rectangle that encompasses a silhouette and resize them

to a standard dimension of 64 x 44 pixels. A typical silhouette frame of a gait

video sequence and its sub-gaits are shown in Fig.5.2.
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Figure 5.2: A typical silhouette and its sub-gaits. A sub-gait is defined by us
as part of the silhouette of a moving body. Specifically all the sub-gaits viz.,

U,M,L,LF and R, are defined in equations 5.2 to 5.6.

We define these sub-gaits using the language of set theory which is widely used to

represent and describe image semantics [146]. For a given silhouette frame I(x,y)

with width w and height h, its centre (xc, yc) can be computed by

(xc, yc) =

(
w

2
,
h

2

)
. (5.1)

Then the sub-gaits U, M and L can be defined as

U(I(x, y)) = {(x, y)|xc − w
2
≤ x ≤ xc + w

2
,

yc +
h

2
≤ y ≤ yc +

h

2
− hε1}, (5.2)
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M(I(x, y)) = {(x, y)|xc − w
2
≤ x ≤ xc + w

2
,

yc +
h

2
− hε1 < y ≤ yc +

h

2
− h(ε1 + ε2)}, (5.3)

L(I(x, y)) = {(x, y)|xc − w
2
≤ x ≤ xc + w

2
,

yc +
h

2
− h(ε1 + ε2) < y ≤ yc −

h

2
}. (5.4)

For the sub-gait definitions above, the heights of each of the sub-gait segments are

distinct and determined by constants ε1 and ε2. Values of these constants were

chosen based on rough estimates performed on the mean silhouette of the gallery

set. The left and right sub-gaits viz., LF and R, which are segmented from the

centre are just a function of width (w) and do not require extra constants. Hence

their definitions are straight forward as follows:

LF (I(x, y)) = {(x, y)|xc − w
2
≤ x ≤ xc,

yc +
h

2
≤ y ≤ yc −

h

2
}, (5.5)

R(I(x, y)) = {(x, y)|xc < x ≤ xc + w
2
,

yc +
h

2
≤ y ≤ yc −

h

2
}. (5.6)

In this chapter we describe a procedure to recognize gaits by representing and

interpreting sub-gait characteristics using a reasonable probabilistic framework.

Finding optimal sub-gait dimensions such as the optimal height of the sub-gaits

might further improve recognition performance. Such operational motivation fac-

tors needs further scrutiny of rigorous iterative experiments, exploration of ad-

vanced image segmentation and optimization techniques which deserve another
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dedicated study. We employ BNs to establish intrinsic similarity mappings be-

tween the sub-gaits and the gaits. Each node of a BN has a set of probable values

for each variable which are known as belief states. These belief states are prop-

agated between nodes of the BN effectively. A BN maps intrinsic relationships

that are inherent in a domain in terms of parent and child nodes. It is capable

of learning these relationships and storing the belief states of a given domain in

the form of Conditional Probability Tables (CPT). By manipulating these belief

states, the state of a particular node can be queried from other nodes with the aid

of probabilistic inference techniques. In our case we would like to query the belief

state of a gait sequence by observing the probabilities entailed by its sub-gaits.

Though gait motion is periodic in nature, various sub-gaits contain different infor-

mation about the gait they constitute. Owing to this variation, all the sub-gaits

will not have the same probability of influencing the gait to be recognized. There-

fore each sub-gait of a gait will have different belief states and this varies from

subject to subject as the walking style of individuals varies. The more unique fea-

tures a sub-gait contains, the more strength it will have to influence the recognition

of the gait to which the sub-gait belongs. We define the strength of a sub-gait Si

which crucially contributes to the recognition of the gait Gp as Influence Strength

and denote it as Zip. We will call the parent nodes of the proposed BN the prior

belief states of the sub-gaits. The gaits influenced by the sub-gaits are the child

nodes of the BN. In this probabilistic framework we will infer the belief state of

the gaits conditional on the sub-gaits, in order to recognize the gaits.

5.3 Proposed Modular Training Scheme

We will describe a novel modular training scheme employed by PROCIM here. A

training or test sample is well defined in many object recognition (eg. face, iris

recognition) problems . For example, a face or an iris image is considered as a

sample without any further partitions. However, the definition of a gait sample

is subjective and not so precisely defined. Usually a gait sample is represented in
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terms of gait cycles (either full, multiple or partial cycles). A gait cycle begins

when one foot contacts the ground and ends when the same foot contacts the

ground again. Thus, each cycle begins at initial contact with a stance phase

and proceeds through a swing phase until the cycle ends with the next initial

contact of the limb. Prior to factoring the gait samples into modules, we have

constructed the sub-gaits data sets from the gallery data sets by applying the sub-

gait segmentation scheme formulated in Section 5.2. In the gallery set, because

each subject’s behavior is represented as several gait samples due to variations

in walking speed, the number of frames per sample will be different. A suitable

time mode normalization algorithm can be applied to normalize the gait samples

to have a unique number of frames. We have normalized the number of frames in

each sample by applying the time mode normalization technique proposed by [196].

We intend to decompose the normalized sub-gait samples into compact modules

and train PROCIM to learn the intrinsic relationships between these modularized

sub-gaits. The proposed modular training scheme enables PROCIM to represent

and learn subtle walking patterns of human gaits.

Figure 5.3: Modular scheme of a typical sub-gait
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Fig.5.3 shows the modular scheme applied to a typical sub-gait. For example’s

sake we have shown the scheme for a lower sub-gait. We initially modularize all

training samples into two subsets namely A and B. An even number of samples is

split 50-50, an odd number the closest integer partition to 50-50. Gait subsamples

of modules A and B represent how the subjects walk during the first part and

second part of a walking segment. We further modularize these subsets into AB

and BA which will have mixtures of walking samples from A and B together. That

is AB will have some samples from the first half of A and B and BA will have

some samples from the second half of A and B. Finally we modularize AB and

BA into tiny modules viz., AB1, AB2, BA1 and BA2. That is each of these tiny

modules represent about a quarter of a sub-gait sample. Mathematically we can

model this modular scheme as follows:

Let the gallery set of sub-gait (or gait) silhouettes of a subject say U be represented

by d gait samples. Let the ith sub-gait sample be denoted by ui, where 1 ≤ i ≤ d.

We wish to modularize U such that

U = AB1 ∪BA1 ∪ AB2 ∪BA2 (5.7)

where

AB1 =
a∑
i=1

ui; BA1 =
b∑

i=a+1

ui (5.8)

AB2 =
c∑

i=b+1

ui; BA2 =
d∑

i=c+1

ui (5.9)

The indices a, b and c of Eqs. (3.24) and (5.9) can be computed as

a = dd/4e; b = a+
d− a

3
; c = b+

d− a
3

(5.10)
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Obviously the tiny modules defined in (3.24) and (5.9) can be appropriately merged

to yield

AB = AB1 ∪ AB2; BA = BA1 ∪BA2 (5.11)

Modules can be combined using the following rules

AB ∩ A = AB1; BA ∩ A = BA1 (5.12)

AB ∩B = AB2; BA ∩B = BA2 (5.13)

We will show shortly how the proposed modular scheme enables us to relate the

various sub-gaits and learn subtle walking patterns that are inherent in a sub-

ject’s walking behavior. We perceive that the intrinsic relationships that exist

between the modularized sub-gaits contribute significantly in governing the gait

patterns. The BN employed in PROCIM learns the belief states of these relation-

ships systematically from the sub-gait data sets using the MLE approach outlined

in Section 3.3.1. The learned belief states are stored in the form of Conditional

Probability Tables (CPTs). For k sub-gaits and m modules, the BN yields a CPT

comprising of 2k∗m−1 number of rows. A typical CPT for the case of two sub-gaits

L and LF whose samples are factored into two subsamples A and B is shown in

Table 5.1.
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Table 5.1: CPT showing belief states of subtle sub-gait relationships learned
from the proposed modular training scheme for some typical subjects. The sub-
gait operators L(·) and LF (·) have been defined in equations (5.4) and (5.5).

