
Design Reuse in a CAD Environment

A thesis submitted for the degree of Doctor of Philosophy

By

Peter T. J. Andrews

Department of Manufacturing and Engineering ystems,
Brunel University

January 1999

Abstract

For many companies, design related information mainly exists as rooms of paper-
based archives, typically in the form of manufacturing drawings and technical

specifications. This 'static' information cannot be easily reused.

The work presented in this thesis proposes a methodology to ease this problem. It
defines and implements a computer-based design tool that will enable existing
design families to be transformed into 'dynamic' CAD-based models for the

Conceptual, Embodiment and Detailed stages of the design process.

Two novel concepts are proposed here, i) the use of a Function Means Tree to store
Conceptual and Embodiment design and ii) a Variant Method to represent Detailed

design. In this way a definite link between the more abstract conceptual and the

concrete detailed design stages is realised by linking individual detailed designs to

means in the Function Means Tree. The use of the Variant Method, incorporating

'state-of-the-art' developments in Solid Modelling, Feature-Based Design and
Parametric Design, allows an entire family of designs to be represented by a single
Master Model. Therefore, instances of this Master Model need only be stored as a set

of design parameters. This enables current design families and new design cases to

be more created more efficiently.

Industrial Case Studies, including a Lathe Chuck family, a Drive-End casting and a
family of Filtration Systems are given to prove the methodology.

Contents
CHAPTER I

INTRODUCTION
.. 1

1.1 Computer Aided Design 1
1.2 The Need and Associated Problems 2
1.3 The Project 3
1.4 Structure of the Thesis

.. 3

CHAPTER2

BACKGROUND & THEORY
...

Overview
... 5

2.1 Capturing Design for Reuse .. 5
2.2 The Design Process

... 6

2.3 Conceptual Design
.. 9

2.3.1 Sketching
... --******l0

2.3.1 Function Family Tree
... *******..

11

2.4 Embodiment Design
..

13

2.4.1 Parts Tree
..

14

2.4.2 Morphological Methods
..

14

2.4.3 ne Morphological Box
..

15

2.4.4 The Morphological Tree
..

16

2.5 Function Means Tree
...

17

2.6 Design Function Deployment (DFD)
.. ***,

19

2.6.1 Design Reuse within DFD
.. , 24

2.7 Detailed Design
... 25

2.8 Geometric Modelling
..

27

2.8.1 Graphical Models
.. 29

2.8.2 Solid Models
... 32

2.8.3 Pure Primitive Instancing
..

33

2.8.4 Constructive Solid Geometry
.. 35

2.8.5 Boundary Representation
.. 38

2.8.5.1 Data Storage and Redundancy
.. 40

2.8.6 Relevance of Solid Modelling Systems
... 41

2.8.7 Enhanced Solid Modelling Schemes
... 42

2.8.8 An Overview of Geometric Modelling
.. 43

2.9 Parametric and Variational Modelling
..

44

2.10 Feature Based Design
..

48

2.10.1 Feature Creation Methods ... 51

2.10.2 Form Feature Recognition
...

51

2.10.3 Design By Features ...
53

2.10.4 User-Defined Features
55

2.11 Commercial Feature Based Modelling Systems
56

2.12 Working techniques for the Capture of Solid Geometry
60

2.12.1 Automatic Capture of Paper Based Manufacturing Drawings ...
60

2.12.2 Automatic Conversion to Solid Geometry .. 61

2.12.3 B-Rep Approaches .. 63

2.12.4 CSG-Based Approaches .. 64
2.12.5 Summary of Multi-View Reconstruction Approaches ... 64

2.13 State of the Art - Feature-Based Semi-Automated Methods ... 65

2.13.1 Generative Method .. 65
2.13.2 Variant Method ... 69
2.13.3 A Comparison of Generative and Variant Design Methods .. 71

2.14 Essential Findings from the Literature Survey 72

2.14.1 Function Means Tree ... 72
2.14.2 Annotated Sketches ... 72

2.14.3 Variant CAD Model ..
72

CHAPTER3

GENERIC METHODOLOGY
...

74

Overview ...
74

3.1 Data Structures ..
74

3.2 The Two Novel Concepts ..
75

3.2.1 The Hybrid Function Means / Parts Tree ..
75

3.2.2 The Variant Master Model ..
78

3.3 The Generic Methodology
..

83

3.3.1 Organisation of Manufacturing Drawings ...
85

3.3.2 Creating Variant Master Models ...
85

3.3.3 Creating a Parts Related Database of the Master Model ...
88

3.3.4 Creating a Hybrid Function Means / Parts Tree ..
89

3.3.5 Recording Individual Family Members ...
89

3.4 An Illustrative Example
..

90

3.4.1 The Propeller - Shaft Assembly ..
90

3.4.2 Organisation of Manufacturing Drawings ...
93

3.4.3 Creating the Variant CAD Models ..
94

3.4.4 Linking the Master Model to a Parts Oriented Database ...
100

3.4.5 Creating a Function Means Tree ...
100

3.4.6 Entering Data for the Family Members ...
103

CHAPTER 4

SOFTWARE IMPLEMENTATION ..
104

Overview ...
104

4.1 Objectives of the Software ..
104

4.2 Software Solution ..
105

4.3 Achievable Solutions ...
105

4.3 Data Structures ..
107

4.3.1 'Me Part Node ...
107

4.3.2 Parts Tree ..
107

4.3.3 Function Node ...
109

4.3.4 Function Family Tree ..
109

4.3.5 Hybrid Function/Means(Parts) Tree ..
109

4.3.6 The Generic Instance ...
109

4.3.7 The Product Family ...
110

4.4 Application Development Environment ..
110

... 4 5 User Interface III
... .

4.6 Interfacing to CAD Modellers ...
112

4.7 An Illustrative example - the Propeller Shaft ...
113

4.7.1 Reuse of the Propeller Shaft Model for a Modified Blade ..
118

CHAPTER 5

CASE STUDIES ..
120

Overview
...

120

5.1 Guindy Machine Tools Ltd. Lathe Chuck Family ...
120

5.2 Lucas Varity Drive End Shield Casting ..
126

5.3 Hydroflow Rotary Drum Filter System ...
131

CHAPTER 6

DISCUSSION & CONCLUSIONS
.. ***********136

6.1 Discussion ..
136

6.2 Conclusions
.. ****'*****, *

137

6.3 Recommendations for Future Work ..
138

BIBLIOGRAPHY ..
139

APPENDIXI

SOFTWARE CODE USTING ..
146

Overview ...
146

Al. I- Definition of Data Sructures and Global Variables
..

147

AT. 2 - Form Document ...
150

APPENDIX 11

CASE STUDIES - FURTHER EXAMPLES
..

