9 research outputs found

    Segmentation and polyp detection in virtual colonoscopy : a complete system for computer aided diagnosis

    Get PDF
    El cancer colorectal es una de las mayores causas de muerte por cancer en el mundo. La deteccion temprana de polipos es fundamental para su tratamiento, permitiendo alcanzar tasas del 90% de curabilidad. La tecnica habitual para la deteccion de polipos, debido a su elevada performance, es la colonoscopia optica (tecnica invasiva y extremadamente cara). A mediados de los '90 surge la tecnica denominada colonoscopia virtual. Esta tecnica consiste en la reconstruccion 3D del colon a partir de cortes de tomografia computada. Es por ende una tecnica no invasiva, y relativamente barata, pero la cantidad de falsos positivos y falsos negativos producida por estos metodos esta muy por encima de los maximos aceptados en la practica medica. Los avances recientes en las tecnicas de imagenologia parecerian hacer posible la reduccion de estas tasas. Como consecuencia de esto, estamos asistiendo a un nuevo interes por la colonoscopia virtual. En este trabajo se presenta un sistema completo de diagnostico asistido por computadora. La primera etapa del sistema es la segmentacion, que consiste en la reconstruccion 3D de la superficie del colon a partir del volumen tomografico. El aporte principal en este paso es el suavizado de la imagen. A partir de la superficie, se detectan aquellas zonas candidatas de ser polipos mediante una estrategia multi-escala que permite delinear con precision la zona. Luego para cada candidato se extraen caracteristicas geometricas y de textura, que son calculadas tambien en el tejido que rodea la zona a efectos de compararlas. Finalmente las zonas candidatas se clasifican utilizando SVM. Los resultados obtenidos son prometedores, permitiendo detectar un 100% de los polipos mayoresColorectal cancer is the second leading cause of cancer-related death in the United States, and the third cause worldwide. The early detection of polyps is fundamental, allowing to reduce mortality rates up to 90%. Nowadays, optical colonoscopy is the most used detection method due in part to its relative high performance. Virtual Colonoscopy is a promising alternative technique that emerged in the 90's. It uses volumetric Computed Tomographic data of the cleansed and air-distended colon, and the examination is made by a specialist from the images in a computer. Therefore, this technique is less invasive and less expensive than optical colonoscopy, but up to now the false positive and false negative rates are above the accepted medical limits. Recent advances in imaging techniques have the potential to reduce these rates; consequently, we are currently re-experiencing an increasing interest in Virtual Colonoscopy. In this work we propose a complete pipeline for a Computer-Aided Detection algorithm. The system starts with a novel and simple segmentation step. We then introduce geometrical and textural features that take into account not only the candidate polyp region, but the surrounding area at multiple scales as well. This way, our proposed CAD algorithm is able to accurately detect candidate polyps by measuring local variations of these features. Candidate patches are then classi ed using SVM. The whole algorithm is completely automatic and produces state-of-the-art results, achieving 100% sensitivity for polyps greater than 6mm in size with less than one false positive per case, and 100% sensitivity for polyps greater than 3mm in size with 2:2 false positives per case

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Radiographic Assessment of Hip Disease in Children with Cerebral Palsy: Development of a Core Measurement Set and Analysis of an Artificial Intelligence System