Sub-gaits Learned belief states of typical subjects

G5 G10 G15 G20 G25

L(A) 0.97 0.86 0.75 0.93 0.86

L(B) 0.79 0.84 0.73 0.79 0.84

L(A) L(B) 0.78 0.99 0.92 0.99 0.99

LF(A) 0.94 0.86 0.89 0.95 0.86

L(A) LF(A) 0.97 0.86 0.68 0.79 0.86

L(B) LF(A) 0.78 0.97 0.67 0.99 0.97

L(A) L(B) LF(A) 0.93 0.58 0.69 0.91 0.58

LF(B) 0.92 0.87 0.86 0.97 0.87

L(A) LF(B) 0.97 0.78 0.83 0.99 0.78

L(B) LF(B) 0.97 0.66 0.85 0.97 0.66

L(A) L(B) LF(B) 0.56 0.58 0.33 0.77 0.58

LF(A) LF(B) 0.75 0.99 0.92 0.99 0.99

L(A) LF(A) LF(B) 0.93 0.58 0.69 0.91 0.58

L(B) LF(A) LF(B) 0.58 0.73 0.39 0.72 0.73

L(A) L(B) LF(A) LF(B) 0.97 0.78 0.83 0.99 0.78

By combining various sub-gait modules we can reveal intrinsic characteristics of

gait patterns. For example the CPT entry L(A)LF (B) intends to reveal the belief

state of “left leg sub-gait pattern” for a portion of a walking sequence. Trivially

L(A) ∩ LF (B) = L(LF (AB)). When more combinations of sub-gaits and sub-

samples are involved, the interpretation needs a few more steps. For example a

typical CPT entry and its interpretation are as follows:

L(A) L(B) LF (A)

= L(A) ∩ L(B) ∩ LF (A)

= L(AB) ∩ LF (A)

= L(LF (AB1)) ∵ Eq.(5.12)
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Similar logical reasoning can be extended to interpret any other entry in the

CPT. The conditional probabilities in Table 5.1 give a measure of the strength

of sub-gait relationships. For example, referring to the first column in the table,

we observe that the conditional probabilities P (G5|L(A)), P (G5|L(A), LF (A))

and P (G5|L(A), LF (B)) are higher. This reveals the fact that the gait motion

of the subject G5 is highly characterized by these intrinsic sub-gait relationships.

Whereas P (G15|L(A), L(B), LF (B)) and P (G15|L(B), LF (A),

LF (B)) (middle column of the table), being low indicate that G15 is poorly char-

acterized by these sub-gait modules. We will shortly see how robust probabilistic

decisions can be made by interpreting and exploiting these subtle relationships.

5.4 Robustness to Common Variations

Some common uncertainties encountered in the process of gait recognition are

caused due to variations present in challenging outdoor environments such as view,

surface, shoe, missing body components and so on. The experimental results of

PROCIM’s robustness against these uncertainties will be presented in Section 4.

Here we will analyse the effect of uncertainties caused by two typical variations viz.

view and missing body components. The scenario of a typical probe gait whose

gallery representation is G58 has been subjected to viewing variations of 18◦ and

162◦ are shown in Fig. 5.4 and Fig. 5.5 respectively. The Bayesian Network

(BN) generated by PROCIM (Fig. 5.4 and Fig. 5.5) helps us to analyse how

this uncertainty affect the recognition mechanism, in particular the relationships

between the gaits and sub-gaits. As the viewing variation of 18◦ is relatively

small and probably other variations being less severe, all the sub-gaits of G58

collectively contribute to the recognition process as seen in Fig. 5.4. Further the

silhouettes are noisy due to factors such as similarity of colors of the subject and

the background, varying illumination caused by the operating environment and

so on. Despite these variations, G58 has been successfully recognized as a winner

gait as shown in the bar chart.
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Figure 5.4: A scenario that depicts the recognition process of a probe gait
(typically chosen from CASIA dataset) with a typical viewing variation of 18◦.
Normalized silhouettes of gait sequences of the probe (each row represent one
sample), the associated Bayesian Network generated by PROCIM and the bar

chart of first ten winner gaits being recognized are shown.

Body components such as head, arms and some portion of the torso are missing

in most of the normalized silhouette sequences shown in Fig. 5.5.A huge viewing

variation of 162◦ along with the complexity of missing body components, obviously

causes more uncertainty and consequently G58 has been degraded from rank1 to

rank2 as shown in the the bar chart.



Chapter 5. Extending PROCIM for Robust Gait Recognition 132

Figure 5.5: A scenario that depicts the recognition process of a probe gait
(typically chosen from CASIA dataset) with a typical viewing variation of 162◦.
Normalized silhouettes of gait sequences of the probe with missing body com-
ponents, the associated Bayesian Network generated by PROCIM and the bar

chart of first ten winner gaits being recognized are shown.

Interestingly when the gait of a subject is viewed from 162◦, the left body motion

is more visible than the right body motion. This is intuitively reflected by the

sub-gait to gait relationships captured by the BN shown in Fig. 5.5. Specifically

the right sub-gaits, RA and RB, have not contributed to the recognition of G58.

However these sub-gaits played their role when the viewing angle was 18◦ as seen in

Fig. 5.4. The proposed framework enables us to visualize such interesting relation-

ships that exists between gaits and sub-gaits. We see that sub-gaits RA and RB

lack to provide evidence due to uncertainties in the scenario. However PROCIM
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grasps information by accumulating evidences from other sub-gaits. By manipu-

lating the available evidences (LA, LB, LFA and LFB) and the learned belief

states from the stored CPTs, PROCIM is still able to recognize G58 reasonably

well (in second rank).

The gait samples of a subject is represented in terms of normalized gait cycles

which comprises a set of silhouettes. Some of the samples might have silhouettes

with missing parts (weak samples). Within a sample the uncertainty caused by

silhouettes with missing parts will be compensated by the ones which are complete.

Furthermore, as we decompose the samples into compact modules (please see

Section 5.3), the modules which have more good samples would compensate the

uncertainty caused by modules that contain silhouettes with missing parts. For

example a module of the left sub-gait (LFA) might fail to provide evidence or

provide less evidence (influence strength could be weak due to weak samples).

However the other module of the left sub-gait (LFB) or modules of other sub-

gaits might provide sufficient evidence to mitigate the uncertainties imposed by

the weak module.

5.5 Experimental Validation

5.5.1 Data set and experimental design

We have used the University of South Florida (USF) HumanID gait challenge

data set [12] and the multi-view gait dataset offered by Chinese Academy of Sci-

ences [194] to evaluate PROCIM and compared it with the state-of-the-art gait

recognition algorithms. The USF data set which was collected on typical outdoor

environment, consists of 122 subjects comprising 1870 video sequences. The gait

challenge baseline algorithm [12] as well as very recent algorithms such as [173]

consider seven standard experimental probe sets, the details of which are tabulated

in Table 5.2.
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Table 5.2: Experimental Notation and Description with compliance to Human
Identification in USF HumanID Data Sets

Probe Set Capturing Condition Covariate Factors

A GAL View

B GBR Shoe

C GBL Shoe, View

D CAR Surface

E CBR Surface, Shoe

F CAL Surface, View

G CBL Surface, Shoe, View

The seven probe sets, A to G, are designed to perform a range of experiments in the

order of increasing difficulties. The abbreviations of various capturing conditions

in the table viz., C,G,A,B, L, and R refers to Concrete surface, Grass surface,

shoe type A, shoe type B, Left view and Right view respectively.