216

List of Figures
Figure 1.1 The 3-Stage Design Model ... 4
Figure 2.1 The design process .. 7
Figure 2.2 A Conceptual Sketch for a Concrete Mixer ... 10
Figure 2.3 A Function Tree for a Concrete Mixer .. 12
Figure 2.4 A Parts Tree for a Concrete Mixer .. 14
Figure 2.5 A Morphological Box for the Mortar and Concrete Mixer ... 16
Figure 2.6 A Morphological Tree for the Mortar and Concrete Mixer ... 17
Figure 2.7 A Function Means Tree for the Concrete Mixer ... 19
Figure 2.8 Structural Overview of Design Function Deployment .. 21
Figure 2.9 Stage I DFD Chart

.. 22
Figure 2.10 Stage 2 DFD Chart

.. 23
Figure 2.11 Stage 3 DFD Chart .. 23
Figure 2.12 Integration of the Design Process within DFD .. 24
Figure 2.13 Representing Design Intent in a Manufacturing Drawing of a Pipe-Bender: 26
Figure 2.14 A Solid Modelling System

..
28

Figure 2.15 Linked-List Representation of a Graphical Model ..
30

Figure 2.16 A Fillet and its Associated Primitives ...
31

Figure 2.17 Ambiguous 3D Graphical wireframes ...
32

Figure 2.18 Example of the PPI application ..
34

Figure 2.19 A Simple Half-Space Model ...
35

Figure 2.20 A CSG-tree for an L-bracket
...

36
Figure 2.21 Parameterised CSG-tree for an L-bracket ..

37
Figure 2.22 Lack of Primitive Relationships in the CSG-tree

..
38

Figure 2.23 Faces Bounding the L-Bracket
..

39
Figure 2.24 Various Entities of a 13-rep model ...

39

Figure 2.25 Nine Topological Relationships
..

41

Figure 2.26 Solid Modelling Schemes
..

43
Figure 2.27 Constructing Parametric and Variant Models ..

45
Figure 2.28 Difference between Parametric and Variational Systems ..

47
Figure 2.29 Design Features of a Connecting Rod ..

48
Figure 2.30 A Simple (Blind) Hole Feature

..
49

Figure 2.31 A Through-Hole Feature
...

49
Figure 2.32 Interactive Feature Definition

..
52

Figure 2.33 Automatic Feature Definition
..

52
Figure 2.34 Design By Features

... 54
Figure 2.35 A User-Defined Arch feature

.. 55
Figure 2.36 Creating the L-bracket in Pro/ENGINEER

...
57

Figure 2.37 Feature Suppression
.. 57

Figure 2.38 A Family Table in Pro/ENGINEER
..

58
Figure 2.39 A Parametric Spring in Solidworks

...
60

Figure 2.40 Orthogonal Projections and Isometric (auxiliary) View ..
62

Figure 2.41 A simple 2Y2D loft and ambiguous isometric view ..
63

Figure 2.42 The Generative Methodology
..

65
Figure 2.43 Example of the Generative Method for the L-Bracket

..
68

Figure 2.44 The Variant Method .. 69
Figure 2.45 Use of Global Parameters .. 70
Figure 3. la A Generalised Function Family Tree ... 76
Figure 3.1 bA General ised Parts Tree ... 76
Figure 3.2 Schematic Data Structure of the Hybrid Function Means / Parts Tree 77
Figure 3.3 A Function Oriented Representation of the Hybrid Data Structure 77
Figure 3.4 A Parts Oriented Representation of the Hybrid Data Structure ... 78
Figure 3.5 A Family of Spanner Designs .. 79
Figure 3.6 Members of a more Complex Spanner Family .. 79
Figure 3.7 A Venn Diagram Representation of a Master Part .. 80
Figure 3.8 Master Part from a Connector ... 81
Figure 3.9 A Master System for a Connector and two Instances 81
Figure 3.10 A Venn Diagram Representation of a Master System 82
Figure 3.11 The Generic Methodology 84
Figure 3.12 Possible Parameter definitions of a Channel 86
Figure 3.13 Parameter definitions for a Gear design 86
Figure 3.14 Global Parameters to retain Design Intent in an Assembly ... 87
Figure 3.15 Use of Global Parameters to control Patterned Instancing .. 88
Figure 3.16 Example Design 'A' for a Prop-Shaft assembly .. 91
Figure 3.17 Example Design 'B' for a Prop-Shaft assembly 92
Figure 3.18 The Master Parts .. 93
Figure 3.19 The Single Master System and Master Model .. 94
Figure 3.20 Table of Feature Persistence for each Product .. 95
Figure 3.21 Table of Driving Parameters ... 95
Figure 3.22 Pro/ENGINEER Variant CAD models of the Master Parts .. 96
Figure 3.23 Table of Master Part Global Parameters .. 96
Figure 3.24 Pro/ENGINEER model of the Propeller Assembly ... 97
Figure 3.25 Pro/ENGINEER model of the Prop-Shaft family assembly 99
Figure 3.28 The Function Means Tree for the Propeller-Shaft Design ... 102
Figure 4.1 General Process Flowchart .. 106
Figure 4.2 Elements Comprising a Product Family of Instances .. 107
Figure 4.3 Part Node Data Structure ... 108
Figure 4.4 Parts Tree Data Structure ... 108
Figure 4.5 Function Node Data Structure ... 108
Figure 4.6 Function Family Tree Data Structure ..

108
Figure 4.7 Hybrid Function/Means Data Structure ... 109
Figure 4.8 Generic Instance Data Structure .. 110
Figure 4.9 Product Family Data Structure .. 110
Figure 4.10 The User Interface ... III
Figure 4.11 a The Master Blade Part . .. 114
Figure 4.11 b The Master Hub Part . .. 114
Figure 4.11 c The Master Propeller Assembly 115
Figure 4.11 d The Master Shaft Part .. 115
Figure 4.11 e The Master Propeller Shaft Assembly ... 116
Figure 4.12 The Function Family Tree 116

.................... Figure 4.13 The Parts Oriented Function Means Tree .. 117
Figure 4.14 Instance for Design A 117 Figure 4.15 Instance for Design B .. 118

