2,341 research outputs found

    Optimal experiment design revisited: fair, precise and minimal tomography

    Full text link
    Given an experimental set-up and a fixed number of measurements, how should one take data in order to optimally reconstruct the state of a quantum system? The problem of optimal experiment design (OED) for quantum state tomography was first broached by Kosut et al. [arXiv:quant-ph/0411093v1]. Here we provide efficient numerical algorithms for finding the optimal design, and analytic results for the case of 'minimal tomography'. We also introduce the average OED, which is independent of the state to be reconstructed, and the optimal design for tomography (ODT), which minimizes tomographic bias. We find that these two designs are generally similar. Monte-Carlo simulations confirm the utility of our results for qubits. Finally, we adapt our approach to deal with constrained techniques such as maximum likelihood estimation. We find that these are less amenable to optimization than cruder reconstruction methods, such as linear inversion.Comment: 16 pages, 7 figure

    Spectral unmixing of Multispectral Lidar signals

    Get PDF
    In this paper, we present a Bayesian approach for spectral unmixing of multispectral Lidar (MSL) data associated with surface reflection from targeted surfaces composed of several known materials. The problem addressed is the estimation of the positions and area distribution of each material. In the Bayesian framework, appropriate prior distributions are assigned to the unknown model parameters and a Markov chain Monte Carlo method is used to sample the resulting posterior distribution. The performance of the proposed algorithm is evaluated using synthetic MSL signals, for which single and multi-layered models are derived. To evaluate the expected estimation performance associated with MSL signal analysis, a Cramer-Rao lower bound associated with model considered is also derived, and compared with the experimental data. Both the theoretical lower bound and the experimental analysis will be of primary assistance in future instrument design

    Lower bounds on the estimation performance in low complexity quantize-and-forward cooperative systems

    Get PDF
    Cooperative communication can effectively mitigate the effects of multipath propagation fading by using relay channels to provide spatial diversity. A relaying scheme suitable for half-duplex devices is the quantize-and-forward (QF) protocol, in which the information received from the source is quantized at the relay before being forwarded to the destination. In this contribution, the Cramer-Rao bound (CRB) is obtained for the case where all channel parameters in a QF system are estimated at the destination. The CRB is a lower bound (LB) on the mean square estimation error (MSEE) of an unbiased estimate and can thus be used to benchmark practical estimation algorithms. Additionally, the modified Cramer-Rao bound (MCRB) is also presented, which is a looser but computationally less complex bound. An importance sampling technique is developed to speed up the computation of the MCRBs, and the MSEE performance of a practical estimation algorithm is compared with the (M)CRBs. We point out that the parameters of the source-destination and relay-destination channels can be accurately estimated but that inevitably the source-relay channel estimate is poor when the instantaneous SNR on the relay-destination channel is low; however, in this case, the decoder performance is not affected by the inaccurate source-relay channel estimate

    Limits on Parameter Estimation of Quantum Channels

    Get PDF
    The aim of this thesis is to develop a theoretical framework to study parameter estimation of quantum channels. We begin by describing the classical task of parameter estimation that we build upon. In its most basic form, parameter estimation is the task of obtaining an estimate of an unknown parameter from some experimental data. This experimental data can be seen as a number of samples of a parameterized probability distribution. In general, the goal of such a task is to obtain an estimate of the unknown parameter while minimizing its error. We study the task of estimating unknown parameters which are encoded in a quantum channel. A quantum channel is a map that describes the evolution of the state of a quantum system. We study this task in the sequential setting. This means that the channel in question is used multiple times, and each channel use happens subsequent to the previous one. A sequential strategy is the most general way to use, or process, a channel multiple times. Our goal is to establish lower bounds on the estimation error in such a task. These bounds are called Cramer--Rao bounds. Quantum channels encompass all possible dynamics allowed by quantum mechanics, and sequential estimation strategies capture the most general way to process multiple uses of a channel. Therefore, the bounds we develop are universally applicable. We consider the use of catalysts to enhance the power of a channel estimation strategy. This is termed amortization. The reason we do so is to investigate if an n-round sequential estimation strategy does better than a simpler parallel strategy. Quantitatively, the power of a channel for a particular estimation task is determined by the channel\u27s Fisher information. Thus, we study how much a catalyst quantum state can enhance the Fisher information of a quantum channel by defining the amortized Fisher information. In the quantum setting, there are many Fisher information quantities that can be defined. We limit our study to two particular ones: the symmetric logarithmic derivative (SLD) Fisher information and the right logarithmic derivative (RLD) Fisher information. We establish our Cramer--Rao bounds by proving that for certain Fisher information quantities, catalyst states do not improve the performance of a sequential estimation protocol. The technical term for this is an amortization collapse. We show how such a collapse leads directly to a corresponding Cramer--Rao bound. We establish bounds both when estimating a single parameter and when estimating multiple parameters simultaneously. For the single parameter case, we establish Cramer--Rao bounds for general quantum channels using both the SLD and RLD Fisher information. The task of estimating multiple parameters simultaneously is more involved than the single parameter case. In the multiparameter case, Cramer--Rao bounds take the form of matrix inequalities. We provide a method to obtain scalar Cramer--Rao bounds from the corresponding matrix inequalities. We then establish a scalar Cramer--Rao bound using the RLD Fisher information. Our bounds apply universally and we also show how they are efficiently computable by casting them as optimization problems. In the single parameter case, we recover the so-called Heisenberg scaling\u27\u27 using our SLD-based bound. On the other hand, we provide a no-go condition for Heisenberg scaling using our RLD-based bound for both the single and multiparameter settings. Finally, we apply our bounds to the example of estimating the parameters of a generalized amplitude damping channel