5.5.2 Identifying Potential Sub-gaits

Figure 5.6: Recognition potential of sub-gaits for the HumanID gait challenge
data
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Recall from Section 5.2 that we have defined five sub-gaits (k = 5) viz., Upper

Gait(U), Mid Gait(M), Lower Gait (L), Left Gait(LF ) and Right Gait (R). Also

recall from Section 3.3.2 that the size of the Bayesian Network tends to grow ex-

ponentially as the number of sub-gaits increases. This will in turn demand more

computing resources. Hence prior to parameter estimation, strategically select-

ing just a few potential sub-gaits would enable PROCIM to be computationally

feasible. In this section, we will identify such potential sub-gaits based on their

recognition power. We have computed recognition rates for all of the sub-gaits for

the seven core experiments using the approach proposed by [196], the results of

which are shown in Fig.5.6. The mean performance of all the experiments shown at

the right most end of Fig.5.6 justifies that the sub-gaits L,LF and R have higher

recognition potential than U and M . Hence we will only employ these potential

sub-gaits in the subsequent experiments.

5.5.3 Comparison of PROCIM with state-of-the-art

We have experimented PROCIM with the HumanID gait challenge experiments

by gradually increasing the number of sub-gaits. A Cumulative Match Character-

istic (CMC) curve [208] shows various probabilities of recognizing an individual

depending on how similar their measurements are to that of others in the gallery.

The rank 1 point on the CMC curve is the nearest-neighbor recognition perfor-

mance. The CMC graphs of these experiments are shown in Fig.5.7,5.8,5.9 and

5.10. Initially by considering the lower sub-gait alone (i.e. L), mean recognition

rates of about 52% and 62% have been yielded by PROCIM respectively for the

rank1 and rank5 performance. Then by combining two potential sub-gaits (i.e

L + LF ), this improved to about 60% and 76%. Finally by considering all the

three potential sub-gaits (i.e. L+LF +R), the mean recognition rates have been

considerably improved to about 69% and 85% for rank1 and rank5 performance

respectively. These experimental results clearly show that when all the potential

sub-gaits are used, PROCIM achieves maximum recognition performance.

Further we subject PROCIM to the HumanID gait challenge experiments using
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USF dataset and compared it against the following state-of-the-art gait recognition

algorithms:
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Figure 5.7: CMC response of PROCIM with respect to HumanID gait chal-
lenge experiments A and B
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Figure 5.8: CMC response of PROCIM with respect to HumanID gait chal-
lenge experiments C and D
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Figure 5.9: CMC response of PROCIM with respect to HumanID gait chal-
lenge experiments E and F
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Figure 5.10: CMC response of PROCIM with respect to HumanID gait chal-
lenge experiments G

i. Baseline [12]

ii. HMM - Hidden Markov Model [188]

iii. DATER - Discriminant Analysis with TEnsor Representation [209]
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iv. DTW/HMM - Dynamic Time Warpring/HMM [198]

v. ETGLDA - Eigen Tensor Gaits based on Linear Discriminant Analysis [196]

vi. GEI - Gait Energy Image [210]

vii. LTN - Linear Time Normalization [195]

viii. MR - Matrix Representation [211]

ix. NTWN - Nonlinear Time-Warp Normalization [173]

x pHMM - population Hidden Markov Model [9]

We have experimented PROCIM with two modes of recognition experiments. Ini-

tially we used the conventional experimental setting proposed by [12] where train-

ing was done with a limited gallery set (capturing condition was fixed as Grass,

Shoe Type A and Right Camera). Recognition tests were performed with various

probe sets which are described in Table 5.2. We refer to this conventional recog-

nition experiment as PROCIM-a. Very recently [173] have shown that improved

recognition rates can be achieved by using multiple samples for training. They

proposed a round-robin recognition experiment in which one of the challenge sets

was used as test while the other seven were used as training examples. The pro-

cess was repeated for each of the seven challenge sets. We refer this experiment

as PROCIM-b.
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Figure 5.11: PROCIM Vs. state-of-the-art gait recognizers: Rank1 Perfor-
mance

The rank1 and rank5 performance comparisons with state-art-of-the-art gait recog-

nition algorithms are shown as bar charts in Fig. 5.11 and Fig. 5.12 respectively.

Though PROCIM-a competes fairly with other algorithms, it is not as significant

as PROCIM-b due to the restricted mode training. We see that PROCIM-b out-

performs other algorithms in majority of the tests. Recognition rates of 75.3% and

89.6% achieved by PROCIM-b respectively for rank1 and rank5 performance, on

an average of all the seven gait-challenge experiments, justifies the robustness of

the proposed approach.
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Figure 5.12: PROCIM Vs. state-of-the-art gait recognizers: Rank5 Perfor-
mance

5.5.4 Experiments with the CASIA dataset

In this section we will investigate the generalization capability of PROCIM with

the large multi-view CASIA dataset which contains gait sequences of 124 subjects

captured from 11 viewing angles. There were totally 10 gait sequences for each

subject (6 normal + 2 with a coat + 2 with a bag) for each of the 11 views. The

dataset [194] enables us to experiment the effect of the following co-variate factors.

i. View (Camera angles were varied from 0◦ to 180◦ in increments of 18◦)

ii. View and clothing (i. + Subjects walked by covering them with a long coat)

iii. View and carrying (i. + Subjects walked by carrying a bag)
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Figure 5.13: PROCIM and GEI algorithms are compared using the
CASIA dataset; Cumulative match scores for typical variations, View and

View+Clothing, are compared for the two algorithms.
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Figure 5.14: PROCIM and GEI algorithms are compared using the CASIA
dataset; Cumulative match scores for typical variations, View+Carrying, are

compared for the two algorithms.

The first four sequences (normal) were used for training and the remaining were

used for testing. Yu et al. [212] have implemented the GEI algorithm using the

CASIA dataset. We have compared our results with the GEI algorithm which are
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shown in Fig. 5.13 and Fig. 5.14. When tested by varying the carrying condition

alone (i.e. for the same view), PROCIM and GEI yielded a recognition rate of

about 87% and 68% respectively. When tested by varying the clothing condition

alone, PROCIM and GEI yielded a recognition rate of about 50% and 29% re-

spectively. This indicates that clothing is a tough test as the occlusion caused by

long coat (most of the body parts are occluded by a long coat) imposes vast uncer-

tainty to the recognition process. For a small viewing variation of 18◦, PROCIM

and GEI yielded a recognition rate of about 49% and 39% respectively. However

when viewing is varied extremely (trained with 0◦ and tested with 90◦) coupled

with clothing variation the recognition rate has been degraded to 8.3% and 2.5%

respectively by PROCIM and GEI. Significant improvement in performance has

been achieved by PROCIM especially over cloting and carrying conditions.

5.6 Summary

We have identified potential sub-gaits and discovered interesting sub-gait char-

acteristics within the gait domain. The novel Probabilistic Component Inter-

pretation Model (PROCIM) introduced in this chapter does not require manual

labeling of body components. Further the proposed modular training scheme en-

ables PROCIM to learn subtle gait patterns. The graphical nature of PROCIM

aids to intuitively visualize intrinsic sub-gait relationships and demonstrates how

these sub-gaits collectively contribute to the recognition process. With the aid of

few potential sub-gaits PROCIM reports a reliable recognition performance and

competes well with the state-of-the-art gait recognizers. PROCIM is a generic

model which can be fitted to suit any subspace technique. Our results show that

extreme viewing angle variations coupled with change of clothing remains to be

the toughest test among the experiments we have performed.

An interesting avenue for future directions could be “The proposed model does

not have direct dependencies among parts and does this detract from the power of

the modeling?”. We have applied Bayesian Networks (which use directed edges) in
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the proposed framework to exploit the conditional independence properties that

exists between gaits and their sub-gaits to achieve robust gait recognition. Such

independence assumptions reduce the number of parameters in the model, and

therefore making the model computationally feasible for real time applications.