Figure 4.16 A Modified Blade Part (with fin feature) .. 119
Figure 4.17 The Updated Propeller Shaft Assembly model for the New Design 119
Figure 5.1.1 The Generic Section View of the GMT Lathe Chuck 121
Figure 5.1.2 A 2-Jaw Chuck .. . 123
Figure 5.1.3 A 3-Jaw Chuck 123 Figure 5 1 4A 4-Jaw Chuck 123
Figure 5.1.5 Parts Tree for the Generic Chuck ... 124
Figure 5.1.6 Function Means Tree for the Generic Chuck ... 125
Figure 5.2.1 FMT application for the Drive-End-Shield Casting ... 126
Figure 5.2.2 Manufacturing Drawing for a Drive-End-Shield Casting Variant 127
Figure 5.2.3 A Schematic Representation of the Generic Casting .. 128
Figure 5.2.4 Manufacturing Drawing for the Generic Drive-End-Shield .. 129
Figure 5.2.5 Drive-End-Shield No. V6211-673 - CAD Model & Parameters 130
Figure 5.3.1 Assembly Drawing of a Hydroflow Rotary Drum Filtration System 132
Figure 5.3.2 Model of a Hydroflow Rotary Drum Module - 450xI 000mm unit 134
Figure 5.3.3 Model of a Hydroflow Rotary Drum Module - 450050min unit 135
Figure All. 1.1 GMT Chuck Assembly - Example Manufacturing Drawing 218
Figure All. 1.2 GMT Chuck Back-Plate - Example Manufacturing Drawing 219
Figure All. 1.3 GMT Chuck Balancing Weight - Example Manufacturing Drawing 220
Figure All. 1.4 GMT Chuck Base-Jaw - Example Manufacturing Drawing 221
Figure All. 1.5 GMT Chuck Body - Example Manufacturing Drawing ... 222
Figure AII. I. 6 GMT Chuck Collar - Example Manufacturing Drawing .. 223
Figure All. 1.7 GMT Chuck Cover - Example Manufacturing Drawing .. 224
Figure All. 1.8 GMT Chuck Hard-Jaw - Example Manufacturing Drawing 225
Figure All. 1.9 GMT Chuck Lever - Example Manufacturing Drawing .. 226
Figure All. 1.10 GMT Chuck Soft-Jaw - Example Manufacturing Drawing 227
Figure All. 1.11 GMT Chuck T-Nut - Example Manufacturing Drawing .. 228
Figure All. 1.12 GMT Chuck Wedge - Example Manufacturing Drawing .. 229
Figure All. 1.13 GMT Chuck Wedge Adaptor - Example Manufacturing Drawing 230
Figure 5.1.14 GMT Generic Back Plate - CAD Model & Parameters .. 231
Figure 5.1.15 GMT Generic Balancing Weight - CAD Model & Parameters 231
Figure 5.1.16 GMT Generic Base Jaw - CAD Model & Parameters .. 232
Figure 5.1.17 GMT Generic Body - CAD Model & Parameters .. 232
Figure 5.1.18 GMT Generic Collar - CAD Model & Parameters ... 233
Figure 5.1.19 GMT Generic Cover - CAD Model & Parameters ... 233
Figure 5.1.20 GMT Generic Hard Jaw - CAD Model & Parameters .. 234
Figure 5.1.21 GMT Generic Lever - CAD Model & Parameters ... 234
Figure 5.1.22 GMT Generic Soft Jaw - CAD Model & Parameters ... 235
Figure 5.1.23 GMT Generic 'T'-Nut - CAD Model & Parameters .. 235
Figure 5.1.24 GMT Generic Wedge - CAD Model & Paramete ... 236
Figure 5.1.25 GMT Generic Wedge Adaptor - CAD Model & Parameters 236
Figure All. 1.26 GMT Chuck Assembly - Pro/ENGINEER Drawing .. 237
Figure All. 1.27 GMT Back Plate - Pro/ENGINEER Drawing .. 238
Figure All. 1.28 GMT Balancing Weight - Pro/ENGINEER Drawing .. 239
Figure All. 1.29 GMT Base Jaw - Pro/ENGINEER Drawing .. 240
Figure All. 1.30 GMT Body - Pro/ENGINEER Drawing ... 241
Figure All. 1.31 GMT Collar - Pro/ENGINEER Drawing ... 242
Figure All. 1.32 GMT Cover - Pro/ENGINEER Drawing ... 243

Figure All. 1.33 GMT Hard Jaw -Pro/ENGINEER Drawing Drawing ... 244
Figure All. 1.34 GMT Lever - Pro/ENGINEER Drawing .. 245
Figure All. 1.35 GMT Soft Jaw -Pro/ENGINEER Drawing ... 246
Figure All. 1.36 GMT'T'Nut- Pro/ENGINEER Drawing 247
Figure All. 1.37 GMT Wedge - Pro/ENGINEER Drawing 248
Figure All. 1.38 GMT Wedge Adaptor -Pro/ENGINEER Drawing 249
Figure All. 1.39 Assembly Views for the 3B200-PHCNC Chuck 250
Figure All. 1.40 Assembly Views for the 313200-PHNC Chuck 251
Figure All. 1.41 Assembly Views for the 2B 165-PHCNC Chuck 252
Figure All. 1.42 Assembly Views for the 4B250-PHNC Chuck 253
Figure All. 2.1 Drive-End-Shield No. V6211-673 - CAD Model & Parameters 255
Figure All. 2.2 Drive-End-Shield No. V6211-679 - CAD Model & Parameters 255
Figure All. 2.3 Drive-End-Shield No. V6211-695 - CAD Model & Parameters 256
Figure All. 2.4 Drive-End-Shield No. V6211-710 - CAD Model & Parameters 256
Figure All. 2.5 Drive-End-Shield No. V6211-673 - Manufacturing Drawing 257
Figure All. 2.6 Drive-End-Shield No. V6211-679 - Manufacturing Drawing 258
Figure All. 2.7 Drive-End-Shield No. V6211-695 - Manufacturing Drawing 259
Figure Al 1.2.8 Drive-End-Shield No. V6211-7 10 - Manufacturing Drawing 260
Figure All. 2.9 Drive-End-Shield - Rendering 261
Figure Al 1.2.10 Drive-End-Shield - Rendering (Section View) 262
Figure All. 3.1 Hydroflow Rotary Drum Weld Assembly-Manufacturing Drawing 264
Figure All. 3.2 Hydroflow Drum Flush Pipe Assembly-Manufacturing Drawing 265
Figure All. 3.3 Hydroflow Drum Body Fabrication- Example Manufacturing Drawing 266
Figure All. 3.4 Hydroflow Drum Main Guard- Example Manufacturing Drawing 267
Figure All. 3.5 Hydroflow Drum End Guard- Example Manufacturing Drawing

268
Figure All. 3.6 Hydroflow End Plate - Example Manufacturing Drawing ... 269
Figure 5.3.7 HydroFlow Drum Body - CAD Model & Parameters .. 270
Figure 5.3.8 HydroFlow Drum Endplate - CAD Model & Parameters .. 270
Figure 5.3.9 HydroFlow Drum Flush Pipe - CAD Model & Parameters .. 271
Figure 5.3.10 HydroFlow Drum Flush Pipe End - CAD Model & Parameters 271
Figure 5.3.11 HydroFlow Drum Main Guard - CAD Model & Parameters 272
Figure 5.3.12 HydroFlow Drum Viewing Window - CAD Model & Parameters 272
Figure 5.3.13 HydroFlow End Plate - CAD Model & Parameters ... 273
Figure 5.3.14 HydroFlow Mesh Clamp - CAD Model & Parameters .. 273

Acknowledeements

The author would like to thank Dr. Sangarapillai Sivaloganathan for his untiring

guidance throughout this project. His breadth and depth of knowledge, as well as
his endless Tamil sayings have helped make this project a success. Although I

am sure he would only tell me that 'Hard work is only rewarded by more hard

work' (Sivaloganathan 1999).

Many thanks are also due to Dr. Tamer M. M. Shahin, Mr. S. Srikumaran and
Mrs. E. Sivakumar of the Engineering Design Group, Brunel University, UK, for

their assistance, support and entertainment.

Last, but not leastý I would like to thank my family and close friends, and
especially Michelle.

Chapter I

Introduction
1.1 Computer Aided Design
The advent of computers in engineering has made significant progress in the past
few decades. It has opened up several new opportunities, which would not have even
been thought of with traditional design practices. As Besant and Lui (1986) rightly

point out, in Computer Aided Design, man and machine work as a team where one

complements the other. They identify the strengths and weaknesses of each of them

in the following way:

" The computer has three main functions:

1) To serve as an extension to the memory of the designer.

2) To enhance the analytical and logical power of the designer.

3) To relieve the designer from routine, repetitious tasks.

The designer is left to perform the following activities:

1) Control of the design process in information distribution.

