
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

7-2017 

Optimal Control Methods for Missile Evasion Optimal Control Methods for Missile Evasion 

Ryan W. Carr 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Navigation, Guidance, Control and Dynamics Commons 

Recommended Citation Recommended Citation 
Carr, Ryan W., "Optimal Control Methods for Missile Evasion" (2017). Theses and Dissertations. 3692. 
https://scholar.afit.edu/etd/3692 

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has 
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=scholar.afit.edu%2Fetd%2F3692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3692?utm_source=scholar.afit.edu%2Fetd%2F3692&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


Optimal Control Methods
for Missile Evasion

DISSERTATION

Ryan W. Carr, Major, USAF

AFIT-ENY-DS-17-S-055

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION IS UNLIMITED



The views expressed in this dissertation are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This is an academic work and should
not be used to imply or infer actual mission capability or limitations.



AFIT-ENY-DS-17-S-055

OPTIMAL CONTROL METHODS

FOR MISSILE EVASION

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Ryan W. Carr, BS, MS

Major, USAF

July 2017

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION IS UNLIMITED



AFIT-ENY-DS-17-S-055

OPTIMAL CONTROL METHODS

FOR MISSILE EVASION

DISSERTATION

Ryan W. Carr, BS, MS
Major, USAF

Committee Membership:

Dr. Richard G. Cobb
Chairman

Dr. Meir N. Pachter
Member

Major Scott J. Pierce, PhD
Member

Adedeji B. Badiru, PhD

Dean, Graduate School of Engineering Management



AFIT-ENY-DS-17-S-055

Abstract

Optimal control theory is applied to the study of missile evasion, particularly in

the case of a single pursuing missile versus a single evading aircraft. It is proposed

to divide the evasion problem into two phases, where the primary considerations are

energy and maneuverability, respectively. Traditional evasion tactics are well docu-

mented for use in the maneuverability phase. To represent the first phase dominated

by energy management, the optimal control problem may be posed in two ways, as a

fixed final time problem with the objective of maximizing the final distance between

the evader and pursuer, and as a free final time problem with the objective of maxi-

mizing the final time when the missile reaches some capture distance away from the

evader.

These two optimal control problems are studied under several different scenarios

regarding assumptions about the pursuer. First, a suboptimal control strategy, pro-

portional navigation, is used for the pursuer. Second, it is assumed that the pursuer

acts optimally, requiring the solution of a two-sided optimal control problem, other-

wise known as a differential game. The resulting trajectory is known as a minimax,

and it can be shown that it accounts for uncertainty in the pursuer’s control strategy.

Finally, a pursuer whose motion and state are uncertain is studied in the context

of Receding Horizon Control and Real Time Optimal Control. The results highlight

how updating the optimal control trajectory reduces the uncertainty in the resulting

miss distance.

iv



If a man will begin with certainties, he shall end in doubts;

but if he will be content to begin with doubts, he shall end in certainties.

-Francis Bacon, The Advancement of Learning
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OPTIMAL CONTROL METHODS

FOR MISSILE EVASION

I. Introduction

When discussing aircraft maneuvers for missile evasion one should keep in mind

several factors. First, events will transpire very quickly, and the aircraft operator will

not be given the luxury of time to discover the best strategy available. Second, the

operator may already be task-saturated, leaving a reduced mental bandwidth to deal

with an additional, albeit important, priority. Finally, there will not be sufficient in-

formation available about the incoming threat to make the perfect decision, assuming

it is even detected. The combination of these factors diminishes the pilot’s ability to

make use of all the traditional countermeasures to defeat threats. For this reason it

may in some instances be beneficial to automate these processes. For some aircraft,

the automation of existing countermeasures is already an operational reality. How-

ever, with the increased computational capabilities of newer aircraft, it is additionally

possible to calculate and execute evasive maneuvers automatically. In the extreme

case of automation, an Unmanned Aircraft System (UAS) would be responsible for

all of these functions, and it then becomes the UAS designer’s task to implement in

software the aircraft’s control response to a missile threat. However, even in the case

of full automation, the same factors apply to the decision making process, meaning

that the system must rapidly prioritize and act based on limited information.
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1.1 Motivation

The Air Force Research Laboratory (AFRL) Strategic Vision for 2020 is to have

“Intelligent machines seamlessly integrated with humans - maximizing mission per-

formance in complex and contested environments.” The Autonomy Science and Tech-

nology Strategy from Dec 2013 [1] highlights four strategic goals to guide AFRL to

achieve its vision:

1. Deliver flexible autonomy systems with highly effective human-machine teaming

2. Create actively coordinated teams of multiple machines to achieve mission goals

3. Ensure operations in complex, contested environments

4. Ensure safe and effective systems in unanticipated dynamic environments.

Several keywords from these goal statements illustrate current technological chal-

lenges. The words flexible, effective, safe, and coordinated are used to describe these

envisioned autonomous systems. These words indicate that a high degree of special-

ization is required for all subsystems, including the guidance, navigation, and control.

Optimal control theory seeks a trajectory to maximize (or minimize) an objective sub-

ject to constraints. In the missile evasion scenario, the solution to an optimal control

problem consists of the temporal inputs to the aircraft controls which will maximize

the possibility of surviving a particular missile encounter, keeping in mind that an

aircraft must obey the laws of motion and additionally must not perform any maneu-

vers which will endanger the pilot or structurally compromise the aircraft, for example

by pulling very high g’s. The careful construction of the optimal control problem is

perhaps just as important as the solution. By crafting an appropriate objective and

suitable constraints, the trajectory designer can create a guidance system that is flex-
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ible, effective, and safe. For this reason, optimal control theory is an excellent tool to

deal with missile evasion.

However, the solution will only be useful if the problem is posed correctly. Two

questions then arise: what should be the objective, and what are the constraints?

Many versions of pursuit-evasion problems have been solved in the literature, and

these will be reviewed in detail in Chapter II. The outcome which is perhaps most

closely linked with aircraft survivability is the miss distance, which is the range be-

tween the aircraft and missile at closest approach. For certain initial conditions, this

moment occurs when the closing velocity passes from a positive value, through zero,

to a large negative value. Because of this, an optimal evasion problem with final

miss distance as the objective can be somewhat difficult to solve quickly and reliably

because, at the instant of closest approach, the gradient of closing velocity is very

high. It is therefore useful to pose the problem with a different objective, with either

a fixed or free final time. For the fixed final time, one useful objective is to maximize

the final range between the aircraft and the missile. For the free final time, another,

related objective is to maximize the final time at which the missile intercepts the

aircraft.

Regarding constraints, a majority of studies have focused on two-dimensional

pursuit-evasion scenarios, primarily because closed-form solutions can more easily be

obtained. Unfortunately, this leaves important features out of the analysis, namely

the exchange of kinetic and potential energy that occurs as an aircraft ascends or

descends. Another important but sometimes overlooked aspect is the dissipation and

generation of energy by drag and thrust. The terminal phase of a missile evasion

scenario requires the aircraft to perform highly dynamic maneuvers, which in turn

generate a great deal of drag, depleting the energy state. Therefore the equations

of motion, which serve as dynamic constraints in the optimal control problem, must
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accurately model the generation and dissipation of energy via thrust and drag, and

also the exchange between kinetic and potential energy through gravity.

There exists a relationship between the energy of a vehicle and its ability to ma-

neuver, the subject of the aptly named Energy-Maneuverability theory [2]. Often a

missile evasion scenario can be broken into at least two phases. In the first phase the

exchange of energy is important, and the evader should seek to improve its energy

state in relation to the missile’s. During the second, or terminal phase of a missile

evasion scenario, the aircraft will quickly exchange energy for maneuverability in an

attempt to overwhelm the missile’s ability to turn to achieve intercept. Therefore

for the evader it is important that the aircraft begin the terminal phase with suffi-

cient energy, and conversely, that the missile begin with as little as possible. This

philosophy will motivate the form of the optimal control problems posed and solved

within this work. Of course, the luxury to pilot the aircraft toward an ideal energy

state prior to beginning evasive maneuvers may only apply to medium or long range

encounters.

Referring again to the AFRL strategic goals, in describing the operational en-

vironment, the words complex, contested, unanticipated, and dynamic are applied.

These hint at the uncertain nature of a battlefield. Despite modern Intelligence,

Surveillance, and Reconnaissance (ISR) technology, lack of timely and coherent infor-

mation remains a significant impediment to implementing missile countermeasures.

Any proposed missile evasion strategy must acknowledge and quantify the informa-

tion limitations, and inform the operator how to respond when new information is

presented.

One specific method of dealing with limited information is to assume that unknown

quantities must remain within specified bounds or possess a certain structure which

may be informed by intelligence gathered on the missile or by expert opinion. Such a
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strategy may be termed “Structured Uncertainty” and can be applied to the evasion

problem by assuming that the missile may actively exploit this uncertainty to achieve

its own objective. The resulting evasion trajectory will then be a guarantee on worst-

case performance. Thus by admitting doubts about its adversary from the beginning,

the evader may ensure its own survival. This is essentially the approach used in

classic Pursuit-Evasion games, a subset of Differential Game Theory, wherein it is

assumed that both the evader and pursuer may choose their controls, within some

bounds, to optimize a performance objective. This mutual best response is known as

an equilibrium solution. For a zero-sum game, where the two players have a single

opposing objective, such as minimizing or maximizing the time to interception, the

resulting solution is called a minimax or saddle-point.

To formalize the preceding discussion on the issues surrounding missile evasion, a

hypothesis for this work is now proposed, along with corresponding research questions

which will be answered in the body of this document.

1.2 Research Questions, Tasks, and Scope

Throughout this work on aircraft-missile pursuit-evasion, the aircraft will be

known as the evader, while the missile will be called the pursuer.

1.2.1 Research Questions.

Hypothesis: A minimax aircraft-missile pursuit-evasion problem can be posed and

solved to provide an open-loop control trajectory with a guaranteed cost despite uncer-

tainty in the missile parameters, launch conditions, or guidance algorithm.

Research questions relating to this hypothesis are:
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1. How should a medium or long range pursuit-evasion optimal control problem be

posed and solved to increase the effectiveness of terminal maneuvers as defined

in the previous section?

2. Can minimax solutions be found for medium or long range pursuit-evasion sce-

narios with realistic physical constraints?

3. How can optimal control solutions be found for medium or long range pursuit-

evasion scenarios when the state and model parameters of the pursuer or evader

are uncertain?

1.2.2 Research Scope.

While there are many methods available for solving optimal control problems

(several of which will be briefly reviewed in Chapter II), the Pseudospectral Method

for optimal control is particularly effective at solving problems with many states and

controls. Because of the three dimensional nature of aircraft-missile evasion, it is

necessary to represent each vehicle with at least six state variables (i.e. longitude,

latitude, altitude, velocity, flight path angle, and heading) and three control variables

(i.e. angle of attack, bank angle, and throttle). The large number of free variables

makes analytical techniques and some computational techniques such as Dynamic

Programming very difficult. Therefore, Direct Orthogonal Collocation, which will be

fully described in Chapter II, is the tool primarily used in this research.

Two methods for calculating minimax trajectories will be highlighted here, the

semi-Direct Collocation Nonlinear Programming (semi-DCNLP) and the Decomposi-

tion methods. These will be described in detail in Chapter II.

The content of the work is based on numerical simulation. Implementation of

algorithms on real-time systems is a complicated endeavor that, while instructive in

system integration and hardware application, would not greatly improve the theoret-
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ical aspects of this work. For this reason the algorithms and techniques developed

herein are not streamlined to function in real-time, although discussion of results may

use computation time as a metric of suitability for a given method.

1.2.3 Research Tasks.

In order to address the above research questions, a number of tasks are accom-

plished.

1. Pose and solve a medium range aircraft missile evasion optimal control problem

with final miss distance as the objective.

2. Pose and solve several alternative fixed and free final time medium range aircraft

missile evasion optimal control problems and compare their performance versus

the final miss distance objective in the following scenarios:

(a) the adversary follows a prescribed guidance law.

(b) the adversary implements an optimal strategy with uncertain parameters

and initial states.

(c) the uncertain state of the adversary is updated with periodic measure-

ments.

1.3 Assumptions and Limitations

As has already been discussed, this work is entirely simulation based. It is as-

sumed that with a significant amount of effort any of the methods presented could be

implemented on a specific hardware configuration. Because that work would distract

from the primary task of posing and solving unique optimal control problems, no

attempt at hardware integration is made.
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While many guidance systems exist for anti-aircraft missiles, such as remote con-

trol and beam riders, only homing guidance is considered here.

Although optimal control is often applied to discover inner-loop stability con-

trollers, for this work it is assumed that sufficient controllers are already implemented,

and the vehicles may be modeled as a point mass moving in the velocity and geo-

graphic coordinate frames. This eliminates the need to resolve a vehicle’s orientation

in the body axes, significantly reducing the computation required in the simulation

by removing Euler angles, body axes rotation rates, body axes velocities, and control

surface position and dynamics from the state vector. It is also assumed that the

vehicles are able to coordinate their turns, removing the need to represent sideslip

and side forces in the calculation of aerodynamic forces and the equations of motion.

Finally, because most problems are of short duration, the effect of mass loss due to

propellant burn will be assumed negligible for the aircraft (although not for the mis-

sile). The complete state vector and equations of motion of the aircraft and missile

are fully described during the setup of each scenario.

1.4 Research Methodology

The primary tool used in this research is the Pseudospectral Method, a numerical

technique for solving optimal control problems. This method is very general and

can be applied to solve optimal control problems using a variety of constraints. As

mentioned, the research tasks involve posing and solving a variety of optimal control

problems related to aircraft-missile pursuit-evasion.

Specifically seven types of optimal control problems are posed and solved, although

some variations of each are also presented in the document.

1. Problem 1: Closest Point of Approach (CPA) problem. The pursuer uses a

suboptimal proportional navigation guidance scheme. The evader is given full

8



state information about the pursuer, and maximizes the distance between the

pursuer and evader at the point of closest approach, i.e., when the closing

velocity reaches zero.

2. Problem 2: Fixed final time, free final state (FX) problem. The pursuer uses

the proportional navigation guidance scheme. The evader is given full state

information about the pursuer, and maximizes the distance between the pursuer

and evader at some fixed time prior to the terminal maneuver phase.

3. Problem 3: Free final time, fixed final state (FR). The pursuer uses propor-

tional navigation guidance. The evader is given full state information about

the pursuer, and maximizes the time when the range between the pursuer and

evader reaches zero (or some capture radius).

4. Problem 4: Fixed final time, free final state, minimax (FXM). The pursuer and

evader both have complete state information. The pursuer minimizes while the

evader maximizes the distance between each other at a fixed final time prior to

the terminal maneuver phase.

5. Problem 5: Free final time, fixed final state, minimax (FRM). The pursuer and

evader both have complete state information. The pursuer minimizes while the

evader maximizes the final time when the separation distance reaches zero (or

some capture radius).

6. Problem 6: Receding Horizon Control (RHC). The pursuer uses proportional

navigation. The evader has imperfect information about the pursuer’s state, but

receives updates and thus recalculates the FX trajectory at periodic intervals.
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7. Problem 7: Real Time Optimal Control (RTOC). The pursuer uses proportional

navigation. The evader has imperfect information about the pursuer’s state, but

receives updates and thus recalculates the FR trajectory at periodic intervals.

For reference throughout this document, Table 1 summarizes these scenarios. Each

will be described in detail in the text.

Table 1. Optimal Control Scenarios

Problem Acronym Objective Constraint

Closest Point of Approach CPA max
uE

r(tf ) VC(tf ) = 0

Fixed Final Time FX max
uE

r(tf ) tf = Const

Free Final Time FR max
uE

tf r(tf ) = Const

Fixed Final Time Minimax FXM max
uE

r(tf ) tf = Const

Free Final Time Minimax FRM max
uE

tf r(tf ) = Const

Receding Horizon Control RHC max
uE

r(tf ) tf = Const

Real Time Optimal Control RTOC max
uE

tf r(tf ) = Const

1.5 Contributions

Specific novel contributions to the field of missile evasion and optimal control are

documented in the body of this work. As a summary, they are:

1. Demonstrated that the fixed final time problem becomes the free final time

problem as the fixed final time approaches the capture time (Chapter IV, Section

4.3).

2. Outlined a procedure to obtain an initial guess of the costates to use in the

semi-DCNLP method (Chapter V, Section 5.2.2).
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3. Proposed a penalty function for semi-DCNLP problems with a pure state con-

straint (Chapter V, Section 5.2.4).

4. Described an issue with using semi-DCNLP on certain free final time prob-

lems, and demonstrated the Decomposition method as an alternative solution

technique (Chapter V, Section 5.3).

5. Demonstrated how the minimax solution represents a guarantee on the evader’s

performance despite uncertainty in the pursuer’s model, guidance law, or initial

state (Chapter VI, Section 6.1).

6. Developed an algorithm to improve the computational speed of complex RHC

and RTOC problems by adjusting the mesh between each iterated solution

(Chapter VI, Section 6.2.1.2).

1.6 Document Outline

A research hypothesis and related questions have been posed in this chapter, along

with a list of tasks to be accomplished. Chapter II of this document surveys the

existing open literature for methods which have already been investigated for optimal

control and missile evasion. In Chapter III the vehicle models used in this research are

described in detail. Chapter IV explores several one-sided optimal control solutions

using both the fixed and free final time formulations. In Chapter V the two-sided,

or minimax versions of the the fixed and final time problems are defined and solved.

Chapter VI demonstrates results of using the fixed and free final time formulations

in the presence of uncertainty.

Several appendices have also been included with this document. The first two

detail adaptive meshing algorithms which, although not used directly in this work,

were generated as byproducts while researching similar problems. The third appendix
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provides instructions on setting up optimal control software on two microcomputers

for real-time implementation.
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II. Literature Review

2.1 Introduction

To organize missile evasion strategies, it is helpful to classify the problem by the

assumptions made about the missile. Three types of pursuers will be the subject of

study in this work. First, it will be assumed that the pursuer behaves according to a

known control law such as proportional navigation, and that the state of the pursuer

is known at all times. This will be known as the suboptimal pursuer. Second, it will

be assumed that the pursuer’s navigation law is unknown, although within specified

boundaries, and that it behaves optimally. This will be called the optimal pursuer.

Finally, it will be assumed that the initial state and vehicle parameters of the pursuer

are subject to uncertainty. This will be the uncertain pursuer. While these three

assumptions apply to the pursuer, it is easy to apply these assumptions to the evader

as well. The goal of the current chapter is to describe methods which have previously

been applied by other authors to model and solve problems for the three situations

described above. To begin, a general overview of optimal control problems will be

provided. This will be followed by a description of methods for setting up and solving

optimal control pursuit-evasion problems with suboptimal, optimal, and uncertain

adversaries. Throughout this document, the subscripts E and P will refer to the

evader and pursuer, respectively.

2.2 Optimal Control Methods

Before discussing methods for calculating optimal control solutions, it is necessary

to define the general type of optimal control problem to be solved. First it is assumed

there exists a set of differential equations which model the motion of the evader
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and pursuer. For the moment it will be assumed that the pursuer follows a known

guidance law, making the problem one-sided. The dynamics may be written as

ẋ = f(x(t),u(t), t), (2.1)

where xE and xP are the vector of state variables for the evader and pursuer, while uE

and uP are controls for the evader and pursuer. For a one-sided problem, the pursuer’s

control follows an assumed guidance law, which usually depends only on the current

state of both players. This is referred to as a perfect state feedback information

pattern in the literature [3]. The guidance law serves to link the dynamics of the two

together, forming a system of differential equations.

In the Bolza form of the optimal control problem, the objective or cost functional

is defined with a Mayer part, φ, and a Lagrangian part, L, in continuous time as

J = φ(x(t0), t0,x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t), t)dt. (2.2)

The problem may also be subject to the boundary conditions

Ψ(x(t0), t0,x(tf ), tf ) = 0, (2.3)

and the path inequality constraints

C(x(t),u(t)) ≤ 0. (2.4)

The goal is to find the control u(t), and in the process the state trajectory x(t), which

will minimize the objective J . Many methods have been developed to solve this type

of problem.
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2.2.1 Indirect Method of Optimal Control.

Indirect methods utilize the calculus of variations to develop necessary optimality

conditions which relate the optimal states and controls to optimal costates, λ(t).

These conditions are best expressed by defining the Hamiltonian as

H(x(t),u(t),λ(t), t) = L(x(t),u(t), t) + λT (t)f(x(t),u(t), t). (2.5)

By appending the constraints to the cost function to form an augmented objective

and then applying the calculus of variations, the necessary optimality conditions can

be written as [4]

ẋ∗(t) =
∂H

∂λ
(x∗(t),u∗(t),λ∗(t), t)

λ̇∗(t) = −∂H
∂x

(x∗(t),u∗(t),λ∗(t), t)

H(x∗(t),u∗(t),λ∗(t), t) ≤ H(x∗(t),u(t),λ∗(t), t),

(2.6)

where the superscript * signifies the optimal state, control, or costate. The first two

equations are called the state and costate equations. The third equation, known as

Pontryagin’s Minimum Principle, indicates that an optimal control must minimize

the Hamiltonian. Boundary conditions are also developed depending on whether the

problem is free or fixed final time and state. The system, a Two-Point Boundary

Value Problem (TPBVP) with mixed boundary conditions, is typically difficult to

solve for most problems due to the the necessity of calculating the derivatives of the

Hamiltonian and the sensitivity and non-intuitive nature of the costates [5].

2.2.2 The Pseudospectral Method.

The difficulty of solving the TPBVP associated with the necessary conditions

has led to a number of direct methods, where the continuous problem of Equations
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(2.1)-(2.4) is transcribed to a discrete set of points. The dynamics are represented as

a set of equality constraints enforced at the points, while the objective is calculated by

some means of quadrature. The problem is then expressed as a Nonlinear Program-

ming (NLP) problem and solved using one of a variety of well known NLP solvers

[5–8]. While there are many ways to discretize the problem and form the NLP, recent

application of Pseudospectral (PS) methods have proven fast and effective [9–11], and

will therefore be highlighted.

In the PS Method, the optimal control problem is transcribed from a continuous

problem to one satisfied at specific points. One convenient way to do this is by

Lagrange interpolation. The state x may be approximated using Lagrange polynomial

interpolation via the relation

x̂(t) ≈
n+1∑

i=1

xiLi(t), (2.7)

where the Lagrange polynomial basis is

Li(t) =
n+1∏

j=1
j 6=i

t− tj
ti − tj

, i = 1, ..., n+ 1. (2.8)

The interpolation yields a polynomial approximation of the function which is exact

at the points xi. In between these points, the error is defined as [12]

x(t)− x̂(t) =
xn+1(ξ(t))

(n+ 1)!

n∏

i=0

(t− ti), (2.9)

where the point ξ is the value of t where the (n + 1)th derivative of the state x is

equal to zero, fn+1(ξ) = 0. By Equation [2.9], the error in a solution can be reduced

by increasing the number of points. However, for many functions and discretizations

this results in an unfavorable oscillation known as the Runge phenomenon, where
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higher order derivatives cause the error to increase dramatically near the endpoints.

One way to overcome this problem is to space the nodes closer to the endpoints than

in the middle, such as by setting the nodes to be the roots of specific orthogonal

polynomials, like the Legendre or Chebyshev.

Functions discretized via the roots of these polynomials also happen to have excel-

lent error convergence properties in quadrature [13]. For the Legendre polynomials,

Gaussian quadrature is exact for a polynomial of degree less than or equal to (2N+1)

points. While this result only applies to approximating the integration of polynomials,

it gives confidence that choosing a Legendre polynomial basis for the point spacing

will reduce error in general.

Collocating the optimal control problem via Lagrange polynomials onto a Leg-

endre basis has only recently gained popularity in the field of optimal control [14].

Several varieties of the collocation are in use, which differ only by the exact version

of the Legendre polynomial used. The points, τk, must be defined on the interval

−1 ≤ τ ≤ 1. The Legendre-Gauss (LG) points are the roots of Pn(τ), or the nth

Legendre polynomial, which does not have points at -1 or 1. The Legendre-Gauss-

Radau (LGR) points are the roots of Pn(τ) + Pn−1(τ), which includes the point -1.

The Legendre-Gauss-Lobatto (LGL) points use the roots of Ṗn−1(τ), which include

-1 and 1 [15].

An affine transformation shifts the problem from time, t, to τ , by

τ =
2t− (tf + t0)

tf − t0
, (2.10)

and is bounded by −1 ≤ τ ≤ 1 as required. Because the LG and LGR points

are missing endpoints, an additional, “non-collocated” τn+1 = 1 point is typically

included.
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Once the optimal control problem has been discretized using one of the above

methods, it is possible to calculate an accurate approximation of the integration and

derivative operators. The derivative of the state at each discretized τi point is found

using the differentiation matrix, D, which is equivalent to the rate of change of the

Lagrange polynomial,

ẋ(τi) ≈
n+1∑

k=1

xkL̇k(τi) =
n+1∑

k=1

Dkixk. (2.11)

The differentiation matrix is distinct for each collocation scheme being used. For

the LG method it is an (n x n) matrix, while for the LGR the matrix is (n x n+ 1).

Using the LGR differentiation matrix to calculate the derivative or integral of a state

or control is considerably more accurate than using fixed interval methods (such as

the 3 or 5 point formulas) because it uses information from every discrete point, i.e.,

it is a global method [16]. The differentiation matrix is a linear operator, and the

discretized state derivative may be expressed in matrix multiplication form as

ẋ ≈ Dx. (2.12)

Referring to Equation (2.1), the dynamics of the problem represent an equality

constraint on the optimal control problem. Using the differentiation matrix, the

relation becomes

Dx− f(x,u) = 0, (2.13)

where x and u represent the discretized state and control vectors at every colloca-

tion point. The constraint is enforced at each collocation point, creating n equality

constraints associated with the dynamics for each state.

The quadrature weights, wk, are associated with the collocation scheme, and ap-

proximate the integration of the running cost, L, as [17]
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∫ tf

t0

L(x(t),u(t), t)dt ≈ tf − t0
2

N∑

k=1

wkL(x(τk),u(τk), τk). (2.14)

Thus the cost function is also collocated, and together with the dynamic equality

constraints form an NLP problem. Additional constraints are imposed for state and

control limits, initial or final conditions, time constraints, and path constraints. This

is done by setting an equality or inequality constraint at the relevant collocation point.

PS schemes have been implemented into software by several groups [18–20]. Due to

the pseudospectral convergence achieved by these solvers, they deliver highly accurate

solutions, and generally require relatively low computation time. Depending on the

NLP solver used they may benefit from sparse matrix operations, further increasing

computation speed.

Unfortunately there are a few limitations associated with the most common NLP

solvers. SNOPT [6] is a Sequential Quadratic Programming (SQP) algorithm wherein

the NLP is solved using a sequence of quadratic programming subproblems. The al-

gorithm uses first derivative information stored in the Jacobian matrix with a quasi-

Newton method known as BFGS to recursively approximate second derivative infor-

mation stored in the Hessian matrix [21]. The quality of a given solution depends on

several user defined parameters, but most notably the NLP error tolerance. Because

this method depends on these local gradients, it is sensitive to the initial guess, which

sometimes results in the solver not finding a solution, or requiring a large number of

iterations to discover one. Furthermore, when a solution is achieved it should be not

be considered a global optimum. In fact, because the direct collocation method only

achieves the first-order necessary conditions, solutions should only be considered as

candidate extrema until sufficiency is demonstrated.

While many versions of PS optimal control software exist, the tool used in this

work is the General Purpose Pseudospectral Optimal Control Software-II (GPOPS-II)
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[18]. It is based in MATLAB, uses the LGR collocation scheme employing differen-

tial and integral forms [15, 17], and offers a variety of user options for different hp

meshing methods [22–24] in order to reduce the discretization error. The user is re-

quired to define a tolerance for this error, which differs by the method being used.

The derivative information passed to the NLP solver is approximated using a sparse

forward, central, or backward finite-differencing perturbation method [25]. The soft-

ware exploits sparsity by detecting dependencies in the constraint Jacobian passed to

the NLP software using MATLAB’s “not-a-number” (NaN) representation. This is

accomplished by passing a NaN into the constraint function for a specific test vari-

able, and allowing it to propagate into the output. Any NaN detected signifies that

the output is dependent on the tested input, whereas any output with a real value is

not dependent. A GPOPS-II problem can be broken into phases, where subproblems

can be implemented and linked via additional constraints. This allows flexibility in

dealing with diverse dynamics within a problem unified by a single objective function.

2.2.3 Costate Estimation.

Early researchers in PS methods were interested in estimating the costates of the

optimal control problem. Although the costates are not required in order to obtain

solutions, it was felt that by showing that the necessary optimality conditions were

satisfied, the solution obtained using the direct method was valid. Gong et al. [26]

showed that, given the correct mapping between the discretized costates and the

Karush-Kuhn-Tucker (KKT) multipliers resulting from the solution of the NLP, the

costates from the direct method converged to the costates from the indirect method.

This mapping enables estimation of the continuous costates from the solution of a PS
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optimal control problem. For the LGR collocation scheme, the mapping is [17]

λ = W−1ΛLGR

λN+1 = DT
N+1Λ

LGR,

(2.15)

where λ is a vector of the continuous costates, W is a diagonal matrix of quadrature

weights, ΛLGR is the vector of KKT multipliers, and DN+1 is the N + 1 column

of the LGR differentiation matrix. Fahroo and Ross note that, at least for their

discretization scheme (LGL), the costate estimates have the same order of accuracy

as the states [27].

2.2.4 Indirect Transcription.

The PS method is usually thought of as a direct method. However, it is possible

to use collocation methods to solve problems indirectly. Betts describes the Indirect

Transcription Method [5] where the necessary conditions for optimality are expressed

as a TPBVP which is collocated and transcribed to a NLP problem. To use this

method using a PS solver like GPOPS-II, it is necessary to include the costate equa-

tions as additional states, replace the controls with the stationarity conditions, apply

terminal costate conditions as endpoint constraints, and set the objective function to

zero. Betts describes the direct transcription method as “discretize then optimize”,

and the indirect transcription method as “optimize then discretize.”

He also discusses some of the difficulties associated with this method. First, when

state constraints are present the problem must be broken into phases of constrained

and unconstrained arcs, along with jump conditions on the costates. Prior to solving

the problem it is unknown exactly how many subarcs are present, and thus the user

must make a guess. A second complication is the nonintuitive nature of the costates,

complicating the initial guess. The costate dynamics are often very sensitive to the
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initial guess, meaning that even for a relatively good initial guess, the numerical

solution may be ill-conditioned. Finally, this method requires an expert user, and

complicated problems will likely be impossible to even formulate, let alone solve.

2.3 Suboptimal Strategies

Before studying optimal strategies for evasion, it is important to review likely sub-

optimal guidance algorithms which may be applied by a pursuer. The most common

and widely studied version of homing missile guidance is Proportional Navigation

(PN).

2.3.1 Proportional Navigation.

The field of missile guidance has existed since World War II, with the advent of

modern rocketry. Early German missiles were used against ground targets and relied

on inertial guidance, resulting in somewhat poor accuracy by today’s standards, but

enough to target a large city. Inertial guidance is insufficient when dealing with a

maneuvering target whose future coordinates are unknown. The U.S. Navy benefited

from German research on PN, a guidance technique still used in homing missiles

today [28]. They began to develop a homing missile system using continuous wave

radar known as the “Lark”, and after six years of development and testing achieved a

successful intercept. Many technological advances were required to achieve this feat

in radar filtering, electronics reliability, and hardware-in-the-loop simulation.