However setting dependencies among parts could be modeled using undirected

links. Graphical models such as Markov networks [213] which use undirected

graphs can be employed to capture dependency among various sub-gaits. In this

regard, it will be an interesting avenue in the future to apply undirected graphical

models, to investigate the impact of dependencies between sub-gaits and ultimately

how they would influence the gait recognition process. Further we intend to apply

the proposed approach to a wide range of object recognition problems in the

future.



Chapter 6

Fusion based Gait Recognition: A

basic Framework

6.1 Introduction

We introduced the PROCIM architecture in Chapter 3 to address the uncertainty

issues imposed by the facial domain. Further in Chapter 5 we extended it to ad-

dress the gait recognition problem which involves processing of dynamic images.

PROCIM employs Bayesian Networks (BNs), which are basically directed acyclic

graphs (DAGs). We have shown that the BN-based PROCIM architecture, ex-

hibits several advantages including exploiting conditional independence properties

exhibited by the domain and capable of making robust decisions under uncer-

tainty. Such directed graphical models are useful because both the structure and

the parameters provide a natural representation of real-world domains. However,

the acyclic constraint of Bayesian networks does not permit it to express certain

types of interactions. For example, let us consider a way to express an intuition

such as “Twins tend to have similar gaits”. This can be modeled in first-order

logic using the following simple statement,

∀x∀yTwins(x, y) =⇒ (gait(x) ⇐⇒ gait(y)),

144
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which involves a bidirectional rule. Such bidirectional rules cannot be modeled

using Bayesian Networks. Logic based paradigms are useful in modeling a variety

of phenomena where one cannot naturally ascribe a directionality to the interaction

between variables. First-order logic commits to the existence of objects and their

relationships and enables means to express facts about some or all of the objects in

a domain. Hence it is well suited to model gaits, sub-gaits and their relationships.

It enables us to compactly represent a wide variety of knowledge though it impose

some hard constraints [214].

Statistical Relational Learning (SRL) is a branch of Artificial Intelligence (AI) that

is concerned with models of domains that exhibit both uncertainty (which can be

dealt with using statistical methods) and complex, relational structure. Typically,

the knowledge representation formalisms developed in SRL use two entities. The

first one comprises of a subset of first-order logic, intends to describe relational

properties of a domain in a general manner (universal quantification). The sec-

ond one built upon probabilistic graphical models (such as Bayesian networks or

Markov networks) aims to model the uncertainty. Significant contributions to the

field have been made since the late 1990s. However, only very recently, Richardson

and Domingos [214], members of the SRL group at the University of Washington,

introduced Markov Logic Networks (MLNs). The objective of MLN is to soften

the hard constraints imposed by first-order logic by combining logic and graphs.

In First-order logic, formulas are perceived as hard constraints: a world (model)

that violates even a single formula is impossible. On the other hand, in Markov

logic, formulas are perceived as soft constraints: a world that violates a formula

is less probable than the one which satisfies it, other things being equal, but not

impossible.

The underlying problem of gait recognition demands a coherent framework which

can integrate information from three domains, namely imaging, logic and graphs.

In this chapter we will propose a basic three-layer architecture which can fuse these

three domains to attack the Gait Recognition (GR) problem. We will initially use

the imaging domain to represent gait motion in terms of silhouettes. Similar to the
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PROCIM architecture, component based classification will be done at the imaging

layer. Then we will define a first-order Knowledge-Base (KB) to represent and

reason the classification results extracted from the imaging layer. We will hypoth-

esize the proposed component-based GR paradigm in terms of simple inference

rules. Further, the proposed framework strategically deploys MLN to learn gait

component relationships defined in the KB. Finally gaits are classified using the

proposed inference based rules.

The rest of the chapter is organized as follows. In Section 6.2 we present related

work from the Statistical Relational Learning literature. Relevant background

about first-order logic and MLN is provided in Section 6.3. Section 6.4 briefs

the proposed 3-Layer fusion architecture of the proposed approach. We formulate

the proposed Knowledge-Base, which serves as the backbone of the approach in

Section 6.5. We provide experimental validations of the approach using a standard

gait dataset in Section 6.6. Finally we conclude this chapter in Section 6.7.

6.2 Related Work

Traditionally, the field of AI research has fallen into two subfields: one that has

been focusing on logical representations, and the other one that has been empha-

sizing statistical techniques [215]. Complexity issues have been handled by logical

AI approaches such as symbolic parsing, logic programming, description logics,

classical planning, rule induction and so on. Uncertainty modeling has been ex-

amined by statistical AI approaches such as Bayesian networks, hidden Markov

models, Markov decision processes, statistical parsing, neural networks and so

on. However, intelligent agents must be able to handle both complexity and un-

certainty for real-world applications. Pioneering attempts to integrate logic and

probability in AI commenced in late 1980s [216–218]. Later, several authors began

using logic programs to compactly specify Bayesian networks, an approach known

as knowledge-based model construction (Eg. [219]). Many approaches have been

proposed in the recent years, including, Bayesian logic programs [220], relational
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dependency networks [221], probabilistic relational models [222], stochastic logic

programs [223] and others. As these approaches typically combine probabilistic

graphical models with a subset of first-order logic they can be quite complex. Un-

like these approaches MLN utilizes the full expressiveness of first-order logic and

graphical models without any restrictions [215].

The MLN based approach proposed by Tran and Davis [224] addresses the problem

of event modeling and recognition in visual surveillance in unconstrained scenar-

ios. The authors illustrate their approach in the context of monitoring a parking

lot, with the goal of matching people to the vehicles they arrive and depart in.

It has been shown that common sense knowledge, specific to the domain under

consideration, can provide useful constraints to reduce uncertainties and ambi-

guities. Background subtraction, human detection and tracking techniques were

first applied to identify and track object locations. The orientation and direction

of each car is estimated using its corresponding foreground blob and parking lot

layout. The Knowledge-Base proposed in the approach represents intuitions in the

form of meaningful predicates (logical functions). A spatial predicate, for example,

inTrunkZone(C,H), is generated when the foot location of person, H, intersects

significantly with the trunk zone of the car,C. Identity maintenance predicates

are evaluated using the distance between color histograms of the two participating

objects. Simple commonsense rules such as the following are formulated using

first-order logic:

* If a person disappears, he/she enters a nearby car

* If a person opens the trunk of a car, he/she will (likely) enter that car

Though the proposed MLN-based approach has not been compared with other

relevant models that deploys logic for event recognition (Eg. [225, 226]), it serves as

a good example to illustrate the application of MLN towards uncertainty modeling.

Wu and Weld [227] have proposed a MLN based approach to address the prob-

lem of ontology refinement. As an outcome of their research they have developed
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an autonomous system called the Kylin Ontology Generator(KOG), capable of

building rich ontologies by combining Wikipedia info-boxes with WordNet, a lex-

ical database for the English language, using statistical-relational learning. The

resulting ontology contains subsumption relations and schema mappings between

info-box classes of Wikipedia. Additionally, it maps these classes to WordNet. The

authors have shown that the resulting ontology may be used to enhance Wikipedia

with improved query processing and other features.

Though MLN is a newly developing probabilistic logic paradigm, it is gaining

momentum in the field of AI as it offers a unified solution to model uncertainty

and complexity. Motivated by the spirit of the SRL literature, the fusion based

approach presented in this chapter applies MLN to attack the GR problem.

6.3 Brief Backround of First-order Logic and MLN

For an in-depth coverage of first-order logic the reader is encouraged to read [140].