2) Application of creativity, ingenuity and experience.
3) Organisation of design information. "

Besant and Lui (1986)

In the early stages computers were mainly used for intensive, number crunching

tasks. However, work by Sutherland (1963) at M. I. T. on the development of the

'SKETCHPAD' interactive computer graphics system prompted the rapid

development of computer technology into other areas of engineering. Initially,

computer graphics concentrated on the development of techniques and software to

facilitate the development of Engineering Drawings. Drafting packages such as

AutoCAD (Autodesk) are implementations of this kind. Thus the computer was

used, primarily, as a drafting tool. Further developments soon extended to using the

computer as a Modelling Tool and an entirely new branch of study called 'Geometric

Modelling' was born. The past few decades have witnessed the development of

various types of modellers to address specific industrial needs. The combined

I

development of abundant computing power, display facilities, storage media, and
input devices, together with evolutionary advances in 'Geometric Modelling' has

resulted in a situation where the Computer System, constituting a partnership
between hardware and software, has developed into a powerful tool, for the

engineering industry. These advances in technology have now reached a state of
transition; from regarding the computer as a tool for 'detailed' modelling and

analysis, into a tool to assist design as a whole. Applications for this 'State of the
Art' area of research include, computer-based Conceptual Design and Design Reuse.

Increasingly innovative applications must be envisaged to exploit this powerful tool,
(Shah et al, 1996). This research is aimed at developing such an application,

where the 'Computer System' is used in a novel wa facilitating the traditional Y,

engineering companies to computerise their operations with much less effort. This

will enable them to reuse their past designs more efficiently, and develop next

generation products built on their strengths through the latest developments in

science and technology.

1.2 The Need and Associated Problems
The majority of Small and Medium Enterprises (SME's), deal with the design and

manufacture of a specific range of products, from individual piece-parts to complex

multi-part assemblies. These enterprises typically archive a large collection of

manufacturing drawings, for both discontinued and current 'in-service' products,

which must be maintained and made accessible, when needed. The problem for these

companies is to successfully adopt computerisation of this library of drawings, so
that they can enjoy the resultant benefits of computer technology.

Thus the need here, is to establish an easy way of computerising these designs in a

manner that will eirable specific information from various design cases to be

accessed at th e press of ab uttou.

The problems associated with meeting such a need are as follows:

1. Establishing a structure for the information that will be required at various levels

of design abstmction

2

2. Establishing a methodology to efficiently store the structured information.

3. A mechanism to retrieve and use this information.

1.3 The Project

In this project, the structures of design information at different levels of abstraction

were identified as:

a) Solution concept described as a Function Tree

b) Embodiment Design described as a Parts Tree

C) Detailed Design represented as a geometric, solid model

The principles, comprising a methodology for storing this information are as
follows:

a) The Function Means Tree to store the solution concept and

embodiment designs, and

A Variant Model and associated parameter database to store the
detailed design.

A retrieval mechanism for the detailed design was developed in the form of a

skeletal 'Master Model'. The 'Master Model' reads the parameters of a specified
instance from the database to build the corresponding geometric model (or instance).

This novel method eliminates the creation of one geometric model for each design,
from scratch, and creates all instances (or geometric models) of a family from the

same master model. This instance can then be modified or utilised for the next

generation of products. In this way, the activity of computerisation is made much

simpler, and information relating to past designs is made available to the designer at
different levels of abstraction.

1.4 Structure of the Thesis

This research follows the design model outlined by Jones (1980), an adaptation of
which is shown in Figure 1.1. In the first stage, Divergence, all the data related to the

project in terms of design representations and geometric and solid modelling is

collated. This enabled the understanding of the state of the art, and was analysed

3

critically to select the important attributes, characteristics and methods for
integration to the proposed method, and is described in Chapter 2. In the next stage,
TranýfornmliO? 7, the elements identified as being important are developed and

combined to form novel methods. The transformation process specifically looked at
two possible methods for storing the detailed designs, the Generative and Variant

methods, and two possible methods for storing conceptual and embodiment designs,

the Chart-Based and Function-Means Tree methods. A combination of The Function

Means Tree and Variant Model were selected as the novel method for development

into a software system (Convergence). The methodology developed is described in
Chapter 3. The software developed is given in Chapter 4. Three case studies, the

Guindy Machine Tools Ltd. 'Lathe Chuck Family'. the Lucas Varity Drive-End-

Shield Casting and the Hydroflow Rotary Drum Filter are presented in Chapter 5.

Chapter 6 presents the conclusions drawn from this work, and discusses the merits

and demerits of the method and finally highlights the areas for further work.

DIVERGENCE

DESIGN REPRESENTATM SCHEMES

Fundion-Means Product Models
STEP Parts Tree DFD

Function Tree Concept Sketches

6 EOMETRK M ODEWNG

Graphical Models Parametric
Feature Based Design Generative

Variational Solid Modelling

TRANSFORMATION

Fundion-Means Tree v Chart Based Methods
Variant v Generative

CONVERGENCE

Furoction-Means Tree
Variant Model

Figure 1.1 - The 3-Stage Design Model - Adapted from Jones (1980)

4

Chapter 2

Background & Theory

Overview

This chapter will discuss the theoretical background of Traditional and Computer

Aided Design methods that are relevant to this research. It will begin with a general
discussion of the Design Process, what elements of this process need to be Captured

to enable effective Design Reuse and how this information can be structured and

stored for efficient retrieval. Methods for structuring Conceptual and Embodiment

design shall be discussed, including the Function-Means Tree and Design Function

Deployment (DFD). The representation of Detailed design involves the study of

Geometric, and in particular, Solid Modelling systems. This will be followed by a

review of Parametric and Variational Modelling, and Feature Based Design - both

of which are techniques to assist in the design of adaptive, engineering models. An

analysis of existing methods that aim to convert two-dimensional manufacturing
drawings to fully-fledged three-dimensional solid models will also be given,
including the Generative (or Procedural) method, and the Variant Method. In all

cases, the applicability of these theories shall be assessed against the requirements of

this project as-outlined in the previous chapter.

2.1 Capturing Design for Reuse
Traditional, existing design documentation is typically found in the form of

manufacturing drawings. These structures contain the outcome of a design process,

and are obvious candidates for Design Reuse. However, if a new engineer is to fully

understand past designs, they will also need access to other, more descriptive, forms

of design documentation, such as the initial design brief, ideas generated throughout

the design, and lessons learnt by adopting a particular technique. This information

requires the capture of information at various stages of the Design Process. Finger

outlines the more specific needs to capture the design process.

5

Explanation - to explain how and why a particular decision was made,
Verification - to determine if characteristics of the final design are consistent

with the intended characteristics as represented by the top-level objectives,
Modification - to predict the effect of making changes to the design,

Reuse - to synthesise a design from a previous design with a similar

specification and,
Instruction - to guide novice designers. Finger (1998)

These needs require the identification of which stages of the design process are

relevant to computerisation of past designs. These are discussed in the following

section.

2.2 The Design Process

Much of design research has viewed the Design Process from a synthesis, or top-
down approach. However, the emphasis in this research is from a bottom-up

direction, as the goal of this project is to store a design for reuse, using the finished

product (the manufacturing drawings) as a starting point. Shigley (1977) outlines the
idealised, top-down design process as a chain of events (figure 2.1a) with iteration.

For this research, the Recognition, Definition and Synthesis stages can be 'refined'

into a more manageable series of events, as outlined in figure 2.1b, by Evbuomwan

et al (1996).

6

Recognition of Need

Definition of Problem Product Concept

Synthesis Solution Concept

is & Optimisation
%

Embodiment Design

%%%

Evaluation
I

Detailed De

Figure 2.1 - The design process , (a) left: Shigley , (b) right E-*, buomA, an et al.