Throughout the 1950s the advances came more quickly. Some new missiles used

semiactive radar, where the transmitter remained on the ground while the receiver

traveled with the missile. The first infrared (IR) version of the Falcon missile went

operational in 1956 [29]. Further advancements made in propulsion, controls, and

radar improved missile expectations about performance and several systems were op-
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erational by the end of the decade. Unfortunately combat experience in Vietnam

showed that missiles did not perform as expected, due to assumptions about their

operational use. Two reasons are cited by one author [30], the first being that while

missiles were carried under aircraft almost daily, sometimes months went by before

the missiles were actually used. This operational stress degraded the reliability of

the missile so that often the system did not work. The second reason was that de-

signers assumed that missile launches would occur against low maneuvering targets

(bombers) beyond visual range. However, policy required that pilots visually identify

targets, so that launch ranges were shorter than the missile was intended, resulting

in large required acceleration commands. Unfortunately the maximum target accel-

eration for which the missiles were designed was only 3 g. Interestingly, the author

mentions that one solution to this last problem was to change the value of a few

resistors, increasing to 15 g the electronic limit artificially imposed upon the control

system, enabling a higher missile maneuverability.

Modern missile technology continues to improve systems by widening the sensor’s

field of view, enhancing resistance to countermeasures, increasing tracking sensitivity,

and boosting maneuverability [29, 30]. However, the principal guidance strategy is

still most commonly based on PN [31].

After pure pursuit navigation, where the pursuer’s heading is selected to be the

current evader’s position, PN is the most natural and intuitive pursuit strategy. Any

sailor knows how to intercept another moving craft by maintaining a constant bearing.

This strategy, known as constant bearing navigation, collision course navigation, or

parallel navigation, has been used for centuries, and has even been demonstrated in

animals such as dragonflies [32], bats [33], dogs [34], worms [35], and baseball players

[36]. The PN guidance law seeks to attain this type of navigation by accelerating the
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missile perpendicular to the line of sight, with magnitude proportional to the line of

sight rate. For motion restricted to the horizontal plane, this can be written as

nc = Nω, (2.16)

where nc is the acceleration command (m/s2), N is the navigation ratio (m/s), and

ω is the time rate of change of the Line of Sight (LOS) angle from the pursuer to

the evader (rad/s). The navigation ratio is sometimes expressed as the product of

some velocity and an effective navigation ratio, NP . The velocity used in this relation

depends on the variety of PN being implemented. While the navigation ratio may vary

with time, the effective navigation ratio typically takes on constant values between

3 and 5 in order to avoid large acceleration and control saturation as the pursuer

nears the evader [30]. The PN guidance law can be proven as the optimal method to

intercept with minimal control given the assumptions that [37]:

1. The kinematics are linear,

2. full state feedback is available,

3. the evader and pursuer speeds are constant,

4. the evader is non-maneuvering,

5. the missile responds instantaneously to acceleration commands (the missile time

constant is zero).

While these assumptions may seem limiting, it should be noted that they describe

restrictions on the optimality of PN, not its general effectiveness. Deviations from

these assumptions while using PN may still result in an intercept, but it may require

more commanded acceleration and time than in an idealized scenario.
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In the literature there exist many distinct implementations of PN. A few notable

versions are Pure Proportional Navigation [38, 39], True Proportional Navigation

[40, 41], Generalized Proportional Navigation [39, 42], and Idealized Proportional

Navigation [43]. Each of these differ by the exact way in which they implement

Equation (2.16). In the current work, the PN version presented by [44] and [45] will

be implemented. This requires calculation of the closing velocity, VC , which is the

negative rate of change of the distance between the pursuer and evader, given by

VC = −r · ṙ
|r| . (2.17)

Above, r is the relative inertial position vector from the pursuer to the evader and

ṙ is the relative inertial velocity vector between the two. The rate of change of the

LOS between the pursuer and evader is

ω =
r× ṙ

r · r , (2.18)

which is composed of three elements ωx, ωy, and ωh in the inertial East-North-Up

(ENU) reference frame. These components can be projected onto the missile’s pitch

and yaw axis by

ωγ = −ωx sinχP + ωy cosχP

ωχ = sin γP (ωx cosχP + ωy sinχP ) + ωz cos γP ,

(2.19)

where χP is the pursuer’s heading and γP is the pursuer’s flight path angle.

Finally, the longitudinal and lateral accelerations commanded to the missile are

aγ,C = NPVCωγ + g cos γP

aχ,C = NPVCωχ.

(2.20)
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2.3.1.1 Time-To-Go and Zero Effort Miss.

Two additional concepts are useful to analyze pursuit-evasion engagements. The

time-to-go (tgo) is the amount of time before the pursuer reaches the closest point of

approach. This value is often used in guidance algorithms, and thus it is desirable

to generate a reasonable estimate. The time-to-go is not known precisely, given that

there is no guarantee that an interception will actually occur, and that the evader

will likely maneuver to delay this event. However, estimates may be made based on

assumptions of the pursuer’s dynamics and guidance laws, and predictions about the

evader’s future behavior. The simplest estimate is

tgo =
|r|
Vc
. (2.21)

This estimate assumes that both evader and pursuer are traveling at constant velocity

without maneuvering, and that an interception will occur. A slightly better estimate

can be obtained by evaluating the derivative of the square of the linearly propagated

range, setting to zero, and solving for time [46]. This approach gives

tgo = − ṙ · r
ṙ · ṙ , (2.22)

This expression is slightly more accurate because it estimates the moment of closest

approach, which works for a miss or an intercept.

More sophisticated estimates are abundant in the literature [46–48]. Some authors

solve a separate optimal control problem, minimizing range or final time [49, 50].

One specific reason for estimating an accurate tgo is that Equation (2.16) can be

reformulated as [28, 31]

nc = N ′
ZEM

t2go
, (2.23)
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with the Zero Effort Miss (ZEM) as the distance the pursuer would miss the evader if

both continued along their present course without acceleration. In three dimensions it

may be considered as the predicted interception coordinate toward which the pursuer

should steer (hence the form of Equation (2.23)). In three dimensions, the components

of the ZEM are calculated by

ZEM = r + ṙtgo. (2.24)

In analytic studies of PN, there are several other parameters of interest. One of

these is the capturability region, defined as the bounds of range and LOS angle for

which if a missile is launched, an interception of a non-maneuvering target can be

guaranteed. Additionally of interest in analytic studies are the interception angle θf

and the interception time tf .

2.3.2 Aircraft Survivability and the Miss Distance.

Aircraft survivability is a broad topic, but the essential can be expressed with a

single number, the Probability of Kill, PK . In an encounter with a single missile, this

number represents the likelihood that the evader will be incapacitated or destroyed by

the pursuer. It can be broken down into Susceptibility, PH , which is the probability

of being hit, and Vulnerability, PK|H , the probability of being killed given a hit [51].

This relationship is given as

PK = PK|HPH (2.25)

Reducing the Vulnerability of the aircraft is primarily accomplished during the

aircraft design stage, and therefore not directly useful here. However, the Suscep-

tibility of the aircraft can be reduced by adopting countermeasures. This research
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will not address the many and useful countermeasures available for modern aircraft,

but instead will focus on the one countermeasure available to all pilots: evasive ma-

neuvering. The susceptibility of an aircraft to being hit is difficult to represent by a

simple equation, since it depends on the guidance system of the missile, the fusing

mechanism, the orientation of the aircraft and missile, the fragmentation pattern of

the warhead, and of course the tactical maneuvering used by the pilot.

However, it is possible to perform a simple analysis by defining the miss distance

plane of the aircraft by the vector connecting the closest point of approach to the

centroid of the aircraft, and normal to the propagated fragments of the detonated

munition. In this frame, the centroid of the aircraft is the origin, and points where

propagated fragments pierce the aircraft are described by the Cartesian coordinates

(ξ, ζ). If it is assumed that the ξ and ζ components are uncorrelated, and that their

error is represented by a bivariate normal distribution, then the probability density

function of a hit is given by

η(ξ, ζ) =
1

2πσξσζ
exp

[
−(ξ − µξ)2

2σ2
ξ

− (ζ − µζ)2

2σ2
ζ

]
(2.26)

where µξ, µζ , σξ, and σζ are the mean and standard deviation of the propagated

fragments. The magnitude of the miss distance is the magnitude of the vector (µξ,µζ).

The probability of hit is then given by

PH =

∫

L

∫
η(ξ, ζ)dξdζ, (2.27)

where the integration is taken over the irregularly shaped surface of the aircraft. While

this integral may be complicated to calculate, it is clear that for a large miss distance,

|(µξ, µζ)|, the integral becomes small, and thus the probability of hit is reduced. This

discussion reveals that one certain way to decrease the PH , and thus improve the

28



survivability of the aircraft, is to maximize the final miss distance. Calculation of

actual values for PH would require a specific aircraft geometry and missile warhead

to be adopted, and thus will not be discussed in this work due to the sensitive nature

of the numbers that would be generated.

2.3.3 Evasion Strategies.

When faced with a pursuer who adopts a suboptimal strategy such as PN, the

evader can predict the behavior of the pursuer and exploit this knowledge to maximize

the probability of evasion. This immediately suggests posing an optimal control

problem with an objective and constraints, although what these should be is the

subject of many studies. In order to make sense of the numerous works that have

been published, it is useful to provide a taxonomy of optimal control problems used in

pursuit-evasion publications. One convenient way to label optimal control problems

is simply by whether they have a fixed or free final time. In a fixed final time problem

(FX) the dynamics are propagated until some predetermined time value is reached.

The final state may be constrained in some way or it may remain completely open.

In a free final time problem (FR), there must be a constraint on the state or on some

combination of states in order for the problem to be tractable.

Differential game theory encompasses optimal control theory. In a differential

game multiple players are allowed to behave independently, whereas in an optimal

control problem there is either only one player, or else the multiple players act col-

laboratively. A two-person non-cooperative pursuit-evasion differential game can be

converted into an optimal control problem by assuming a suboptimal strategy for

either the pursuer or evader, and revealing this information to their adversary. Two

concepts can be borrowed from differential game theory to further aid in classifying

the numerous combinations of objective and constraints. When a problem is posed
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with only specific outcomes, such as determining whether or not the pursuer inter-

cepted the evader, it is called a game of kind [52]. Alternatively, a problem may

be posed where the solution space is continuous, such as maximizing the distance

between the evader and pursuer at some instant in time. This is called a game of

degree. Often, in games of pursuit, it is helpful to solve a game of degree within a

game of kind, for example by first assuming that interception occurs then attempting

to establish the time required to complete the game.

The concept of game of kind versus game of degree appears in optimal control

problems as the end constraints versus the objective. The end constraints define

the conditions for obtaining a solution, while the objective describes how well the

solution meets the goal. For example, one might prefer to establish the result of

the game of kind by dictating that the pursuer will be assumed to always intercept

the evader (as an end constraint). Then, the game of degree may be to maximize

the time required for intercept (as an objective). In constructing this problem it is

assumed that although the simulated pursuer achieves intercept, the evader’s chance

of survival would be increased during an actual pursuit-evasion encounter due to the

large amount of time achieved by maximizing the objective. Alternatively, it can

be assumed that interception does not occur, by posing the problem with a fixed

final time constraint during which the pursuer cannot possibly achieve interception

(game of kind). Then the objective may be to maximize the final range between

the pursuer and evader or to minimize the final closing velocity (game of degree).

Both the constrained final time and constrained final state type of problems can be

described by their problem of kind and degree. A number of problems have been

proposed in the literature, and they will be classified here.
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2.3.3.1 Constrained Final Time.

When the final time is constrained, it is usually assumed that the pursuer will not

achieve intercept within the prescribed time limit, meaning that the problem of kind

assumes no intercept. This does not mean that the pursuer would not have achieved

intercept in the future, just that the problem is only defined up until a certain time.

In this type of problem the evader may take action to enhance its survival by one

of several methods. Some authors choose to maximize the range between pursuer

and evader at a fixed final time [53–56]. The fixed final time may be chosen based

on the time-to-go parameter calculated at the initial time, although this is only an

approximation. The choice of trying to maximize range is logical given that the evader

wishes to prolong interception; however, it leaves the problem incomplete in the sense

that the missile is still in pursuit of the evader.

Another interesting option is to maximize the maximum line of sight rate attained

before the final time [57]. The author argues that because the pursuer is typically

faster and more nimble than the evader, and has higher load limits, it does not make

sense to attempt to outrun or outmaneuver the pursuer. Instead, by attempting to

maximize the line of sight rate, it may be possible to saturate the tracking sensor

being used by the pursuer, thus causing the pursuer to lose lock. This tends to result

in trajectories where the evader holds a steady course, possibly directly toward the

missile, dodging at the precise moment in order to maximize the line of sight rate.

In order to achieve such a dynamic escape, it must be assumed that the evader can

accurately track the state of the pursuer. Otherwise it would be difficult to determine

the exact moment when the evasive maneuver must be applied.

In a recent study, the author proposed to minimize the integral of the two norm of

the control of the evader, i.e. the control energy, while constraining the miss distance

to reach a minimum acceptable value at the final time [58]. The final time is set as
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the interception time predicted by the time-to-go calculation from Equation (2.21).

By assuming linear dynamics and complete state information, the authors derive

a guidance law similar similar to PN. The benefit of minimizing control effort is to

reduce speed losses due to induced drag, which may be useful in practical applications.

2.3.3.2 Constrained Final State.

When the final time is left free, it is necessary to impose final constraints on the

state, or some combination of the states, in order to properly define an end condition

for the optimal control problem. There are many interesting combinations of end

constraints and objective functions. One particular study outlines and compares

several optimal control problems for missile evasion, and they have been summarized

here [44].

Table 2. Objectives and end constraints for free final time optimal evasion problems.

# objective end constraint reference
1 maximize tf r(tf ) = rf [44]
2 minimize Vc r(tf ) = rf [44, 59]
3 maximize r(tf ) Vc(tf ) = 0 [44, 45, 60–62]

4 maximize
∫ tf
t0
a(t)dt r(tf ) = rf [44]

5 maximize σ(tf )− χp(tf ) r(tf ) = rf [44]
6 maximize ω(tf ) r(tf ) = rf [44]

In Table 2, tf is the final time, r is the range between the pursuer and evader, rf

is a predefined capture radius, such as the blast radius of a missile, VC is the closing

velocity between the pursuer and evader, a is the total control effort of the pursuer

(a positive number), σ is the LOS angle, ω is the angular tracking rate or rotation of

the LOS vector, and χP is the heading of the pursuer.

One problem with this method is that it assumes that the end constraints will be

met, imposing a problem of kind, which may sometimes cause one of the players to
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act illogically in order to achieve the end constraints. For example, if the objective is

to maximize time to capture, while the end constraint is set that the final range must

be equal to zero, and the evader is faster than the pursuer, it is possible to determine

initial conditions which would not end in a capture. Thus normally the problem has

no solution for those initial conditions. However, in an attempt to find a feasible

solution, the optimizer will send the evader back toward the pursuer at the cost of

reduced capture time, a counterintuitive behavior. For this reason it is important to

avoid conditions where the problem setup forces the evader to make an unrealistic

decision in order to satisfy the end constraints.

Entry number three in the table is perhaps the most widely used in the literature.

It assumes that the pursuer is initially faster than the evader. While the pursuer closes

in on the evader the closing velocity, VC , will be positive. If the pursuer intercepts

the evader, r(t) = 0, then the closing velocity will be exactly zero. If the evader is

able to dodge the pursuer, then the closing velocity will become negative. The closing

velocity must pass through zero at this time, and the distance between the pursuer

and evader is the terminal miss distance, r(tf ). An evader desires to maximize this

distance, while a pursuer wishes to minimize it. This combination of objective and

constraint does not inappropriately impose a solution to the game of kind, since it

admits both intercept and evasion. The terminal miss distance is also the dominant

factor in aircraft survivability [63], thus it is a logical choice for the objective of a

short range optimal control problem. This combination of objective and constraints,

here called the CPA problem, will be studied in detail in Chapter IV.

2.3.4 Energy-Maneuverability Theory.

It is useful to regard an aircraft as a mechanism for the exchange of energy.

According to the law of conservation of energy, an aircraft possesses a certain amount
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of potential energy at altitude, and with the help of gravity this potential can be

converted into kinetic energy by diving. Additionally, the system will gain energy

from the engine thrust, and lose energy due to drag. Rutowski used this knowledge

to calculate climbing trajectories which are optimal in terms of minimum time and

minimum fuel expenditure in a classic paper [64]. In the paper, he formulates the

current energy state of the aircraft as

E = Wh+
WV 2

2g
, (2.28)

where W is the weight of the aircraft, h is the altitude, V is the velocity, and g is the

acceleration due to gravity. This equation represents the exchange of potential and

kinetic energy. As an aircraft climbs, it gains potential energy, but typically at the

expense of kinetic energy. A more convenient parameter which does not change with

fuel consumption is simply the total energy divided by the weight of the aircraft, or

the specific energy,

ES = h+
V 2

2g
. (2.29)

Taking the derivative of ES with respect to time one has

dES
dt

=
dh

dt
+
dV 2

dt

1

2g
=
dh

dt
+ V

dV

dt

1

g
. (2.30)

Assuming the aircraft behaves like a point mass gives the time rate of change of

velocity and altitude to be

m
dV

dt
= T cosα−D −mg sin γ

dh

dt
= V sin γ,

(2.31)
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where m is the mass, T is the thrust force, D is the drag force, α is the angle of

attack, and γ is the flight path angle. Substituting these into Equation (2.30) gives

dES
dt

= V sin γ + V (T cosα−D −mg sin γ)
1

mg
(2.32)

Applying the quasi-steady assumption [65] that the angle of attack is small leads

to the equation for the time rate of change of the specific energy, which is equivalent

to the specific excess power

PS =
dES
dt

= V
T −D
W

. (2.33)

This equation highlights that the thrust is the source of energy generation, while

the drag is a dissipation term. Equations (2.29) and (2.33) have been used to develop

optimal trajectories for rapidly ascending to a specific altitude and velocity, mini-

mizing fuel required for a climb, maximizing range for a given throttle setting, and

minimizing range in a glide [64, 65].

Rutowski explained that the minimum time to climb can be achieved by flying

a trajectory such that the aircraft dives along constant lines of specific energy to

increase the velocity, followed by a climb along the points of maximum excess power

for a given specific energy. Graphically this is the set of points where the contour

lines of excess power are tangent to the lines of specific energy. It is likely that during

steep dive and climb portions the assumption of small angle of attack is violated,

which means that the actual optimal path would stray from the line of constant

specific energy. Also, the lines of constant PS are calculated for 1 g, so that large

aerodynamic loads in a dive or climb would not exactly fit the chart. However, the

overall idea of using the known energy profile of the aircraft can serve as a guide to

pilots in many situations.
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This fact was noted by a fighter pilot named John Boyd in the mid 1960’s. He

indicated that the ability of an aircraft to maneuver is linked to both its current energy

state, and also how well that energy state is managed for subsequent actions [2]. Boyd

theorized that during an encounter with an adversary, a pilot should either be at a

higher energy state than an opponent, or be able to attain energy more quickly. He

used the concepts developed by Rutowski to calculate Mach-altitude diagrams for a

variety of then current fighter aircraft. By studying these diagrams, it was possible

to suggest best paths for gaining energy quickly during an encounter, thus putting

a pilot at an advantage over an adversary. These H-M (altitude vs Mach) diagrams

could also be used to compare the performance of two aircraft. By superimposing two

H-M diagrams it was easy to identify when an aircraft had a PS advantage, meaning

that at a certain Mach number and altitude it would be able to gain energy more

quickly, and in turn convert this energy into superior maneuverability.

Boyd discussed two other important parameters for maneuverability, the maxi-

mum turn rate and the load factor, n, which are commonly displayed in the “dog-

house” plot and the V-n diagram, respectively. Here, the ability of an aircraft to turn,

represented by either the maximum turning rate or the aerodynamic force relative to

the weight of the airplane, or g, is plotted versus velocity for a series of altitudes. The

number of g an aircraft is able to pull is limited at low velocities by the stall limit

of the aircraft, and at high velocities by human and structural limitations. These

diagrams contain an important point, known as the corner velocity, where the air-

craft achieves its highest turn rate because at lower velocities the aircraft cannot risk

pulling more g due to stall. The rate of change of heading is inversely proportional to

the velocity, so that at higher velocities the maximum turn rate is decreased. There-

fore it is important to understand where this maximum turn rate occurs, and how it

plays into the the maneuverability of the aircraft. Boyd suggested that this diagram
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represents the instantaneous maneuverability, while the H-M diagram represents the

sustained maneuverability, or the ability to exchange energy for maneuverability.

Boyd also suggested that these diagrams be used to plan pre- and post-engagement

maneuvers, to maximize the ability to quickly generate energy, and restore it after

the action. He indicated that the theory does not necessarily change the dogfighting

tactics already in use, but simply augments the planning of how and when to imple-

ment those tactics in order to achieve an advantage before and after the encounter.

Although this work focused mostly on dogfighting, it may be interesting to regard

missile evasion from the standpoint of Energy Maneuverability (EM) theory.

A medium-range pursuit-evasion scenario may have multiple phases, depending

on the relative position, heading, and energy state of the pursuer and evader. In

one study [66], three distinct regions were identified, differing by the strategy used

by the evader. The first region is defined by a short duration engagement where the

evader does not have sufficient time to fully implement any strategy. This is termed

the Low Effectiveness Zone (LEZ). In the second region the evader just has time to

apply the necessary turn to dodge the pursuer. In this region maneuverability is

dominant. This is called the Low Sensitivity Zone (LSZ) because the evader does

not have time to influence the final miss distance beyond the ability to turn rapidly.

In the third region, the evader has time to set up for the final maneuver, and does

this by attempting to reduce the closing velocity. This region is termed the High

Sensitivity Zone (HSZ) and is dominated by aerodynamic drag. A visual depiction of

these zones, adapted from reference [66], is shown in Figure 1.

These three zones fit well within the scope of analysis techniques described by EM

theory. In the study, it states that in the HSZ, the evader should attempt to minimize

the closing velocity. However, the study only considered two dimensions, meaning

that the exchange between potential and kinetic energy could be an important factor

37



Figure 1. A visual depiction of the Low Effectivenss Zone (LEZ), the Low Sensitivity
Zone (LSZ), and the High Sensitivity Zone (HSZ) from Shinar and Tabak.

in this region. Clearly, in the LEZ, it is desirable to maximize maneuverability, which

is achievable by entering the zone with sufficient specific energy.

Energy has been used as a parameter in medium-range missile guidance research.

One study substituted velocity with energy as a state in the equations of motion, and

used a combination of the missile’s total energy and terminal time as the objective

against a stationary target in an optimal guidance problem [67]. Another study

maximized the terminal velocity of the missile, which at a given altitude is equivalent

to maximizing the specific energy [68]. The missile was guided to a fixed point in space
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under the assumption that the ground support system could predict an appropriate

interception. The authors showed that for longer ranges, using the velocity of the

missile as an objective prior to the homing phase is favorable, while for short ranges,

interception time seemed to be a better objective.

2.4 Optimal Strategies

As has been discussed, PN is the optimal guidance for a pursuer to achieve in-

tercept with minimum control given a set of limiting assumptions. In using PN the

missile guidance designer hopes to minimize required maneuvers, reduce consumption

of power to the control surfaces, avoid the possibility of control surface saturation,

and simultaneously reduce interception time and ZEM. Of course, minimizing control

energy is not the only objective that may be posed. The pursuer may wish to instead

minimize interception time, the ZEM, the total distance traveled, or any number of

other objectives, depending on the specific scenario. In fact, given the rapid improve-

ments in navigation technology, it may be unwise to simply assume a pursuing threat

utilizes PN. But how can evasive strategies be proposed when the future actions of

the pursuer are completely unknown? The answer lies in the theory of Differential

Games.

2.4.1 Differential Games.

It has so far been assumed that the guidance law of the pursuer was known, thus

enabling the search for an optimal evasion strategy. However, if the guidance law is

not known, it is conservative to assume that both the evader and pursuer behave op-

timally. This concept is at the heart of the theory of Differential Games. Originating

in the 1960s [52], Differential Game theory deals with the situation where multiple

players are competing to achieve a payoff, or objective. The state of each player is
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constrained by a set of differential equations. The goal in applying Differential Game

theory is to find optimal strategies for the players, including boundaries where certain

solutions exist (such as capture vs escape).

One subset of Differential games is formed by the Pursuit-Evasion games, in which

a team of pursuers attempt to capture one or more evaders. While many recent studies

have focused on games with more than two players [69–71], traditionally studies have

focused on one pursuer and one evader.

It is often assumed that players have full information about the current state of

their adversary, allowing them to anticipate the strategy of the other player. Thus

each player will predict the decisions and future state of the other, and compensate

accordingly. Players competing in this manner may generate control strategies whose

payoff lies at an equilibrium, where neither player can improve their own payoff by

altering their own strategy. These control strategies, along with their resulting tra-

jectories and payoff, constitute an equilibrium solution. Assuming that both players

are attempting to minimize their payoff, if a player fails to choose the equilibrium

strategy, the resulting payoff is detrimentally increased for that player. If JE is the

objective of the evader, and JP the objective of the pursuer, while uE and uP are

their respective control strategies, this can be written [72]

JE(u∗E,u
∗
P ) ≤ JE(uE,u

∗
P )

JP (u∗E,u
∗
P ) ≤ JP (u∗E,uP ).

(2.34)

Here the * indicates that the control strategy is optimal. This is equivalent to

writing [3]

JE(u∗E,u
∗
P ) = min

uE
JE(uE,u

∗
P )

JP (u∗E,u
∗
P ) = min

uP
JP (u∗E,uP ).

(2.35)
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This type of equilibrium is often termed a Nash Equilibrium in the literature [73],

although Nash’s original paper only guarantees an equilibrium solution for games

with mixed strategies [74]. A mixed strategy, unlike a pure strategy, is one where the

decisions made by a player are probabilistic. The name Nash equilibrium does help

to distinguish from other types of equilibrium, such as Pareto or Stackleberg [75].

There is in fact no guarantee that an equilibrium solution exists in general for a game

where players use pure strategies [76].

In general, each player may have a separate objective, defined as

JE = φE(xE(tf ),xP (tf )) +

∫ tf

t0

LE(t,xE,xP ,uE,uP )dt

JP = φP (xE(tf ),xP (tf )) +

∫ tf

t0

LP (t,xE,xP ,uE,uP )dt.

(2.36)

2.4.1.1 Zero-Sum Games.

In a two player game, if the objective of one player is the opposite sign of the

objective of their adversary, the game is called zero-sum. Formulating the game in

this way means that only a single objective needs to be written as

JE(uE,uP ) = −JP (uE,uP ) = J(uE,uP ). (2.37)

This zero-sum J has the same structure as the one sided objective from Equation (2.2),

J = φ(xE(tf ),xP (tf ), tf ) +

∫ tf

t0

L(xE(t),xP (t),uE(t),uP (t), t)dt. (2.38)

The pursuer seeks to minimize the objective of a zero-sum game, while the evader

non-cooperatively seeks to maximize it. Isaacs names the minimax objective the
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Value of the game, and it is written

V = min
uP

max
uE

J. (2.39)

An example of this type of game would be for an evader to attempt to maximize the

distance from the pursuer at some final time, while the pursuer minimizes this same

distance.

Now the equilibrium relationship in Equation (2.34) can be rewritten as

J(uE,u
∗
P ) ≤ J(u∗E,u

∗
P ) ≤ J(u∗E,uP ), (2.40)

which restates that if either player fails to follow the equilibrium (now minimax)

strategy, then the objective is worse for that player, either decreased or increased,

respectively. However, it also implies that the player who did not change their strategy

will improve their objective. In a zero-sum game, an improvement for one player

comes at the expense of their adversary.

Often in pursuit-evasion problems, the dynamics and running cost are separable,

meaning that

f(t,xE,xP ,uE,uP ) = fE(t,xE,uE) + fP (t,xP ,uP )

L(t,xE,xP ,uE,uP ) = LE(t,xE,uE) + LP (t,xP ,uP ).

(2.41)

In this case the Hamiltonian can be separately defined as

HE(t,xE,λE,uE) = LE(t,xE,uE) + λTEfE(t,xE,uE)

HP (t,xP ,λP ,uP ) = LP (t,xP ,uP ) + λTP fP (t,xP ,uP ).

(2.42)
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The necessary optimality equations are then defined by the state equations [72]

ẋ∗E(t) = fE(t,x∗E,u
∗
E)

ẋ∗P (t) = fP (t,x∗P ,u
∗
P ),

(2.43)

the adjoint equations,

λ̇∗E(t) = −∂HE

∂xE
(t,x∗E,λ

∗
E,u

∗
E) (2.44a)

λ̇∗P (t) = −∂HP

∂xP
(t,x∗P ,λ

∗
P ,u

∗
P ), (2.44b)

and the stationarity conditions,

u∗E(t) = argmin
uE

HE(t,λE,x
∗
E,uE) (2.45a)

u∗P (t) = argmin
uP

HP (t,λP ,x
∗
P ,uP ). (2.45b)

This set of necessary conditions can be compared to the one-sided optimal control

necessary conditions in Equation (2.6). Typically a pursuit-evasion game has fixed

initial conditions

x∗(0) = x0, (2.46)

but the terminal conditions depend on the specific problem. Two types of terminal

conditions will be presented in this document. If the final time is fixed, but the final

state is free, the terminal conditions are

λ∗E(tf ) =
∂

∂xE
φ(x∗E(tf ),x

∗
P (tf )) (2.47a)

λ∗P (tf ) =
∂

∂xP
φ(x∗E(tf ),x

∗
P (tf )), (2.47b)
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where above φ is the terminal cost associated with the final time, tf , defined in Equa-

tion (2.2). Of the necessary optimality conditions defined in Equations (2.43)-(2.47),

it is also the only function of both xE and xP , serving to link the pursuer to the evader.

All other equations are completely separate. These equations form the TPBVP which

must be solved to find a minimax solution to a fixed terminal time zero-sum differ-

ential game.

If instead the final time is free, but the final state is constrained to a terminal

surface, Ψ, the terminal conditions are

Ψ(x∗E(tf ),x
∗
P (tf )) = 0 (2.48a)

λ∗E(tf ) =
∂

∂xE
φ(x∗E(tf ),x

∗
P (tf ))− ν

∂

∂xE
Ψ(x∗E(tf ),x

∗
P (tf )) (2.48b)

λ∗P (tf ) =
∂

∂xP
φ(x∗E(tf ),x

∗
P (tf ))− ν

∂

∂xP
Ψ(x∗E(tf ),x

∗
P (tf )) (2.48c)

HE(t,x∗E,λ
∗
E,u

∗
E) +HP (t,x∗P ,λ

∗
P ,u

∗
P ) +

∂

∂t
φ(x∗E(tf ),x

∗
P (tf )) = 0, (2.48d)

where ν is a positive scalar Lagrange Multiplier. Now Equations (2.43) - (2.46)

and (2.48) are the necessary optimality conditions, forming the slightly more com-

plicated TPBVP which must be solved to find a minimax solution to the free final

time zero-sum pursuit-evasion game. This has been done analytically for many sim-

ple problems; however, the solution of realistic problems with complex dynamics is

typically accomplished computationally.