However, it is note worthy to brief some basic concepts relevant to MLN from

[214] here. In AI, a Knowledge-Base, KB, technically represents a single large

formula as the formulas in a KB are implicitly conjoined. A ground term is a term

containing no variables. A ground atom or ground predicate is an atomic formula

all of whose arguments are ground terms. A possible world assigns a truth value

to each possible ground atom. A formula is satisfiable iff there exists at least one

world in which it is true. The basic inference problem in first-order logic is to

determine whether a knowledge base KB entails a formula F , i.e., if F is true

in all worlds where KB is true (denoted by KB |= F ). This is often done by

refutation: KB entails F iff KB ∪¬ F is unsatisfiable.

MLNs are basically undirected graphical models, being developed using SRL tech-

niques to unify logic and probabilistic reasoning. Being a new technique, it is

continuously undergoing developments by the SRL research group of Washington

State University. Under the MLN paradigm, each first-order logic formula Fi is
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associated with a non-negative real-valued weight wi. Prior to learning, every

instantiation of Fi is given the same weight. Using machine learning procedures

these weights are duly updated after the learning phase (weight learning). An

undirected network, called a Markov Network, is constructed such that,

* Each of its nodes correspond to a ground atom xk.

* If a subset of ground atoms x{i} = {xk} are related to each other by a formula

Fi, then a clique Ci over these variables is added to the network. A weight

wi is associated with Ci and a feature fi is defined as follows:

fi(x{i}) =

 1 if Fi(x{i}) is true

0 otherwise
(6.1)

Thus first-order logic formulas in our KB serve as templates to construct the

Markov Network. This network models the joint distribution of the set of all

ground atoms, X, each of which is a binary variable. It provides a means for

performing probabilistic inference using,

P (X = x) =
1

Z
exp(

∑
i

−wifi(x{i})) (6.2)

where Z, the normalizing factor, is defined as,

Z =
∑
x∈X

exp(
∑
i

−wifi(x{i})) (6.3)

If Φi(x{i}) is the potential function defined over a clique Ci, then

log(Φi(x{i})) = wifi(x{i}) (6.4)

An MLN is obtained by attaching weights to the formulas (or clauses) in a first-

order knowledge base, and can be viewed as a template for constructing Markov

networks. Empirically several algorithms for MLN weight learning have been com-

pared in terms of learning rates by Lowd and Domingos [228]. Each possible
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grounding of a formula in the KB yields a feature in the constructed network.

Inference is performed by grounding the minimal subset of the network required

for answering the query and running a Gibbs sampler over this subnetwork, with

initial states found by the MaxWalkSat algorithm. Weights are learned by opti-

mizing a pseudo-likelihood measure using the L-BFGS algorithm, and clauses are

learned using the CLAUDIEN system. For a given probe, by observing the gaits

triggered by its various components, we aim to query the most probable gallery

instance with the aid of the learnt potentials readily available.

6.4 Proposed 3-Layer Architecture that Fuses Imag-

ing, Logic and Probabilistic Graphical Do-

mains

We abbreviate the proposed Gait Recognition Model which uses Markov Logic

Network as (GRM-MLN). The 3-layer architecture employed by the GRM-MLN

is shown in Figure 6.1. We briefly describe the three stages inherent in the proposed

framework as follows:

i. Image Processing Layer (IPL)

Initial image processing and component based classifications are performed

at the image processing layer. Raw binary silhouettes which form the core

input of the model are initially decomposed into three sub-gaits namely Left-

Gait, Right-Gait and the Lower-Gait using basic image segmentation tech-

niques after normalizing them using standard image processing techniques.

The segmentation scheme proposed in Section 5.2 for the PROCIM architec-

ture has been used here as well. GRM-MLN is a generic object recognition

model and hence it can flexibly fit into any feature projection technique

such as PCA or SVM. For demonstration sake we represent the silhouettes

in terms of multi-linear tensors which has been recently applied by Lu et
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al. [196]. Eigen-tensor based features [196] are extracted from these gait

components from which component based recognition is performed.

Figure 6.1: Three-Layer architecture of the proposed GRM-MLN

ii. Conceptual Layer (CL)

This layer is comprises of a set of predicate definitions (first-order formulas)

and a Knowledge-Base (KB) that governs how various gait components can

be relatively combined. The information gained from the weak classifiers

based on components based recognition from the IPL is transformed into

the logical layer in terms of ground atoms.

iii. Probabilistic Graphical Layer (PGL)

Each of the gait components individually and/or collectively could contribute

to the recognition of a subject. Undirected graphs employed by the GRM-

MLN represent the dependencies between the components and the gaits
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which they recognize. The graph has a node for each variable, and the model

has a potential function (weight) for each clique in the graph. From the train-

ing dataset the potentials encoded by the graphs receive possible groundings

for the atomic formulas which are precisely governed by the rules in the

KB of the logical layer. This enables GRM-MLN to learn characteristics

about gait components and their relationships. A given probe is subjected

to segmentation and component based classification is performed. The infor-

mation obtained from these weaker classifiers are fed into the GRM-MLN as

evidences and finally the most probable gait recognized for the given probe

is determined.

6.5 Formulation of the proposed Knowledge Base

We intend to represent the knowledge about the gait domain which we perceive as,

gaits, potential sub-gaits and the various relationships between them. As the gait

domain comprises real world object entities and the behavior that governs these

entities, it is appropriate to use first-order logic to represent the gait domain. A

first-order knowledge base, KB, is a set of sentences or formulas in first-order

logic [229]. Formulas are constructed using four types of symbols: constants,

variables, functions, and predicates. Constant symbols represent objects in the

gait domain. For example G1 and G5 refers to the gait of the first and fifth

subject. Variable symbols range over the objects in the domain. For example

people is a variable which can range over G1, G2 and so on. Function symbols

are used to represent particular behavior of an object or a set of objects. For

example, LowerLeft is a function used to represent the left leg motion of a gait.

Predicate symbols represent relations among objects in the domain. For example

the predicate LowerGait(person) relates a person with respect to his particular

gait behavior. An atomic sentence is an indivisible formula, represented by a single

proposition symbol (Eg. ¬P ), which stands for a proposition that can be either

true or false. A KB consists of a set of formulas which are constructed from
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atomic sentences. An efficient KB is formed by few predicates and a compact

rule-base, where each rule is stated clearly and concisely [140]. Keeping this as a

guideline, we construct our gait KB using the following three evidence predicates:

LftGait(person), RgtGait(person) and LowerGait(person). These three evidence

predicates represent the binary states of the three potential sub-gaits which we

identified in Section 5.5.2. Each sub-gait either individually or collectively might

trigger the recognition of a subject which in turn leads to a series of component

based recognition rules. These rules that characterize the recognition potential of

each of the above introduced predicates are defined as follows:

LftGait(person) =⇒ Recognize(person) (6.5)

RgtGait(person) =⇒ Recognize(person) (6.6)

LowerGait(person) =⇒ Recognize(person) (6.7)

Logically the following rules are derived from the above rules using conjunction.

LftGait(person) ∧RgtGait(person) =⇒ Recognize(person) (6.8)

LftGait(person) ∧ LowerGait(person) =⇒ Recognize(person) (6.9)

RgtGait(person) ∧ LowerGait(person) =⇒ Recognize(person) (6.10)

Subtle gait motions can be derived by the conjunction (intersection) of sub-gaits.

For example, the conjunction of LftGait and LowerGait of a person yields subtle

lower-left-leg motion of the person. Hence, intuitively, equations 6.9 and 6.10,

help GRM-MLN to infer, how well do the subtle sub-gait motions viz., lower-

left-leg and lower-right-leg, respectively, contribute to the overall gait recognition

process. Physically modeling these subtle sub-gait motions, obviously involves

incorporation of sophisticated segmentation algorithms at the cost of additional

computational costs. GRM-MLN takes advantage of logic to model such intrinsic

sub-gait patterns without the need of any sophisticated segmentation techniques.

By way of establishing simple logical relationships, the proposed GRM-MLN model
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intend to learn subtle relationships from the gait domain by applying Markov-Logic

Networks.