Requirements - The starting-point of the design and development of a product is its

societal need. This need is represented by a set of prioritised requirements.

Therefore, in this context, a Requirement can be defined as an element of a need.

V., Specifications - also tenned Pi-odua Concepts, are a list of functions, that the design

or artefact should perform to realise the mentioned requirements. These descriptions

include the limitations imposed by factors such as geometry, space, working

environment, legal and other considerations, which are collectively termed as the

design Constraints. Specifications are generally, not solution specific, i. e. their

content does not rely on a particular solution.

Solution Concepts - The list of functions to be perfon-ned as specified by the Product

Concepts is broken into sub-groups, to which sub-solutions are proposed for their

realisation. The combination of these sub-solutions, often termed Subsystems, form

the design solution. Therefore, the Solution Concept may be defined as the

combination of all conformable subsystems, which satisfy all listed functions and

constraints in a holistic manner.

7

Embodiment Designs - The concept relating to a given subsystem can often be

realised in more than one way, or means. For example, a subsystem to reduce the

speed between two parallel shafts can be achieved by using either belt, chain or gear
devices. It is therefore necessary to establish the physical parts that constitute a

subsystem. Establishing the network of parts that form the design is termed the

Embodiment Design.

Detailed Designs - These define the geometry of individual parts, and their spatial

relationships in assemblies. Traditionally, these are given by the set of

manufacturing drawings.

Strategies and methods of Design Theory, (Hubka 1982,1988) and (Pugh 1991), use

these classifications to model design at its progressively decreasing levels of

abstraction. These have been devised to assist the development of new products

through analysis at each stage. In terms of capturing existing designs for reuse, only
Solution Concept, Embodiment Design and Detailed Design are of major

significance. This is because the initial requirements specified at the beginning of a
'new' design process may differ somewhat to the functions the evolved design

actually exhibits. Whether requirements are useful for design reuse or not, is

somewhat trivialised by the fact that they are implicitly represented in the less

abstract Solution Concepts, as functional requirements, (Malmqvist 1995). Similarly,

the Product Concepts as outlined in the design process above, are of limited benefit

to the less abstract representation of already formalised designs. Furthermore, the

creativity and analysis activities of design are more heavily concentrated in the

solution concept, embodiment and detailed stages of design, and therefore are more
fruitful in terms of reuse.

From the preceding analysis it can be said that, for the task of capturing existing
design cases for reuse, the following stages of the design process are of greatest

significance:

a) Solution Concept,

b) Embodiment Design,

c) Detailed Design.

8

A substantial literature survey of design capture and reuse has shown that, to date, no

commercial system to capture and reuse mechanical engineering designs, at all
levels, has materialised. This subject is still the topic of much academic and Ooint)

industrial research, (Duffy 1998) and (Shah et al, 1996). This statement is especially
true for the less well defined area of conceptual design, as the complete design

process is not yet fully understood (Maher et al, 1995).

The following sections describe the prominent, existing techniques and theories
developed to represent and capture infonnation relating to the areas of Conceptual,

Embodiment and Detailed design.

2.3 Conceptual Design
A Conceptual Design is the outcome from the process of developing solution

concepts. It is the first stage of design where creativity and innovation are exercised,

obeying engineering and scientific principles. A poor solution concept can never be

improved by good embodiment and detailed designs. Tberefore conceptual designs

of existing products are a useful representation of successful designs, particularly for

reuse. However, in real design situations, the conceptual design stage is rarely

recorded. In this section, prominent methods for representing conceptual designs are

reviewed. A concrete mixer design is used as an example in all cases.

Although this research does not focus on the principle of creating a new design from

scratch, many of the theories relating to both conceptual and embodiment designs do.

Moreover, in the majority of cases, information relating to the traditional conceptual

phase of past designs would have been discarded, leaving only the detailed

manufacturing drawings as a record of past designs. However, if a design is to be

adequately reused, some functional description of what the product and its

components do is necessary. Therefore these theories are reviewed in the following

subsections, with an emphasis to structuring concepts for reuse.

9

Figure 2.2 -A Conceptual Sketch for a Concrete Mixer

2.3.1 Sketching

The most obvious form of conceptual design is sketching (Cross 1991), which is
both easily and universally understood. With suitable annotation, sketching is a
leading candidate for recording design intent. Figure 2.2 shows an example of a

10

sketch for a Powered Concrete Mixer. Computer-based conceptual design systems

that incorporate sketching, base their input methods through either scanning of

manual sketches or by digitisation (using a puck / pen and graphics tablet). Methods

involving the latter technique include Sutherland's Sketchpad (as previously

mentioned), and are typically based upon Graphical Representation schemes, which

will be discussed later, in section 2.8.1. This research is concerned with integrating

conceptual information from existing designs into a computer model. In such a case,

a sketch will most probably exist in the form of a rough hand drawing or rendering,

on paper. Which will require scanning. Text relating to the sketch may be either

automatically recognised (IEE) or manually entered, and stored in a database.

However, the information given by sketches can be better obtained from the detailed

design drawings, and hence scanning and archival of sketches does not serve any

realistic purpose here.

Despite being universally accepted as a straightforward representation for conceptual
design, sketches are, on their own, unrelated pieces of a much broader, interrelated

design. Universally legible sketches are often difficult to create, and are largely

dependent on the artistic skill of the designer. In terms of reuse, they represent a

similar but less rigorous degree of information than formalised manufacturing

drawings. By themselves, sketches do not fully represent conceptual design.

2.3.1 Function Family Tree
An existing design cannot be effectively reused if its purpose or Function is not
known. Therefore a system to create and structure the functions of parts, sub-systems

and full product assemblies is required. Top-down design processes use Functional

Decomposition, (Akiyama 1991), to determine what lower-level functions are

required to satisfy the current function. The bottom-up approach, would therefore

Compose higher order functions from those prescribed by lower-level parts and sub-

systems.

11

Provide Rotating Facility

x Provide Mixing Volume In
Provide and Assist Mixing

Mixi gt Provide Mixing Agent (Blade=s) (IM

5 gt t v0
;

owl Provide Strength to the Bowl

Provide Support Permitting Rotation Provide Support Permitting Ro 'on

Provide Flexible Operation Provide Tilting facility to the Provide Tilting facility to the Bowl

P P, " M", I my"voidep Easy Loading and Unloading (Open Mou&thh)

Provide Non-Sticking Exterior
Provide for Easy (leaning

Rotate the Bowl
Provide Non-Sticking Interior

Provide Power Assistance for ixing Provide Emergency Stop

Provide Controls 17-- Provide Start and Stop Switches

Provide Maintenance-Free Operation Provide Cut Off

Provide Torque Increase
Provide Stability in All Possible Operating Conditions

Provide Speed Redjýo: ný
Provide Guard for Moving Parts

Provide Safe and Easy Operation
Provide Stability while On and Not On Stand

Provide Protection to Motor from Ught Rain etc.

Provide East Tipping when On and Not On Stand

Facilitate Easy Operation flill Provide Easy Disassembly of Stand

r=

Provide Easy Assembly of Stand

I PrwAde Facilities to Assemble Stand I

j Pmvide Built-In Handle and Topping Mechanism I

House Components (Motor, Bowl, Drive, Wheels etc.)