It is helpful to point out a few limitations with the necessary optimality conditions

for a minimax solution [75]. First, it is not guaranteed that a minimax solution exists

in general. If a solution is found, the necessary conditions must be satisfied, but they

do not give any indication as to whether there is a solution to be found in the first

place. Second, there may be more than one minimax solution, and they need not be

unique.
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2.4.2 Calculation of Minimax Solutions Using Collocation Methods.

Since the 1960s there have been numerous examples of pursuit-evasion solutions

calculated by analytical (or geometrical) methods [52, 76–80]. Because of the difficulty

in developing equilibrium solutions, most of these studies are devoted to dynamics

within the horizontal plane, although some three dimensional analytical studies exist

[81]. In order to capture the important relationship between energy and maneuver-

ability, it is desirable to study the problem with increased fidelity. More recently,

focus has been given to finding minimax solutions computationally. Unfortunately,

direct collocation methods cannot be used immediately to calculate minimax solu-

tions, primarily due to the NLP solvers which only minimize a single objective. Thus,

in order to use established direct collocation techniques, it is necessary to adapt the

method. While various algorithms have been proposed for computing minimax so-

lutions for pursuit-evasion games [82–84], two are particularly promising for use in

finding solutions to differential games via the PS method.

2.4.2.1 Semi-DCNLP Method.

One interesting method which is easily applied via collocation is known as semi-

Direct Collocation Nonlinear Programming (semi-DCNLP) [85]. This method, de-

rived from the work of [86], combines the indirect solution of solving the two-point

boundary value problem associated with the necessary optimality conditions with the

direct method of transcribing the discretized equations of motion to an NLP. This

is done by defining the necessary optimality conditions for one player, and including

them as state variables in the formulation of a one-sided optimal control problem,

which is then solved using a direct method. By only indirectly solving for half of the

necessary conditions, and directly solving the other half, the technique attempts to

alleviate the difficulty of solving the two-point boundary value problem by adding
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additional complexity to the setup of the direct problem. Several distinct differential

game problems have been solved by this method, including fighter aircraft engaged

in a dogfight [85], ballistic missile defense [87], and orbital pursuit-evasion [88].

Problems solved via the semi-DCNLP method may either directly solve for the

control of the pursuer or the evader. These problems are labeled OP and OE, re-

spectively. For a fixed final time, free final state problem, the general definition of

problem OP is: Choose uP to minimize the objective in Equation (2.38) subject to the

dynamics in Equation (2.43), the costate dynamics in Equation (2.44a), the station-

arity condition in Equation (2.45a), the initial conditions in Equation (2.46), and the

terminal conditions in Equation (2.47a).

For a fixed final time problem, OE is defined: Choose uE to maximize the objective

in Equation (2.38) subject to the dynamics in Equation (2.43), the costate dynamics in

Equation (2.44b), the stationarity condition in Equation (2.45b), the initial conditions

in Equation (2.46), and the terminal conditions in Equation (2.47b).

If the problem has a free final time, the necessary conditions must additionally in-

clude the terminal surface and transversality condition. Thus OP is defined: Choose

uP to minimize the objective in Equation (2.38) subject to the dynamics in Equa-

tion (2.43), the costate dynamics in Equation (2.44a), the stationarity condition in

Equation (2.45a), the initial conditions in Equation (2.46), the terminal conditions in

Equations (2.48a) and (2.48b), and the transversality condition Equation (2.48d).

Finally, the free final time problem OE is defined: Choose uE to minimize the

objective in Equation (2.38) subject to the dynamics in Equation (2.43), the costate

dynamics in Equation (2.44b), the stationarity condition in Equation (2.45b), the

initial conditions in Equation (2.46), the terminal conditions in Equations (2.48a)

and (2.48c), and the transversality condition Equation (2.48d).
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Curiously, although free final time problems OE and OP require additional termi-

nal conditions, in references [85], [87], and [88] several of these are not enforced. This

is because they sometimes require the terminal costates from both players, while only

one is available. However, it is possible that neglecting terminal conditions would

result in a solution which is not strictly a minimax. In [89], it is suggested that

both OE and OP must be solved, and the resulting objective compared, in order to

ensure that a solution represents a minimax. This is not a problem with fixed final

time problems with no terminal surface, because the transversality condition does not

apply, and the final costates are only functions of the states.

Another difficulty with this method is in providing an initial guess of the costates

for the indirect player. In [90] and [91] a genetic algorithm is used to generate the

initial guess. In another recent study [92] it is indicated that this genetic algorithm

pre-processor requires a large amount of computation time, and suggests a sensitivity-

homotopy method as an alternative.

2.4.2.2 Iterative Methods.

One early approach for obtaining equilibrium solutions, called the “cycling method”,

involved repeated solution of two one-sided optimal control problems [93]. This pro-

cess appears to have been independently discovered later by others, and termed “Iter-

ative Relaxation” [3, 94, 95]. This method was specifically developed for computing

solutions rapidly and in a stable manner. Stability is defined as the ability of the

method to converge to an equilibrium solution regardless of the initial guess. Since

the algorithm involves solving one-sided problems for each player, it is also desir-

able that convergence does not depend on the order in which one-sided solutions

are obtained. This property is termed “asynchronous”, and is particularly useful for

distributed computing of the solutions.

47



The iterative technique is intuitively simple. First, a one-sided optimization prob-

lem for the evader is posed by assuming an initial suboptimal policy for the pursuer.

The control solution to this one-sided problem is optimal with regards to the pur-

suer’s suboptimal policy. The evader’s optimal control solution is then used as the

suboptimal policy in a one-sided optimal control problem in favor of the pursuer.

This produces an updated control policy for the pursuer, which can in turn be used

against the evader, etc. This can more succinctly be written [3], assuming that each

player desires to minimize their respective objective,

uE,k+1 = argmin
uE

JE(uE,uP,k)

uP,k+1 = argmin
uP

JP (uE,k+1,uP ).

(2.49)

This describes a process where the players take turns responding to updated control

information from their adversary. If the process were only accomplished for a single

iteration, the solution trajectories and controls would represent a Stackleberg equilib-

rium [75]. However, after repeated application the solution may converge to a stable

Nash-type equilibrium solution. In order to allow memory of the past policies of each

player, a relaxation parameter, 0 ≤ α ≤ 1 is used. The algorithm becomes

uE,k+1 = αEuE,k + (1− αE) argmin
uE

JE(uE, uP,k)

uP,k+1 = αPuP,k + (1− αP ) argmin
uP

JP (uE,k+1,uP ).

(2.50)

This relaxation parameter tends to reduce large jumps in each solution, as only

a portion of the newly found one-sided control is applied at each iteration. One

significant problem with this method is the lack of guarantee of converging to a

solution. In the references, conditions for existence and stability of equilibria for

static games are proposed; however, the extension to dynamic games, especially as
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discretized into a NLP, is not clear. Regardless, variations on this method have been

used to solve complex pursuit-evasion type problems [96, 97].

One particular variety of iterative technique, termed the Decomposition Method

[59, 83, 98], appears promising. As described above, separate evader and pursuer one

sided optimal control problems are solved iteratively. However, the control strategies

and objective values are not shared between iterations. Instead, the pursuer is given

the objective, JP , of minimizing the final time to reach the evader’s last known

position, given as

e = (xE(tf ), yE(tf ), hE(tf ))
T . (2.51)

where xE, yE, and hE are the east, north, and altitude coordinates of the evader. The

actual final position of the evader is

zE = (xE(tf ), yE(tf ), hE(tf ))
T , (2.52)

and the actual final position of the pursuer is

zP = (xP (tf ), yP (tf ), hP (tf ))
T . (2.53)

The capture condition the pursuer hopes to achieve is then

ψ = (e− zP )T = 0, (2.54)

and the objective is the final time. The value of the pursuer is the minimized objective

VP = min
uP

tf , (2.55)
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subject to the capture condition, initial conditions, and equations of motion. This

forms a free final time, fixed final state one-sided optimal control problem which only

involves the pursuer’s equations of motion and the final position of the evader.

In response, the evader wishes to maximize the pursuer’s value. This is done by

first linearizing VP about e as

VP ≈ ṼP (e, zP ) +

(
∂VP
∂e

)T
(zE − e) (2.56)

where the gradient of VP with respect to e is given by

∂VP
∂e

=
∂

∂e
φ(e, zP ) + bT

∂

∂e
ψ(e, zP ). (2.57)

Above, b is the Lagrange multiplier vector associated with the capture condition,

ψ = 0. These multipliers represent the sensitivity of the objective to the constraints,

and will serve to guide the evader in responding to the pursuer’s optimal trajectory.

The evader’s objective is to maximize the pursuer’s value at the final time, which can

be accomplished by setting

VE = max
uE

(
∂VP
∂e

)T
(zE − e). (2.58)

This forms a one-sided, fixed final time free final state optimal control problem for

the evader which requires only the terminal position e and Lagrange multipliers from

the previously solved pursuer problem. The resulting trajectory is used to set a new

value for e, to which the pursuer will then respond.

The algorithm is relatively simple once the two problems have been defined. The

steps are:

1. Generate an initial guess for ei, with i = 0.
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2. Minimize the time for the pursuer to reach ei, record the Lagrange multipliers

b.

3. Maximize the evader’s objective given by Equations (2.58) and (2.57), record

the new value of ei+1.

4. Check ε = |ei+1 − ei|. If ε is small, stop. Otherwise, return to Step 2.

While the algorithm requires repeated solution of two separate one-sided optimal

control problems, it is very easy to implement. It avoids forming the TPBVP repre-

senting the necessary optimality conditions, instead obtaining the solution directly.

It may therefore solve problems with inequality or path constraints which would be

difficult for a method such as semi-DCNLP or Indirect Transcription.

2.4.3 Real Time Optimal Control.

One method recently used at the Air Force Institute of Technology (AFIT) for

dealing with uncertainty when solving optimal control problems is to repeatedly solve

a deterministic problem, each time modifying the initial conditions of the problem to

match real-time observations. The optimal control problem is only solved for a finite

time horizon, which moves along as the problem progresses in real time. This method

captures uncertainty simply by admitting that variations from the optimal trajectory

will occur, and then adjusting the trajectory with a new optimal solution. There is

some ambiguity about the name of this method. When optimization is performed for

a fixed final time problem the method will here be termed Receding Horizon Control

(RHC). If the optimal control problem is free final time, it will be referred to as Real

Time Optimal Control(RTOC). These methods are sometimes viewed as a feedback

controller with coarse time steps [99], although in the presence of nonzero-mean or
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time-correlated disturbances this statement is overly optimistic [100]. The method is

also known as Model Predictive Control [101–103].

Recently at AFIT an RTOC controller was implemented in a study which sought

to control the motion of a quadrotor UAV to land on a wire [9, 104]. In the study, the

author proposed a dual control problem, where the objective of the optimal control

problem had two parts, a primary mission to control the UAV and a secondary mission

to estimate its location with respect to the wire. The estimation requirement was

embedded into the constraints rather than the objective, and the optimal control

problem was solved in real-time using a PS method. Uncertainty from measurements

were included in the optimal control problem via the Unscented Kalman Filter [105–

109].

Another technique for propagating uncertainty in optimal control was demon-

strated for the automatic air collision avoidance problem [10, 110]. Unlike the ground

collision avoidance problem, in air collision scenarios an intruding object moves

through the intended flight path of an aircraft with an unknown future trajectory.

The aircraft is required to both sense the obstacle, and then take action to avoid it.

In order to estimate the future path of the intruding aircraft, a Particle Filter (PF)

was implemented [111]. In the PF estimation of the intruding aircraft, the uncertain

nature of the future path is modeled by a number of particles sampled from an as-

sumed distribution of the initial state of the intruder. Each particle is propagated

forward up to a specified time horizon using standard aircraft equations of motion.

The spread of particles forms a distribution from which statistics of the flight path,

such as mean position and standard deviation, may be calculated. Rather than use

the statistics, however, the author chose to enclose all the particles inside a convex

hull representing the region where a collision would occur. An ellipsoid was fit to

this hull at each time step, and an interpolation technique was developed to describe
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the changing ellipsoid through time. An optimal control problem was then posed

wherein the evading aircraft was required to maneuver around the region enclosed in

the ellipsoids.

It was then assumed that measurements of the intruder would be available to the

evading aircraft at certain time intervals. The estimated location of the particles was

updated according to a measurement model, the particles were propagated, a convex

hull constructed, fit to ellipsoids, and interpolated. An optimal control problem was

then solved to keep the aircraft from entering the interpolated ellipsoid region at a

given time. This process was implemented as an RHC problem, allowing the aircraft

to continually adjust its trajectory as measurements were obtained of the intruding

aircraft. Unfortunately the PF required propagation of 10,000 particles, which could

not be performed in real-time on a desktop computer during simulation. It is likely

that this limitation could be overcome in flight by processing the propagation step

of the algorithm in parallel using specialized hardware. One benefit to using a PF is

that it can be used to model nonlinear dynamics, and is not limited to the Gaussian

assumption.

Finally, RHC was used at AFIT with the PS method to solve a ground collision

avoidance problem, where two different approaches were compared to help a low flying

heavy aircraft avoid colliding with terrain [11, 112]. The first approach maximized

the distance the aircraft approached the terrain during a pull-up maneuver, while

constraining the controls. The second approach minimized the control usage, while

constraining the distance within which the aircraft approached the ground. The

deterministic optimal control problems were solved serially as the simulated aircraft

approached a ground obstacle, and were implemented at the last moment the RHC

indicated that evasion was still possible, including some amount of buffer for safety.

Although real-time calculation of these trajectories was not achieved in practice, it
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was demonstrated that the minimum control formulation tended to have a faster

computation speed. This approach, while not directly propagating random variables

in time, captures the stochastic nature of flight by recalculating optimal trajectories

as conditions change over time.

The success of these studies suggest that either RHC or RTOC could be a useful

tool in dealing with uncertainty in a Pursuit-Evasion problem. While efforts will be

made to reduce optimal control computation time to fit real-time requirements, the

main goal of the current research is to compensate for the uncertainty and demon-

strate the feasibility of the solution methods.

2.5 Summary

Optimal control is ideal for studying pursuit-evasion, because it represents the

problem as finding a control to minimize an objective subject to dynamic and static

constraints. The choice of objective and constraints is important, as they define the

problem and thus the solution. In the one-sided optimal control pursuit-evasion prob-

lem, a suboptimal behavior must be assumed for either the pursuer or evader, and

here a set of common suboptimal pursuit and evasion strategies have been described.

A differential game removes the suboptimal behavior by allowing that both the pur-

suer and evader may act optimally, given assumptions on the information available

to each. Two techniques have been described for how a pursuit-evasion game may

be solved using computational techniques. Finally, several methods have been de-

scribed for the scenario when full information about an adversary is not available

at all times, or the equations which model their motion are subject to uncertainty.

While this chapter has been an overview of methods for solving these problems, the

next chapter will present the specific models and algorithms to be used in the current

research.
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III. Methodology

3.1 Overview

In order to explore the role of energy in aircraft-missile pursuit-evasion scenarios,

it is important that the dynamics of the aircraft and the missile realistically represent

the current energy state of each vehicle. This means that the equations of motion

must capture the exchange of potential energy and kinetic energy through altitude

and velocity. Additionally, thrust and drag must accurately generate and dissipate

energy. Thus the models of the aircraft and missile will be presented here, along with

details highlighting their energy exchange characteristics.

Several atmospheric properties must be defined for both models. It is assumed

that gravity is a constant, g0=9.8066 m/s2. The temperature and density of the

atmosphere, in K and kg/m3 is dependent on altitude in meters by the relations [113]

T = T0 − ah

ρ = ρ0

(
T0 − ah
T0

)n−1 (3.1)

where standard density at sea level, ρ0, is 1.225 kg/m3, standard temperature, T0,

is 288.16 K, and the lapse rate, a, is 0.0065 K/m. The value of the dimensionless

constant n is 5.2561. These formulas are valid up to altitudes at the edge of the

tropopause, or 11 km. For subsonic and supersonic flows, the speed of sound is a

function of temperature alone,

s =
√
γRT . (3.2)
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3.2 Models

3.2.1 Evader Model.

In order to properly capture the exchange of kinetic and potential energy of an

aircraft during a missile evasion encounter, the equations of motion must include all

three dimensions, as well as viscous drag and thrust terms. However, a full six degree

of freedom set of equations would be overly complicated and burdensome for the

optimal control solver. For this reason, a point-mass model is adopted which assumes

that the aircraft is able to maintain stability within given operating limits. Thus

modeling the control surface deflections is avoided, along with the need to track the

exact pitch, roll, and yaw angles. Instead it is assumed that the pilot or autopilot

is able to command a desired angle of attack (α) and bank angle (µ). It will be

assumed that the engagements take place over a relatively short distance such that

the curvature and rotation of the Earth are negligible. Throttle will not be modeled

in this work, as all the problems solved in this work simply require maximum thrust.

This is intuitive from an energy generation perspective. Also, it will be assumed that

due to the short duration of the encounter, the mass of the evading aircraft, mE,

is constant at 19,051 kg. Its surface area, sE, used for lift and drag calculations, is

49 m2 [65].

Eight state variables are required to describe the motion of the aircraft in the

velocity and flat-Earth frames: easting (xE), northing (yE), altitude (hE), velocity

(VE), flight path angle (γE), heading angle (χE), angle of attack (αE), and bank angle

(µE). The dynamics can be represented by a system of first-order coupled differential

equations [44].
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ẋE = VE cos γE cosχE

ẏE = VE cos γE sinχE

ḣE = VE sin γE

V̇E =
1

mE

(TE cosαE −DE)− g sin γE

γ̇E =
1

mEVE
((TE sinαE + LE) cosµE − g mE cos γE)

χ̇E =
sinµE

mEVE cos γE
(TE sinαE + LE)

α̇E = uα

µ̇E = uµ

(3.3)

In order to avoid stall, the evader is limited to angles of attack between -5 and

15 degrees. A structural limit of 9 g is also placed on the aircraft. To smooth the

solutions obtained numerically via the PS method, it is helpful to model the angle

of attack and bank angle as additional states in order to reduce numerical chatter.

Thus, the controls are set to be the angle of attack rate and the bank angle rate,

which are limited as

− α̇M ≤ α̇E ≤ α̇M

− µ̇M ≤ µ̇E ≤ µ̇M ,

(3.4)

where α̇M is 15 degrees per second and ṁuM is 180 degrees per second.

The lift (LE), drag (DE), and maximum available thrust (TE) are functions of

altitude, Mach number, and angle of attack. These are modeled after the tabulated

data of a supersonic interceptor aircraft found in [65]. For the semi-DCNLP method,

it is necessary to calculate partial derivatives of the lift, drag, and thrust with respect

to altitude, velocity, and angle of attack. Numerical approximations using the coarse
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tabulated data were found to be inaccurate, therefore piecewise functions were fit to

the data such that the derivatives were continuous.

3.2.1.1 Evader Lift, Drag, and Thrust Approximations.

The lift force is calculated by the classic expression

L = qSECL,ααE (3.5)

where the dynamic pressure, q, is defined as q = 0.5ρV 2
E . The lift coefficient, CL,α

varies with Mach number, and the tabulated data is fit by

CL,α =





3.44 + e−200(M−1)2 M ≤ 1.121

4.12− 1.8
√
M − 1 M > 1.121

. (3.6)

The lift coefficient and its derivative have been plotted versus Mach number in

Figure 2 to show that the fit is only an approximation, but that the derivative is

continuous.
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Figure 2. Approximate fit for the lift coefficient, CL,α.
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Drag force is calculated using the zero lift drag coefficient, CD,0 and the factor η

which relates the drag to the lift coefficient and angle of attack squared.

D = qSE(CD,0 + ηCL,αα
2) (3.7)

Both CD,0 and η are functions of Mach number. The approximation for CD,0 is

CD,0 =





0.013 + 0.03e−80(M−1.1)2 M ≤ 1.104

0.04748− 0.014
√
M − 1 M > 1.104

, (3.8)

which has been plotted versus Mach number in Figure 3.
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Figure 3. Approximate fit for the zero lift drag coefficient, CD,0.

Finally, the factor η is given by

η = 0.54 +
0.39

1 + e−10(M−1)
(3.9)

and is pictured in Figure 4.

The maximum available thrust is a function of Mach number and velocity. A

polynomial fit was found using linear regression for altitude in meters to be

TE = 106790 + 35323M − 8.0766hE + 25752M2 − 3.6352MhE + 0.000177h2
E, (3.10)
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Figure 4. Approximate fit for η.

and is plotted in Figure 5.
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Figure 5. Approximate fit for TE.

The maneuverability of the aircraft can be described by the “doghouse” plot

and the V-n diagram, which display maximum turn rate (rad/s) and maximum load

factor (g) at a given velocity and altitude condition. Figure 6 displays these two charts

for a variety of altitudes. Perhaps the most interesting feature of the two diagrams

is the movement of the corner velocity, which occurs where the stall limit meets the

max g limit. While the corner velocity increases for increasing altitude, the actual
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turn rate or g available decreases. Clearly, to improve maneuverability, the aircraft

must descend to the lowest altitude possible, and accelerate to the corner velocity or

higher. There is a large bump in both the turn rate and the max g available near

Mach 1.0, and in fact for some altitudes this is the point of highest turn rate.
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Figure 6. Turn rate and available g versus velocity for a variety of altitudes.

To conserve energy, the aircraft should fly at altitude and velocity combinations

where the specific power is greater than zero. However, in order to achieve high

maneuverability, the aircraft will need to cross into regions where specific power is

less than zero, meaning that it will trade energy for maneuverability. The turn rate

and available g plots have been recreated in Figure 7 for an altitude of 8 km, but

this time the zero specific power line has been included to demarcate the energy and

maneuverability zones.

3.2.2 Pursuer Model.

The pursuer is also modeled in three dimensions, on a flat non-rotating Earth.

Rather than model angle of attack and bank, it is assumed that the missile commands

lateral and longitudinal accelerations, aγ,c and aχ,c. The navigation system is subject

to lag, thus the actual accelerations relate to the commanded values by first-order

dynamics by the time constant τ .
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Figure 7. PS=0 line versus velocity at 8 km altitude.

The dynamics are given by the equations

ẋP = VP cos γP cosχP

ẏP = VP cos γP sinχP

ḣP = VP sin γP

V̇P =
1

mP (t)
(TP (t)−DP )− g sin γP

γ̇P =
1

VP
(aγ − g cos γP )

χ̇P =
aχ

VP cos γP

ȧγ =
aγ,c − aγ

τ

ȧχ =
aχ,c − aχ

τ
.

(3.11)

Figure 8 shows the geometry of the engagement, specifically the relationship be-

tween the flight path and heading angles to the x, y, and h directions, along with the

angle of attack and LOS.

The drag on the missile varies with the square of the magnitude of the applied

acceleration, which is the two-norm of the lateral and normal accelerations,

62



Figure 8. A visual depiction of the engagement geometry.

aD =
√
a2
γ + a2

χ. (3.12)

The drag is then calculated as [114]

DP =
1

2
ρSPV

2
PCD,0 +

2km2
P

ρSP

(
aD
VP

2
)
. (3.13)

The engine produces a maximum thrust of TP for tP seconds, and the mass is

depleted as propellant is consumed. Parameters for the missile have been modified

from reference [114] to increase the range and max velocity. They are displayed in

Table 3.

Table 3. Table of modeling parameters for the missile.

m (kg) SP (m2) CD,0 k g-limit τ (s) TP (N) tP (s) ISP (s)
173.6 0.0324 0.1 0.03 35 0.5 20000 8 250

The g limit is enforced on the magnitude of the acceleration vector, rather than

on the separate components of acceleration. This is called the circular or isotropic

63



vectogram [56], where saturation occurs in both guidance channels simultaneously,

representing a missile which is ambivalent to roll orientation.

The concept of the corner velocity does not exist for the current missile, because

aerodynamic stall has not been included in the model. This means that the max turn

rate is described completely by the 35 g limit. At the missile’s peak velocity near

1500 m/s, the turn rate is approximately the same as that of the aircraft at its corner

velocity. However, at lower velocities the missile’s max turn rate increases inversely

to the decrease in velocity. In the limit as the missile velocity approaches zero, the

turn rate becomes infinite. This is a problem with the fidelity of the model, but these

low velocities are never reached in scenarios within this work.

Perhaps more important for the missile during the endgame phase is the time

constant, τ . This system lag causes the missile’s actual acceleration to lag behind

the command. The effect of this lag can be seen in Figure 9, where a missile which

responds immediately to guidance acceleration commands is compared to a missile

with a first-order lag, as given by Equation (3.11). The missile with a non-zero time

constant cannot achieve a given cross-range value as quickly as the missile with no

lag, meaning that effectively the missile’s turning radius in increased. In the endgame

maneuver, the evader must pass within the pursuer’s minimum turn radius to achieve

a non-zero final miss distance, and the time constant significantly deteriorates the

pursuer’s ability to maneuver to prevent this from occurring.

There is a frequency aspect to the terminal evasion maneuver which is linked to

the missile’s time constant. If the evader can cause the pursuer’s commands to fall out

of phase with the actual accelerations by performing a “weave” type maneuver, it can

achieve a relatively large final miss distance [28]. One such maneuver is the High g

Barrel Roll (HGBR), which is performed by pulling maximum g while simultaneously

rolling at a constant rate [61], which causes the longitudinal and lateral guidance
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Figure 9. Effect of the time constant on the missile’s turning performance. Time is
shown at y distance intervals of 500 meters.

channels commands of the missile to oscillate. The specific roll rate and maneuver

start time are critical to the performance of the HGBR, and optimal values depend

on the guidance parameters, such as the time constant and the navigation gain NP

for a missile using PN. The longitudinal and lateral accelerations induced in a PN

missile chasing an aircraft performing a HGBR are shown in Figure 10, distinctly out

of phase.

To show the sensitivity of the HGBR with respect to roll rate, a number of ma-

neuvers have been simulated against a PN guided missile with an initial separation

of 5 km. The orientation of the engagement is a tail chase, beginning at the same

altitude. It is assumed that the missile has already expended its thrust. Each HGBR

is applied at the maneuver start time by increasing the angle of attack to 15 degrees,

while rolling at a fixed rate. The maneuver start time is adjusted from 0 to nearly 5

seconds, and the final miss distance, or the moment when the closing velocity reaches

zero, was recorded. This was done for a variety of roll rates between zero and 180

degrees per second, with zero representing a pull in the horizontal plane. The results,

shown in Figure 11, indicate that there is an ideal roll rate and starting time for the

maneuver, which depends on the value of τ and NP . Note that for the scenario shown

in Figure 11, with NP=4 and τ=0.5 seconds, the ideal roll rate is approximately 2
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Figure 10. Missile longitudinal and lateral accelerations induced by a HGBR maneuver.

radians per second, while the maneuver start time corresponds to a time-to-go of 3

seconds, or nearly enough time to perform 2π radians of total roll. This does not

necessarily hold true for other values of NP and τ .

3.3 Summary

In order to accurately capture the physics involved in a missile-aircraft pursuit-

evasion scenario, the equations of motion for each vehicle have been constructed

to represent the exchange of energy between kinetic and potential, along with the

generation and dissipation of energy due to thrust and drag. Diagrams showing the

max turn rate and g versus velocity show the maneuverability of the aircraft at a

variety of altitudes. The PS=0 line on these diagrams indicates the conditions for

which the evader will either gain or lose energy. In the endgame maneuver, the

evader seeks to exploit the missile’s guidance system in order to achieve a high final
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Figure 11. Final miss distance versus maneuver start time for a variety of HGBR roll
rates.

miss distance. The HGBR maneuver is a good suboptimal choice for evasion which

puts the missile’s commanded and actual longitudinal and lateral accelerations out

of phase. In the next chapter, optimal evasive trajectories will be presented which

strongly resemble the HGBR during the terminal maneuver phase.
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IV. One Sided Optimal Missile Evasion

The HGBR maneuver was shown to achieve relatively high final miss distance

by causing oscillations in the missile’s lateral and longitudinal acceleration channels.

However, the miss distance depended on maneuver start time and roll rate, high-

lighting the time sensitive nature of final evasive maneuvers. While the HGBR is a

suboptimal maneuver, its sensitivity to time indicates that an optimal maneuver may

exist which will achieve the maximum miss distance at the moment of the missile’s

closest approach. The purpose of this chapter is to define and solve the optimal con-

trol problem which generates an open-loop control trajectory which, for given initial

conditions, will result in the best chance of evading a single missile fired from medium

range. While the open-loop control is only directly applicable to the specific initial

conditions and modeling parameters posed in the optimal control problem, and thus

not directly useful for a wide variety of scenarios, it can serve as a benchmark for

comparison with other evasion maneuvers. Also, the optimal trajectory can be de-

constructed to understand the dynamics of an evasion maneuver, and these lessons

can be applied to a wider range of scenarios.

4.1 The Closest Point of Approach Problem

The main objective in optimal evasion is of course survival of the evader, repre-

sented by the inverse of the Probability of Kill, PK . Minimizing this number may be

accomplished in a variety of different ways (see the literature review), but the most

direct way is to maximize the distance between the missile and the aircraft at the

CPA. Thus the objective for the CPA problem is

J = −r(tf ). (4.1)
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It is often useful to add a small term to the objective to dampen control energy by

including an integral function of control in the objective, which will reduce numerical

chatter in the solution, along with other beneficial effects in describing the TPBVP

which will be detailed later. Thus the objective is augmented to be

J = −r(tf ) + wE

∫ tf

t0

(
α̇E
α̇M

)2

+

(
µ̇E
µ̇M

)2

dt, (4.2)

where α̇M and µ̇M are scaling factors, set to the maximum angle of attack or bank rate.

The weight, wE, is chosen carefully to minimize the effect of the integral term on the

final miss distance, usually such that the integral term is three orders of magnitude

smaller.

A necessary condition for the CPA is that the first derivative of the range must

be zero. The closing velocity, defined by Equation (2.17), is the negative of the range

rate. This conditions defines the final time, and represents a transversal surface upon

which the trajectory terminates,

VC(tf ) = 0. (4.3)

Thus the CPA problem can be classified as free final time, fixed final state.

In order to simplify the CPA problem, it is assumed that the problem begins after

the missile’s thrust has been expended. This removes the need to divide the problem

into two phases in order to capture the change in discontinuous physics when the

engine is shut off. At this moment the velocity of the missile is much higher than the

aircraft, it has gained some altitude from its launch point due to lofting, and its mass

has been reduced by the amount of expelled propellant. Although the missile is still

climbing slightly at this time, the guidance is commanding a pitch down maneuver

in order to descend to the altitude of the aircraft.
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The initial angle of attack of the evader is set by trimming the aircraft to cruise at

the given altitude and velocity. This sets the angle of attack and throttle. However,

it is assumed that immediately upon detecting the missile, the throttle is set to full,

while the angle of attack remains at the previous trim condition.