For our KB, we have mostly used two of the following simple inference based rules.

• Modus Ponens which can be written as follows:

α =⇒ β, α

β
(6.11)

This means that, whenever any sentences of the form α =⇒ β and α

are given, then the sentence β can be inferred. For example, if GRM-MLN

knows that

LftGait(G7) ∧RgtGait(G7) =⇒ Recognize(G7), (6.12)

that is the gait of the subject G7 is influenced by both his left-gait and

right-gait motions, then, whenever LftGait(G7) ∧RgtGait(G7) has been

observed, then the recognition state of G7, Recognize(G7), can be inferred

(queried).

• And-Elimination which is another useful inference rule can be written as

follows:
α ∧ β
α

(6.13)

which says that, from a conjunction, any of the conjuncts can be inferred. For

example, from the knowledge of LftGait(G7) ∧RgtGait(G7), RgtGait(G7)

can be inferred. Predicates which are used for inference are called query

predicates (Eg. Recognize(person) ).

6.5.1 Representing Rules in Conjunctive Normal Form

Considering that the percepts of the GRM-MLN relies on the evidence perceived

by the three predicates, we hypothesize that: “A person is recognized, if and only if
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atleast one of his/her three sub-gaits, contributes to the overall recognition process

of the person”. Logically this hypothesis can be formulated as:

LftGait(person)∨RgtGait(person)∨LowerGait(person) ⇐⇒ Recognize(person)

(6.14)

For automated inference, it is often convenient to convert formulas to a more

standard form, called conjunctive normal form (CNF) [214]. A KB in CNF form

which is otherwise known as clausal form is a conjunction of clauses, a clause

being a disjunction of literals. Every KB in First-order logic can be converted to

clausal form using a mechanical sequence of steps. A formula is satisfiable if it

is true in some model. If a sentence, α, is true in a model m, then we say than

m satisfies α. In other words m is a model of α. There are special algorithms

(Eg. WalkSAT [230]) to solve satisfiability (SAT) of a formula very efficiently if

the formula is written in a CNF form. The set of rules that we have defined, that

is the rule-base, and their corresponding CNFs are given in Table 6.1
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Table 6.1: List of rules of the proposed knowledge-base and their correspond-
ing CNFs (conjunctive normal form)

Rules used in the Knowledge-base Clausal form (CNF) of the rules

LftGait(person) ¬ LftGait(person) ∨ Recognize(person)

=⇒ Recognize(person)

RgtGait(person) ¬ RgtGait(person) ∨ Recognize(person)

=⇒ Recognize(person)

LowerGait(person) ¬ LowerGait(person) ∨ Recognize(person)

=⇒ Recognize(person)

LftGait(person) ∧ RgtGait(person) ¬ LftGait(person) ∨ ¬ RgtGait(person)

=⇒ Recognize(person) ∨ Recognize(person)

LftGait(person) ∧ LowerGait(person) ¬ LftGait(person) ∨ ¬ LowerGait(person)

=⇒ Recognize(person) ∨ Recognize(person)

RgtGait(person) ∧ LowerGait(person) ¬ RgtGait(person) ∨ ¬ LowerGait(person)

=⇒ Recognize(person) ∨ Recognize(person)

LftGait(person) ∨ RgtGait(person) (¬ LftGait(person) ∨ Recognize(person)) ∧

∨ LowerGait(person) (¬ RgtGait(person) ∨ Recognize(person)) ∧

⇐⇒ Recognize(person) (¬ LowerGait(person) ∨ Recognize(person)) ∧

∧

(¬ Recognize(person) ∨ LftGait(person)) ∧

( ¬ Recognize(person) ∨ RgtGait(person)) ∧

( ¬ Recognize(person) ∨ LowerGait(person))

The CNFs shown in Table 6.1 are derived by applying a set of standard logical

equivalence relations [231] which are given in Table 6.2.
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Table 6.2: Logical equivalence relations of First-Order Logic

Standard logical equivalence relations In words

(A ∧B) ≡ (B ∧ C) commutativity of ∧

(A ∨B) ≡ (B ∨ C) commutativity of ∨

((A ∧B) ∧ C) ≡ (A ∧ (B ∧ C)) associativity of ∨

((A ∨B) ∨ C) ≡ (A ∨ (B ∨ C)) associativity of ∨

¬(¬A) ≡ A double-negation elimination

(A =⇒ B) ≡ (¬B =⇒ ¬A) contraposition

(A =⇒ B) ≡ (¬A ∨B) implication elimination

(A ⇐⇒ B) ≡ (A =⇒ B) ∧ (B =⇒ A) biconditional elimination

¬(A ∧B) ≡ (¬A ∨ ¬B) De Morgan’s Law

¬(A ∨B) ≡ (¬A ∧ ¬B) De Morgan’s Law

(A ∧ (B ∨ C)) ≡ ((A ∧B) ∨ (A ∧ C)) distributivity of ∧ over ∨

(A ∨ (B ∧ C)) ≡ ((A ∨B) ∧ (A ∨ C)) distributivity of ∨ over ∧

6.5.1.1 Proof of Hypothesis

Similar to how algebraic identities are applied to derive algebraic formulas, we

will apply these logical relations to derive the proof of the CNF of our hypothesis

represented by equation 6.14, last row of Table 6.1, a typical biconditional rule.

Applying biconditional elimination, equation 6.14 transforms to the conjuntion of

eqs. 6.15 and 6.16.

LftGait(person)∨RgtGait(person)∨LowerGait(person) =⇒ Recognize(person)

(6.15)

Recognize(person) =⇒ LeftGait(person)∨RgtGait(person)∨LowerGait(person)

(6.16)



Chapter 6. Fusion based Gait Recognition: A basic Framework 158

Applying implication elimination to eq. 6.15

¬(LftGait(person)∨RgtGait(person)∨LowerGait(person))∨Recognize(person)

(6.17)

Applying De Morgan’s Law to eq. 6.17

(¬LftGait(person)∧¬RgtGait(person)∧¬LowerGait(person))∨Recognize(person)

(6.18)

(¬LftGait(person)∨Recognize(person))∧(¬RgtGait(person)∨Recognize(person))

∧ (¬LowerGait(person) ∨Recognize(person)) (6.19)

Applying implication elimination to eq. 6.16

¬Recognize(person)∨(LftGait(person)∧RgtGait(person)∧LowerGait(person))

(6.20)

Applying distributivity of ∨ over ∧ to eq. 6.20

(¬Recognize(person)∨LftGait(person))∧(¬Recognize(person)∨RgtGait(person))

∧ (¬Recognize(person) ∨ LowerGait(person)) (6.21)

The conjunction of eqs. 6.19 and 6.21 represent the CNF of eq. 6.14 as these

are the corresponding CNFs of eqs. 6.15 and 6.16 which are in turn derived from

eq. 6.14.

As described above, all the possible rules (clauses) have been defined using first-

order logic and a precise Knowledge Base (KB) of gait components and their

relationships has been formed. Each rule defined in the KB corresponds to the
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event of a component based recognition mechanism. Initially at the Image Pro-

cessing Layer (IPL), eigen-tensor based feature space has been constructed for the

various gait components from the training samples. By projecting the eigen-tensor

feature of a gait component of a test sample over this feature space, recognition

has been performed and the results are transformed into the Conceptual Layer

(CL) in terms of ground atoms. In other words, in the event of a component or set

of components have influenced the recognition of a gait, the corresponding rule in

the KB will receive a grounding.

6.6 Experiments and discussion

Figure 6.2: Typical samples from the CMU gait database showing the gait of
a subject walking on a treadmill set in the middle of a room for the conditions

of a) slow walk and b) fast walk.

