10 research outputs found

    Evaluation of geometrical complexity of products based on the analysis of triangulated models

    Get PDF
    The results of study evaluation possibilities of geometric complexity of industrial products are presented in this article by analyzing of functional dependence of number of triangular faces on triangulation parameters. As the main parameter of the triangulation was considered maximum size of edges. The dependence study was carried out for basic geometric bodies, which revealed the general regression equation. Test of the regression equation on models of industrial products has confirmed put forward a scientific hypothesis on the evaluation possibility of geometric complexity of industrial products based on the analysis of this functional dependence

    Computer Aided Grid Interface: An Interactive CFD Pre-Processor

    Get PDF
    NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the Computer Aided Grid Interface system (CAGI). The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and / or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system

    Design for manufacturability : a feature-based agent-driven approach

    Get PDF

    Toleranzmanagement im Entwicklungsprozess: Reduzierung der Auswirkungen von Toleranzen auf Zusammenbauten der Automobil-Karosserien

    Get PDF
    Erstmalige Betrachtung von Toleranzmanagement im Karosseriebau. Das vollständig in den automobilen Entwicklungsprozess implementierte Toleranzkonzept ermöglicht höhere Prognosegüten der Funktionsmaße in frühen Konstruktionsphasen. Darüber hinaus wurden die in der Methode enthaltenen Hilfsmittel wie z.B. Konstruktionskataloge zum Toleranzgerechten Konstruieren, FEM-basierte Streuungsvorhersage von Pressteilen und ein Vorhersagetool zur Beurteilung des Bezugsstellenwechsels entwickelt

    Automatic Feature Recognition and Tool Path Generation Integrated with Process Planning

    Get PDF
    The simulation and implementation of Automatic recognition of features from Boundary representation solid models and tool path generation for precision machining of features with free form surfaces is presented in this thesis. A new approach for extracting machining features from a CAD model is developed for a wide range of application domains. Feature-based representation is a technology for integrating geometric modeling and engineering analysis for the life cycle. The concept of feature incorporates the association of a specific engineering meaning to a part of the model. The overall goal of feature-based representations is to convert low level geometrical information into high level description in terms of form, functional, manufacturing or assembly features. Using the boundary representation technique, the information required for manufacturing process can be directly extracted from the CAD model. It also consists of a parameterization strategy to extract user-defined parameters from the recognized features. The extracted parameters from the individual features are used to generate the tool path for machining operations regardless of the intersection of one or more features. The tool path generation is carried out in two phases such as roughing and finishing. Various types of tool paths such as one-way, zig-zag, contour parallel are generated according to the type of the feature for the roughing operation. The algorithm automatically plans the sequence of machining operation with respect to the feature location, and also selects the type of tool and tool path to be used according to the feature. The finishing operation uses the tool path generation strategy in the same manner as used in roughing operation. The algorithm is implemented using the Solid works API library and verified with CNC milling simulator. The results of the work proved the efficiency of this approach and it demonstrate the applicability

    Constraint-Based Graphic Statics - A geometrical support for computer-aided structural equilibrium design

    Get PDF
    This thesis introduces “constraint-based graphic statics”, a geometrical support for computer-aided structural design. This support increases the freedom with which the designer interacts with the plane static equilibriums being shaped. Constraint-based graphic statics takes full advantage of geometry, both its visual expressiveness and its capacity to solve complex problems in simple terms. Accordingly, the approach builds on the two diagrams of classical graphic statics: a form diagram describing the geometry of a strut-and-tie network and a force diagram vectorially representing its inner static quilibrium. Two new devices improve the control of these diagrams: (1) nodes — considered as the only variables — are constrained within Boolean combinations of graphical regions; and (2) the user modifies these diagrams by means of successive operations whose geometric properties do not at any time jeopardise the static equilibrium of the strut-and-tie network. These two devices offer useful features, such as the ability to describe, constrain and modify any static equilibrium using purely geometric grammar, the ability to compute and handle multiple solutions to a problem at the same time, the ability to switch the hierarchy of constraint dependencies, the ability to execute dynamic conditional statements graphically, the ability to compute full interdependency and therefore the ability to remove significantly the limitations of compass-and-straightedge constructions and, finally the ability to propagate some solution domains symbolically. As a result, constraint-based graphic statics encourages the emergence of new structural design approaches that are highly interactive, precognitive and chronology-free: highly interactive because forces and geometries are simultaneously and dynamically steered by the designer; precognitive because the graphical region constraining each points marks out the set of available solutions before they are even explored by the user; and chronology-free because the deductive process undertaken by the designer can be switched whenever desired

    Proceedings of the International Workshop "Innovation Information Technologies: Theory and Practice": Dresden, Germany, September 06-10.2010

    Get PDF
    This International Workshop is a high quality seminar providing a forum for the exchange of scientific achievements between research communities of different universities and research institutes in the area of innovation information technologies. It is a continuation of the Russian-German Workshops that have been organized by the universities in Dresden, Karlsruhe and Ufa before. The workshop was arranged in 9 sessions covering the major topics: Modern Trends in Information Technology, Knowledge Based Systems and Semantic Modelling, Software Technology and High Performance Computing, Geo-Information Systems and Virtual Reality, System and Process Engineering, Process Control and Management and Corporate Information Systems
    corecore