As an example scenario, the pursuing missile is launched toward the evading

aircraft with an initial LOS (from the pursuer to the evader) of 35 degrees, from

an initial range of 30 km, with an initial velocity of 290 m/s. However, during the

eight second boost phase the missile quickly reaches a higher velocity and covers

approximately 6 km. The initial conditions for both the evader and pursuer just after

the missile’s thrust ends are given in Table 4.

Table 4. Table of initial conditions for the evader and pursuer.

Evader
xE (m) yE (m) hE (m) VE (m/s) γE (deg) χE (deg) αE (deg) µE (deg)
20,054 14,042 10,000 290.2 0 0 2.91 0

Pursuer
xP (m) yP (m) hP (m) VP (m/s) γP (deg) χP (deg) aγ (m/s2) aχ (m/s2)
0 0 10,573 1,424 5.33 35 -134 0

The CPA problem, defined by the objective from Equation (4.2), the terminal

condition in Equation (4.3), the dynamic constraints given by Equations (3.3) and

(3.11), the additional constraints on angle of attack, angle of attack rate, bank angle

rate, and maximum g defined in Chapter III, and the initial conditions shown in Table

4, was solved using the GPOPS-II software. Although the PS method is in general

capable of obtaining solutions from even poor initial guesses, for the current problem

this proved to be somewhat difficult for reasons that will be explained shortly. A

relatively good initial guess is required to solve this 16 state, 2 control, free final time

problem.
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4.1.1 Solution to the Closest Point of Approach Problem.

In order to obtain a solution, it was necessary to first solve the problem at a close

range, 2 km, with an initial guess defined by forward integration of the equations of

motion using a constant control. Then, the resolved optimal solution was saved as a

new initial guess and the range was increased by a small amount. The problem was

solved for the new range, and the new solution was again saved as an initial guess.

The range was incremented and the problem re-solved in this homotopic manner until

the actual desired initial range was achieved.

Because the PS method is based on gradients, it is common to find locally optimal

solutions, and the homotopy method of producing the initial guess tends to aggravate

this problem. Thus, once a full solution was achieved, the initial guess was perturbed

and the problem was re-solved to search for other locally optimal trajectories. The

initial guess was replaced with the highest objective trajectory found, until no further

improvements could be made. The final solution was solved to an NLP tolerance of

1 × 10−6 and a mesh tolerance of 1 × 10−4, using the Patterson mesh error from

[22]. The final miss distance achieved by the optimal trajectory was 48.6 meters,

significantly better than the HGBR results from Chapter III. A visualization of this

trajectory is presented in Figures 12 - 17. As seen in Figure 12, the evader initially
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Figure 12. Overhead view (left) and altitude profile (right) of the CPA problem.
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turns away from the pursuer while diving into the atmosphere. This is done by

quickly rolling inverted and increasing the angle of attack smoothly so that a steep

dive is obtained, trading altitude for speed, as seen in Figure 13. At approximately
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Figure 13. Velocity (left), angle of attack / bank angle (right) for the CPA problem.

tgo of 5 seconds the evader begins to roll in the opposite direction while greatly

increasing the angle of attack. At this highly negative flight path angle, the heading

rate change is large due to the cosine term in the denominator of the heading rate

in Equation (3.3). Thus the aircraft changes direction quickly, as seen in Figure 14.

This rapid change in both flight path angle and heading, caused by rolling while
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Figure 14. Flight Path Angle (left) and heading angle (right) for the CPA problem.

pulling maximum g in a dive, causes the PN controller on the missile to demand
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oscillating accelerations in both longitudinal and lateral channels. Because of the

time constant, the actual accelerations lag behind the commands, which saturate

near the end of the engagement, as seen in Figure 15. This trajectory displays
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Figure 15. Missile accelerations (left) and aircraft g (right) for the CPA problem.

essentially two phases. First, an energy conserving phase where altitude is traded

for velocity, positioning the aircraft at a steep flight path angle to enable a rapid

change in heading. This is followed by a second phase where the evader applies large

control effort to outmaneuver the pursuer by exploiting its navigation time constant

and acceleration saturation. The first phase is dominated by energy management,

while the second phase trades energy for maneuverability, as seen in Figure 16, which

shows the specific power profile of both the evader and pursuer. During the first

15 seconds of the flight the evader maintains a positive PS. The point where PS

crosses from positive to negative marks the beginning of the maneuverability phase.

Another useful visualization is created by plotting the load factor, or longitudinal

acceleration, of the aircraft versus velocity on top of a V-n diagram. This must be

done in pieces, since the maximum g limits depend on the altitude, which changes

during the trajectory. To capture the changes in altitude, three plots have been made

for various times and altitudes along the trajectory. The maximum load factor and

PS=0 line have also been included as shown in Figure 17. One notable feature of
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Figure 16. Specific power, PS, for the CPA problem.

the trajectory is that during the dive, shown on the left image, the aircraft increases

its load factor into a slight bump in the PS=0 line near Mach 1. By exploiting this

region, the aircraft is able to save energy while pulling more g’s. Also, as seen in

the center image, the aircraft enters the maneuverability phase and quickly pulls the

maximum g of 9. This happens just above the corner velocity, meaning that it is able

to pull maximum g and achieve the maximum turn rate. Finally, because the aircraft

continues to descend, the corner velocity decreases, allowing the aircraft to continue

to slow down while still achieving a high g pull (right image).

Interestingly, the maneuverability phase of the trajectory appears qualitatively

similar to the HGBR maneuver as described in Chapter III. In both the maneuvers

the evader pulls a high g load while rolling, although the exact roll timing is different

between the two, and because the CPA is at lower altitude, it reaches a higher g

load. While the HGBR applies a fixed roll rate, the optimal trajectory employs a

variable roll rate to achieve a higher final miss distance. This indicates that, like
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Figure 17. VN diagram showing load factor at three altitudes along the trajectory of
the CPA problem.

the HGBR, the optimal maneuver must be precisely timed, an obvious difficulty in

a realistic scenario where the precise state of the missile is uncertain. It also hints

that the HGBR is nearly optimal, and may serve as a simplified, easily implemented

replacement if an optimal result is unavailable.

4.1.2 Difficulties with the Closest Point of Approach Problem.

As mentioned, the CPA problem required a good initial guess to converge, and

additional work to search for the globally optimal solution. The primary reason for

this lies with the termination surface, VC=0, which defines the end to the problem.

Figure 18 shows the closing velocity for the CPA problem. Most notably, the closing

velocity drops precipitously near the point of closest approach. Although the trajec-

tory in Figure 18 ends at VC=0, the closing velocity would continue to drop to a large

negative value if the simulation were continued.

This jump in VC does not always occur. For initial conditions where the evader is

able to outrun the pursuer, the closing velocity will decrease steadily due to drag on

the missile until it reaches zero. However, for these initial conditions the solution is

somewhat trivial, as no evasive maneuver is necessary. For a missile fired within its

operating range, the closing velocity will jump quickly to zero at the moment of closest

approach. This sudden change in VC is problematic for a solver such as SNOPT,
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which uses gradient calculations to explore the solution space, causing difficulties in

convergence primarily due to infeasibilities related to the terminal constraint. Once

a feasible solution has been obtained, the mesh must also be refined multiple times

to reduce discretization error associated with the large change in VC .
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Figure 18. Closing velocity, VC , for the CPA problem.

In the end, the problem can be solved using the methods described, but depending

on the initial guess, the solution may require an unacceptably long computation

time. Therefore it makes sense to re-pose the optimal control problem. As has

been demonstrated here, there are two distinct phases in the optimal trajectory, an

energy management phase and a maneuverability phase. The approach for the rest

of this work is to divide the optimal evasion problem into these two phases. The

maneuverability phase will continue to be posed as the CPA problem. However, the

energy management phase will be posed with a different objective, and both fixed

and free final time versions of this problem will be explored.
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4.2 The Fixed Final Time Problem

In the fixed final time version of the energy management problem, it is assumed

that the problem termination is defined by the final time alone. The most obvious

objective at this final time is to maximize the distance between the pursuer and

evader, as in

J = −r(tf ) + wE

∫ tf

t0

(
α̇E
α̇M

)2

+

(
µ̇E
µ̇M

)2

dt. (4.4)

Note that the form of the objective has not changed from Equation (4.2), except that

the terminal constraint from Equation (4.3) has been removed. This means the final

state is unconstrained, resulting in a much easier problem to solve. The value of the

weight, wE, must be re-tuned for the larger value of r(tf ). The fixed final time optimal

control problem is defined by the objective in Equation (4.4), a predetermined final

time, the dynamic constraints given by Equations (3.3) and (3.11), the additional

constraints on angle of attack, angle of attack rate, bank angle rate, and maximum

g defined in Chapter III, and the initial conditions shown in Table 4. This will be

known in short as the Fixed Time (FX) problem, and it was solved with the GPOPS-

II software using an initial guess found by propagating the equations of motion via

a Runge-Kutta four step (RK4) integration with zero control inputs. All solutions

were obtained with an NLP tolerance of 1× 10−6 and a mesh tolerance of 1× 10−4.

Figure 19 shows the overhead view and altitude profile of a solution calculated with

tf=18 seconds.

At the beginning of the trajectory, the evader’s control effort is largely focused on

turning away from the pursuer. However, this is done with a positive specific power, as

seen in Figure 20, meaning that the evader is attempting to conserve energy. Despite

this qualitative similarity between the energy management phase of the FX and the

CPA trajectory, closer comparison of Figures 19 and 12 shows some differences. For
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Figure 19. Overhead view (left) and altitude profile (right) of the Fixed Time problem.

example, the CPA trajectory dives much more quickly, reaching nearly 2 km lower in

altitude by 18 seconds. Also, while the CPA trajectory rolls completely inverted, the

FX only rolls to about 120 degrees, then slowly rolls back toward zero bank. This

is because the CPA “knows” it must prepare for the final evasive maneuver, whereas

this information is missing from the FX problem.
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Figure 20. Angle of attack / bank angle (left) and PS (right) of the Fixed Time problem.

The control weight term, wE, represents a balance between the scalar and running

costs in Equation (4.4). It is important that the weight does not adversely affect the

scalar objective. To verify the correct weight, several problems were solved with

varying weights. The scalar objective was recorded, along with the computation time

required to find a solution. Error was calculated based on the lowest weight value,
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10−2. The magnitude of the error percentage and the calculation time are displayed

in Figure 21, showing that the error increases with the weight. Interestingly, the

computation time required actually increases for the FX problem for large weights.

The optimal weight for the computation time, near wE=2, gives an error of less than

0.01 percent.
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Figure 21. Magnitude percentage error (left) and computation time (right) versus
control energy weight for the FX problem.

Posing the FX problem requires an assumption of the game of kind, namely that

the pursuer will not intercept the evader before the final time. Clearly, the final time

for this problem should be set prior to the beginning of the maneuverability phase.

Unfortunately, unless the CPA problem has already been solved, there is no clear

distinction when this phase should begin. To gain an understanding of how to set

tf , a series of FX problems were solved with identical initial conditions but varying

terminal times. The final conditions of each FX problem were then used as the initial

conditions of the CPA problem, creating a hybrid FX / CPA problem. The final miss

distance from the hybrid problem was recorded and plotted versus the varying fixed

final time, here called the break time, in Figure 22. Also included are the results

of simply cruising until the break time, and then applying the CPA problem. The

hybrid cruise - CPA results are meant to serve as a baseline; what would happen if

no action were taken during the energy management phase.
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Figure 22. Results of varying the final time, tf , for the FX problem.

On the left side of Figure 22, where the break time is zero seconds, the miss

distance is equivalent to that achieved by the CPA problem. However, as the break

time between the FX and CPA problems increases, the miss distance decreases. This

is because the FX problem does not prepare for the final evasive maneuver as well

as the CPA problem. For the example trajectory shown previously where the final

time was set to 18 seconds, the resulting final miss distance from the hybrid would be

approximately 34 meters, meaning a loss of 15 meters from the pure CPA solution.

However, the time to calculate the solution has been reduced dramatically. Even

with a good initial guess, the full CPA solution starting from the initial conditions

requires approximately an order of magnitude longer to calculate than the combined

FX - CPA problem. No quantified comparison of the computation times between the

pure CPA problem and the hybrid FX - CPA problem has been made because the

solution convergence depends too strongly on the initial guess, which may be different
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for every scenario. In general however, the hybrid problem requires significantly less

time to calculate.

4.3 The Free Final Time Problem

In the free final time version of the energy management problem it is assumed

that the pursuer will intercept the evader at some unknown time. Thus the objective

for the evader is to delay this time as much as possible, giving the objective function

J = −tf + wE

∫ tf

t0

(
α̇E
α̇M

)2

+

(
µ̇E
µ̇M

)2

dt, (4.5)

where the final time tf is defined by the intercept condition, r(tf ) = 0. Once again,

the control energy weight term, wE, must be tuned such that the effect of the control

damping on the scalar value of the objective is insignificant.

The free final time optimal control problem is defined by the objective in Equation (4.5),

the condition r(tf ) = 0, the dynamic constraints given by Equations (3.3) and (3.11),

the additional constraints on angle of attack, angle of attack rate, bank angle rate,

and maximum g defined in Chapter III, and the initial conditions shown in Table 4.

This is the Free Time (FR) problem, and similar to the FX problem, it was solved

with the GPOPS-II software using an RK4 propagated initial guess. As with the FX

problem, the problem was solved in relatively short computation time, despite the

fact that like the CPA problem it is has a free final time and a constrained terminal

surface. Unlike the CPA problem, however, the terminal surface does not have a

large gradient. In fact, the variable which describes the terminal surface for the FR

problem, r, is the integral of the variable for the terminal surface of the CPA problem,

VC , and benefits from the smoothing action of the integration.
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The overhead view and altitude profile are shown in Figure 23, while the angle

of attack, bank angle, and PS are shown in Figure 24. Although the FR and FX

0 0.5 1 1.5 2 2.5 3

x range (m) 104

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

y 
ra

ng
e 

(m
)

Evader
Pursuer

0 5 10 15 20 25 30

time (sec)

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

al
tit

ud
e 

(m
)

Evader
Pursuer

Figure 23. Overhead view (left) and altitude profile (right) of the FR problem.
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Figure 24. Angle of attack / bank angle (left) and PS (right) of the FR problem.

trajectories seem qualitatively similar, they differ quantitatively in an important way.

The FR problem dives deeper into the atmosphere at any given time. This is because

the FX problem is “short sighted”, meaning that it makes no attempt to project

required performance beyond the fixed final time at 18 seconds. This causes the

evader to turn more sharply in order to achieve the same heading as the pursuer in

a shorter time. In the FR trajectory, the evader places less priority on the turn in

order to descend further into the atmosphere where it has a drag advantage over the

pursuer. This can be seen by comparing the PS profiles in Figures 20 and 24. In both
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trajectories the PS profile dips during the turn, then after recovering, slowly descends

until the final time. However, the PS for the FR trajectory descends more slowly. At

t =18 s the value of PS is approximately 15 m/s for the FR trajectory, while it is 10

m/s for the FX. This shows that the FR trajectory conserves energy slightly better

than the FX.

Once again the appropriate value of wE must be demonstrated. The weight was

varied and the value of the final time was recorded. Figure 25 shows the magnitude of

the percentage error of the final time, and the calculation time required to solve the

problem for a variety of weight values. A value of wE = 0.2 minimizes computation

time and keeps the error below 10−2.
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Figure 25. Magnitude percentage error (left) and computation time (right) versus
control energy weight for the FR problem.

The difference between the FX and FR problems can be seen by varying the

final time in the FX problem, and comparing the trajectories directly. Various FX

trajectories have been plotted with the FR trajectory from the same initial conditions

in Figure 26. As tf for the FX problem approaches the final value for the FR problem,

the FX trajectory converges to the FR trajectory. Each of the FX trajectories with

a smaller value for tf lacks information about times beyond tf , and thus “greedily”

maximizes r(tf ) without considering the future performance. Solving the FR problem

takes the entire time horizon into account.
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Figure 26. Altitude (left) and heading (right) of the FX trajectory for various final
times compared to the FR trajectory.

The benefit of solving the FR problem can be directly seen by solving the hybrid

FR / CPA problem for various break times, as was done for the hybrid FX / CPA

problem. The resulting final miss distance was plotted versus the break time in

Figure 27, along with the results from cruising and the FX trajectory originally seen

in Figure 22. Clearly, the FR trajectory serves as a better substitute to the energy

management phase of the CPA problem than the FX problem. The final miss distance

performance of the CPA problem is nearly achieved during the first 17 seconds of flight

time, corresponding to tgo of approximately 7 seconds. Therefore, if the evader flies

the FR trajectory until tgo = 7 seconds, then implements an evasion maneuver by

solving the CPA problem, it will still achieve nearly the highest possible miss distance.

Figure 27 demonstrates that the FR problem, when used as an energy management

phase coupled with a maneuverability phase, achieves a higher miss distance than the

FX problem, but only for this one scenario. This effect can be demonstrated more

generally by checking the results at different engagement geometries. This has been

done by varying the initial bearing between the pursuer and evader from 0 through

180 degrees, keeping the initial range constant. The break time for the FR solution

was set to be tgo = 5 seconds for each scenario. This same value was used as the fixed
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Figure 27. Results of varying the final time, tf , for the FR problem.

terminal time in the FX problem for the same initial conditions. The CPA problem

was initialized and solved at the break time for each problem, and the resulting final

miss distance was recorded. The miss distance achieved by the CPA problem, hybrid

FR / CPA problem, and the hybrid FX / CPA problem are compared in the polar

plot in Figure 28. While neither problem achieves the best miss distances possible

as represented by the CPA problem, clearly the FR problem outperforms the FX

problem in general.

The difference in computational effort to calculate the full CPA problem versus

the hybrid FX / CPA and FR / CPA problems is noteworthy. Computation time for

an optimal control solution depends on many factors, including quality of the initial

guess, number of collocation points in the initial mesh, number of segments in the

initial mesh, NLP tolerance, and discretization tolerance. Therefore a quantitative

comparison is difficult to make. However, qualitatively solving the CPA problem,

even with a good initial guess, can require hundreds of seconds on a current desktop
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Figure 28. Comparison of final miss distance for the CPA, FR and FX problems varying
the initial bearing from missile to aircraft.

computer. Solving the hybrid FX / CPA or FR / CPA problem with tgo of five to

seven seconds requires ten to twenty seconds of computation, with the majority of

this for solving the reduced CPA problem. For many cases, with a good initial guess,

the FX or FR problem can be solved in under one second. In fact, much of this time

is spent in the optimizer verifying the setup of the problem.

It has been mentioned previously that the maneuverability phase of the CPA

problem is similar to the HGBR. If the CPA problem in the hybrid solutions is

replaced by the HGBR, additional computational savings are possible, although at

the expense of final miss distance. A demonstration of the performance of a hybrid FR

/ HGBR trajectory has been performed by cutting the FR trajectory at various times,

and running the HGBR until the moment of closest approach. The miss distance was

calculated and plotted versus the break time in Figure 29. It is seen that if the FR
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trajectory is cut at tgo = 3 seconds, a miss distance of 30 meters is still obtained

from the HGBR maneuver. This solution can be obtained in less than one second

of computation time. Although the miss distance of the hybrid FR / HGBR is not

as high as the hybrid FR / CPA, it is perhaps justifiable in some situations to trade

performance for computational speed.

Another interesting possibility would be to replace the CPA or HGBR problem

with a linear version of missile evasion. Likely, for these last few seconds of flight,

the dynamics may be approximated as linear with fixed velocity. In this case, the 3

dimensional optimal evasion solution has been worked out [56], consisting of a max g

pull at a roll angle in-plane with the initial collision, followed by a rapid 180 degree

roll and again pulling maximum g. The moment at which to perform the roll is

determined by a switching function, which is tabulated in [56] for various values of

the missile’s navigation gain and time constant.
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Figure 29. Results of varying the final time, tf , for the hybrid FR / HGBR problem.
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4.4 Summary

The final miss distance objective, defined by the moment of closest approach when

the closing velocity reaches zero, is a logical pick when seeking an optimal evasion

strategy against a single missile. However, as demonstrated here, obtaining the so-

lution to this problem is difficult due to the high gradient which is inherent to the

terminal constraint. To enable faster solutions with more reliable convergence the

problem has been split in two phases, where energy and maneuverability are respec-

tively dominant. The maneuverability phase is still represented by a CPA problem,

although the solution is more easily calculated when the range has already been re-

duced. The energy management phase may be represented either by a fixed final

time, or free final time optimal control problem. Details of the trajectories resulting

from these two formulations have been provided here, primarily showing that the free

final time problem seems to better manage its energy prior to the maneuverability

phase. It was also demonstrated that the HGBR maneuver may be a substitute for

the CPA problem, trading performance for computational speed.

For the remainder of this work it will be assumed that the FX and FR problems

are surrogates for the energy management phase of the overall evasion effort. While

they have been shown to be linked to the CPA objective, they also stand alone

in their utility. In fact, dodging the missile using high-g maneuvers is the pilot’s

last resort. Implementing problems FX and FR extends the time for other types of

countermeasures to be employed. Specific modifications to FR and FX could be made

to accommodate these countermeasures, and optimize their employment.

In this chapter it has been assumed that the pursuer employs the PN strategy, a

relatively good assumption given its popularity, the simplicity of its implementation,

and its relative optimality. However, if the guidance strategy is actually unknown,

it may be necessary to relax this assumption and allow that the pursuer may also
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choose an optimal open-loop strategy. This leads to solving a classic pursuit-evasion

problem, where the objective is zero-sum between the evader and pursuer, and the

solution is a minimax. In the next chapter the semi-DCNLP method will be used to

solve minimax problems mirroring the fixed and free final time one-sided problems

just presented. It will also be shown that the minimax solution represents a guarantee

on the cost function for an open-loop trajectory, at least for fixed final time problems.
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V. Minimax Pursuit-Evasion Problems

5.1 Costate Estimation for the Minimax Initial Guess

So far, it has been assumed that the pursuer uses PN to intercept the evader.

While PN is a popular choice for navigation, modern missiles are likely to employ

advanced algorithms which may outperform PN. Therefore, it is interesting to assume

that the pursuer is able to perfectly observe the evader, and act optimally to achieve its

goal of achieving capture. In this chapter, two zero-sum games will be posed wherein

both evader and pursuer act optimally, and minimax solutions will be calculated using

two different methods: semi-DCNLP and Decomposition. The TPBVP representing

the necessary optimality conditions contains the costate equations of both the evader

and pursuer, and one set of these equations are collocated along with the states in

semi-DCNLP. This means that an initial guess of the costates is required to solve

the problem. Unfortunately the values taken on by the costates are non-intuitive,

and the dynamics of the costates are numerically sensitive to the initial guess. This

necessitates that the user generate an initial guess that is much closer to the final

solution than for a normal one-sided problem. In the literature review it was remarked

that this was done previously using a GA pre-conditioner. However, this method

normally requires long calculation times, and is usually only an approximation. For

this reason, an alternative method is presented for generating the initial guess by

solving a similar one-sided problem, and using collocation based costate estimation.

Costate estimation for PS methods was reviewed in Chapter II, resulting in Equa-

tions (2.15), which relate the KKT multipliers from the NLP to the continuous

costates. This mapping makes it possible to estimate costates for a minimax problem

from the solution of one or more one-sided easily solved optimization problems. The

specific set of one-sided problems to be solved depends on the minimax problem. A
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method for generating an initial guess for the fixed final time version will be presented,

but first it is necessary to define the problem to be solved.

5.2 The Fixed Final Time Minimax Problem

The zero-sum objective mirrors the one-sided objective from Equation (4.5), but

with additional integral control terms for the pursuer, weighted by wP ,

J = r(tf ) +

∫ tf

t0

wP

[(
aγ,c
aM

)2

+

(
aχ,c
aM

)2
]
− wE

[(
α̇E
α̇M

)2

+

(
µ̇E
µ̇M

)2
]
dt, (5.1)

where the evader’s control vector is uE = (uα, uµ) and the pursuer’s control vector is

uP = (aγ,c, aχ,c). In the fixed final time version of the problem there is no terminal

constraint other than the final time, tf . For simplicity the path constraints on max-

imum g for the aircraft and missile will be relaxed, along with constraints on bank

angle and angle of attack. It will be seen that for the energy phase of the problem,

these are unnecessary for many solutions. Also, in order to limit the controls without

actually imposing an inequality constraint, the aircraft controls will be transformed

as is done in [85] via

uα = α̇M sin(uᾱ π/2)

uµ = µ̇M sin(uµ̄ π/2),

(5.2)

thus uα is only defined for−α̇M ≤ uα ≤ α̇M deg/s, and uµ is defined for−µ̇M ≤ uµ ≤ µ̇M

deg/s. In a similar fashion, the missile controls will be redefined as

aγ,c = aM sin(aγ̄ π/2)

aχ,c = aM sin(aχ̄ π/2),

(5.3)

where aM = (35 g) m/s2, so that the missile commands are also restricted to being

−35 g ≤ aγ,c ≤ 35 g m/s2 and −35 g ≤ aχ,c ≤ 35 g m/s2. This redefinition allows
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the controls to be unbounded, which will simplify the formation of the necessary

conditions.

The definition of the fixed final time, two-sided minimax problem is then to choose

uE and uP to find the minimax of the objective in Equation (5.1), subject to the

dynamic constraints in Equations (3.3) and (3.11), the controls in Equations (5.2)

and (5.3), and the initial conditions in Table 4. This problem will be called the Fixed

Time Minimax (FXM) problem.

5.2.1 Necessary Optimality Conditions.

While the FXM problem cannot be solved directly using the PS method, it is possi-

ble to form the TPBVP using the necessary optimality conditions, and subsequently

solve using the semi-DCNLP method. This will require forming two subproblems,

FXME and FXMP . Before describing the details of the semi-DCNLP approach, the

entire TPBVP for the FXM problem will be defined. First it is important to note that

the running costs shown in Equation (5.1) and the state equations given in Equations

(3.3) and (3.11) are separable, as in the sense of Equation (2.41). This means that

the Hamiltonian can also be separated, and therefore the adjoint equations and sta-

tionarity conditions can be too. The terminal costate constraints will link the evader

and pursuer.
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5.2.1.1 Costate Equations.

By applying Equation (2.44a) to Equation (3.3), the costate dynamics for the

evader are found to be

λ̇xE = 0

λ̇yE = 0

λ̇hE = −λvE
mE

(
∂TE
∂hE

cosαE −
∂DE

∂hE

)
− λgE cosµE

mEVE

(
∂TE
∂hE

sinαE +
∂LE
∂hE

)

− λgE sinµE
mEVE cos γE

(
∂TE
∂hE

sinαE +
∂LE
∂hE

)

λ̇vE = −λxE cos γE cosχE − λyE cos γE sinχE − λhE sin γE

− λVE
mE

(
∂TE
∂VE

cosαE −
∂DE

∂VE

)
+

λγE
mEV 2

E

(cosµE(TE sinαE + LE)− gmE cos γE)

+
λχE sinµE
mEVE cosµE

(
(TE sinαE + LE)/VE −

(
∂TE
∂VE

cosαE +
∂LE
∂VE

))

λ̇γE = λxEVE sin γE cosχE + λyEVE sin γE sinχE − λhEVE cos γE + λVEg cos γE

− λγE
g sin γE
VE

− λχE sinµE tan γE
mEVE cos γE

(TE sinαE + LE)

λ̇χE = λxEVE cos γE sinχE − λyE cos γE cosχE

λ̇αE =
λvE
mE

(
TE sinαE +

∂DE

∂αE

)
− λγE cosµE

mEVE

(
TE cosαE +

∂LE
∂αE

)

− λχE cosµE
mEVE cos γE

(
TE cosαE +

∂LE
∂αE

)

λ̇µE =
λγE sinµE
mEVE

(TE sinαE + LE)− λχE cosµE
mEVE cos γE

(TE cosαE + LE).

(5.4)

Note the above costate equations contain partial derivatives of thrust, drag, and lift

with respect to altitude, velocity, and angle of attack. For this reason much attention

was given to ensure the approximate fits to the tabulated lift, drag, and thrust data

had continuous derivatives. The lift and drag expressions are functions of Mach
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number, thus the partials with respect to altitude and velocity must be calculated

using the chain rule. The need to calculate these partials is one drawback of the

semi-DCNLP method, as it complicates finding solutions to problems with tabulated

data. The xE and yE costates are constant, meaning that they do not need to be

modeled as differential equations. This helps reduce the size of the overall TPBVP.

Application of Equation (2.44b) to the state Equations (3.11) yields the pursuer

costate dynamics,

λ̇xP = 0

λ̇hP = 0

λ̇hP =
λVP
mP

∂DP

∂hP

λ̇VP = −λxP cos γP cosχP − λyP cos γP sinχP − λhP sin γP +
λVP
mP

∂DP

∂VP

+
λγP (aγP − g cos γP )

V 2
P

+
λχP aχP
V 2
P cos γP

λ̇γP = λxPVP sin γP cosχP + λyPVP sin γP sinχP − λhPVP cos γP + λVP g cos γP

− λγP g sin γP
VP

− λχP aγ sin γP
VP cos γP 2

λ̇χP = λxPVP cos γP sinχP − λyPVP cos γP cosχP

λ̇aγ =
λVP
mP

∂DP

∂aγ
− λγP
VP

+
λaγ
τ

λ̇aχ =
λVP
mP

∂DP

∂aχ
− λχP
VP cos γP

+
λaχ
τ
.

(5.5)

Again, the xP and yP costates are constant, meaning that the total number of costate

equations is only 12, rather than 16, with four free variables to be determined. The

partial derivatives of drag with respect to altitude, velocity, and accelerations are

relatively easy to calculate given Equation (3.13).
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5.2.1.2 Stationarity Conditions.

The stationarity conditions require that the controls minimize the Hamiltonian.

When the controls are unbounded, as they are assumed to be here, the condition

simplifies to being that the partial derivative of the Hamiltonian with respect to the

control must equal zero. For the current problem, the stationarity conditions become

λαE α̇M
π

2
cos(uᾱ π/2) + wEπ cos(uᾱ π/2) sin(uᾱ π/2) = 0

λµE µ̇M
π

2
cos(uµ̄ π/2) + wEπ cos(uµ̄ π/2) sin(uµ̄ π/2) = 0, (5.6)

which can be solved for the control variables, uᾱ and uµ̄, to be

uᾱ =





1 λαE ≤ −
2wE
α̇M

2

π
arcsin

(
λαE α̇M

2wE

)
−2wE
α̇M

< λαE <
2wE
α̇M

− 1 λαE ≥
2wE
α̇M

, (5.7)

and

uµ̄ =





1 λµE ≤ −
2wE
µ̇M

2

π
arcsin

(
λµE µ̇M

2wE

)
−2wE
µ̇M

< λµE <
2wE
µ̇M

− 1 λµE ≥
2wE
µ̇M

. (5.8)

Control stationarity applied to the pursuer’s unbounded controls gives the expres-

sions

λγP aM
π

2τ
cos(uγ̄ π/2) + wPπ cos(uγ̄ π/2) sin(uγ̄ π/2) = 0

λχP aM
π

2τ
cos(uχ̄ π/2) + wPπ cos(uχ̄ π/2) sin(uχ̄ π/2) = 0,

(5.9)
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which can also be solved for the control variables, uγ̄ and uχ̄, to give

uγ̄ =





1 λaγ ≤ −
2τwP
aM

2

π
arcsin

(
λaγaM

2τwP

)
−2τwP

aM
< λaγ <

2τwP
aM

− 1 λaγ ≥
2τwP
aM

, (5.10)

and

uχ̄ =





1 λaχ ≤ −
2τwP
aM

2

π
arcsin

(
λaχaM

2τwP

)
−2τwP

aM
< λaχ <

2τwP
aM

− 1 λaχ ≥
2τwP
aM

. (5.11)

The usefulness of the squared control terms within the running cost of the objective

in Equation (5.1) can now be seen. Without these terms, the controls would not

appear in Equations (5.6) and (5.9), instead there would be a singular arc where

the control is undefined. Including the control terms in the running cost has the

effect of allowing the controls to be expressed in terms of the costates in the TPBVP,

which can then be substituted directly into the equations of motion to form a reduced

set of differential equations. Additionally, it has been observed by the author that

numerical chatter in the collocation solution is reduced by including squared control

terms in the running cost.