We have used the CMU Mobo data set [5] which consists of gait sequences of

subjects walking on a treadmill, positioned in the middle of a room. The dataset

was developed by Collins et al. of Carnegie Mellon University(CMU), who also

proposed the CMU gait algorithm which has been briefed in section 4.3.1.2. The
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dataset contains six simultaneous motion sequences of 25 subjects (23 male, 2 fe-

male) walking on a treadmill. The 3CCD progressive scan images have a resolution

of 640x480. Each subject is recorded performing four different types of walking:

slow walk, fast walk, inclined walk, and slow walk holding a ball (to inhibit arm

swing). For our experiments we have used gait silhouettes representing the slow

walk and fast walk video sequences. More than 8000 images are captured per

subject. Sample video frames for a typical subject for two typical conditions viz.,

slow walk and speed walk are shown in Figure 6.2. Each sequence is 11 seconds

long, recorded at 30 frames per second. For training and testing we have used the

slow walk and fast walk sequences respectively. The average walking speed of the

treadmill was set to 2.06 miles per hour (mph) for capturing the slow walk gait

sequences. For the fast walk this was set as 2.82 mph. The speed of the treadmill

was adjusted to be at a comfortable walking speed for the subjects for both the

slow walk and fast walk.

We have implemented GRM-MLN using an open source software called “Alchemy”

offered by the Statistical Machine Learning Group, University of Washington,

http://alchemy.cs.washington.edu, [214]. MLN weight learning has been performed

to learn the potentials of each of the formulas in the knowledge base using the train-

ing samples. The normalized weights which represent the recognition potential of

various sub-gaits and their logical relationships are shown in Figure 6.3.
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Figure 6.3: Learnt potentials of evidence predicates for training samples com-
prising slow walk

It can be seen that various gait components such as left, right and lower body

motion contribute around 25% to 45% towards the overall gait recognition. Lower

body motion without any further component based interpretation contributes to

a recognition potential of about 28%. However the efficient fusion of lower body

motion with left and right gait symmetries have enabled GRM-MLN to learn the

recognition potentials of two vital components viz., lower-left and lower-right gait

components. The average recognition potential of these components contributes

to around 52% which is considerably better than the lower body motion alone.

Similarly the fusion of left and right gaits have yielded a recognition potential of

about 56%. This is considerably more when compared to their individual con-

tribution. This illustrates a significant advantage of the fusion based mechanism
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deployed by GRM-MLN.

Figure 6.4: Comparison of GRM-MLN with GDN [9],UMD [10],CMU [11],
Baseline [12] and MIT [13]

Further we have compared the recognition rates of GRM-MLN with state-of-the-

art gait recognizers with respect to the CMU dataset. From the bar-chart shown

in Figure 6.4, it can be seen that the proposed GRM-MLN algorithm competes

well with other standard algorithms. We have briefed about the pHMM and DTW

algorithms in section 4.3.1.1. We have seen that the pHMM algorithm proposed

by Liu and Sarkar [9] relies on manually created silhouettes. The DTW algorithm

proposed by Veeraraghavan and Chowdhury [10] derives geometric information of

the walking person from several landmark points which are manually marked on

the gait video. Though the recognition rate of GRM-MLN is relatively lower than

pHMM and DTW, it has the advantage of avoiding such manual interventions.

6.7 Summary

We have proposed a simple but yet efficient statistical relational learning tech-

nique to reason and recognize gaits. This study shows how a simple component
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based gait reasoning approach can be coherently modeled using Markov Logic Net-

works. The proposed GRM-MLN has a natural generative semantics, which can

establish dependencies between gait components and exploit these dependencies

to successfully classify gaits. For a newly emerging biometric like gait, every piece

of contribution such as GRM-MLN would be a milestone. But as the newly devel-

oping SRL-based MLN is still undergoing developments, it has several practical

limitations when compared to the well established Bayesian Network toolbox. For

example, it is not possible in MLNs to define a potential function that depends

on certain operations (eg. dot product) between two object entities [232]. The

reason is that each potential function is a (learnt) constant. The root problem in

MLN is that it has not moved beyond weighted first-order logic to more general

weighted algebraic constraint systems. Hence directly comparing the Bayesian

Network-based PROCIM architecture with GRM-MLN is not appropriate with-

out modeling key psychophysical principles such as influence strengths. For future

avenues, we intend to formulate advanced concepts such as influence strengths,

which has been proposed in Chapter 5 for the PROCIM architecture, using MLNs

or other graphical models such as factor graphs. However the basic framework

presented in this chapter provides us a good starting point to explore more on

statistical relational learning (SRL) concepts and MLNs for our future research.



Chapter 7

Conclusions and Future Work

This thesis has investigated two potential biometrics namely face and gait recogni-

tion under unconstrained scenarios. Psychophysically feasible novel probabilistic

models have been proposed based on recent computer vision techniques. This

chapter will present the overall conclusions derived for face and gait recognition in

section 7.1 and 7.1 respectively. Finally future research avenues will be discussed

in section 7.3.

7.1 Face Recognition

As an outcome of Chapter 2, we identified several key psychophysical principles

that govern humans to recognize faces under unconstrained scenarios, where com-

plexities such as major occlusions, noise, illumination variation, scale and so on

impose vast uncertainty to the recognition process. Inspired by these psychophys-

ical principles, Chapter 3 defined a phenomenon called similarity mappings and

proposed a novel PRObabilistic Component Interpretation Model (PROCIM)

based on this phenomenon. PROCIM deployed Bayesian Networks(BN) to scien-

tifically model this intuitive similarity mappings. Importantly, it provided sound

visual means using graphs to analyse and interpret how the information derived

164
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from various subsamples can collectively contribute to tackle uncertainties. Fur-

ther the impact of varied degrees of occlusions over similarity mappings has been

clearly demonstrated. It has been justified that even some of the popular occlusion

models failed to exhibit such visual capabilities. The transparency exhibited by

PROCIM is due to the intuitive psychophysical nature of the model.

Further a novel physical property called Influence Strength, Z, has been defined as

an outcome of Chapter 3. It has been hypothesized that “The face being recognized

by observing a subsample of an occluded probe face will be more similar to the probe,

if Z’s magnitude is high”. A novel formula to make decision under uncertainty has

been proposed by effectively unifying probability theory and the crucial influence

strengths.

Extensive experimental validations have been presented to compare PROCIM with

state-of-the-art occlusion models. Against real occlusions such as sunglasses and

scarf, PROCIM reported promising recognition rates of about 90% within 7 ranks,

with respect to the AR dataset. Even the very recently proposed AWSGA [126]

algorithm is unable to achieve this performance within 20 ranks. But AWSGA

has the advantage of using one training sample per class whereas PROCIM uses

four training samples per class.

A novel evaluation method called Discrete Random Occlusion Test (DROT) has

been proposed to simulate realistic occlusions. Empirical evaluations have been

performed, using both CROT (Continuous Random Occlusion Test) and DROT,

using the defacto standard DARPA’s FERET dataset. With respect to conven-

tional tests, PROCIM yielded recognition rates of 94.3% and 90.1% in the presence

of moderate and major occlusions respectively, within the top three ranks. When

PROCIM and the classical PCA were subjected to the DROT, they yielded overall

recognition rates of 82.7% and 50.3% within the top three ranks. The wide per-

formance gap between the two approaches justifies the advancement of PROCIM

over the conventional PCA.
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One of the limitations of PROCIM is that it needs more training samples. How-

ever, the fact that PROCIM has the ability to converge to peak performance

within a few top ranks, indicates that PROCIM promises to recognize the actual

subject, in unconstrained scenarios, reasonably well. If a biometric enabled se-

curity system can provide such an ability, it will give the criminal investigation

team a considerable advantage, which is a significant advancement in the field of

biometrics.