    Get PDF
    Cerebral palsy is the most common physical disability during childhood. Cerebral palsy related hip disease is caused by an imbalance of muscle forces, resulting in progressive migration of the hip to complete dislocation. This can decrease function and quality of life. The prevention of hip dislocation is possible if detected early. Therefore, surveillance programmes have been set up to monitor children with cerebral palsy enabling clinicians to intervene early and improve outcomes. Currently, hip disease is assessed by analysing pelvic radiographs with various geometric measurements. This time-consuming task is undertaken frequently when monitoring a child with cerebral palsy. This thesis aimed to identify the key radiographic parameters used by clinicians (the core measurement set), and then build an artificial intelligence system to automate the calculation of this core measurement set. A systematic review was conducted identifying a comprehensive list of previously reported measurements from studies measuring radiographic outcomes in cerebral palsy children with hip pathologies. Fifteen measurements were identified from the systematic review, of which Reimers’ migration percentage was the most commonly reported. These measurements were used to perform a two-round Delphi study among orthopaedic surgeons and physiotherapists. Participants rated the importance of each measurement using a nine-point Likert scale (‘not important’ to critically important’). After the two rounds of the Delphi process, Reimers’ migration percentage was included in the core measurement set. Following the final consensus meeting, the femoral head-shaft angle was also included. The anteroposterior pelvic radiographs of 1650 children were then used to build an artificial intelligence system integrating the core measurement set, in collaboration with engineers from the University of Manchester. The newly developed artificial intelligence system was assessed by comparing its ability to calculate measurements and outline the pelvis and femur on a radiograph. The reliability of the dataset used to train the model was also analysed. The proposed artificial intelligence model achieved a ‘good to excellent’ inter-observer reliability across 450 radiographs when comparing its ability to calculate Reimers’ migration percentage to five clinicians. Its ability to outline the pelvis and proximal femur was ‘adequate’ with the better performance observed in the pelvis than the femur. The reliability of the training dataset used to teach the artificial intelligence model was ‘good’ to ‘very good’. Artificial intelligence systems are feasible solutions to optimise the efficiency of hip radiograph analysis in cerebral palsy. Studies are warranted to include the core measurement set as a minimum when reporting on hip disease in cerebral palsy. Future research should investigate the feasibility of implementing a risk score to predict the likelihood of hip displacement

    Study on The Computer-Aided Diagnosis for Rheumatoid Arthritis from A Computed Radiography Image

    Get PDF
    九州工業大学博士学位論文 学位記番号:工博甲第448号 学位授与年月日:平成30年3月23日第1章 序論|第2章 特徴量解析による踵骨CR画像からの骨粗鬆症の定量的診断法|第3章 濃度特徴量解析による手部CR画像からの関節リウマチの定量的診断法|第4章 Multi Scale Gradient Vector Flow(MSGVF)Snakes法に基づく手部CR画像からの指骨の自動セグメンテーション法|第5章 Deep Convolutional Neural Networkに基づく手部CR画像からの骨びらんの自動識別法|第6章 考察|第7章 結論九州工業大学平成29年

    [<sup>18</sup>F]fluorination of biorelevant arylboronic acid pinacol ester scaffolds synthesized by convergence techniques

    Get PDF
    Aim: The development of small molecules through convergent multicomponent reactions (MCR) has been boosted during the last decade due to the ability to synthesize, virtually without any side-products, numerous small drug-like molecules with several degrees of structural diversity.(1) The association of positron emission tomography (PET) labeling techniques in line with the “one-pot” development of biologically active compounds has the potential to become relevant not only for the evaluation and characterization of those MCR products through molecular imaging, but also to increase the library of radiotracers available. Therefore, since the [18F]fluorination of arylboronic acid pinacol ester derivatives tolerates electron-poor and electro-rich arenes and various functional groups,(2) the main goal of this research work was to achieve the 18F-radiolabeling of several different molecules synthesized through MCR. Materials and Methods: [18F]Fluorination of boronic acid pinacol esters was first extensively optimized using a benzaldehyde derivative in relation to the ideal amount of Cu(II) catalyst and precursor to be used, as well as the reaction solvent. Radiochemical conversion (RCC) yields were assessed by TLC-SG. The optimized radiolabeling conditions were subsequently applied to several structurally different MCR scaffolds comprising biologically relevant pharmacophores (e.g. β-lactam, morpholine, tetrazole, oxazole) that were synthesized to specifically contain a boronic acid pinacol ester group. Results: Radiolabeling with fluorine-18 was achieved with volumes (800 μl) and activities (≤ 2 GBq) compatible with most radiochemistry techniques and modules. In summary, an increase in the quantities of precursor or Cu(II) catalyst lead to higher conversion yields. An optimal amount of precursor (0.06 mmol) and Cu(OTf)2(py)4 (0.04 mmol) was defined for further reactions, with DMA being a preferential solvent over DMF. RCC yields from 15% to 76%, depending on the scaffold, were reproducibly achieved. Interestingly, it was noticed that the structure of the scaffolds, beyond the arylboronic acid, exerts some influence in the final RCC, with electron-withdrawing groups in the para position apparently enhancing the radiolabeling yield. Conclusion: The developed method with high RCC and reproducibility has the potential to be applied in line with MCR and also has a possibility to be incorporated in a later stage of this convergent “one-pot” synthesis strategy. Further studies are currently ongoing to apply this radiolabeling concept to fluorine-containing approved drugs whose boronic acid pinacol ester precursors can be synthesized through MCR (e.g. atorvastatin)
    corecore