5.2.1.3 Terminal Costate Conditions.

The scalar objective in Equation (5.1) is the magnitude of the relative position

vector given as

r(tf ) =
√

(xE(tf )− xP (tf ))2 + (yE(tf )− yP (tf ))2 + (hE(tf )− hP (tf ))2. (5.12)
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Applying the terminal costate necessary condition from Equation (2.47) gives

λxE(tf ) = −xE(tf )− xP (tf )

r(tf )

λyE(tf ) = −yE(tf )− yP (tf )

r(tf )

λhE(tf ) = −hE(tf )− hP (tf )

r(tf )

λvE(tf ) = λγE(tf ) = λχE(tf ) = λαE(tf ) = λµE(tf ) = 0,

(5.13)

for the evader, and

λxP (tf ) = −xE(tf )− xP (tf )

r(tf )

λyP (tf ) = −yE(tf )− yP (tf )

r(tf )

λhP (tf ) = −hE(tf )− hP (tf )

r(tf )

λvP (tf ) = λγP (tf ) = λχP (tf ) = λaγ (tf ) = λaχ(tf ) = 0,

(5.14)

for the pursuer. Since λxE , λyE , λxP , and λyP are constants, they are completely

defined by Equations (5.13) and (5.14).

5.2.2 Initial Guess Using One-Sided Costate Estimation.

One weakness of the semi-DCNLP method is the need to generate an initial guess

for the nonintuitive costates. While several authors used a GA pre-conditioner to

produce a guess for the costates, it is possible to simply estimate them by solving a

one-sided optimal control problem. The FX problem solved in Chapter IV is similar

to the current minimax problem, except for the assumption of PN for the pursuer.

One result of solving the FX problem is a set of Lagrange multipliers from the NLP

solver. The continuous costates can then be estimated from these multipliers using

Equations (2.15).
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The sign (+/-) of the terminal value of each costates is linked to the scalar ob-

jective through Equation (2.47). Thus the sign of the terminal value of the costates

for the FX problem are set by the evader’s objective, which is to maximize the final

distance between the evader and pursuer. Using the solution of problem FX to esti-

mate the costates works well for the evader’s costates in the FXM problem, because

they share a common terminal objective. However, the objective of the pursuer in

the FXM problem is instead to minimize this distance, thus the terminal value of the

costates from the FX problem cannot be expected to match those for the FXM prob-

lem. For this reason it is helpful to define another one-sided problem, FXP , which

has the objective to minimize the final distance between the evader and pursuer.

For the FX problem, PN was assigned as a suboptimal behavior for the pursuer.

For FXP , a simple suboptimal behavior for the evader is to fly to the evader’s final

position from the FX problem. Under this assumption, it is not necessary to model the

evader’s dynamics, as this was already done in problem FX. Problem FXP is solved

using only the pursuer’s dynamics, with the objective of minimizing the pursuer’s

final distance away from the evader’s final position from problem FX. The solution to

problem FXP then produces a good initial guess at the states, controls, and estimated

costates for the pursuer in the FXM problem. Thus, the states, costates, and controls

for the evader are estimated using the solution to problem FX, while the states,

costates, and controls for the pursuer are estimated from problem FXP . Estimates

of the evader’s costates generated using the FX problem are shown in Figure 30

compared to the true values which will be calculated via semi-DCNLP. The estimated

evader costates from the FX problem are reasonably close to the final values. The

pursuer costates from the FX problem are not close to the correct values, as shown

in Figure 31. The pursuer costates generated using the FXP problem, however, are

very close to the final correct value.
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Figure 30. Evader costates estimated from problem FX, compared with the solution
to problem FXM.

5.2.3 Fixed Final Time Minimax Problem - semi-DCNLP.

The state Equations (3.3) and (3.11), the costate Equations (5.4) and (5.5), the

terminal constraints (5.13) and (5.14), and the initial conditions in Table 4 define

the TPBVP representing the necessary optimality conditions of the FXM problem.

Using the initial guess obtained by solving problems FX and FXP , it is possible to

solve FXM using semi-DCNLP in two different ways; one by collocating the evader’s

controls, FXME, and the other by collocating the pursuer’s controls, FXMP .

To pose problem FXME, the costate equations corresponding to the pursuer are

included in the collocation as states, and their terminal values are constrained by

Equation (5.14). Rather than collocating the pursuer’s controls, the stationarity

conditions are used to eliminate them from the problem via Equations (5.10) and

(5.11). With the necessary conditions built into the problem, the integral term in

the objective function corresponding to the pursuer’s controls has been accounted
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solution to problem FXM.

for, and may be dropped. Finally, the minimization part of the minimax objective is

accomplished by the inclusion of the preceding necessary conditions, thus the modified

objective needs only to be maximized. The objective to maximize for problem FXME

is

J = r(tf )− wE
∫ t0

t0

(
α̇E
α̇M

)2

+

(
µ̇E
µ̇M

)2

dt. (5.15)

Since GPOPS-II expects to minimize the objective, Equation (5.15) is coded into the

software with the opposite sign.

To pose problem FXMP , the evader’s costates are included as states in the collo-

cation, along with their terminal constraints. The evader’s controls are eliminated by

substitution of the stationarity conditions, Equations (5.7) and (5.8), into the evader’s

dynamics. The running cost associated with the evader’s controls are eliminated from

the objective, along with the maximization. Thus, the modified objective for problem
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FXMP coded into GPOPS-II is

J = r(tf ) + wP

∫ tf

t0

(
aγ,c
aM

)2

+

(
aχ,c
aM

)2

dt. (5.16)

It is now possible to formally define the two sides of the semi-DCNLP method of

solving the pursuit-evasion game FXM.

The definition of FXME is to choose the controls uᾱ and uµ̄ to maximize the

objective in Equation (5.15), subject to the dynamics in Equations (3.3) and (3.11),

the evader’s control definition in Equation (5.2), the pursuer’s costate dynamics in

Equation (5.5), the terminal costate conditions for the pursuer in Equation (5.14),

and the pursuer’s stationarity conditions in Equations (5.10) and (5.11).

The definition of FXMP is to choose the controls uγ̄ and uχ̄ to maximize the

objective in Equation (5.16), subject to the dynamics in Equations (3.3) and (3.11),

the pursuer’s control definition in Equation (5.3), the evader’s costate dynamics in

Equation (5.4), the terminal costate conditions for the evader in Equation (5.13), and

the evader’s stationarity conditions in Equations (5.7) and (5.8).

While technically all the necessary conditions for problem FXM will be satisfied

by solving either FXME or FXMP , it is helpful to solve both problems in order to

ensure that the true minimax solution has been obtained. It is possible that either

solution may be a local minimum, but this issue may be detected by solving both

problems and comparing the value of J in Equation (5.1). Additionally, it is helpful

to compare the state trajectories of each in order to visualize small differences in

the event of numerical chatter in the control. Figure 32 highlights the entire process

of solving problem FXM via semi-DCNLP, from solution of the one-sided guesses

FX and FXP , to comparison of the final objective values of solutions to FXME and

FXMP .
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Figure 32. Solution process to problem FXM via semi-DCNLP.

This process was followed to solve problem FXM. The objective functions actually

coded into GPOPS-II for problems FXME and FMXP are different from the FXM

objective in Equation (5.1), in that each is missing the running cost of the other.

However, these integrals can be calculated post-process via the collocation rules of the

PS method. This is most easily accomplished by defining the extra integrand in the

software and allowing it to be computed along with the solution, and simply displaying

it with the output. When this is done the value of the FXM objective calculated by

solving FXME is 6,043.9282 meters, while the objective found by solving FXMP is

6,043.9776 meters. The error between the two, defined by the difference divided by

the evader’s objective, is only 8.17 × 10−6, very nearly the NLP tolerance of each

solution (1 × 10−6). Because the same solution has been achieved by both sides of

the problem, it can be considered that their trajectories represent the minimax.
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Because the results from FXME and FXMP are so close, it is impossible to visually

distinguish the two trajectories. Therefore the altitude and bank angle of FXME are

shown compared with the initial guess FX in Figure 33. Most notably, the value of the

objective from problem FX is 6,063.3265 meters, while the objective value of FXP is

6,042.3198 meters. The minimax value is, not surprisingly, between these two. This is

because in problem FX, the pursuer uses PN, which is not the optimal strategy, thus

the evader improves its objective. In problem FXP , the pursuer’s optimal control

is found. However, although in FXP the evader used the optimal trajectory from

problem FX, it is no longer an optimal strategy against the optimal pursuer. Thus

the minimax trajectory represents the value of the objective when both the evader

and the pursuer behave optimally, and if either player does not choose the minimax

strategy it results in a detriment to that player, and a benefit to their adversary.
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Figure 33. Altitude (left) and angle of attack and bank angle (right) of the Fixed Time
Minimax trajectory compared to the one-sided Fixed Time trajectory.

5.2.4 Implementing a State Constraint.

One feature that does not appear in the original work by Horie and Conway [85] is

how to handle a pure state inequality constraint in problem FXM. The controls were

bounded by transforming them via the sine function which has range between -1 and
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+1. This transformation cannot be done for pure state inequality constraints, which

appear in many realistic optimal control problems. For a direct method, pure state

constraints are applied simply by imposing a constraint within the NLP at the collo-

cation points. An appropriately dense mesh will then ensure the inequality constraint

is met. However, the semi-DCNLP method mixes the direct and indirect methods. In

indirect methods, a pure state inequality constraint is handled by first determining

when, if at all, the state reaches the boundary. In order to ensure the state does

not further penetrate the boundary, the derivative of the state is constrained, often

creating a new mixed inequality constraint. This then imposes a jump condition on

the costate. Afterward, it is also necessary to determine if and when the state leaves

the boundary, and remove the mixed inequality constraint [115, 116]. This compli-

cates the semi-DCNLP method because if a state constraint is placed on the pursuer,

problem FXME must implement these jump conditions in order to accurately write

the costate equations. Inclusion of the jump conditions within the PS method is very

complicated, especially when multiple state constraints must be checked, resulting in

many separate jump conditions, which may or may not actually be necessary in the

problem.

Soft state constraints, namely, penalty and barrier methods, present a way to

avoid having to implement jump conditions on the costates within semi-DCNLP. In

these methods the problem definition is changed by removing the hard constraint and

instead appending a penalty or barrier to the objective function [21]. These penalties

or barriers are typically functions that equal zero whenever the inequality constraint

is met, but increase rapidly when the constraint is active. Although the problem is

modified, the value of the objective function may only vary slightly from the original

problem, provided the penalty is properly tuned. Because the NLP solvers used in

GPOPS-II rely on gradient calculations, it is helpful if the penalty function has a
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continuous derivative. One candidate is the softplus function, which is typically used

as an activation function in neural networks [117]. If, for example, it is desired to

penalize altitudes below zero, the softplus penalty would take the form

g(hE) = ln(1 + e−hE), (5.17)

which is small for hE ≥ 0, increases rapidly for hE < 0, and has smoothly continuous

derivatives for all hE.

When a softplus function representing a state inequality constraint is added to

the objective function in Equation (5.1), an additional term appears in the altitude

costate dynamics in Equation (5.4), becoming

λ̇hE =
e−hE

e−hE + 1
− λvE
mE

(
∂TE
∂hE

cosαE −
∂DE

∂hE

)
− λgE cosµE

mEVE

(
∂TE
∂hE

sinαE +
∂LE
∂hE

)

− λgE sinµE
mEVE cos γE

(
∂TE
∂hE

sinαE +
∂LE
∂hE

)
.

(5.18)

The costate boundary conditions in Equation (5.14) and the stationarity con-

ditions in Equation (5.10) are unaffected. Because only the costate dynamics are

affected, the overall size of the NLP problem does not change, whereas adding an

inequality constraint within a collocation method will increase the size of the NLP

problem by the number of nodes.

A modified version of FXM, where the initial altitude of the evader is only 1,000

meters, has been solved using the semi-DCNLP method using the softplus penalty

to keep the evader from hitting the ground. The resulting trajectory is shown in

Figure 34. It is interesting that although the unconstrained trajectory would have

descended several hundred meters below hE = 0, the penalty does not cause the

evader to fly exactly at ground level, but instead results in the evader arriving at
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exactly ground level at the final time. This matches the behavior from problem FX

when the trajectory has a hard constraint.
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Figure 34. Altitude (left), angle of attack and bank angle (right) of the FXM trajectory
compared to the one-sided FX trajectory when altitude is constrained to be greater
than zero using the softplus penalty function.

5.2.5 Fixed Final Time Minimax Problem - Indirect Transcription.

It is possible to solve problem FXM in another way, where instead of collocating

the costates of one player and allowing the objective and control of the other player

to be solved directly, both sets of costates and corresponding terminal conditions are

collocated. This eliminates the controls and the objective from the problem entirely,

because they are represented by the necessary optimality conditions being enforced

by the NLP. In fact, the Indirect Transcription method, as discussed in Chapter II,

simply solves the TPBVP via collocation.

To implement Indirect Transcription, the state and both sets of costate equations

are coded as states in GPOPS-II, while the terminal costate equations are coded as

endpoint constraints. No controls are defined, and the objective is set to zero. The

initial guess is formed by solving problem FX and FXP , estimating the costates of

the evader and pursuer from the respective solutions, and joining them together into

a single trajectory. Because the x and y costates are constant for both evader and
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pursuer, and their values are defined by Equations (5.13) and (5.14), they do not

need to be included as states. Thus, 28 states are collocated: 16 actual states and 12

costates. Only two endpoint constraints must be defined in GPOPS-II, one for each

of the h costates.

Once the solution has been obtained, it is possible to calculate the controls post

process using the stationarity conditions in Equations (5.7), (5.8), (5.10), and (5.11).

Predictably, because it collocates all the sensitive costate equations, the solution to

FXM using Indirect Transcription requires a much finer grid than either the FXME

or FXMP problems, and typically longer computation time. The objective value

obtained using Indirect Transcription was 6,044.2221 meters, which is an error of

4.87 × 10−5 compared to FXME, slightly larger than the error between FXME and

FXMP already reported. The trajectory is qualitatively very similar to FXME and

FXMP , and thus will not be reproduced.

5.3 The Free Final Time Minimax Problem

In the previous chapter, it was demonstrated that the one-sided free final time

problem (FR) achieved superior results to the fixed final time problem (FX) when

used during the energy phase of a medium range missile evasion scenario. In this

section, the Free Final Time Minimax problem (FRM) will be posed and solved.

Like for the fixed final time problem, the objective for the FRM problem contains

integral terms which serve to conserve control energy, dampen numerical chatter, and

form the TPBVP. The objective is

J = tf + wP

∫ tf

t0

(
aγ,C
aMg

)2

+

(
aχ,C
aMg

)2

dt− wE
∫ tf

t0

(
α̇E
α̇M

)2

+

(
µ̇E
µ̇M

)2

dt. (5.19)
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5.3.1 Necessary Optimality Conditions.

The necessary optimality conditions for the FRM problem share some similar-

ities with the FXM problem. The state Equations (3.3) and (3.11), the costate

Equations (5.4) and (5.5), and stationarity conditions given by Equations (5.7), (5.8),

(5.10) and (5.11) are identical. However, the terminal costate conditions are very dif-

ferent.

5.3.1.1 Terminal Costate Conditions.

The terminal conditions for a general free final time problem are given by Equa-

tions (2.48a) - (2.48d). The terminal surface is modified from r(tf ) = 0 to the

equivalent condition that

xE − xP = 0

yE − yP = 0

hE − hP = 0.

(5.20)

Of the evader states, only xE, yE, and hE appear in the expressions for the terminal

surface, thus for the evader

λxE(tf ) = −νx

λyE(tf ) = −νy

λhE(tf ) = −νh,

(5.21)

where νx, νy, and νh are multipliers with unknown values. For the rest of the costates,

the condition becomes

λvE(tf ) = λγE(tf ) = λχE(tf ) = λαE(tf ) = λµE(tf ) = 0. (5.22)
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For the pursuer, the xP , yP , and hP terminal costates are

λxP (tf ) = νx

λyP (tf ) = νy

λhP (tf ) = νh,

(5.23)

and again the rest of the terminal costates are

λvP (tf ) = λγP (tf ) = λχP (tf ) = λaγ (tf ) = λaχ(tf ) = 0. (5.24)

5.3.1.2 Transversality.

A free final time problem requires a transversality condition, a constraint to match

the unknown final time. Equation (2.48d) applied to the current problem gives

HE(tf ) +HP (tf ) + 1 = 0, (5.25)

where the parts of the Hamiltonian at the final time for the evader and pursuer are

HE(tf ) = λxE(tf )ẋE(tf ) + λyE(tf )ẏE(tf ) + λhE(tf )ḣE(tf )

HP (tf ) = λxP (tf )ẋP (tf ) + λyP (tf )ẏP (tf ) + λhP (tf )ḣP (tf ).

(5.26)

The idea of matching the number of constraints with the number of unknowns is

seen in [4], where each constraint equation is balanced with a variable or constant of

integration. In this case, there are 16 known initial states, 16 equations for the ter-

minal costates, 3 terminal constraint equations and 1 transversality equation. There

are 16 unknown terminal states, 16 unknown initial costates, 3 unknown multipliers,

νx, νy, and νh, and 1 unknown terminal time. Thus the 36 constraints match the 36

unknowns, and the TPBVP is tractable.
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5.3.2 Free Final Time Minimax Problem - semi-DCNLP.

The state Equations (3.3) and (3.11), the costate Equations (5.4) and (5.5), the

terminal constraint Equations (5.21 - 5.24), the terminal surface Equations (5.20),

the transversality Equation (5.25), and the initial conditions in Table 4 define the

TPBVP representing the necessary optimality conditions of the FRM problem.

In the literature, the semi-DCNLP method was applied to a free final time problem

of two aircraft in a dogfight [85, 90]. Only one side of the problem was solved, where

the pursuer’s necessary conditions were collocated in the problem. However, there is

an issue with this technique that did not appear in the FXM problem. In the FXM

formulation, the terminal costate conditions in Equation (5.13) and (5.14) do not

contain the unknown variables, νx, νy, and νh. Instead they are completely defined

by the terminal states.

However, in the FRM problem, the terminal costate expressions do contain νx

νy, and νh. It is possible to eliminate them from the Equations (5.21)and (5.23) by

relating the evader and pursuer terminal costates, as in

λxE(tf ) + λxP (tf ) = 0

λyE(tf ) + λyP (tf ) = 0

λhE(tf ) + λhP (tf ) = 0.

(5.27)

Unfortunately, both evader and pursuer costates must be present in order to enforce

these conditions. Further, the transversality condition also includes both evader and

pursuer costates, although application of Equation (5.27) can reduce this dependency

to either only the evader or pursuer. In the semi-DCNLP method, only one set of

the costates is directly represented in each problem. Because of this, in references

[90], [85], [87], and [88], the terminal costate and transversality conditions are inten-

tionally neglected. As will be seen, this oversight can cause problems for the current
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problem. While it is possible to compute a solution without the terminal costate

and transversality conditions, there is no guarantee that the solution will even be a

candidate trajectory, because the necessary optimality conditions have not been met.

In order to illustrate this problem, incomplete definitions of FRME and FRMP as

provided in the references will be used. First, for FRME, the objective to maximize

is

J = tf − wE
∫ tf

t0

(
α̇E
α̇M

)2

+

(
µ̇E
µ̇M

)2

dt, (5.28)

while the objective to minimize for FRMP is

J = tf + wP

∫ tf

t0

(
aγ,C
aMg

)2

+

(
aχ,C
aMg

)2

dt. (5.29)

The definition of FRME is to choose the controls uᾱ and uµ̄ to maximize the

objective in Equation (5.28), subject to the dynamics in Equations (3.3) and (3.11),

the evader’s control definition in Equation (5.2), the pursuer’s costate dynamics in

Equation (5.5), the incomplete set of terminal costate conditions for the pursuer in

Equation (5.24), and the pursuer’s stationarity conditions in Equations (5.10) and

(5.11). Note that due to the lack of evader costates, it is impossible to enforce the

costate conditions in Equation (5.27).

The definition of FRMP is to choose the controls uγ̄ and uχ̄ to maximize the

objective in Equation (5.29), subject to the dynamics in Equations (3.3) and (3.11),

the pursuer’s control definition in Equation (5.3), the evader’s costate dynamics in

Equation (5.4), the incomplete terminal costate conditions for the evader in Equation

(5.22), and the evader’s stationarity conditions in Equations (5.7) and (5.8). Again,

it is not possible to enforce the terminal costate conditions in Equation (5.27).

As described for the case of fixed final time, it is possible to generate an initial

guess using a similar one-sided optimal control problem by estimating the costates.
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Problem FRMP was fully solved to an NLP tolerance of 1×10−6 and a mesh tolerance

of 1× 10−4 using an initial guess produced by problem FR, and the altitude, angle of

attack, and bank angle profile of the two are compared in Figure 35.
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Figure 35. Altitude (left) and angle of attack and bank angle (right) of problems FR
and FRMP .

Not surprisingly, the two profiles are somewhat similar, and the solution to FRMP

appears to be a reasonable candidate solution to problem FRM. Without checking

that the necessary optimality conditions have been met, the user may assume that

problem FRMP has in fact produced an optimal trajectory corresponding to FRM.

However, it is possible to check this solution by investigating the final values of the

x, y, and h costates. While the pursuer costates were directly calculated in FRME,

the evader costates must be estimated from the states and Lagrange multipliers using

Equation (2.15). The resulting values are shown in Table 5.

Table 5. Terminal costates for problem FRMP , no transversality condition.

λx λy λh
Evader 3.85× 10−4 3.10× 10−4 6.83× 10−5

Pursuer −5.53× 10−4 −3.50× 10−4 1.45× 10−4

Clearly, the terminal costate conditions in Equation (5.27) have not been met.

In fact, because the objective coded into the software is to minimize the final time,
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the optimizer chose values of the evader’s costates which would minimize the time to

achieve intercept. This result should not be surprising, given that this is in fact the

goal of the problem as it has been posed.

Another check can be made by solving problem FRME. Theoretically the two

problems should yield the same solution, as was seen for the FXM problems. Problem

FRME was solved to an NLP tolerance of 1× 10−6 and a mesh tolerance of 1× 10−4,

again using problem FR to estimate costates for the initial guess. Figure 36 shows

the altitude, bank angle, and angle of attack compared to the solution for FR. This
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Figure 36. Altitude (left) and missile pitch and yaw accelerations (right) of problems
FR and FRME.

trajectory is obviously different from the one found by solving FRMP , and so unusual

as to be obviously not the minimax. Essentially, the optimizer is directed to maximize

tf , but because pursuer costates are left free, values are chosen which prolong the flight

as much as possible. In fact, for the shown trajectory, the final value for tf was limited

by the bound of 38 seconds put into the software. Without this bound, the optimizer

could conceivably generate a trajectory which flies until the missile is nearly out of

energy, before finally achieving intercept.

Problem FRMP and FRME can be improved by applying the terminal costate

constraints in Equation (5.27) to the final value of the Hamiltonian given by Equa-

tion (5.26), giving a new expression for the transversality condition which can be
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used in FRMP

λxE(tf )(ẋE(tf )− ẋP (tf )) + λyE(tf )(ẏE(tf )− ẏP (tf )) + λhE(tf )(ḣE(tf )− ḣP (tf )) = −1,

(5.30)

or likewise for FRME

λxP (tf )(ẋE(tf )− ẋP (tf )) + λyP (tf )(ẏE(tf )− ẏP (tf )) + λhP (tf )(ḣE(tf )− ḣP (tf )) = 1.

(5.31)

Problem FRME has been solved, and is shown compared with FR in Figure 37.

This time problem FRME appears to be very similar to problem FR. However, a check
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Figure 37. Altitude (left), angle of attack and bank angle (center), and pitch and yaw
accelerations (right) of problems FR and FRME.

of terminal costates, shown in Table 6, reveals that the displayed trajectory it is not

precisely the minimax trajectory defined by the necessary optimality conditions.

Table 6. Terminal costates for problem FRME, with transversality condition.

λx λy λh
Evader 1.07× 10−3 6.68× 10−4 −2.16× 10−4

Pursuer −1.07× 10−3 −6.67× 10−4 2.19× 10−4

As cited in Chapter II, the semi-DCNLP method has been used in several studies

to solve relatively complex, free final time minimax problems. The authors define
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an extended system to represent the semi-DCNLP method, along with necessary

conditions for optimality as a post solution check. There is nothing preventing the

method from obtaining a correct solution which satisfies the necessary conditions.

However, as has been demonstrated here, there is no guarantee that a solution will

satisfy these conditions for the current problem. Thus, while semi-DCNLP was a very

useful technique for solving the fixed final time problems, the free final time solution

must be obtained in another way.

5.3.3 Free Final Time Minimax Problem - Indirect Transcription.

The problem with semi-DCNLP for the FRM problem is that it is not possible

to enforce the terminal costate conditions. This can theoretically be overcome by

using the indirect transcription approach, where instead of only collocating costates

for one player, both sets of costate dynamics and constraints are included in the

software. This method, which simply seeks to solve the TPBVP via collocation,

leaves the controls and objective empty (or with a value of zero) in the software since

the necessary conditions account for both. Indirect transcription was shown to work

for the FXM problem, although with an increase in computational effort.

All the necessary optimality conditions described for the FRM problem were im-

plemented in the GPOPS-II software. The initial guess was created by solving prob-

lem FR and estimating the costates using Equation (2.15). Unfortunately, no solution

to problem FRM was obtained using this method. While the error tolerances achieved

by the NLP software were on the order of 1× 10−5, the problem always had at least

one infeasible variable, usually being one of the terminal costate constraints. Inspec-

tion of the infeasible trajectories usually showed oscillations of the type seen in Figure

36. It is likely that the added transversality and terminal costate constraints make
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the indirect transcription method too sensitive to achieve solutions for this specific

problem. Thus a different solution method is required.

5.3.4 Free Final Time Minimax Problem - Decomposition.

The Decomposition iterative method, described in Chapter II of this document,

may be used to solve problem FRM by forming two separate one sided optimal con-

trol problems. The method avoids the need to calculate the sensitive and unintuitive

costate dynamics by iterating on these two problems. It is important to note that in

the FRM problem, the evader and pursuer’s objective and dynamics are completely

separable, being linked together by only the terminal condition. Thus, rather than

seeking to simultaneously solve the minimization and maximization problem, the De-

composition method finds the terminal condition which corresponds to the minimax

by solving the dynamics and objectives of one player responding to the other, then re-

peating until convergence is achieved. The actual objective information is not shared

between the two, instead the terminal position of each iteration is used.

The pursuer problem, here termed FRDP , is to minimize the time required to

reach the terminal position of the evader calculated from either the initial guess or

the previous iteration. This point is termed ei for short, and the capture condition

is written as

Ψ = (ei − xP (tf ))
T = 0, (5.32)

where xP is the terminal position of the pursuer at time tf .

The evader problem, here termed FXDE, in response to FRDP , is to maximize

the pursuer’s minimized objective, or value, at the now fixed final time, tf , obtained

from the solution to FRDP . Because an analytical expression cannot be written for the

value of FRDE, a linearized approximation is used, given by Equations (2.57) and (2.58).
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For the current problem the Value of the evader simplifies to

VE = max
uE

bT (xE − ei), (5.33)

where b is the vector of Lagrange multipliers associated with the capture condition

in problem FRDP . The result of solving problem FRE is a new final location for the

evader, an updated value of ei+1. The algorithm described in Chapter II was used

to iterate between solutions of FRDP and FXDE, beginning with an initial guess

obtained by solving problem FR. Iterations of the two problems were continued until

the square root of the sum of squares of the difference between the old and new

values of e fell below 1× 10−3 meters. Solving each subproblem to an NLP tolerance

of 1× 10−6 and a mesh tolerance of 1× 10−4 required 6 iterations and approximately

70 seconds to converge.

It is possible to check the minimax solution by using the homotopy technique

used in Chapter IV of progressively solving the fixed time problem for larger values

of tf , until the final range is nearly zero. In Chapter IV, problem FX approximated

FR as the fixed tf approached the free value where r(tf ) = 0. Now, problem FXME

was solved for increasing values of tf until the distance reached a value near zero.

The intermediate fixed time trajectories displayed with the Decomposition solution

in Figure 38 show that the solution to FXM progressively approaches FRM as tf

approaches the free final time value. This result builds confidence that the trajectory

obtained using the Decomposition method is in fact a minimax. The homotopy

method, while interesting as a check, is not actually a minimax because the fixed

value of tf can never quite reach the free value where r(tf ) = 0.

One benefit of using the Decomposition method is that it relies only on direct

methods. This means that necessary optimality conditions are not required, elimi-

nating the complicated costate dynamics and terminal conditions associated with the
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Figure 38. Altitude (left) and angle of attack and bank angle (right) found using the
homotopy and Decomposition methods.

semi-DCNLP method. This is particularly helpful when state inequality constraints

are present. For the fixed final time problem solved via semi-DCNLP, it was necessary

to augment the objective with a penalty function to implement an altitude constraint.

When using the Decomposition method, it is simply necessary to constrain the trajec-

tories directly within the NLP. Problem FRM has been modified so the initial evader

altitude is 1,000 meters, with the pursuer slightly above. The resulting minimax

trajectory solved via Decomposition is shown in Figure 39.
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Figure 39. Altitude (left), angle of attack and bank angle (right) of the FRM trajectory
solved with the Decomposition Method compared to the one-sided FR trajectory when
altitude is constrained to be greater than zero.
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5.4 Summary

The fixed final time minimax problem FXM is the two-sided analogue to the FX

problem presented in Chapter IV. While the semi-DCNLP method offers a means of

solving the FXM problem in a single NLP, it has a few drawbacks. First, formation

of the costates and terminal conditions requires some amount of work to form the

problem. This includes shaping the dynamics such that partial derivatives can be

computed exactly. The presence of inequality constraints on the states or controls

presents additional complexity, which here has been managed by transforming the

control variable such that its range is bounded and by appending penalty constraints

within the objective function. Finally, the sensitivity of the costates necessitates a

very good initial guess, which can be generated relatively quickly using the results

from the one-sided problem FX.

Unfortunately, problem FRM could not be accurately solved using the semi-

DCNLP method. However, the Decomposition method, which requires iterative solu-

tions of two one-sided problems, was implemented and successfully used to solve the

FRM problem. While the Decomposition method may require more CPU time than

semi-DCNLP, it can easily handle control and state inequality constraints without

modification to the objective function.