7.2 Gait Recognition

The literature review presented in chapter 4 concluded that Gait Recognition

(GR) being a newly emerging biometric need to learn lessons from other matured

biometrics such as face recognition. It has been found that silhouette-based GR

techniques are gaining momentum among computer vision researchers. Recent

studies have concluded that silhouette shape has equal, if not more, recognition

potential than gait kinematics. Based on this inspiration two silhouette-based GR

approaches have been presented in Chapters 5 and 6.

As an outcome of chapter 5, it has been discovered that, to perform GR, seg-

mentation of specific body components such as head, arms, torso and legs are not

required. Obviously such accurate segmentation requires manual labour. We have

shown that PROCIM could derive useful information from various body compo-

nents using a simple automatic segmentation strategy. To achieve this, a set of

novel gait components called sub-gaits have been formulated based on the intu-

ition that for some individuals certain gait aspects, e.g. lower gait motion, might

be more discriminative than say upper gait motion. For others, left or right gait

motion could trigger their identification. The extended PROCIM architecture pro-

posed in chapter 5, enabled such an analysis to be factored into the recognition

process using Bayesian Networks. Further the proposed novel modular training

scheme, enabled PROCIM to represent and learn subtle walking patterns of human

gaits. It has been demonstrated that though the silhouettes have been inherently
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noisy and some of them contained missing heads, arms, torso and legs, PROSIM

has been robust enough to tackle such uncertainties.

Empirical results proved that the sub-gaits viz., lower-gait, left-gait and right-gait

exhibit higher recognition potential than upper-gait and mid-gait. With respect

to the DARPA’s humanID challenge dataset, two experimental settings have been

used viz., PROCIM-a (limited gallery set) and PROCIM-b (limited probe set). For

the rank-1 performance, PROCIM-a yielded about 90%, 24% and 51% recognition

rates for the most easy experiment, the most difficult experiment and the mean of

all experiments respectively. For these typical categories of experiments, consid-

ering the rank-5 performance , recognition rates of 93%, 72% and 75% have been

achieved. On the other hand, with respect to the rank-1 performance, PROCIM-b

yielded about 93%, 72% and 78% recognition rates for the most easy experiment,

the most difficult experiment and the mean of all experiments respectively. For

the same category of experiments, with respect to rank-5 performance, it achieved

recognition rates of 98%, 88% and 90%. Eventually, the performance of PROCIM-

b is better than PROCIM-a. The reason is that it used multiple gallery sets

and hence gained more training experience than PROCIM-b. PROCIM-b outper-

formed other state-of-the-art algorithms in majority of the DARPA experiments

which justifies its robustness.

Further experiments have been performed with the CASIA dataset to prove the

generalization capacity of PROCIM. When tested by varying the carrying condi-

tion alone (i.e. for the same view), PROCIM and GEI yielded recognition rates of

about 87% and 68% respectively. When tested by varying the clothing condition

alone, PROCIM and GEI yielded recognition rates of about 50% and 29% respec-

tively. This indicates that clothing is a tough test as the occlusion caused by long

coat (most of the body parts are occluded by a long coat) imposes vast uncer-

tainty to the recognition process. For a small viewing variation of 18◦, PROCIM

and GEI yielded recognition rates of about 49% and 39% respectively. However

when viewing is varied extremely (trained with 0◦ and tested with 90◦) coupled

with clothing variation, the recognition rates have been considerably degraded to
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8.3% and 2.5% respectively, by PROCIM and GEI. We see that PROCIM shows

significant improvement in performance over cloting and carrying conditions.

The GRM-MLN algorithm proposed in Chapter 6 reveals that subtle gait mo-

tion can be coherently modeled by fusing diverse domains viz., imaging, logic and

graphs. It has been demonstrated that GRM-MLN can establish dependencies

between gait components (sub-gaits) and exploit these dependencies to success-

fully classify gaits. It can be seen that various gait components such as left, right

and lower body motion contribute around 25% to 45% towards the overall gait

recognition. Lower body motion without any further component based interpre-

tation contributes to a recognition potential of about 28%. However the efficient

fusion of lower body motion with left and right sub-gaits have enabled GRM-MLN

to learn the recognition potentials of two subtle sub-gait motions viz., lower-left

and lower-right gait. The average recognition potential of these components con-

tributes to around 52% which is considerably better than the lower body motion

alone. Similarly the fusion of left and right sub-gaits have yielded a recognition

potential of about 56%. This is considerably more when compared to their indi-

vidual contribution. This illustrates a significant advantage of the fusion based

mechanism deployed by GRM-MLN.

The proposed GRM-MLN algorithm competes well with other state-of-the-art al-

gorithms. Algorithms such as pHMM and DTW relies on manually created silhou-

ettes and manual labeling. Though the recognition rate of GRM-MLN is relatively

lower than pHMM and DTW, it has the advantage of avoiding such manual inter-

ventions.

There are some limitations with the newly developing SRL-based MLNs. For

example, it is not possible in MLNs to define a potential function that depends

on certain operations (eg. dot product) between two object entities [232]. The

reason is that each potential function is a (learnt) constant. The main drawback

of MLN is that, it has not moved beyond weighted first-order logic to more general

weighted algebraic constraint systems.
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7.3 Future Work

One of the interesting avenues for future directions could be addressing: “The

proposed probabilistic models do not have direct dependencies among object com-

ponents and does this detract from the power of the modeling?”. We have applied

Bayesian Networks (which use directed edges) in the proposed framework to ex-

ploit the conditional independence properties that exists between objects and their

components to achieve robust gait recognition. Such independence assumptions

reduce the number of parameters in the model, and therefore making the model

computationally feasible for real time applications. However setting dependencies

among parts could be modeled using undirected links. Graphical models such as

Markov networks [213] which use undirected graphs can be employed to capture

dependency among various components. In this regard, it will be an interesting

avenue in the future to apply undirected graphical models, to investigate the im-

pact of dependencies between object components and ultimately how they would

influence the whole recognition process.

We have modeled influence strengths under the Bayesian network framework.

Alternatively whether the first-order logic oriented MLNs can be used to model

this concept, needs further investigation. Further, we have explicitly modeled a

novel robust formula which has enabled PROCIM to make meaningful decision

under uncertainty by bridging probability theory and utility theory. This can

be alternatively modeled using decision networks (influence diagrams), a gener-

alization of a Bayesian network model. However, this needs more understanding

of utility theory. So for our future assignments we will consider exploring these

complimentary methods.

Face and gait biometrics serve as natural candidates to be fused to result in multi-

modal biometrics, as both have the advantage of being non-invasive. At a distance,

gait can be used and gradually when the individual approaches, face images could

provide additional cues. Hence at a near distance, they may generally be fused
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to advance the recognition accuracy. This challenging problem of biometric fusion

would bring new dimensions to future research and development opportunities.

Having seen that PROCIM has the flexibility and robustness to address both face

and gait recognition problems, for future avenues we would like to extend it to

address other object recognition problems such as fingerprint recognition. Owing

to the fact that fingerprint technology is in forensic practice for more than a

century, there is a popular misconception that it is a fully solved problem. Latent

fingerprints (taken from a crime scene) may exhibit only a small portion of the

surface of the finger and may be prone to uncertainty factors such as smudges,

distortions, or both, depending on how they were deposited. PROCIM, being an

uncertainty model, might provide a reasonable solution to such intricate issues.

The challenge lies in finding the optimal discriminative subsamples within the

fingerprint domain.

The Thales Group, a leading defence industry and a couple of organizations from

Malaysia have shown interest on our award winning probabilistic models. We

will explore commercialization possibilities by having suitable knowledge transfer

agreements with such organizations. An exciting future assignment will be acquir-

ing the knowledge and expertise that are vital to convert the proposed probabilistic

models to DSP chips. This would pave us the way to expose our technology from

our intelligent systems lab to the global consumer electronics industry market.
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