I Pmvide Height for Unloading into a Wheel4krrow I

Functions ilp- Sub-Functions

Figure 2.3 -A Function Tree for a Concrete Mixer

12

Akiyama (1991) proposes the use of a hierarchical tree structure to represent the

functional composition/decomposition at various levels of abstraction for a given
design. Here, the highest (leftmost) function represents the overall objective of the

design. This is decomposed into sub-ordinate functions, that must be met for its

realisation, which are in-tum decomposed further. Figure 2.3 shows an example
'Function Family Tree' for the Concrete Mixer example, where the overall function,

mix and deliver concrete, is decomposed into three major sub-functions: a) to

contain the mixture, b) to mix the concrete and c) to dispose of the concrete mixture.
Each of these sub-functions can then be refined to provide more detailed 'functional

requirements'.

I
Akiyama further proposes an extension to this structure, the 'Function Family Tree'.

By keeping functions in a solution neutral format (i. e. by not implying their

solution), the function tree structure can be seen to represent a family of designs. For

example, a family of 'Mortar and Concrete Mixers'.

This technique - representing the intent of a design, the relationships between

these functions and the ability to represent a family of (similar) designs within a

single data structure - is beneficial to the objectives of this project. This is

because the method can be adopted as an underlying scheme to retrieve past

designs on the basis of their function, whilst showing the context within which

this function is based.

2.4 Embodiment Design

Whereas systems based on functional descriptions represent the 'whys' and
(partially) the 'hows' of design, Embodiment Design involves the synthesis and
analysis of combinations of parts of a real, achievable design. Thus, for the

embodiment stage of the design process, methods of representing parts and sub-
systems, through to combinations of these parts, as design variants (or families) are
required. Little published work is available within this area. However, two

established methods of representation do exist: The Parts Tree and Morphological
Methods.

13

2.4.1 Parts Tree

Pahl and Beitz (1988) identify the Parts Tree data structure as an ideal method of

representing part and sub-system relationships, as a hierarchical tree. These relations

are typically connectivity based, i. e. the hierarchical order in which parts and sub-

systems are assembled. Such a scheme forms the natural representation of many
commercial Assembly Modelling applications, and is also adept to kinematic

analysis. Figure 2.4 shows a parts tree for a variant of the Concrete Mixer. By

observation, it is evident that the highest node of the tree is the full product, and the
leaves (the lowest nodes) relate to physical parts. Any node in-between these

represents a sub-assembly, or sub-system. Therefore, the parts tree can be said to

represent a design in terms of its manufacturing assembly layout.

Figure 2.4 -A Parts Tree for a Concrete Mixer t5

2.4.2 Morphological Methods

Embodiment Design techniques involving morphological methods (as has been

stated) are concerned with the synthesis and analysis of possible combinations of

parts that can form a given design. As their name suggests, typical representations

are pictorial and similar in appearance to conceptual sketches. Although this is not

always the case, as some examples include purely textural representations, (Cross

14

1991). Two related morphological methods are prominent here, the Morphological

Box (or Chart) and the Morphological Tree.

2.4.3 The Morphological Box

This method represents solutions for a given set of sub-functions as a two-

dimensional array, (Grant 1977), and is also known as the Morphological Chart

(Crossl991). In a Morphological Box, functions, known as the design 'parameters'

each take-up a single row. The solutions (or variants) for each parameter sit in

successive columns of their representative parameter. Thus the box is an unordered

representation of all conceivable combinations of a design. Figure 2.5 shows an

example morphological box for the Mortar and Concrete Mixer example, where a

possible complete solution is given by the combination of the greyed-out boxes.

As this is a representation for all solutions that can be conceived by the designer, a

very large number of possible solutions is implied, which is the multiple of the

number of solutions for each parameter. For example, in figure 2.5, the total number

of complete solutions is: 2x4x2x2x3x3= 288 possible complete solutions.
This is clearly a large number of combinations to handle. However, some

combinations can be easily discarded, as they are meaningless or too difficult to

implement. Also, Morphological Analysis techniques can be adopted to reduce the

number of combinations to a number that is more manageable. A more detailed

explanation of these morphological analysis methods is however of little relevance to

this research. The emphasis here is that the Morphological Box is a useful and

simple representation of all possible variants or combinations for a given design. For

existing designs, the number of solutions per parameter will be much smaller.
Therefore, this method allows the designer to 'pick and choose' elements from a
database of existing components to synthesise a new design.

This method can be effectively used to design the next generation of an existing
product.

15

2.4.4 The Morphological Tree

In the previous section, the morphological box was shown to be an unordered

representation of possible embodiments, or solutions. The contents of this box can

also be represented as a tree structure, to directly show the possible combinations of

solutions, and is termed the Morphological Tree, or the Decision / Alternatives Tree.

(Grant 1977).

In this case, each level of the tree corresponds to a parameter, or row, in the

morphological box. To begin with, each node for a given level represents the

solutions for that level. However, for a given node, branches in the next level

correspond only to compatible solutions, as demonstrated in figure 2.6.

16

Figure 2.5 -A Morphological Box for the Mortar and Concrete Mixer

Such a situation has definite application to the representation of a range (or family)

of existing, similar designs. To be more specific, it can be used to represent more

radical differences between product designs, where all products in the range do not

use variants of all components, of a design family.

Figure 2.6 -A Morphological Tree for the Mortar and Concrete Mixer

2.5 Function Means Tree
The Morphological Box and the Morphological Tree are established tools for

representing both conceptual and embodiment design under a single data structure.
However, they are sometimes implied, and not explicitly defined within these

structures. Conversely, the Function Means Tree (Andreasen 1980) is a definitive

17

relationship between the function (or concept) and its satisfying means (or

embodiment). It is essentially a combination of both the function tree and the parts

tree, although it is structurally representative of the former, being a tool to aid design

synthesis. Here, an overall function is fulfilled by its realising means, which is in-

turn followed by sub-functions and means. As an implied 'rule', a function can only
be realised by a single means, although a means can require the implementation of

several sub-functions. Where a function branches-out to more than one means, these

represent the possible variants that can be adopted to satisfy it. Figure 2.7 shows a

function means tree for the Concrete Mixer, providing alternative (or variant) means
for the power source: an electric motor, petrol motor, or hand crank.

Of all conceptual and embodiment design systems, Andreasen's Function Means

Tree structure is best suited to wholly model the design process. Also, and perhaps
its most significant advantage is that it is simple to understand and implement, and is

therefore a major contribution to this research.

The Function Means Tree can be easily utilised as the source for a Function

Family Tree, representing Conceptual Design, or a Parts Tree representing
Embodiment Design.

18

Figure 2.7 -A Function Means Tree for the Concrete Mixer

2.6 Design Function Deployment (DFD)

The design methods outlined so far, do little to provide the designer with a system

containing the required tools to quantitatively analyse various stages of the design

process. Design Function Deployment, (Sivaloganathan et al 1995), takes the

19

approach of integrating qualitative techniques, such as ratings schemes with the

evolutionary methods already described and detailed design analysis applications

under a single umbrella. Shahin et al (1998) categorise Design Function Deployment

as an underlying Product Modelling system for design reuse. Here, they identify

the use of DFD's chart-based data structures to store and evaluate the

Requirements, Product Concept, Solution Concept, Embodiment and Detailed

levels of design (level 1 of figure 2.8). This is achieved though the use of an

extensive tool base (level 2) and databases (level 3). Of the stages in level 1, stages
1,2 and 3 are of greatest concern here, as they involve the processing of Conceptual,

Embodiment and Detailed design.