While the minimax solutions themselves are interesting, their application to han-

dling uncertainty is perhaps more enlightening. The definition of the minimax given

by Equation (2.40) indicates that following the minimax trajectory serves as a guar-

antee of performance, no matter what control strategy the opponent chooses. By

extending the definition of the control to other unknown parameters or states, the

minimax can be applied to obtain a control strategy which accounts for the presence

of uncertainty. This forms the basis of the next chapter.
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VI. Pursuit-Evasion with Uncertainty

In Chapter IV, solutions to fixed final time free final state (FX) and free final time

fixed final state (FR) optimal control problems were obtained under the assumption

that perfect state information was available to the evader. The open-loop control was

valid so long as the dynamic model, initial state, and control law of the pursuer were

correct. Of course this scenario is impossible in practice, so techniques are required to

deal with the reality of uncertainty. As this work has so far viewed problems from the

evader’s perspective, the following will focus on uncertainty in the state and behavior

of the pursuer, although the same techniques could easily be applied to an uncertain

evader.

Three scenarios will be examined in this chapter. First, the assumption of perfect

information about the pursuer’s state, model, and control strategy is no longer valid.

However, the uncertainty is bounded by some limits, whether based on intelligence

or by some previous observation. A structure is assumed for the uncertainty, and

it is incorporated into the minimax problem. The solution will represent a lower

bound guarantee on the performance of the evader, so long as the minimax control is

employed.

The second scenario assumes that although the pursuer’s state, model, and control

strategy is uncertain, periodic state updates are available to the evader. The evader

will then repeatedly solve for the optimal control after each update in order to correct

its trajectory. This could be done using either the fixed final time (FX) problem as

part of a Receding Horizon Controller, or the free final time (FR) problem as part of a

Real-Time Optimal Controller. To evaluate the suitability of these two methods, two

important factors are computation time and performance in achieving a satisfactory

value of the objective. These factors will serve as the metrics to judge the suitability of
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the RHC and RTOC methods for solving an optimal evasion problem in the presence

of uncertainty.

Finally, to highlight the utility of the minimax trajectory generally, a minimum

time to climb problem will be solved, but incorporating uncertainty using the min-

imax trajectory. This problem, which has energy elements similar to the evasion

problems previously solved, is sensitive to uncertainty in the mass and thrust of the

aircraft. Solving for the minimax will not only find a solution which incorporates this

uncertainty, but it can also be used as a design tool, as will be demonstrated in this

chapter.

6.1 No State Updates

6.1.1 Application of Problem FXM.

In the minimax solution obtained by solving problem FXM, it is assumed that

both the evader and the pursuer have complete state information about each other,

and will use this information to choose an optimal strategy. From the point of view

of the evader, this problem is interesting to solve because it represents the worst-case

scenario when the pursuer’s guidance strategy is unknown. If the evader had perfect

knowledge of the pursuer’s dynamics and initial conditions, the open-loop control

given by the solution to FXM would produce a lower bound for the objective, no

matter what guidance strategy was used by the pursuer. Thus, following the minimax

trajectory gives the evader a guaranteed minimum cost despite the uncertainty in

the pursuer’s control. The converse is true for the pursuer; the minimax control

guarantees a maximum cost despite uncertainty about the evader’s future actions.

To demonstrate this fact, the open-loop evader control produced by FXME has

been used against a set of PN guided missiles with varying values of the guidance

gain, NP , between 2 and 5. All have the same initial conditions and are integrated
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using Matlab’s ode45 solver until the final time at 18 seconds. The scalar objective,

the final distance r(tf ), was recorded and is displayed in Figure 40 along with the

scalar value found for FXME. As can be seen, none of the values of NP used by the

pursuer achieve a lower final distance than the minimax solution. This is because

they are all suboptimal strategies, and thus subject to the minimax definition from

Equation (2.40). Technically this relationship applies to the full objective, J , while

only the scalar part has been plotted in Figure 40. However, the running costs are

intentionally kept very small, and thus the guarantee may be considered to apply to

the scalar cost, r(tf ), alone.
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Figure 40. Final miss distance for a variety of PN missiles with gain NP . The minimax
value of the miss distance in dashed red is the theoretical minimum boundary.

To further demonstrate that the minimax control solution guarantees a lower

bound for the evader, the initial bearing from the pursuer was varied, and problem

FX was solved at tf = 18 seconds for three levels of NP . Problem FXM was also

solved at the same final time, and the resulting final distance between the evader
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and pursuer was recorded. The value of the FX distance minus the FXM distance

has been plotted in Figure 41. The fact that the plotted profiles are always positive

shows that the minimax value is the lower bound for a variety of problems, not just

for one specific scenario. Interestingly, the NP = 2 profile is nearly always 60 meters

larger than the minimax. The NP = 4 profile performs very well in a tail chase near 0

degrees bearing, but more poorly when a large turn is required. Figure 41 highlights

how the minimax trajectory can serve as a benchmark for the relative optimality of

other trajectories.
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Figure 41. Final miss distance of problem FX minus the minimax value versus initial
bearing angle with various NP .

The concept of achieving a guaranteed cost despite uncertainty can be extended

beyond the guidance strategy. For the unknown guidance strategy it was assumed

that the pursuer could choose its control to minimize the objective function. Then
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the pursuer was simulated as using a PN guidance strategy, and it was shown that no

value of NP could do any better than the minimax control. In a similar way, if there

are unknown missile parameters, such as the navigation time constant, τ , the surface

area of the missile, SP , the mass of the missile, mP , or the drag coefficients, CD,0 and

k, as defined in Capter III, it is possible to assume that these are control variables

which the pursuer may choose. If problem FXMP is solved, these parameters can

be coded as controls which will directly attempt to minimize the pursuer’s objective.

The resulting minimax trajectory will not only identify the open-loop controls of the

pursuer and the evader, but also the values of the parameters which most benefit the

pursuer, and the minimum value of the cost function against an optimal evader. The

solution is once again a guaranteed lower bound on the cost.

As a demonstration, problem FXMP has been re-solved, but assuming that τ ,

SP , mP , CD,0, and k may take values uniformly between 0.75 and 1.25 times their

value shown in Table 3. These parameters were coded as bounded control variables

in GPOPS-II, and the problem was re-solved. The minimax values of the parameters

are mostly intuitive; mP takes on the maximum value, while SP , CD,0, and k take on

their minimum. To check against other values of the parameters that the minimax

cost is once again the lower bound, a 5000 run Monte Carlo simulation was run,

with values of the unknown parameters sampled from a uniform random distribution

between the upper and lower uncertainty bounds. The open-loop evader and pursuer

controls were used to propagate each simulated trajectory until the final time of 18

seconds. The resulting distance between the evader and the pursuer was recorded

and plotted as a histogram in Figure 42, along with the minimax value of the scalar

objective in dashed red. Clearly, the minimax is the lower bound, demonstrating the

fact that for the evader the minimax control guarantees a minimum cost despite the

uncertainty in either missile parameters or guidance strategy.
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Figure 42. Histogram of the final miss distance for a variety of PN missiles with
uncertain parameters. The minimax value of the miss distance in dashed red is the
theoretical minimum boundary.

It is also possible to incorporate uncertain initial conditions in this way. For ex-

ample, assume that exact values of the initial xP , yP , and hP are unknown to the

evader, but an estimate of their values is available, including mean and covariance,

which assumes a multi-variate normal distribution. This is in fact a likely scenario

given that if a launch is identified, the approximate last known location of the missile,

including a mean and covariance, could be provided to the evader’s guidance com-

puter. In order to define the minimax trajectory, it is necessary to put a bound on

the possible values of the initial states. This can be done through the Mahalanobis

distance, given by

M =
√

(x− µ)TΣ−1(x− µ). (6.1)

For a multivariate normal distribution, the probability of a sample being within a

given Mahalanobis distance is given by the chi-squared distribution [118]. For exam-
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ple, if the covariance of the initial xP , yP , and hP position is

Σ =




1002 0 0

0 1002 0

0 0 1002



, (6.2)

then for a multivariate normal distribution, 90% of the points would fall within an

ellipse of size M2=6.25. This bound was implemented as a constraint on the allowable

initial conditions within GPOPS-II, and problem FXMP was re-solved. In choosing

its initial position, the pursuer improved upon its objective against the evader. The

result shows the worst starting location against which the evader must react, and

also the resulting final distance. If the evader used the minimax open-loop control

against any other starting position, the resulting final distance would be higher than

the minimax value. The initial pursuer position in the x-y plane and x-h plane are

shown in Figure 43 with a large red dot.

Figure 43. Starting positions for the Monte Carlo analysis of the FXM minimax prob-
lem with uncertain pursuer initial position. The minimax value is the large red dot.

A 5000 run Monte Carlo was run using the open-loop pursuer and evader controls,

but with a multivariate normal distribution with mean from Table 4 and covariance
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from Equation (6.2). The simulated pursuer initial positions are shown in Figure 43,

along with the 90% boundary (Mahalanobis = 6.25). Note that some of the simu-

lated starting points are outside the 90% boundary. For these points, the minimax

guarantee does not apply. As might be expected, the minimax value of the pursuer’s

initial position lies on the 90% boundary nearest to the evader, to the upper right in

the X-Y plane, while the minimax initial altitude is slightly above the mean value.

Figure 44. Histogram of the final miss distance for a variety of missiles with uncertain
initial position. The minimax value of the miss distance in dashed red is the theoretical
minimum boundary.

The final distances resulting from the Monte Carlo are shown as a histogram in

Figure 44. It was guaranteed that 90% of the final distances would lie above the

minimax value. As anticipated, some trajectories lie below this value, but 99% of the

5000 trajectories have a final distance higher than the minimax value.

When it comes to choosing an open-loop control during an actual missile evasion

scenario, the minimax trajectory represented in Figures 43 and 44 is certainly a

conservative choice. It is probable that by simply solving problem FX, a higher final
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distance would be obtained. However, it is also possible that using the one-sided

trajectory could result in even worse performance, depending on how far the actual

missile is from the mathematical model.

6.1.2 Application of Problem FRM.

The solution to the FXM problem gives the evader a guaranteed lower bound on

its objective at the fixed final time, no matter what control strategy the pursuer may

use. This was demonstrated with a Monte Carlo analysis. In the case of FRM, a

free final time problem with fixed final state, the lower bound guarantee is contingent

on the terminal constraint and bounds of the problem. This means that applying

the minimax control in a Monte Carlo simulation in open-loop is difficult, and unless

performed correctly the results will not satisfy the minimax relation from Equation

(2.40).

One issue with the FRM formulation is that it is impossible for any pursuer to

numerically achieve r(tf ) = 0 meters exactly. While both the pursuer and evader have

been modeled as point masses, it is reasonable instead to assign a capture distance of

20 meters (approximately the length of an F-4 Phantom). This means that the final

constraint in both problem FR and FRM is r(tf ) = 20. In order to enforce this, an

additional path constraint must be added, r(t) >= 20, to ensure the optimizer does

not seek a solution where the missile passes through the evader to seek the constraint

on the other side. A minimax solution to problem FRM with the new constraints

is easily obtained using the Decomposition method as described in Chapter II and

implemented in Chapter V.

It is guaranteed that if the evader uses the minimax control, the pursuer cannot

achieve intercept at exactly r(tf ) = 20 any faster than the minimax final time, tf .

There are two likely results when the evader uses the minimax open-loop control
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against any pursuer choosing a suboptimal control. The first is that the pursuer will

leave the region where VC > 0 earlier than tf . The surface VC = 0 is considered semi-

permeable, meaning that the pursuer cannot re-enter the space of the game once it

has departed. Thus the final intercept time would be infinity.

The second outcome is that the pursuer stays within VC > 0, but does not achieve

capture by tf . After this time, the evader’s open-loop control is no longer defined;

however, the minimax time has already been exceeded so any behavior the evader

chooses will result in a final time greater than the minimax value. This is the case

when the minimax evader control is used in open-loop against a PN pursuer with

NP ∈ [2, 5].

To demonstrate the second outcome, the value of NP was varied between 2 and

5 in simulations where the evader control was the minimax, while the pursuer used

PN. The distance between the evader and pursuer was recorded for each simulation,

and is displayed in Figure 45. For all trajectories the closing velocity was positive

until the final time, meaning that no instances of the first outcome were observed

when using PN. As an aside, the benefit to the pursuer of choosing NP = 4 is readily

apparent.

6.2 Periodic State Updates

Modern aircraft may carry a missile approach warning system which could provide

estimates on the state of an incoming threat. This information may be used to

improve the open-loop solutions developed in the previous section. Each time an

update becomes available, the optimal evasion trajectory may be re-solved, with the

current time and state as the initial conditions. When the optimal evasion is obtained

by solving a fixed final time problem such as FX, the ensemble of iterations is known

as a Receding Horizon Control (RHC) problem. Posing the evasion as a free final
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Figure 45. Distance between the evader and pursuer when the evader uses the minimax
control from problem FRM, while the pursuer uses PN with various values of NP .

time problem such as FR is called Real Time Optimal Control. Both these methods

have been described in Chapter II, and will be used here—to investigate how state

updates can be used to improve upon the result of an evasion scenario.

6.2.1 Receding Horizon Control.

In a typical application of RHC the optimal control problem is only solved for

a short time span. However, in reference [44] it is shown that longer time horizon

problems tend to perform better. In Chapter IV is was shown that the FX problem

could replace the energy phase of an evasion trajectory up until approximately tgo = 5

seconds. Thus it makes sense to solve each iteration in the RHC problem with a fixed

final time equal to tgo = 5 seconds. Unfortunately, tgo is not known at the problem

start, and must be approximated. The simple estimate described by Equation (2.17)

can be used when only range (r) and range rate (VC) information are provided.
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6.2.1.1 Correct model, perfect updates.

An example RHC problem has been solved by assuming that updates of the pur-

suer’s state are available every second. For this example, it is assumed that the

updates are perfect, without uncertainty. It is also assumed that each FX problem

is solved instantly, and the solution is available at the exact time it was required.

After each solution to problem FX is obtained, the optimal control is used open-loop

in a simulation representing the true behavior of the missile and aircraft. For the

example problem, the simulated pursuer is the same as the model used in problem

FX. Given these assumptions it may be expected that the simulated trajectory should

follow the optimal control solution exactly. This is not correct because problem FX is

repeatedly calculated with a different value of tf , since the tgo calculation incorrectly

assumes that neither pursuer nor evader will maneuver.

With the initial conditions from Table 4, the first fixed final time corresponding

to tgo = 5 seconds occurs at nearly t = 16 seconds. However, this is a conservative

approximation. As each solution is calculated, the trajectory progresses, and the

approximated time when tgo = 5 is pushed backward to 20 seconds when the evader

begins the maneuverability phase. An overhead view and altitude profile of the FX

trajectories compared to the simulated model is shown in Figure 46. The altitude

profile shows that the first solutions to FX do not match the final trajectory due to

the updated tgo.

6.2.1.2 Mesh Refinement.

An initial guess must be supplied for each attempted solution of problem FX.

For the first iteration, the best guess can be given by integrating the equations of

motion with a constant control. However, in subsequent iterations it makes sense to

reapply the solution to the previous iteration as the initial guess. This homotopic
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Figure 46. Overhead view (left) and altitude profile (right) of the RHC scenario solved
using problem FX.

guess generation improves the convergence time dramatically, although it has the

potential to trap the solution into a local minimum. A further improvement can be

made by adapting the mesh to fit the next iteration’s known time vector. For a PS

mesh, this process is not trivial.

As detailed in Chapter II, a PS mesh is formed of several segments, each with a

varying number of nodes distributed on the interval τ ∈ [−1, 1) based on the LGR

formulation. During the solution of the first problem FX, this mesh is refined so

the regions which have large state or control gradients are more densely populated

with segments and nodes. This mesh structure not only improves the accuracy of

the solution, but also enhances the speed of convergence. In order to conserve this

structure the mesh must be modified at each iteration. An algorithm is proposed to

accomplish this.

1. Retrieve the mesh from the solution to the previous iteration of the optimal

control problem.

2. Define the cut time, tcut, as the new initial time to problem FX.

3. Determine in which segment, i, the time, tcut, resides.

4. Remove segments 1 through i.
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5. Insert a new segment with a small number of nodes (4), beginning at tcut and

ending at segment i+ 1.

6. If the final time has changed, trim or add segments as appropriate.

7. Renumber the segments and redefine all mesh related parameters.

8. Interpolate the states and controls onto the new mesh.

9. Estimate any integrals required in the initial guess as a ratio of the new and

old mesh time durations.

An example iteration of this algorithm is shown in Figure 47. The previous so-

lution’s mesh begins at t = 0 seconds, and contains two relatively dense segments

prior to the update at t = 1 second. To adjust the mesh, the first three segments are

removed and replaced by a single segment with only four points, beginning at t = 1

second and ending at the next segment near t ≈ 1.35 seconds.
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Figure 47. A single iteration of the mesh trimming algorithm. The update is received
at 1 second, where the mesh is cut.

The RHC problem was solved with three different techniques for generating the

initial guess at each iteration of problem FX. First, a single, unmodified guess was
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supplied to all iterations. Second, the initial guess to each new iteration was taken

directly from the solution of the previous iteration, including the mesh. Finally,

the mesh from the previous iteration was adapted using the above algorithm. The

resulting CPU time required to solve each iteration of problem FX was recorded and

displayed in Figure 48. While the second method of recalculating the initial guess

from the previous solution is a definite improvement over simply using the same

initial guess, it still often requires a subsequent mesh refinement using a method

such as [22] to reduce the discretization error to the required tolerance. However,

the mesh adjustment algorithm, which may be considered a mesh pre-conditioner,

usually results in a solution with no mesh refinement required.
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Figure 48. Comparison of computation times for iterations of the RHC problem using
three methods of generating the initial guess.

Using the mesh trimming algorithm, the CPU time required to solve problem FX

is typically around 0.25 seconds. In the GPOPS-II software, over half of this time is

spent verifying the setup of the solution. If this process were removed, the CPU time
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required to generate a trajectory update would be approximately 0.1 seconds, which

is likely fast enough for real-time use.

Once the time corresponding to tgo = 5 seconds has been reached, it is left to

the pilot to fly an evasive maneuver. This could be accomplished either by solving

problem CPA or by simply executing a HGBR maneuver. Regardless, the updates

are assumed to end at this point, defining the end of the RHC problem. The analogue

to the objective from problem FX in the RHC problem is the distance between the

evader and pursuer when tgo = 5 seconds. This final distance found using the idealized

RHC solution shown above can serve as a benchmark as the unrealistic assumptions

of perfect knowledge of the model and state are relaxed.

6.2.1.3 Incorrect Model.

Previously it was assumed that the pursuer used PN with NP = 4. However, if

this assumption is made but the actual simulated pursuer uses a different value of

NP , the performance of problem FX will degrade. For example, when no updates are

available, if problem FX assumes NP = 4, but in simulation NP = 2, the pursuer will

stray from the anticipated trajectory over time. Specifically problem FX will assume

the pursuer uses much more turning acceleration than it actually does, with the result

that the pursuer will not pull down or turn as quickly as expected, as displayed in

Figure 49.

However, when updates are available the evader uses the pursuer’s state infor-

mation to modify its trajectory to compensate for the incorrect assumption on NP .

Figure 50 shows how the evader reduces its angle of attack and increases its bank

angle to capitalize on the updates. The major effect is that the evader descends more

quickly, further escaping the pursuer who descends less rapidly. This can be seen by

close inspection of the altitude profiles in Figures 49 and 50.
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Figure 49. Altitude profile (left) and pursuer accelerations (right) with no updates
solved using problem FX assuming NP = 4 but in actual simulation NP = 2.
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Figure 50. Altitude profile (left) and angle of attack and bank angle (right) of the RHC
scenario with updates at 1 Hz solved using problem FX assuming NP = 4 but in actual
simulation NP = 2.

When the tgo reaches 5 seconds, the iterations of the problem are completed. At

this time, the CPA problem was initialized and run using NP = 2 for the puruser,

and the miss distance achieved was 83 meters. This is much higher than the miss

distance values reported in Chapter IV, because the value of NP is lower, resulting in

a slower response time during the maneuverability phase.

The RHC algorithm corrects the evader’s behavior when an incorrect assumption

is made about the pursuer. This naturally leads to the question of whether the min-

imax trajectory, solved via problem FXME, would represent a further improvement

in the RHC technique. Calculation of each FX problem in the RHC can easily be ac-
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complished within the 1 Hz cycle shown in Figure 50. Unfortunately the computation

time of problem FXME is much too long for true real-time implementation.

6.2.1.4 Stochastic Updates.

In reality, any observation the evader makes of the pursuer would be subject to

measurement noise. Here, for simplicity, it will be assumed that the noise on the

pursuer’s state is additive with a multivariate normal distribution N (0,Σ), where

the covariance, Σ, varies linearly by the range between the pursuer and evader, and

is given by

Σ =
r(t)

r(t0)




Σ1 0

0 Σ2


 , (6.3)

where

Σ1 =




1002 (m2) 0 0 0

0 1002 (m2) 0 0

0 0 1002 (m2) 0

0 0 0 302 (m/s)2




(6.4)

and

Σ2 =




82 (deg2) 0 0 0

0 82 (deg2) 0 0

0 0 (0.4g)2 (m/s2)2 0

0 0 0 (0.4g)2 (m/s2)2



. (6.5)

In order to study the impact of receiving imperfect updates, 500 simulated RHC

simulations were run. First, it was assumed that only the first noisy update, obtained

by drawing from N was available at time zero. Problem FR was solved, and the

evader’s control was used against the pursuer in open-loop until the final time of
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t = 18 seconds. The final range between the two was recorded. Next, for the same

noisy initial conditions, it was assumed that updates were available at intervals of

3 seconds, obtained by sampling from N and additively applying the noise to the

pursuer’s current state. The final range was again recorded, and histograms of the

two ranges are shown in Figure 51.

The mean of each distribution has been marked with a vertical dashed red line.

While the mean final distance with updates appears to be larger than the case with

no updates, this can not be demonstrated with the usual statistical tests because the

distributions are non-normal. Instead, a two-sample Kolmogorov-Smirnov test can be

used to compare the two distributions. Using the one-sided test, the null hypothesis

is that the distribution with no updates is the same as the distribution with 3 second

updates, while the alternative hypothesis is that the empirical cumulative distribution

of the no update distribution is larger than the empirical cumulative distribution of

the 3 second update distribution.

Using Matlab’s kstest2 function with a significance level of 0.01 on the data in-

dicates that the null hypothesis should be rejected, meaning that the final distances

with no updates tend to be smaller (a larger CDF) than those with 3 second updates.

In other words, calculating updated trajectories statistically results in an improved

final distance. This result is perhaps not surprising, although it is not a given that

imperfect updates are better than none at all.

6.2.2 Real Time Optimal Control.

In RTOC, problem FR is repeatedly solved with new initial conditions each time

a state update is available. Once again to begin it will be assumed that the update

is noise free, and that the missile model in problem FR matches exactly with the

simulated “truth” model. Unlike in RHC, this time tf does not need to be predefined;
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Figure 51. A comparison of the histograms for the noisy update RHC problem. The
top distribution shows results obtained without updates, the bottom shows the results
when updates are available every 3 seconds.

finding its value is the objective of problem FR. Still, tgo is needed to determine when

the energy phase should end, and the maneuverability phase should begin. Once

problem FR has been solved, a very accurate tgo estimate is obtained by simply

subtracting the current simulation time from the tf calculated in the FR trajectory.

However, to better compare with the RHC method, the same estimate for tgo will be

used, so that the final evasive maneuver will have approximately the same duration.

As a check, the RTOC problem was solved with an update frequency of 1 Hz. The

resulting trajectory is shown in Figure 52. Note that unlike the comparable RHC

trajectory displayed in Figure 46, the optimal control trajectories and the simulated

trajectories match perfectly. This is the expected behavior which simply indicates

that each FR problem has been solved to sufficient numerical accuracy that the inte-

grated control over 25 seconds results in the same trajectory. This was not the case

with the RHC trajectory due to the poor estimate of tgo.
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Figure 52. Altitude profile (left), angle of attack and bank angle (right) of the RTOC
scenario solved using problem FR.

6.2.2.1 Mesh Refinement.

As in RHC, the mesh adjustment algorithm for the initial guess was studied. Three

different methods of obtaining an initial guess prior to each iteration of problem FR

were used and the resulting CPU times are compared in Figure 53. The first method

was to simply use the same initial guess for all iterations. The second method was

to use the solution from the previous iteration, including its mesh, as the guess for

the next iteration. The third method was to apply the mesh adjustment algorithm

presented with RHC. As can be seen, the mesh adjustment algorithm is once again

an obvious improvement in the CPU time required to solve each iteration of problem

FR. This also correlates to an improved likelihood of the problem actually converging.

As with RHC, the RTOC problem repeated solutions of the FR problem each time

an update was received, until the simulation time reached tgo = 5 seconds. At this

point the CPA problem was then solved to determine the best possible miss distance

that could be achieved. The CPA trajectory again looks like a shortened version of

the CPA solutions obtained in Chapter IV, being a well-timed roll at high g. The

miss distance achieved for this idealized problem was 31.07 meters, consistent with

the results obtained in Chapter IV, specifically as seen in Figure 27.
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Figure 53. Comparison of computation times for iterations of the RTOC problem using
three methods of generating the initial guess.

The previous solution was interesting only because it behaved as expected, that

is the simulation trajectory matched the optimal control trajectory from problem FR

exactly. If the simulated model of the pursuer does not match the model in FR, a

different result is obtained. For example, if the pursuer in FR is assumed to use PN

with a gain of NP = 4, but in the truth model simulation it uses NP = 2, the resulting

trajectories obviously will not match. The FR solution and simulation trajectory are

compared in Figure 54 for the scenario where no updates were received. Because

problem FR expected the pursuer to use NP = 4, it calculated a trajectory for the

pursuer which dove too quickly, using a higher magnitude control effort. If the correct

NP of 2 were used, the final miss distance (after solving the CPA problem) would

have been 134 meters. However, because problem FR expected that NP = 4, it

did not fully take advantage of the decreased control, and only achieved 111 meters.
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Nevertheless, recall that the miss distance achieved by the RHC problem for this

same case was only 83 meters, demonstrating once again the superiority of the FR

problem over the FX problem in standing as a surrogate for the energy phase.

0 5 10 15 20 25

time (sec)

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

al
tit

ud
e 

(m
)

Evader - FR
Pursuer - FR
Evader - Sim
Pursuer - Sim

0 5 10 15 20 25 30
-5

0

5

10

15

a
 (

g)

0 5 10 15 20 25 30

time (sec)

-5

0

5

10

a
 (

g)

FR (N
P

=4)

Sim (N
P

=2)

Figure 54. Altitude profile (left), longitudinal and lateral missile accelerations (right)
when the missile gain is assumed to be NP = 4 in problem FR when in simulation it is
actually NP = 2.

If updates are available, the situation can be improved for the evader somewhat.

As the simulated trajectory strays from the anticipated FR trajectory, an update

allows the evader to once again calculate an optimal trajectory. Figure 55 shows

the repeated FR solutions compared with the actual simulated trajectory for an up-

date frequency of 1 Hz, again using the incorrect value of NP . The miss distance is

increased to almost 130 meters.

6.2.2.2 Update Frequency.

The RTOC problem was solved with a variety of update frequencies and the miss

distance at the end of the CPA problem was recorded and displayed in Figure 56. Note

that the miss distance is very high because the simulated pursuer is using NP = 2.

When no updates are available, i.e. at an update rate of 0 Hz, there is no feedback

that NP is incorrect. However, as updates are generated, the optimal controller can

somewhat compensate for the incorrect model with feedback. However, no matter how
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Figure 55. Altitude profile (left), longitudinal and lateral missile accelerations (right)
when the missile gain is assumed to be NP = 4 in problem FR when in simulation it is
actually NP = 2. Problem FR is updated at 1 Hz.

high the update frequency, the miss distance never reaches the theoretical optimal

of 134 meters achievable if the NP were chosen correctly. This demonstrates the

intuitive result that repeated application of the wrong optimization problem is still

suboptimal.

6.2.2.3 Stochastic Updates.

Further results are obtained if the assumption of noise-free updates is removed.

The evader’s estimate of the pursuer’s state was corrupted by adding random noise

from the multivariate normal distribution N (0,Σ), where Σ reduces linearly with the

separation distance and is given by Equation (6.3). A 200 run Monte-Carlo analysis

has been performed to determine whether updating the trajectory with noisy updates

serves to benefit the evader. In the RTOC case, the objective is to maximize the cap-

ture time, and this metric is compared for the case without updates against the case

where updates are available every 3 seconds in Figure 57. Visually, it appears that

the updates tend to shift the histogram slightly toward a longer capture time. Posing

the null hypothesis that the two distributions are identical, against the alternative

hypothesis that the cumulative distribution with no updates is larger than with up-
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Figure 56. The effect of the update frequency on the miss distance in the RTOC
problem with an assumed NP = 4 when it is actually NP = 2.

dates, a one-sided Kolmogorov-Smirnov test rejects the null hypothesis at the 1.0%

significance level. Receiving updates does in fact tend to increase the capture time.

6.2.2.4 The Minimax in RTOC.

Although calculation of the minimax trajectory typically requires around 70 sec-

onds, it is interesting to speculate how the minimax would perform when used for the

evader’s control in the RTOC problem. At each iteration, there is uncertainty about

the actual position of the pursuer, and the results of the previous section showed that

the minimax can be used to calculate a best response to the worst-case uncertainty.

Ignoring then the large CPU time, the FRM problem has been used in place of the

one-sided FR problem to calculate an updated trajectory every 3 seconds. a Monte
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Figure 57. A comparison of the histograms of Capture Time for the noisy update
RTOC problem. The top distribution shows results obtained without updates, the
bottom shows the results when updates are available every 3 seconds.

Carlo of 150 runs was performed, and the capture time was recorded. The result has

been displayed in Figure 58, compared to the result obtained using problem FR.

As might be expected, the FRM trajectory produces a lower capture time because

it is a more conservative trajectory. Not only does it assume the pursuer may use an

optimal control instead of PN, but it also assumes the worst-case state for the pursuer.

Clearly the minimax trajectory has not proved beneficial in this case, although once

again perhaps it is best to think of the minimax result as a benchmark against which

other results may be compared.

6.2.2.5 The Miss Distance.

As seen in the previous figures showing histograms of the capture time, the differ-

ences between results are only spread over a few centiseconds. Although statistical
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Figure 58. A comparison of the histograms of Capture Time for the noisy update RTOC
problem. The top distribution shows results obtained using the minimax by solving
problem FRM, the bottom distribution shows results obtained by solving problem FR.

tests may show a significant difference between two results at this resolution, the

physical meaning of such a small time-span has not been demonstrated. Thus the

sampled trajectories from the FR version of RTOC each were cut at 18 seconds, and

the CPA problem was then run to calculate the best achievable miss distance. The

data was recorded for the case without updates, and the case with updates every three

seconds. The resulting histograms of the miss distance are displayed in Figure 59.