    Workshop on gravitational waves

    Get PDF
    In this article we summarise the proceedings of the Workshop on Gravitational Waves held during ICGC-95. In the first part we present the discussions on 3PN calculations (L. Blanchet, P. Jaranowski), black hole perturbation theory (M. Sasaki, J. Pullin), numerical relativity (E. Seidel), data analysis (B.S. Sathyaprakash), detection of gravitational waves from pulsars (S. Dhurandhar), and the limit on rotation of relativistic stars (J. Friedman). In the second part we briefly discuss the contributed papers which were mainly on detectors and detection techniques of gravitational waves.Comment: 18 pages, kluwer.sty, no figure

    Practical input optimization for aircraft parameter estimation experiments

    Get PDF
    The object of this research was to develop an algorithm for the design of practical, optimal flight test inputs for aircraft parameter estimation experiments. A general, single pass technique was developed which allows global optimization of the flight test input design for parameter estimation using the principles of dynamic programming with the input forms limited to square waves only. Provision was made for practical constraints on the input, including amplitude constraints, control system dynamics, and selected input frequency range exclusions. In addition, the input design was accomplished while imposing output amplitude constraints required by model validity and considerations of safety during the flight test. The algorithm has multiple input design capability, with optional inclusion of a constraint that only one control move at a time, so that a human pilot can implement the inputs. It is shown that the technique can be used to design experiments for estimation of open loop model parameters from closed loop flight test data. The report includes a new formulation of the optimal input design problem, a description of a new approach to the solution, and a summary of the characteristics of the algorithm, followed by three example applications of the new technique which demonstrate the quality and expanded capabilities of the input designs produced by the new technique. In all cases, the new input design approach showed significant improvement over previous input design methods in terms of achievable parameter accuracies

    A Fresh Look at the Bayesian Bounds of the Weiss-Weinstein Family

    No full text
    International audienceMinimal bounds on the mean square error (MSE) are generally used in order to predict the best achievable performance of an estimator for a given observation model. In this paper, we are interested in the Bayesian bound of the Weiss–Weinstein family. Among this family, we have Bayesian Cramér-Rao bound, the Bobrovsky–MayerWolf–Zakaï bound, the Bayesian Bhattacharyya bound, the Bobrovsky–Zakaï bound, the Reuven–Messer bound, and the Weiss–Weinstein bound. We present a unification of all these minimal bounds based on a rewriting of the minimum mean square error estimator (MMSEE) and on a constrained optimization problem. With this approach, we obtain a useful theoretical framework to derive new Bayesian bounds. For that purpose, we propose two bounds. First, we propose a generalization of the Bayesian Bhattacharyya bound extending the works of Bobrovsky, Mayer–Wolf, and Zakaï. Second, we propose a bound based on the Bayesian Bhattacharyya bound and on the Reuven–Messer bound, representing a generalization of these bounds. The proposed bound is the Bayesian extension of the deterministic Abel bound and is found to be tighter than the Bayesian Bhattacharyya bound, the Reuven–Messer bound, the Bobrovsky–Zakaï bound, and the Bayesian Cramér–Rao bound. We propose some closed-form expressions of these bounds for a general Gaussian observation model with parameterized mean. In order to illustrate our results, we present simulation results in the context of a spectral analysis problem
    corecore