The following is therefore a brief summary of the design process prescribed by

Design Function Deployment (Kimpton and Sivaloganathan 1998):

Stage I- stores the prioritised requirements and the functions that deploy these

requirements. This includes the constraints that have to be imposed on the product.
The functions are expressed in a Solution Neutral form to facilitate the generation of

a number of different conceptual solutions in stage 2, and are stored in a chart form,

as outlined in figure 2.9.

Stage 2- stores the Solution Concept. (Shahin et at 1998) outline the objectives of

storing conceptual designs as:

a) The overall list of fancti ons performed by the product as a whole,
b) The list of subsystems which constitute the overall product,

C) The list of functions performed by each of the subsystems,
d) A description of the shape of the product,

e) Optional importance ratings of the various functions required, and
f) An optional measure of the 'level of achievement' to indicate whether the

function is provided well by the concept or not.

20

Design Function Deployment

Level 0 j: Pý1k., sIgn Design Process Help
rl 0

11
output

II

Establish Establish Establish Select Materials Select r 11
ments Conceptual Detailed & Mantgacturing P u,

ý 76
nII

IF
V im

II

cations Solutions Solutions Process Plans IN-o n

Level 2

Bench- Cost Benefit I 14ODM rýl Value Facilities Generic
Analysis marking Analysis for lont Planning Checklist

Axiomatic Environm]en- Material Testing a: 1ity Designs mg
tal E 1E EIE Design E 11 Selection

II
Design

rphologi- pry Resource Market Mo FEA Fad e.
cal eduli Analm Analysis Design Scheduling sour'

Boundary
S1 DESIGN

I - -1 Ifo II

Searching
Objective CAPP

REUSE
uchi Jig & Fixture

Iree M hods

1 11 11 1 ETV, II-
Design JE I

Proven
Subsystem Fault tree Geometric De I ent Mechansi rocess cja

il
pý
ysl

Delection lysl Simulation analysis Modelling
I Egrod

De: gnim

fbility
Analysi

E Funcfion Concept Circuit Desif Kinematic Assembly
Analysis

I
Selection 1E Design

II
for

II
Analysis

I[
Planning

I

Level 3

Databases Case-Rases Knowiedge-Bases

Standard
Components

I [Ile js I

Figure 2.8 - Structural Oven, iew of Design Function Deployment

A chart similar to that in figure 2.10 is used to store the conceptual solution, and

each solution is stored in a separate chart. This chart relates the Functions of stage 1,

along with their importance ratings, to sub-systems, that have been determined using

the design methods outlined in level 2 of DFD, e. g. the morphological box. The

result of this relation is another set of importance ratings per architecture (or

conceptual design).

21

Stage 3- represents the Embodiment Design (figure 2.11). The Parts and

Components required to define the Sub-Systerns, taken from stage 2, are related, to

establish a further set of ratings. Detailed design of these parts and sub-systems is

then undertaken, using the modelling and design tools available in levels 2 and 3 of
DFD.

I

Func

I

tions
Product
Concept

or
'Specification

Prioritised Benchmarking
Requirements R elatio

I
nshi
I

ps Results

Target In formation

Importance Ratings

Relative Importance Rat

Figure2.9 - Stage I DFD Chart

22

Sketch

Solution
Sub-Systems Concept

-1

11

Specifications
S)

Relationships (Functions)
E

Inf rmation Tar 0
iii

lmpoý! nce Ratings, Figure2.10 -
Degree of Satisfaction Stage 2 DFD Chart

Part. -A Conigionents Embodiment

Sub-Systems - Relationships
EE

IIIIIIII Figure2.11 -
Impo

.
rtanc, e Ratings. II Stage 3 DFD Chart

23

2.6.1 Design Reuse within DFD

Shahin et al. also define Design Reuse as a tool available in level 2 of the DFD

structure diagram (figure 2.8). Their method proposes a chart-based structure to

represent Conceptual and Embodiment Designs (providing detailed designs) at
different levels of abstraction, while maintaining a coherent connection between

these levels. The DFD chart I provides the product concept, chart 2 provides the

solution concept and chart 3 provides the embodiment design. A link at chart 3 opens
up the geometric modeller, which contains the detailed design. This process is

outlined in figure 2.12.

Chart 2

Figure 2.12 - Integration of the Design Process within DFD

24

Geometfic Modeller

The information contained in these charts is very detailed, for all stages of the design

process. The DFD method provides a system to cope with every eventuality, but

is therefore, somewhat cumbersome and difficult to use. As a result, many

organisations, especially small and medium sized companies, may view DFD as

a complicated means of re-defining what is already known, which is true for the

case of many well understood, existing designs. Hence, DFD is not wholly suitable
for the condition of simplifying the modelling of past designs.

2.7 Detailed Design

Detailed design is the final stage of the design process. Traditionally, the outcome of
this stage is a set of drawings called the 'Manufacturing Drawings'. These provide
information on the dimensions of individual parts, their materials, surface finishes

and other related details. They also show how assemblies are arranged to construct
the final product. BS308 (British Standards Institute), outlines the rules and

conventions that govern the preparation of manufacturing drawings. In all companies
involved with manufacturing, be they large or small, there is a large collection of
legacy and current manufacturing drawings. This archive represents the

organisation's largest accumulation of engineering creativity and effort. Industries

that have been in operation for some years will often have a significant part of these
drawings, stored in record rooms, with little referral or use. The principal reasons for

their limited use can be recognised to be:

1) A large amount of unstructured data,

2) Considerable effort is needed to trace any particular design, and even more effort
is needed to understand it.

In order to make this 'large collection of creativity and effort' more exploitable, past

designs should be structured and computerised so that they can be easily reused.

The objectives of such a system are as follows:

a) Retain some degree of design intent - Design intent can be represented in

manufacturing drawings either directly by textural (annotated) descriptions,

attached by labels to various elements of a drawing, or indirectly through

particular dimensions that are characteristic of the design. Figure 2.13 illustrates

examples of this. The 'Through Hole' (left) and 'Square Thread' (right), of a

N

25

pipe-bending design, show how essential characteristics of a design are

represented on manufacturing drawings. Initial techniques for modelling detailed

design ignored these characteristics. Hence the use of labelled text and the

engineering significance of an 'entity' should be preserved.

Figure2.13 - Representing Design Intent in a Manufacturing Drawing of a Pipe-

Bender: (left) Main Body and (right) Screw Shaft

b) Similar parts and products should be grouped into families - Identifying and

grouping similarities between designs has advantages in both design and

manufacturing. As well as cataloguing benefits, duplication can be minimised,

thereby reducing the effort required.

c) Designs should be easily adaptable - Paper-based drawings are static, that is,

they cannot be easily modified when a (sometimes minor) change is required.
The adoption of computers in design was an attempt to overcome this deficiency.

However, the degree to which computer generated models can be adapted varies

widely.
d) The models should be usefulforfuture developments - The emphasis behind this

research is to allow companies to computerise their designs, with minimum

effort, so that they can use the latest computer technology to improve and

generate new designs. Therefore, the design representation should rcflect this

desire, i. e. the design model should be in a format that can be easily used, or

26

transformed, for downstream applications, for example Finite Element Analysis

or CNC manufacturing.