This time, as compared to Figure 57, the spread of the two histograms are more

evidently distinct. Although no conclusion can be drawn about the mean value, it

appears that the updates tend to narrow the variation in the miss distance. This is

certainly beneficial for the evader, since it is less likely to achieve an unexpectedly

low miss distance.
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Figure 59. A comparison of the histograms of miss distance for the noisy update
RTOC problem. The top distribution shows results obtained without updates, the
bottom shows the results when updates are available every 3 seconds.

One final look at the Monte-Carlo data highlights an interesting relationship. Each

of the samples was cut at the same time t = 18 seconds, following which the CPA

problem was run to calculate the miss distance. At the moment when the trajectory

was cut, the separation distance between the evader and the pursuer was recorded.

The miss distance has been plotted against the separation distance at the cut time

in Figure 60 to highlight a clear correlation between the two.

In the RTOC problem, the objective of each iteration is to maximize the capture

time, tf . This tends to put the evader further from the pursuer at the cut time of

18 seconds. This then is shown to correlate to a higher miss distance in the CPA

problem. This correlation lends support to the idea presented throughout this work,

that optimizing either the capture time or the separation distance during the energy

phase will in fact serve to improve the final miss distance.
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Figure 60. A plot of the resulting miss distance versus the separation when the RTOC
trajectories are cut at 18 seconds.

6.3 Another Application of the Minimax

The miss distance achieved by the RHC and RTOC problems are encouraging,

but for this problem the actual physical effect of uncertainty is not very large. For

example, in Figure 51 the difference between receiving updates and not receiving

updates is only about 0.1%. In Figure 56 the difference between having updates

and not having them is only about 1%, and in Figure 60 the entire spread of the

miss distances is only about 3 meters. It appears that the miss distance is not very

sensitive to uncertainty. This is not the case for all problems, however.

A classic problem was proposed by Rutowski [64] wherein a supersonic aircraft

attempted to reach a given altitude and velocity in minimum time. The surprising

solution to this problem was for the aircraft to climb at maximum specific power

until just prior to Mach 1, then perform a constant energy dive to supersonic velocity,
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followed by another climb at maximum specific power until reaching the correct energy

state, and finish with a constant energy climb to the desired altitude and velocity.

This problem, interesting from the point of view of energy exchange and thus rel-

evant to the evader’s energy phase, can be used to illustrate one final use of the min-

imax trajectory. The original authors solved the problem assuming that all aircraft

parameters were known. However, supposing that some parameters were uncertain,

the problem can be reposed as a minimax by imposing structure on these parameters,

and assuming they are controlled by some adversary who wishes to maximize the time

at which the aircraft reaches the final altitude and velocity. Thus the one-sided min-

imum time to climb problem becomes a two-sided minimum time to climb problem

with uncertainty.

Suppose that the same aircraft defined by Equations (3.3) - (3.10) starts at zero

altitude and M=0.38, and climbs in minimum time to M = 1.0 and 65,600 feet.

The problem can be simplified by assuming that flight occurs in the vertical plane,

thus removing terms involving y, χ, and µ. The costate dynamics and stationarity

conditions have already been given in Equations (5.4) and (5.7), although they are

similarly reduced to the vertical plane. The terminal costates are given by

λh(tf ) = µh

λV (tf ) = µV

λx(tf ) = 0 = λγ(tf ) = λα(tf ) = 0,

(6.6)

and the transversality condition is

λh(tf )V (tf ) sin γ(tf ) +
λV (tf )

m
(T cosα(tf )−D)− g sin γ(tf )) + 1 = 0. (6.7)

Although this problem can readily be solved using the PS method, making it

unnecessary to re-solve the TPBVP, the method of indirect transcription can also be
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used to solve the problem. Now, if the thrust and mass of the aircraft are known with

± 5% accuracy, it can be assumed that some “adversary” will use this uncertainty

as a control to attempt to maximize the time to reach the desired final conditions.

Thus the problem becomes zero-sum, and the minimax represents the best response

of the aircraft to the adversarial uncertainty.

In order to solve this problem, the indirect transcription method can be coded

into GPOPS-II, with the 5% uncertainty coded as the control, where the objective is

to maximize the final time. Although the problem is free final time, fixed final state,

unlike in the pursuit-evasion problem the number of unknowns and constraints are

balanced for the semi-DCNLP method. Since the necessary conditions for minimizing

the final time are already captured by the TPBVP, the resulting converged solution

will be the minimax trajectory, which has been plotted alongside the deterministic

trajectory in Figure 61. Of course the minimax results in a slower time, because it

accounts for the worst-case uncertainty.
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Figure 61. Altitude versus velocity (left), and Mach versus time (right) comparison of
the deterministic and minimax trajectories.

To illustrate the usefulness of the minimax for this problem, suppose that two

different aircraft designs are being compared. The first, Aircraft A, is as described

in Chapter III, with maximum thrust given by Equation (3.10) and a constant mass
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of 19050 kg. The second, Aircraft B, has 5% less thrust on average, but has a mass

of only 16900 kg. The deterministic minimum time climb performance of the two

aircraft are nearly identical, with each achieving the final altitude and velocity after

approximately 375 seconds. However, when there is 5% uncertainty in the thrust and

mass and the minimax is calculated, a large difference is seen in the final time, as

shown in Figure 62.
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Figure 62. Altitude versus velocity (left), and Mach versus time (right) comparison of
Aircraft A and B.

While the two aircraft have the same nominal performance, Aircraft B achieves a

much lower time to climb, and is superior to Aircraft A when uncertainty is present.

This was undetectable using the one-sided solution alone. Calculating the minimax

trajectory is a quick and easy way to determine the robustness of a specific design to

uncertainty.

6.4 Summary

The specific method used in handling a pursuit-evasion scenario depends on the

information available. If the evader receives only imperfect initial state information

about its adversary, the minimax solution may be solved to account for the uncertainty

in the pursuer’s initial conditions, the model, and the control strategy. The minimax
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relation guarantees that the solution obtained will be the minimum so long as the

evader uses the minimax strategy. Any deviation by the pursuer from the minimax

will be of benefit to the evader.

However, if state updates are available, either RHC or RTOC may be used to

improve upon the solution. The effectiveness of these methods has been demonstrated

for problems where the model has been guessed incorrectly, and where the updated

state information is noisy. While solutions cannot be obtained instantaneously, the

FX and FR problems can usually be solved within a quarter second, meaning that

real-time implementation of the two methods is feasible. It has been shown that

receiving updates tends to improve upon the solutions, although the benefit may

only be to reduce the uncertainty in the overall result. The RTOC problem was

solved using the minimax solution, despite the large amount of CPU time required.

No significant benefit of using the minimax with stochastic updates was detected.

Finally, a technique for incorporating uncertainty in a one-sided minimum time to

climb problem was demonstrated by converting it into a minimax problem and using

the unknown parameters as adversarial controls. Two different aircraft designs were

compared and although no difference was found for the nominal case, the minimax

solution showed a large difference in sensitivity to the uncertain parameters.
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VII. Conclusions

7.1 Summary of Remarks

In this document, the ideas and concepts presented were intended to follow a

logical pattern. First, after motivating and describing the problem in Chapter I,

Chapter II provided a detailed description of the many numerical methods used in

this work, primarily to give the reader an appreciation for the large body of research

which exists covering the topics of missile guidance, energy-maneuverability, numeri-

cal optimal control, and differential game theory. Chapter III provided mathematical

models of the aircraft and missile which would serve as a common base upon which all

of the subsequent calculations would be made, with a particular focus on the energy

exchange mechanisms, such as lift, drag, and thrust, of the models.

The research contributions began in Chapter IV by formulating the Closest Point

of Approach evasion problem, which proved difficult to solve numerically because

the terminal constraint in which the closing velocity must be zero exhibits a large

gradient. This problem led to cutting the trajectory into two phases dominated by

energy and maneuverability, respectfully.

Two different optimal control problems were proposed as surrogates of the energy

phase, one posed as a fixed final time problem, FX, and one as a free final time

problem, FR. Comparison of the two showed that while the FX problem was slightly

more simple, the FR problem yielded better success in the subsequent maneuverability

phase. It was demonstrated that problem FX became equivalent to problem FR as

the fixed final time approached the capture time.

In Chapter V, two-player versions of problems FX and FR yielded minimax tra-

jectories, which required special techniques to solve for complex dynamics. The semi-

DCNLP method worked well for the fixed final time version, FXM, because the ter-
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minal costate constraints were a function of the final states alone. Unfortunately the

technique lacks closure for the free final time version of the problem, FRM. Instead,

the Decomposition method was chosen to calculate FRM trajectories. As in the case

for FX and FR, the FXM problem was shown to be equivalent to the FRM problem

as the fixed final time approached the capture time.

The assumption that all information was available to both players was then relaxed

in Chapter VI. When no state updates were expected, the minimax solutions to both

fixed and free final time problems was used to capture the uncertainty in the model,

control strategy, and initial conditions. It was shown that if the pursuer used a

different control strategy from the minimax, its resulting objective was increased.

Thus the minimax trajectory represented a guaranteed cost for the evader, so long as

it used the minimax strategy.

However, if updates were available to the evader along the course of the trajectory,

the information could be used to improve the result. The fixed final time problem was

used as part of a Receding Horizon Control scheme, while the free final time problem

fit into the Real Time Optimal Control method. Each of these was demonstrated,

including scenarios where the control strategy of the pursuer was incorrect, or the state

updates were stochastic. It was seen that by using grid adaptation, solutions could

be obtained quickly enough for real-time implementation. Results of Monte-Carlo

simulations showed that when trajectory updates were calculated, the uncertainty in

the resulting miss distance was generally reduced.

Finally, the utility of the minimax was demonstrated for capturing uncertainty

even in one-sided problems by solving a minimum time to climb problem. Two de-

signs were compared which for the nominal scenario yielded nearly equivalent results.

However, the minimax solutions showed that one design was much less sensitive to
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variations in uncertain parameters. Thus the minimax can be used as a benchmark

for making aircraft performance design decisions despite the presence of uncertainty.

7.2 Contributions

Within the summary of results described above, a number of novel concepts were

mentioned. They represent the research contributions to the general body of missile

evasion and are listed here.

1. Demonstrated that the fixed final time problem becomes the free final time

problem as the fixed final time approaches the capture time (Chapter IV, Section

4.3).

2. Outlined a procedure to obtain an initial guess of the costates to use in the

semi-DCNLP method (Chapter V, Section 5.2.2)

3. Proposed a penalty function for semi-DCNLP problems with a pure state con-

straint (Chapter V, Section 5.2.4).

4. Described an issue with using semi-DCNLP on certain free final time prob-

lems, and demonstrated the Decomposition method as an alternative solution

technique (Chapter V, Section 5.3).

5. Demonstrated how the minimax solution represents a guarantee on the evader’s

performance despite uncertainty in the pursuer’s model, guidance law, or initial

state (Chapter VI, Section 6.1).

6. Developed an algorithm to improve the computational speed of complex RHC

and RTOC problems by adjusting the mesh between each iterated solution

(Chapter VI, Section 6.2.1.2).
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7.3 Future Research

The speed of the PS method applied to this problem has shown that it could

theoretically be used in real time aboard an aircraft. While the GPOPS-II software

requires Matlab and is thus difficult to deploy on small computers, an open source

optimal control code called PSOPT [19] was successfully compiled onto a Raspberry

Pi 3 and an ODROID-C board. This may be an interesting direction for future

study in pursuit-evasion. The details of this installation and testing are contained in

Appendix C.

It was shown in Chapter VI that by adjusting the PS mesh, solutions could be

obtained very rapidly. Both methods of calculating the minimax required longer

computation times, enough to eliminate the possibility of using the minimax in real-

time. It is likely that further work in adapting the initial mesh will result in improved

convergence times. Two algorithms for mesh adaptation developed during the course

of this work are described in detail in Appendix A and Appendix B.

It was also shown that while increasing the frequency of updates resulted in an

improved solution despite uncertainty in the model, the improvement was limited by

the fact that an incorrect model was being repeatedly used. A model identification

step could be included in either the RHC or RTOC method each time an update is

received. This could even be done using the PS method by attempting to solve for

a set of parameters which might best match the estimated trajectory. Little or no

mesh adaptation would be required if the system identification problem were set up

on the same mesh as the previous solution to the optimal control problem.

In this work the evader and defender were alone. It is highly probable that multiple

pursuer missiles would be encountered in realistic scenarios. Additionally, there may

be friendly aircraft in the vicinity which could aid the evader in some way, and

finally, the evader may help itself by launching a counter attacking missile. These
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are all still technically two-team games, for which the techniques highlighted within

this work would still apply. Also, no attempt has been made here to incorporate the

use of other counter-measures. Solving optimal control problems which maximize the

effectiveness of counter-measures is likely to produce interesting results.

As admitted in Chapter I, the scope of this work was limited to software only.

However, as demonstrated in Chapter VI, the algorithm can be made to execute

quickly enough for real-time implementation. Adaptation of pursuit-evasion algo-

rithms onto hardware opens up several possibilities. The most obvious is to use these

methods on a fully autonomous system. The dynamics and constraints would be

adjusted to match the capabilities of the specific aircraft, and known threat models

could be loaded at run-time.

Another option is to use the software as a suggestion service to manned pilots.

When a threat is detected, the pilot would be given the option to allow the aircraft

to autonomously fly an energy profile, leaving the pilot several seconds to worry

about other problems, such as applying counter-measures. When the tgo neared 5

seconds, the pilot could be given the prompt to retake control of the aircraft and

perform evasive maneuvers, or to again allow the aircraft to perform an autonomous

maneuver such as the HGBR, S-turn, or a linear optimal solution. This would still

allow a human pilot to manage the evasion encounter, while allowing them to focus

on other tasks.
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VIII. Appendix A

The following document was prepared for submission to the American Institute

of Aeronautics and Astronautics Journal of Guidance, Control, and Dynamics in

2016. The document was not accepted for publication due to lack of interest from

the reviewers, so it will be archived here.
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A Mesh Adaptation Scheme for Path Constraints in

Direct Collocation Optimal Control∗

Ryan W. Carr†, and Richard G. Cobb‡

Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433

Nomenclature

B Boundary conditions (event constraints) vector
C Path constraints vector
D The differentiation matrix
D Aerodynamic drag (N)
J Cost functional
L Aerodynamic lift (N)
PĊ Lagrange polynomial interpolation approximation of the rate of change of the path constraint
Q The number of new collocation points to add to an interval
q Aerodynamic heating along the leading edge of the wing, (BTU/fts/sec)
r Radius from Earth’s center in kilometers
rko Keep-out zone radius in kilometers
t Time in seconds
u Control variable vector
V Vehicle velocity in kilometers per second
x State variable vector
x Vehicle coordinate in kilometers
xi i’th discretized value of the x coordinate
xko Keep-out zone x coordinate
y Vehicle coordinate in kilometers
yko Keep-out zone y coordinate in kilometers
γ Flight path angle in radians
Φ Mayer portion of the cost functional
φ longitude in radians
ψ vehicle heading in radians
τ Collocated time
θ latitude in radians
L Lagrangian portion of the cost functional

I. Introduction

The field of optimal control has recently benefited from the emergence of direct collocation methods,
where the continuous state and control are discretized at a specific set of points allowing the dynamics to be
transcribed to a static nonlinear programming (NLP) problem. The problem can then be solved by existing
NLP software such as SNOPT1 or MATLAB’s fmincon.2 If the collocation points are chosen to be the roots

∗Distribution A: Cleared for public release, case number 88ABW-2015-6194
†PhD Student, Department of Aeronautical and Astronautical Engineering, AIAA Member.
‡Professor, Department of Aeronautical Engineering, Associate Fellow AIAA.
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of an orthogonal polynomial, such as in Gaussian Quadrature, this method may converge exponentially and is
often called pseudospectral, although the authors prefer to call the technique Direct Orthogonal Collocation.

The NLP solver attempts to minimize the objective function subject to a set of constraints. In direct
collocation, the dynamics are enforced by equality constraints which must be satisfied within a desired
tolerance at the collocation points. This does not, however, give any guarantee that the dynamics are
feasible between points. Because the discretization is performed using a Lagrange interpolating polynomial,
the error between points is bounded by the Cauchy interpolation error theorem.3 It is possible to reduce
the error bounds between these points by choosing an appropriate spacing for the points, such as by using
the roots of a Legendre polynomial (hence the relation to Gaussian Quadrature), and also by increasing the
number of points used in the interpolation. Failure to perform some kind of refinement on the point spacing
can result in very large errors, even for a fully converged NLP solution.4

Many publicly available optimal control software packages implement such mesh adaptation algorithms.5–9

Several schemes exist for adapting the point placement, or mesh, in order to reduce the error between points
once the NLP has converged to a solution for the transcribed problem. In direct orthogonal collocation,
these methods involve either increasing the number of total points and hence the order of the interpolating
polynomial and regenerating the point spacing based on Gauss Quadrature (p-method), or dividing the so-
lution space into distinct intervals (h-method). The two intervals are then linked by additional constraints
in the NLP. The h-method results in an a piece-wise polynomial approximation of the state and controls.

One adaptation algorithm uses the differentiation matrix, D, to calculate the time derivative of the
control. At a point where the control derivative is larger than some threshold value, a “knot” is placed to
divide the mesh into two intervals.10 Another author suggests a ph-method in which the error is defined by
the difference between the interpolated state and an integrated approximation. The number of points is first
augmented, and if the polynomial exceeds some limit, the interval is divided.11

Another scheme calculates the error in the dynamics at the midpoint between two points using the
differentiation matrix, then either splits the interval or adds a fixed number of points depending on whether
the error detected exceeds a local or global threshold.12 Another method uses a similar error, but evaluated
at a large number L of uniformly spaced points interpolated over the mesh interval (e.g. L=1000). If
the error exceeds a threshold the curvature of the state or control is calculated using the first and second
derivatives. If the curvature value is too high, the interval is divided. Otherwise the polynomial order is
increased.13

II. Motivation

The mesh adaptation methods described above are shown to reduce error and improve convergence in
the solution of a generalized optimal control problem. In some problems, a path constraint is used to further
bound the feasible space of the state and control within the time interval of interest. Beyond simply limiting
the states to an upper and lower limit, a path constraint may evolve through the trajectory, or involve
complex interactions between states and controls. For example, the dynamics of a hypersonic glide vehicle
may not require g-load, dynamic pressure, or friction heating as a specific state, but these quantities may be
derived from a combination of the states and controls. It may be necessary to limit one or all of these along
the trajectory using path constraints. The upper and lower bounds of a path constraint can be provided to
the NLP as additional constraints at each collocation point.

When a path constraint is implemented in the NLP, the value of the path is restricted only at each
collocation point. When a converged solution is reported by the NLP, the value of the path at these points
satisfies the upper and lower bounds set by the user. However, in between collocation points it is possible
that the path constraint is violated. Reference12 mentions checking this value at the midpoint between two
collocation points, but this still leaves the half of the distance between collocation points where the path
constraint may be violated. Reference13 specifically addresses problems where the path constraint is active,
but because the method relies on checking the curvature, requiring estimation of the second derivative, it
“creates a great deal of noise in the error estimate ...”, making it “computationally intractable when a high-
accuracy solution is desired.”6 In addition, the number of points where the error is evaluated is chosen to be
a high number, 1000, but this seems arbitrarily high, akin to using an exhaustive search algorithm to find
the extrema of a function.

Before describing the newly proposed technique to adapt the mesh to improve the solution with regards
to the path constraint, it is first necessary to define the general optimal control problem and the specific
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collocation method being used herein.

A. Optimal Control Problem Definition

In direct collocation methods, the optimal control problem is posed in terms of τ , which is related to time,
t, by

τ =
2t− (tf + t0)

tf − t0
. (1)

In the Bolza form of the optimal control problem, the cost functional is defined with a Mayer part, Φ,
and a Lagrangian part, L , in continuous time as

J = Φ(x(−1), t0,x(1), tf ) +
tf − t0

2

∫ 1

−1
L (x(τ),u(τ), τ) (2)

where above x is a vector of state variables. This is subject to the dynamic constraints

dx

dτ
=
tf − t0

2
f(x(τ),u(τ), τ), (3)

the boundary conditions
B(x(−1), t0,x(1), tf ) = 0, (4)

and the path inequality constraints
C(x(τ),u(τ)) ≤ 0. (5)

This form of the optimal control problem may be transcribed to an NLP using one of several popular
methods.

III. Direct Collocation Method

A. Legendre-Gauss-Radau Collocation

While there exist many varieties of direct collocation methods, the Legendre-Gauss-Radau (LGR) collocation
scheme14 is implemented in this study. Although a thorough description of the method is provided in the
reference, only a short discussion is provided here. In the LGR method, collocation points lie on the interval
τ ∈ [-1,1) where the n points are chosen as the roots of the Legendre polynomials, Pn−1(τ) + Pn(τ). An
additional, “noncollocated” τn+1 = 1 point is included in the approximation. A state variable, say x, may
be approximated on this interval using Lagrange polynomial interpolation via the relation

x(τ) ≈
n+1∑

i=1

xiLi(τ) (6)

where the Lagrange polynomial basis is

Li(τ) =
n+1∏

j=1
j 6=i

τ − τj
τi − τj

, i = 1, ..., n+ 1. (7)

It is then possible to approximate the derivative of the state at each discretized τk using the differentiation
matrix, D, which is equivalent to the rate of change of the Lagrange polynomial.

ẋ(τk) ≈
n+1∑

i=1

xiL̇i(τk) =

n+1∑

i=1

Dkixi (8)

The differentiation matrix is distinct for each collocation scheme being used. For the LGR method it is
an (n x n+ 1) matrix. The (n x n) submatrix is inversely related to the integration matrix as described in
the reference. Using the LGR differentiation matrix to calculate the derivative of a state or control on a set
of points within an interval with spacing defined by the LGR basis is considerably more accurate than fixed
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spacing methods (such as the 3 or 5 point formulas) with the same number of collocation points because
it uses information from the entire interval, i.e., it is a global method over the current interval.15 The
differentiation matrix is a linear operator, and the discretized state derivative may be expressed in matrix
multiplication form as

ẋ ≈ Dx. (9)

The control, u, may be similarly approximated. Referring to Equation 3 the dynamics of the problem
may then be constrained by the relation

Dx− f(x,u) = 0, (10)

where x and u represent the discretized state and control vectors at every collocation point. The constraint
is enforced at each collocation point, excluding the noncollocated point τn+1. Therefore there are n equality
constraints associated with the dynamics for each state. The path constraints from Equation 5 are also
discretized and constrained at all collocation points, adding another n + 1 constraints to the NLP. These
may be either equality or inequality constraints, depending on the problem.

B. Mesh Intervals

As described in the Introduction, in order to improve accuracy and convergence time of a solution, the
collocation point mesh may be modified to better capture regions of interest. In order to increase accuracy
one may use a p-method by inserting additional points, requiring a new spacing for the LGR grid. The
h-method method involves splitting the time interval into multiple intervals, each within the LGR interval
of τ ∈ [-1,1). These intervals are then linked by setting the last point, which is considered noncollocated
in the LGR grid, to be the first point in the following segment. This is particularly useful for problems
where a sudden change may occur which modifies the dynamics, such as a staging rocket shedding mass and
changing thrust. Adding intervals may serve to increase the sparsity of the NLP, as is pointed out by Darby
et al.12,13 Additional constraints must be added to the NLP to link the state and time variables between
intervals. As mentioned previously, many schemes seek to adapt the mesh intervals and number of points
to reduce error in the state. However, the following algorithm is proposed to detect violations in the path
constraints between points and adapt the mesh accordingly.

IV. Mesh Adaptation

Typically a path constraint is expressed as an inequality, e.g. the heat rate must remain below a certain
value, or the aircraft must remain outside a certain geographic zone. This means that the actual value of
the path will vary within the trajectory, but will not be allowed to exceed the upper or lower limits of the
constraint at the collocation points. However, because the optimal solution often borders these limits, the
NLP solver may sometimes attempt to push the solution to exactly meet the path constraint at certain points.
Unfortunately, this likely means that between these points the solution violates the constraint, although this
is unknown to the NLP solver. It is therefore beneficial to perform post-solution mesh adaptation in order to
ensure that the path constraints are met within a certain degree of tolerance. The current method performs
first h then p adaptation, depending on the type of error present in the path constraint.

A. h-Method

The algorithm begins by applying the differentiation matrix operator to the discretized path constraint as

Ċ(x(τ),u(τ)) = DC(x(τ),u(τ)). (11)

This gives an indication of how quickly the path constraint is changing. This derivative is an approxi-
mation represented by the Lagrange interpolating polynomial

PĊ(τ) ≈
n+1∑

i=1

Ċ(x(τ),u(τ))Li(τ). (12)

It is possible to identify points in the segment where the time derivative of the path is zero by solving
for the roots of the interpolating polynomial, or where PĊ(τ) = 0. This may be done numerically by finding
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the eigenvalues of the corresponding companion matrix.16 These points, τ0, after complex values or values
outside the interval from [-1,1] are discarded, are candidate extrema. The value of the path is calculated at
each valid root and checked to see if it violates the path constraints. If so, the algorithm divides the current
segment at the violating root. The sum of the number of points in the two new intervals is set as the original
number of points subject to a minimum of four points per segment. This avoids unnecessary growth of the
order of collocation points and mirrors the approach for mesh division from Patterson et al.11

B. p-Method

In the p method, a different criterion for error is proposed. The roots of the polynomial of the derivative
of the path constraint, τ0, represent extremal points; they indicate that the path constraint might be at a
maximum, a minimum, or an inflection point. The h-method evaluates these points against the user supplied
upper and lower bounds to check if the constraint is violated. In the p-method, the same points are checked
for error in the interpolation, which is directly related to the number and spacing of the points. There are
two ways to evaluate the value of the path constraint at the extrema. First, the path constraint may be
calculated from the state and control values at all the current points in the interval, after which the path
constraint can then be interpolated at the extrema points. This is written as

Ĉ(τ0) ≈
n+1∑

i=1

C(x(τi),u(τi))Li(τ0). (13)

Alternatively, each of the state and control values may be first interpolated to the extrema points, and
the path constraint calculated at those points. This approximation of the path constraint at the extrema
points is

C̄(τ0) ≈ C

(
n+1∑

i=1

x(τi)Li(τ0),
n+1∑

i=1

u(τi)Li(τ0)

)
. (14)

The difference between the two methods lies in the order of interpolation; whether the interpolation
is performed on the states and controls, or whether it is performed on the path constraint itself. The
interpolation approximation of the path constraint function (Equation [13]) is more error prone than the
function evaluated at the interpolation approximation of its arguments (Equation [14]). However, as the
interpolation improves by adding more points into the mesh, the error in the approximation is decreased. In
this sense, the path constraint serves as a test function upon which we can judge the goodness of the mesh;
in fact, it is an ideal test function because it is itself a parameter of interest.

The error in the path constraint is then calculated as

eP =

∥∥∥∥∥
|C̄(τ0)− Ĉ(τ0)|

1 + |C̄(τ0)|

∥∥∥∥∥
∞
. (15)

This error is calculated for all extrema and all path constraints, and the maximum is taken to be a
surrogate for the overall error in the interval. The error is checked against a user defined threshold, εP . If
the threshold is exceeded, the number of collocation points in the interval, N , is increased by Q using the
method described by Patterson et al,11

Q = logN

(
eP
εP

)
(16)

If it is determined that the interval is to be divided via the h-method, the p-method is not applied because
a new point will already be inserted directly at the extremal point. However, if no constraint violations were
detected but the path constraint error eP exceeds the threshold, the new points will be added to the interval.
Once all intervals have been checked for both h and p updates, the NLP is rerun using the previous solution as
a new guess. The new solution is rechecked, and if the path constraint violations fall within the user tolerance
the operation is terminated. One particular benefit of this method is that it automatically identifies the most
logical points where the solution should be checked for path constraint violations and interpolation error,
thereby minimizing unnecessary calculations on points which are not extrema.

This method may be used in conjunction with any other method which reduces error on the state or
control vectors. It should be performed only once a converged NLP solution is obtained on a fully converged
mesh, since the best approximation to the path constraint will only be available for an accurate resolution
of the state and controls. The flow diagram in Figure 1 is provided as a visual description of the algorithm.
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Figure 1. Flow Diagram illustrating the Path Constraint Adaptive Mesh Algorithm.

V. Examples

A. Keep-Out Zones Example Problem

A common problem in optimal control is to minimize the time required for a vehicle to travel between two
points while avoiding keep-out zones. This example might represent a Mars rover avoiding terrain obstacles,
a jet aircraft avoiding radar missile sites, or a hypersonic vehicle avoiding population dense areas. The
objective is

minimize J = tf , (17)

where the final time, tf , is determined by the final boundary condition when the vehicle reaches the target
location (xf , yf ),

B(tf ) =

[
x(tf )− xf
y(tf )− yf

]
= 0. (18)

The vehicle must obey a set of dynamics described by differential equations,

dx

dt
= V cosψ

dy

dt
= V sinψ

dψ

dt
= u.

(19)

Above, V is a constant velocity, x and y are the vehicle coordinates, ψ is the vehicle’s heading, and u is the
control to be obtained by the solution of the optimal control problem. The vehicle must avoid two keep-out
zones; for this example represented simply as two circular regions with a 1 km radius centered at kilometers
(3,1) and (5,3) in the x and y coordinates. The keep-out zones are implemented as path constraints using
the Euclidean distance. The constraint corresponding to the kth keep-out zone is

C(τi) = rko,k − ((x(τi)− xko,k)2 + (y(τi)− yko,k)2)
1
2 ≤ 0. (20)

Note that C(τi) is a vector corresponding to each collocation point τi. The variables xko,k, yko,k, and
rko,k are the coordinates and radius of the keep-out zones.
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1. No Path Mesh Adaptation

The problem has been formed in MATLAB using the LGR collocation method using 5 collocation points
(plus the noncollocated point at +1) to transcribe to an NLP, which was then solved using SNOPT with no
subsequent mesh refinement. The trajectory is shown in Figure 2. Lacking a check on the path constraint,
the solution passes right through the two keep-out zones because the collocation points happen to fall outside
the constraint radius. Blindly adding more points at the expense of increased computation time tends to
alleviate the problem, as shown in Figure 3, although again the solver has found a solution which violates
the path constraints between collocation points. Clearly, the solver has in fact converged to a solution which
cuts through the keep out zones in order to minimize the detour the vehicle must take around them.
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Figure 2. Solution found using an LGR mesh with 6 total points. Because the path constraints fall in between
the points, the NLP solver reports that an optimal solution has been achieved.
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Figure 3. Solution found using 12 total points. Again, the NLP solver reported an optimal solution, despite
the obvious path constraint violation between collocation points.

2. Path Mesh Adaptation

The values of the two path constraints at the collocation points after the first NLP solution are shown in
Figure 5, along with the Ĉ Lagrange interpolation approximation between the points. It is seen that the
collocated points do not fall under the lower bound of 1 km, thus the NLP reports a converged solution.
Interestingly, the Ĉ interpolated values don’t fall below the lower bound either. The derivative of the path
was calculated via Equation 9 and has been plotted in Figure 4. Each of the interpolated polynomials has
only one root, indicating that the trajectory has a single minimum approach distance from each keep-out
zone. The interpolation predicts these to be at τ of -0.438 and -0.003, or translated to time at t of 5.26
seconds and 9.33 seconds. The algorithm then evaluates the value of C̄, given by Equation 14, at those
points. They are both found to be in violation of the lower bound as shown in red in Figure 5. Therefore,
the mesh is split into three intervals of four collocated points each, and the problem is re-transcribed and
sent back to the NLP solver.

The resulting solution following the first mesh iteration is shown in Figure 6. The algorithm is again
applied, finding that there remains a path constraint violation in the third segment. The segment is divided,
transcribed, and resolved resulting in the solution shown in Figure 7. The path constraint violation is found
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Figure 4. The rate of approach to the keep-out zones is simply the time derivative of the path constraints.
Where this derivative is zero, there is the possibility of extrema.
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Figure 5. The path constraints at the collocation points and the Ĉ Lagrange interpolation do not show a
violation of the lower limit. The C̄ value of the minimum has been plotted in red.
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here to be less than the user supplied tolerance of 5%, thus the iterations are ceased. Note that no iterations
have been performed to reduce error in the state or control, but this could easily be done at the same time
as the path constraint adaptation. They have been omitted here to clarify the process.
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Figure 6. The first mesh adaptation identified two path constraint violations, thus dividing the mesh into
three intervals of four points each.
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Figure 7. The second mesh adaptation identified one path violation, therefore one additional interval was
inserted raising the total to four intervals of four points each.

In this example the p-method was not required because constraint violations corresponding to refinements
using the h-method are checked first. This is not the case generally.

B. Space Shuttle Reentry Example Problem

Another interesting example problem is presented by Betts,4 in which a reusable reentry vehicle (such as
the Space Shuttle) attempts to maximize its crossrange while not exceeding a safety limit imposed for heat
generated on the leading edge of the wing. This problem presents another opportunity to demonstrate the
usefulness of the path constraint mesh adaptation.

The optimal control problem is written as

minimize J = −θ(tf ) (21)
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Subject to the dynamic constraints

dh

dt
= V sin γ

dθ

dt
=
V

r
cos γ cosψ

dφ

dt
=
V cos γ sinψ

r cos θ
dV

dt
= −D

m
− g sin γ

dγ

dt
=
L cosβ

mV
+ cos γ

(
V

r
− g

V

)

dψ

dt
=

L sinβ

mV cos γ
+
V

r
cos γ sinψ tan θ

(22)

where above h is altitude (m), θ is latitude (rad), φ is longitude (rad), V is velocity (m/s), γ is the flight
path angle (rad), ψ is the heading (rad), m is the mass (kg), g is the gravitational acceleration, and L and D
are lift and drag, respectively. Parameters to calculate lift, drag, and aerodynamic heating, q, are provided
in the reference. The geometric radius, r, is the altitude plus the radius of the earth. The controls being
sought are the vehicle’s angle of attack, α, and its bank angle, β.

A path constraint is added to ensure the aerodynamic heating, q, does not exceed 70 BTU/ft2/sec,

C(τ) = q − 70 ≤ 0. (23)

The vehicle begins its trajectory on the prime meridian at 260 kft traveling east along the equator at 25.6
kft/sec, with a flight path angle of -1 degree. The final point occurs at the terminal area energy management
(TAEM) location set as an altitude of 80 kft and velocity of 2.5 kft/sec.

The optimal control problem presented above was solved using GPOPSII,5 a generalized direct collocation
software tool implemented in MATLAB. The software allows the user to select several options for scaling,
derivative calculations, NLP solvers, and mesh adaptation algorithms. The algorithm by Patterson et al11

has been used to adapt the mesh for the states and controls to a tolerance of 0.001. The first solution, before
applying path constraint mesh adaptation, is displayed in Figures 8 to 13. This solution matches well with
the trajectory and controls presented by Betts,4 where the vehicle begins by sharply banking to nearly 80
degrees while pulling up to quickly turn the heading in order to maximize the cross-range distance, achieving
over 30 degrees of latitude before arriving at the TAEM interface.
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Figure 8. Altitude (m)

The heating profile prior to path constraint mesh adaptation, shown in Figure 14, appears to obey the
maximum constraint of 70 BTU/ft2/sec. However, on closer inspection it can be seen that the interpolated
solution has an overshoot of the limit which was not captured by the state-based mesh adaptation algorithm,
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Figure 10. Flight path angle (deg)
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Figure 12. Bank angle (deg)
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Figure 13. Latitude (deg) representing the amount of crossrange maximized in the optimal control problem
solution.
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despite already being divided into 13 intervals. The first pass of the path constraint mesh adaptation
algorithm divided the mesh interval at the maximum point shown in Figure 15 (h-method), and also added
additional points to several intervals in order to decrease the error where the heating value traced the upper
limit (p-method).
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Figure 14. Heat rate along the leading edge of the wing. A close inspection reveals a small overshoot as the
heat reaches the maximum allowable value of 70 BTU/ft2/sec
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Figure 15. A closeup view of the heat rate overshoot illustrates the improvements to the solution with meshing.

After the first path constraint mesh adaptation, the NLP solver was run a second time. Once again the
path constraint was checked, and once again the interval was divided where the peak heating overshot the
limit. Additional points are also added after checking the interpolation error. After one final solution of the
NLP, application of the algorithm results in no errors as shown in the solid line solution seen in Figure 15.

VI. Conclusion

The example problems illustrate that sometimes state or control based mesh adaptation schemes do not
correctly regulate the behavior of a path constraint between collocation points. Experience has suggested
that this can be a problem, particularly in control problems where the optimal solution trajectory rides along
the path boundaries. In order to efficiently find the best point to modify the mesh, the derivative of the path
is approximated using the differentiation matrix, and extrema values are found and checked for constraint
violations. To remedy these violations the mesh is split at these points (h-method). A second type of error is
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defined based on the comparison of two interpolation schemes. In this case the mesh is refined by increasing
the number of points used in the polynomial approximation (p-method). Because the scheme proposed in
this work gives priority to dividing the mesh, the algorithm may be classified as an hp-method, as opposed
to a ph-method. It may be possible to extend this method to checking the upper and lower limits of state
and controls, in order to ensure they do not in a similar way violate the bounds at the extrema between
points. Another application may be to use the extrema points to check tolerances on the equality constraints
associated with the equations of motion using some test function, possibly a power of the state or control.
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Abstract—Mesh adaptation is a critical part of optimal tra-
jectory generation via the Direct Orthogonal Collocation method
of optimal control. While a converged nonlinear programming
problem indicates that error thresholds are satisfied at the
collocation points, adaptive meshing schemes typically focus
on reducing discretization error, or equivalently, interpolation
error between the points. The choice of error parameters which
signal mesh refinement is not trivial and if chosen poorly can
adversely affect the quality of the optimal solution. Therefore it
is necessary to choose parameters which are in tune with the
actual application of the calculated optimal control trajectory.
One use for an optimal control solution is as an open-loop
reference trajectory for a traditional state feedback controller
which requires state estimation. In this case it may be beneficial
to ensure that the optimal trajectory is sufficiently resolved
to be tracked by the high frequency state estimator, meaning
that errors in the interpolation of the optimal control do not
propagate forward into large errors in the state estimate. In the
current study, a new error parameter is employed based on the
Mahalanobis Distance, which is calculated from the estimated
error covariance matrix provided by the estimator, and is used
to adapt the collocation mesh of the optimal control problem
in a natural and convenient way to ensure that interpolation of
the open-loop trajectory does not create unacceptable errors in
the propagation step of the estimator. An example problem is
provided to demonstrate the application of this technique.

I. INTRODUCTION

In the collocation method for direct optimal control, the
control and state trajectory are obtained by transcribing the
continuous objective function, dynamic constraints, states and
controls to a set of discrete collocation points and solving
the resulting nonlinear programming problem with well estab-
lished techniques such as Sequential Quadratic Programming
(SQP) [1]. This is a good alternative to indirect methods which
require solution of a Two-Point Boundary Value Problem
(TPBVP) which may be infeasible for many realistic problems,
particularly in the presence of state constraints. If the spacing
of the collocation points are distributed using a basis of orthog-
onal Legendre polynomials, the collocation method can exhibit
near spectral accuracy [2]. Often called the Pseudospectral
Method [3], here the technique is termed direct orthogonal
collocation as it is not necessarily limited to any specific set
of orthogonal polynomials.

In direct collocation, the dynamics are enforced by equality
constraints which must be satisfied within a desired tolerance

at the collocation points. Lagrange interpolation is used to
determine the value of the states and controls between points,
and is thus subject to error due to ”overmodeling” depending
on the number and spacing of the points. In some instances,
large discretization errors may be present between points
for a fully converged NLP solution because the quality of
the solution is exclusively assessed at the node points. This
necessitates refinement of the number and location of the
points in the mesh [4].

In direct orthogonal collocation there are two possibilities
for adapting the point placement. First, the Cauchy Interpo-
lation error theorem predicts that increasing the number of
total points used in the interpolating polynomial can serve
to reduce the error, although this may introduce undesirable
oscillations near the endpoints due to the Runge phenomenon
[5]. The second method divides the solution space into distinct
intervals, linking together multiple polynomials. Additional
constraints are then added to the NLP to link the intervals
together. These two mesh refinement techniques are commonly
called the p-method and the h-method, respectively.

A number of schemes for refining orthogonal collocation
meshes using these two basic techniques have been proposed.
One adaptation algorithm uses the differentiation matrix, D, to
calculate the time derivative of the control. At a point where
the control derivative is larger than some threshold value, a
“knot” is placed to subdivide the mesh into two intervals [6].
Another author suggests a ph-method in which the error is
defined by the difference between the interpolated state and
an integrated approximation. The number of points is first
augmented, and if the polynomial exceeds some limit, the in-
terval is divided [7]. A refinement on this method monitors the
second derivative of the state through successive refinements
to estimate the smoothness of the intervals [8]. Intervals which
are non-smooth and have high error are divided, while smooth
intervals with low error may be recombined and the number
of points reduced.

Another scheme calculates the error in the dynamics at
the midpoint between two points using the differentiation
matrix, then either splits the interval or adds a fixed number
of points depending on whether the error detected exceeds a
local or global threshold [9]. A further method uses a similar
error, but evaluated at a large number L of uniformly spaced
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points interpolated over the mesh interval (e.g. L=1000). If
the error exceeds a threshold the curvature of the state or
control is calculated using the first and second derivatives. If
the curvature value is too high the interval is divided, otherwise
the polynomial order is increased [10].

A common element of all these refinement algorithms is that
they define the error by parameters related to the Legendre
based point spacing. For example the differentiation matrix,
which is defined by the number of points and the particular
Legendre basis used for spacing, is inherently tied to the
transcription process. The approximation of the derivative of
the state or control obtained using this matrix reflects the
errors in the discretized solution. Therefore, it makes sense
to use a transcription-based parameter to signal that mesh
refinement is necessary to ensure an adequate approximation
of the continuous optimal control solution.

The purpose of the current work is not to detract from these
methods, but instead to add another layer to them, cognizant
of the ultimate purpose of an optimal control solution: It is
to be used as an open-loop reference trajectory to control
the movement of a vehicle over time [11]. When used in
this fashion it may happen that over time the vehicle will
stray from the reference trajectory due to several factors.
First, it is unlikely that the dynamics used to calculate the
optimal control solution match perfectly with reality. This is
normally corrected using some type of feedback controller,
with the possibility of real-time updates of the optimal control
trajectory as more information becomes available [12]. An
example controller using this type of scheme is shown in
Figure 1. A major source of error is in the interpolation of
the optimal control solution to a time-step which is suitable
for the on-board system. Specifically, if the system uses a
recursive state estimator such as a Kalman filter, during the
propagation step the filter must interpolate the optimal control
solution to obtain the required control at the current time
step. The estimated state is then propagated forward in time
using the state transition matrix. If the interpolation of the
control introduces an error, this process will propagate errors
into the state estimate which must then be corrected with
feedback control, and a vicious cycle may arise. For this
reason it is proposed that the mesh refinement of the optimal
control solution be modified to include a new type of error
that represents the mismatch between the direct collocation
mesh and the uniformly spaced time-steps taken by the state
estimator. Although the interaction with other control system
components may also be important, this study focuses on
the interaction between the optimal control solution and the
propagation step of the estimation filter, whose modules have
been highlighted the control system’s block diagram in Figure
1.

II. MOTIVATING EXAMPLE

As a simple example of why it may be useful to adapt the
mesh to improve the performance of the estimator, an optimal
control problem is analyzed where a vehicle must traverse a

Fig. 1: The interaction of the optimal trajectory generation
with the state estimator (filter/observer).

field with keep-out constraints to arrive at a target location.
The objective is

minimize
u(t)

J = tf (1)

The motion of the vehicle, constrained to the horizontal
plane, is described by the dynamics

ẋ = V cos(θ)

ẏ = V sin(θ)

θ̇ = u, −π
2
≤ u ≤ π

2

(2)

Above, the x and y state are the vehicle’s position in the
plane expressed in meters, the velocity, V , is a constant set
to 1.0 m/s2, the heading, θ, is the angle off the x axis in
radians, and the steering control is u expressed in rad/sec.
The vehicle has a fixed initial and final state shown in Table
I. The final heading and time are unconstrained.

TABLE I: Initial and final states of the vehicle.

x0 (m) y0 (m) θ0 (deg) xf (m) yf (m)

0 0 45 10 10

There are additionally two circular keep-out zones the
vehicle must avoid as it traverses the field. The location and
radius of these zones are given in Table II.

TABLE II: Location and radius of the two circular keep-out
zones.

xKO,1 (m) yKO,1 (m) rKO,1 (deg)

2 3 2

xKO,2 (m) yKO,2 (m) rKO,2 (deg) (m)

7 5 2

The above problem has been solved using the commer-
cially available direct orthogonal collocation software GPOPS-
II[13]. The keep-out zones are implemented as path constraints
along the entire trajectory. The initial mesh is a single interval
with 6 points using Legendre-Gauss-Radau collocation[14]. A
solution to the NLP is quickly obtained, but the mesh must

2
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then be refined three times before achieving an error tolerance
of 1e-3 using the method from Patterson et al[7].

It is then supposed that the control solution will be used
open loop by the vehicle as it traverses the field toward the tar-
get. The vehicle uses an Unscented Kalman Filter (UKF)[15]
to propagate the estimate of its position and heading at a rate
of 100 Hz. The propagation of the sigma points is performed
using a 4 step Runge-Kutta integration. The control signal
from the optimal solution is interpolated onto the uniform
steps used by the UKF via Lagrange Interpolation. This is the
process which is likely to introduce errors into the propagation,
as the interpolated control may oscillate between collocation
points as seen in Figure 2.

Fig. 2: The interpolated control signal to be used in open-
loop propagation of the state estimator shows oscillation
between collocation points, despite the fact that standard mesh
adaptation has already been performed.

The process noise covariance matrix Qk is calculated using
a linearized form of the dynamics, and then added to the
covariance propagation step[16]. For clarity, it is also assumed
that no sensor measurements are available for the update step
of the UKF. This means that errors in the state estimate
induced by poor interpolation of the optimal control will
propagate through time without correction.

The oscillations in the interpolated control signal seen
in Figure 2 result in a poor propagation of the estimated
state. The interpolated and propagated heading are shown
in Figure 3, providing a visualization of the problem. The
propagated heading oscillates such that the interpolated head-
ing strays outside the displayed bounds, which correspond to
one standard deviation. The x and y state estimates shown
in Figure 4 are better due to the smoothing action of the
double integration, although there is a noticeable difference
between the interpolated and propagated states by the end of
the trajectory. Figure 4 additionally shows covariance ellipses
corresponding to one standard deviation estimation error in
the propagated position. While the mean propagated position
misses the final target state, perhaps this is not too far from
what should be expected given the uncertainty codified by the
large covariance ellipse bounds. For this reason, an algorithm
has been developed which uses the estimated error covariance
to indicate the need to refine the mesh.

Fig. 3: The heading estimate diverges from the desired heading
due to interpolation error.

Fig. 4: The estimator predicted position of the vehicle gradu-
ally diverges from the optimal control desired solution due to
interpolation error in the calculated optimal control produced
by the numerical optimization algorithm. The covariance el-
lipse bounds represent one standard deviation.

III. THE ALGORITHM

A. Interpolation of the Optimal Control Trajectory

Once the optimal trajectory is obtained comprising the
state and control values at the collocation points, Lagrange
interpolation is used to approximate the values of the state
and control between points. When approximating the state x
at some point τ , the Lagrange interpolation has the form

x(τ) ≈
n+1∑

i=1

xiLi(τ), (3)

where the Lagrange polynomial basis is

3
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Li(τ) =

n+1∏

j=1
j 6=i

τ − τj
τi − τj

, i = 1, ..., n+ 1. (4)

The variable τ takes values between -1 and 1 over each
mesh interval. It relates to the time, t, by the affine transfor-
mation

τ =
2t− (tf + t0)

tf − t0
. (5)

This interpolation operation is the source of the error which
is addressed by the mesh refinement technique developed in
this paper.

B. Definition of Error

Figures 3 and 4 display the mismatch between the states
interpolated from the optimal control solution and states
propagated through the UKF, but it is difficult to know whether
or not this is acceptable. The state estimation error covariance
matrix, P(t), which is propagated through the UKF, provides
a natural measure of the amount of uncertainty expected in
the propagated states. Therefore it is interesting to express the
error in terms of the covariance by forming the Mahalanobis
Distance (MD),

dM (ti) =
√

(x(ti)− x̂(ti))TP−1(ti)(x(ti)− x̂(ti)), (6)

where above x(ti) is the interpolated optimal control solution
state vector at the ith propagation timestep, and x̂(ti) is the
estimator propagated state vector. This error is essentially a
measure of how far the propagated state has strayed from the
interpolation, but weighted by the fact that a certain amount of
error is expected. The MD is a convenient, scalar measurement
of error and for the example problem has been displayed in
Figure 5.

Fig. 5: The estimator-predicted heading diverges from the
optimal heading due to interpolation error.

It is proposed that the MD be used as a mesh refinement
error metric. To understand the significance of a specific value
of the MD, it is helpful to assume that the error distribution
about the propagated state is multivariate normal. In that case a
surface of constant MD surrounding a point forms an ellipsoid
centered at x̂. Then, the probability of any point belonging to
this same distribution falling within the square of the MD
follows a chi-square distribution with the number of states
being, p, the degrees of freedom [17]. Therefore, points in x
satisfying the relation

d2M = (x− x̂)TP−1(x− x̂) <= χ2
p(α) (7)

have a probability of 1 - α of being statistically equivalent to x̂.
The assumption that the uncertainty of the propagated states
matches a Gaussian distribution fits with the near-Gaussian
nature of the UKF errors [15]. Therefore, to achieve a 99%
probability that a point belongs to the propagated state the
MD must be less than 0.34. These statistics are only meant
to guide the user in proper selection of the limit of the value
of MD, since the Gaussian assumption in the error is by no
means assured.

C. Refining the Mesh

1) Locating the intervals where refinement is required:
Once it has been determined that the MD threshold has been
exceeded, refining the mesh can improve the interpolation
of the optimal control. This is complicated by the particular
structure of the collocation mesh, which is divided into inter-
vals each containing a different number of collocation points.
The general strategy is to reduce interpolation error by either
adding more points or dividing the intervals.

A complicating factor is that the MD errors tend to originate
at some time in the past and grow as time progresses. In other
words, although the MD threshold was exceeded in interval
Ii, the problem with the mesh actually originated in interval
Ii−1, or Ii−2, etc. Therefore, rather than only refining the
mesh in the current interval, it may be necessary to refine
the mesh in one or more previous intervals. This can be done
by searching backward in time for signs that the MD began
to grow. The current algorithm allows the user to input a ratio
of the threshold, such as one half, and the code seeks the
earliest time the ratio of the threshold is reached. These two
points, labeled td and td/r, may occur in the same interval,
or in widely separated intervals. In the former case, the single
interval containing both points is chosen for refinement. In
the latter case, all intervals in between the two points are
designated for refinement. Each interval is only considered
once to avoid over-refining, regardless of the number of times
the MD threshold is exceeded within the interval.

2) Adding Points: If the td/r and td points occur in the
intervals I(td/r) and I(td), then it is likely that all intervals
from I(td/r) to I(td) require refinement. This is accomplished
by adding an equal number of points to each interval, where
the total number of points to be spread through the intervals
is given by the relation

4
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N =

I(td)− I(td/r)
td−td/r
tf−t0

 . (8)

The number of points, N , is increased if the number of
intervals between I(td) and I(td/r) is large, and also if the
relative time difference is small. This number is then spread
evenly throughout the intervals marked for refinement. Each
interval is then checked to ensure that the maximum number
of points has not been exceeded. If so, the interval is split with
the two new intervals containing half the maximum number
of points.

3) Splitting Intervals: If td and td/r occur in the same
interval, then MD is increasing rapidly and thus the interval
I(td) is divided into two, with the number of points in each
new interval being half the maximum number allowed.

In Figures 3 - 5, the points where the DM exceeds the
threshold of 0.5 are displayed as small x’s. Although inspec-
tion of Figure 5 reveals that the MD threshold is exceeded
many times, the algorithm only identifies the first time the
threshold is exceeded in an interval. Therefore only two cut
points are indicated, corresponding to intervals 2 and 3, which
are marked for refinement. Interval 1 is later marked for
refinement because it contains the location where the MD
exceeds the half-threshold value prior to exceeding the actual
threshold in interval 2. In summary,

4) Algorithm Summary:
1) Solve the NLP on a coarse mesh.
2) Refine the mesh based on existing techniques.
3) Interpolate the state and control values onto a uniformly

spaced mesh corresponding to the propagation steps of
the estimator.

4) Propagate the state using the interpolated open-loop
control.

5) Calculate the MD at each of the propagation time steps,
compare to the threshold value set by the user.

6) Identify points, td, where the MD exceeds the threshold.
7) For each point, search backward in time to the point

td/r where the MD first reaches the user-supplied ratio
of the threshold value.

8) Refine intervals by either adding points or dividing the
interval.

9) Resolve the NLP on the newly refined mesh.

IV. DEMONSTRATION OF THE ALGORITHM

To demonstrate the algorithm, the refinement is performed
on the mesh from the motivating example optimal control
problem described by Equations (1) and (2) and Tables I
and II. The Patterson mesh refinement method produced a
mesh made of three intervals with 5, 4, and 6 collocation
points respectively. The first mesh refinement using the current
algorithm operates directly on this mesh. The control signal
is interpolated using Equations 3 and 4, and the states are
propagated using the UKF. When the Mahalanobis Distance
error is calculated, it is found that all three intervals require
refinement. In the resulting refinement step, two points are

added to interval 1, while intervals 2 and 3 are each divided
at the midpoint. The NLP is then reformulated and solved on
this new mesh.

The subsequent mesh refinements then proceed four more
times, as displayed in Figure 6. The MD error calculated after
solving the NLP on the final mesh no longer exceeds the
threshold limit of 0.5 as seen in Figure 7, and thus the mesh
refinement is terminated. There remain oscillations in the MD
beginning at approximately 6 seconds, but they do not exceed
the threshold value.

Fig. 6: After the initial refinement phase, the mesh is refined 5
more times in order to bring the Mahalanobis Distance below
the threshold of 0.5. The final mesh consists of 12 intervals,
each with a varying number of points.

Fig. 7: The Mahalanobis Distance meets the threshold require-
ment of 0.5 after 5 mesh iterations.

The final interpolated and propagated heading are shown
in Figure 8. While there are still small oscillations in the
propagated heading, the interpolated value no longer exceeds
the one standard deviation bounds, unlike what was seen prior
to the first refinement in Figure 3. This is confirmation of the
choice of MD as an appropriate error.

Finally, the overhead view of the trajectory in Figure 9
shows excellent agreement between the interpolated and prop-
agated solutions, even after nearly 15 seconds of propagation
without a measurement update. This indicates that the optimal

5
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Fig. 8: The difference between the interpolated and propagated
headings is relatively small after 5 mesh refinements. The
small oscillations do not cause the MD to exceed the threshold.

control solution on the refined mesh is adequate for open-
loop use. While it is possible that traditional methods of
mesh refinement such as those described in [6]-[10] could
produce a control solution on a mesh which would successfully
propagate with low MD error, there is no guarantee. For this
reason it is recommended that at a minimum the algorithm
here is used as an additional check to other methods.

Fig. 9: No visible difference exists between the interpolated
and propagated trajectories after 5 iterations of the mesh
refinement algorithm.

V. CONCLUSION

While many methods exist for refining a mesh based purely
on characteristics of the transcription method, the technique
developed in this paper is the result of a holistic approach
which looks at the eventual application of the optimal tra-
jectory, and refines the mesh in order to enhance the ap-

plicability of the open-loop optimal control solution. The
example problem provided here is simple, yet it highlights
the need for appropriate mesh adaptation before using the
optimal control solution as part of a larger controller. The
Mahalanobis Distance, which serves as a gauge of relative
error between the interpolated and propagated solutions, ties
the trajectory generation and estimation modules of the overall
control system together in a natural and convenient way.
Although there is still a need for feedback control action due
to unmodeled dynamics and disturbances, at least the control
system is relieved of the need to also compensate for errors
in the implementation of the optimal feedforward control.
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X. Appendix C

Installation instructions for PSOPT onto a Raspberry Pi version 3 and an ODROID-

C.

Note: The $ character signifies a command line argument. Just copy and paste

without the $ into the command line.

Download the code for PSOPT v4 from the github page: https:github.com/PSOPT/psopt

Note: This version of the code hasn’t been officially released at the current date. So no

guarantees on performance, bugs, etc. However, it does compile with the most recent

versions of IPOPT and other third party libraries. This code is likely to change in the

future so it may be better to just obtain the code from another ODROID. If you’re

reading this, then you probably have a version that works with these instructions.

Prior to anything else, fully update the ODROID by entering the following com-

mands into the console:

$ sudo apt-get update

$ sudo apt-get upgrade

$ sudo apt-get dist-upgrade

Enter the main PSOPT folder, probably called ’psopt-master’. It contains a bash

script written by the author of PSOPT called ’install-ubunut-16.04.sh’. This does not

work on the ODROID without some modifications. Open this file with a text editor

(I like gedit). Copy the following commands from the bash script into the command

console and run them, one by one (or save them to a new bash script and run it).

This will download a few third party libraries.

$ sudo apt-get -y install g++ gfortran f2c libf2c2-dev libf2c2 libblas-dev libopenblas-
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base libopenblas-dev libblas3 libatlas-base-dev liblapack-dev liblapack3

$ cd $HOME/Downloads

$ wget –continue http:www.coin-or.org/download/source/Ipopt/Ipopt-3.12.3.tgz

$ cd $HOME

$ tar xzvf ./Downloads/Ipopt-3.12.3.tgz

$ cd $HOME/Ipopt-3.12.3/ThirdParty/Metis

$ ./get.Metis

$ cd $HOME/Ipopt-3.12.3/ThirdParty/Mumps

$ ./get.Mumps

$ cd $HOME/Ipopt-3.12.3

There is a problem with Metis, Mumps, and IPOPT not recognizing the current

architecture. Update by starting in the Ipopt-3.12.3 folder and running:

$ wget -O config.guess ’http:git.savannah.gnu.org/gitweb/p=config.git;a=blob plain;f=config.guess;hb=HEAD’

$ wget -O config.sub ’http:git.savannah.gnu.org/gitweb/?p=config.git;a=blob plain;f=config.sub;hb=HEAD’

Copy the config.guess and config.sub files into the other folders:

$ cp guess.* /ThirdParty/Metis/.

$ cp guess.* /ThirdParty/Mumps/.

$ cp guess.* /Ipopt/.

You can now run the next command in the Ipopt-3.12.3 folder to configure IPOPT
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$ ./configure –enable-static coin/ skip/ warn cxxflags=yes

You should see a message saying ’Main configuration of Ipopt successful’. The next

step would have you run ’make -j’, which uses all four processors to make IPOPT.

For some reason this doesn’t work, so just run (this takes a while):

$ make

If this works, 15 minutes later you can run the following, which will require ad-

ministrative approval. The default password for the ODROID is ’odroid’:

$ sudo make install

Run the commands all the way through:

$ cd $HOME/Downloads

$ wget –continue www.coin-or.org/download/source/ADOL-C/ADOL-C-2.5.2.tgz

$ cd $HOME

$ tar zxvf ./Downloads/ADOL-C-2.5.2.tgz

$ cd $HOME/ADOL-C-2.5.2

$ mkdir ./ThirdParty

$ cd ./ThirdParty

$ wget –continue http:cscapes.cs.purdue.edu/download/ColPack/ColPack-1.0.9.tar.gz

$ tar zxvf ColPack-1.0.9.tar.gz

$ mv ColPack-1.0.9 ColPack

$ cd ColPack
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Again, the config.guess and config.sub files are out of date. Grab the new ones and

paste them:

$ cp ../../Ipopt-3.12.3/config.* .

Now run the following:

$ ./configure

$ make

$ sudo make install

$ sudo cp /usr/local/lib/libCol* /usr/lib

$ cd $HOME/ADOL-C-2.5.2

$ ./configure –enable-sparse –with-colpack=$HOME/ADOL-C-2.5.2/ThirdParty/ColPack

$ make

$ make install

$ sudo cp $HOME/adolc base/lib64/*.a /usr/lib

$ sudo cp -r $HOME/adolc base/include/* /usr/include/

Next you’ll install an optional package, PDF lite, which the author uses to make

plots from gnuplot

$ cd $HOME/Downloads

$ wget –continue http:www.pdflib.com/binaries/PDFlib/705/PDFlib-Lite-7.0.5p3.tar.gz

$ tar zxvf PDFlib-Lite-7.0.5p3.tar.gz

$ cd PDFlib-Lite-7.0.5p3
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Again, we’ll have to copy the geuss.conf and guess.sub files

$ cp ../../Ipopt-3.12.3/config.* .

$ cp ../../Ipopt-3.12.3/config.* config/.

Then continue with the install:

$ ./configure

$ make; sudo make install

$ sudo ldconfig

Install gnuplot:

$ cd $HOME/Downloads

$ wget –continue

http:sourceforge.net/projects/gnuplot/files/gnuplot/4.2.2/gnuplot-4.2.2.tar.gz/download

$ mv download gnuplot-4.2.2.tar.gz

$ tar zxvf gnuplot-4.2.2.tar.gz

$ sudo apt-get -y install libx11-dev libxt-dev libgd2-xpm-dev libreadline6-dev

$ cd gnuplot-4.2.2

$ ./configure -with-readline=gnu -without-tutorial

$ make

$ sudo make install

Finally, download and install PSOPT. You may skip the PSOPT download part

184



if the code is updated and you simply want to use the current code.

$ cd $HOME

$ wget –continue https:github.com/PSOPT/psopt/archive/master.zip

$ unzip master.zip

$ mv master.zip $HOME/Downloads

$ cd $HOME/psopt-master

$ wget –continue http:faculty.cse.tamu.edu/davis/SuiteSparse/SuiteSparse-4.4.3.tar.gz

$ tar zxvf SuiteSparse-4.4.3.tar.gz

$ cd $HOME/psopt-master

$ wget –continue http:www.stanford.edu/group/SOL/software/lusol/lusol.zip

$ unzip lusol.zip

$ cd $HOME/psopt-master

$ make all

That’s it!
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