In order to achieve these objectives, the following two important constituents

are necessary:
1) Models to store the detailed design, and

2) An easy method of converting the paper-based drawings into these models.

Section 2.8 represents a survey on Geometric Modelling systems, which is followed

by the successive developments of Parametric and Variational Modelling (section

2.9) and Feature Based design (section 2.10). Section 2.11 surveys the methods for

converting paper drawings into computer models.

2.8 Geometric Modelling
Geometric Modelling can be defined as a branch of study which 'brings together and

applies analytic geometry, vector calculus, topology, set theory, and an arsenal of

computation methods to model geometric entities'
Mortenson (1985)

It essentially deals with the modelling of the following four constituent, geometric

entities of an object:
a) Vertices

b) Edges

c) Surfaces

d) Solids

Mathematical theories and techniques have been developed to represent each of

these entities. The fundamental objective of their development is to have a

representation scheme, which can be used to represent all members or varieties

within a class (e. g. straight, circular and other edges), and their manipulations (e. g.

extension, truncation etc.). Homogenous co-ordinates have been developed to store

points, or vertices. Parametric representations of curves were developed to represent

27

both simple and composite space curves and surfaces, several representative

techniques to model solid objects have also been developed.

The fundamental olýjective of Solid Modelling is to provide a complete

representation of a solid object. Requicha defined solid modelling as:

6 an emerging body of theory, techniques and systems focused on informally

complete representations of solids - representations that permit (at least in principle)

any well defined property of any represented object to be calculated automatically. '

Requicha (1980)

A solid modelling system can be defined as being the combination of a modelling

engine and a set of algorithms, which can answer geometric questions by scanning

the geometric model. This definition is schematically represented in figure 2.14.

Input for VA
Modelling

M Engine Model
I
I

Geometric eometric
Questions Algorithms

Solid Modelling System

Figure 2.14 -A Solid Modelling System

Outputs

The effectiveness of this model and modelling system depends upon the number of

algorithms that are available within the system to answer geometric questions. This

concept is a key issue in selecting the most suitable representations to store part
designs.

The development of CAD systems has been incremental, and the motivation for this

has stemmed from different industrial needs. The first application that saw the

development of what are now termed Graphical Systems, used the computer as a
drafting tool. This was followed by attempts to use the computer as a sophisticated

modelling tool. This led to several such models that were developed to cater for

28

varying industrial requirements. In general, these models fall into the following

categories:

1) Graphical Models - to aid the generation of manufacturing 2D drawings.

2) Shape Models - to represent raster (scanned) images for image processing.
3) Surface Models - to create complex curves and surfaces.
4) Solid Models - to capture complete representations of 3D geometry

Of these categories, Graphical and Solid Modelling techniques are of particular
interest to this research, since paper-based drawings are akin to graphical models,

and solid models maintain a complete representation of the object.

2.8.1 Graphical Models

These models form the original definition of CAD, Computer Assisted Drafting.

They are intended to represent 2-dimensional sketches and complete manufacturing

drawings in an electronic, editable format. Until recently, these systems have been

the most widespread form of CAD.

Early drafting systems represented these drawings as a 'linked-list' of entities, where

each node in the list contains information about an entity (a line, arc, circle etc.).

This information may include the entity's class (e. g. straight-line, arc, circle etc.), the
line-type (continuous, dashed etc.), geometry (e. g. start-point, end-point co-

ordinates) and connectivity etc,. A linked-list representation for a general geometric

object is shown in figure 2.15.

As well as enabling the use of standard primitive types, e. g. lines, circles and arcs, a

number of graphical systems have invoked the use of associative graphical

primitives, enabling a Parametric form of drafting to be adopted. Parametric design

(or in this case drafting) is a process where parameters (typically geometric
dimensions) relating to elements of the design, can be modified. For example, the

radius of a circle can be changed from I Omm to 5mm. This -is not the same as
deleting the I Omm radius circle and creating a new 5 mm circle. Both Parametric and
Variational Design techniques shall be discussed, in more depth, in section 2.9.

29

NULL
edge Ia
ýW: straigtt-line
start vertex: 1
end vertex: 2

edge 5o
ýpe: straight-line
start vertex: 5
end vertex: 6

edge 9 0-
type: straight-line
start vertex: 4
end vertex: 5

edge 13 o
type: straight-line
start vertex: 2
end vertex: 12

edge 17 (>--
type: arc
start vertex: 8
end vertex: 10
radius- 5

edge 20
ýpe: straigtt-line
start vertex: 2
end vertex: 3

edge 6 o-
type: straigIV
start vertex: 6
end vertex: 7

edge 10 o-
type: straigtt-
start vertex: 3
end vertex: 6

edge 14 o
type: straigtt-line
start vertex: 12
end vertex: 9

edge 18 o-
type: arc.
start vertex: 7
end vertex: 9
radius- 5

edge 3o
type: straight-line
start vertex: 3
end vertex: 4

edge 7o
ýW: straiglVine
start vertex: 7
end vertex: 8

edge 11 o--
type: straight-line
start vertex: I
end vertex: II

edge 15 o--
type: straight-line
start vertex: II
end vertex: 12

NULL

edge 4 o-
ýW: straigtt-line
start vertex: 4
end vertex: 1

edge 8 o-
type: straigtt-line
start vertex: 8
end vertex: 5

edge 12
type: straigtt-li
start vertex: 11
end vertex: 10

ed2e 160
type: straigtt-line
start vertex: 10
end vertex: 9

Figure 2.15 - Linked-List Representation of a Graphical Model

30

Orcle
Centre Point Aux line

PoinL

Arc
Aux-line 2 Point-2

Figure 2.16 -A Fillet and its Associative Primitives (Shah 1995)

For the majority of these systems, primitives are represented internally using
Associative Representation, where the construction process used to create the

primitive is stored. For example, when constructing the fillet (a circular Arc) of
figure 2.16, a further, associated primitive (a Circle) is required. Both of these

primitives may be represented as:

For the Arc:

Construction technique: fillet
-

arc
-

between
-

straight_line_segments
Point_I: intersection (Circle, Aux_line_l)

Point_2: intersection (Circle, Aux_line_2)

For the Circle:

Construction technique: circle_touching_ýtwo_line_segments
Radius: given_by__the_user
Centre_point: (some computation involving the two lines)

If the user of this system decides to say, change the Radius of the fillet, they can
simply modify the Radius parameter, and re-execute the construction history

representation. Unlike non-parametric situations, where the fillet-arc would have
been deleted and replaced with a primitive of a different radius, associative
information (i. e. to lines I and 2, and the circle) is maintained.

31

Which solid does the vAreframe represent

Figure 2.17 Ambiguous 3D Graphical wireframes

Three-dimensional graphical models are an extension of their two-dimensional

parent, being represented essentially by the inclusion of an extra dimension (as x, y

and z for a point). These are termed wireframe models, as they hold no direct

volumetric interpretation. Hence, whilst being very fast to reproduce on a graphics

terminal, they can be ambiguous. Examples of this include those shown in figure

2.17. Enhancements to graphical models, through the use of layers and colours etc.,

only represent entities of an object, and not its solid form. This makes it difficult to

visualise complex, and even simple objects (again see figure 2.17), and due to this

weakness, graphical models are not wholly suitable from a design reuse perspective.

2.8.2 Solid Models

The aim of Solid Modelling is to create a complete and robust representation of a 3-

dimensional geometric design, and in comparison to 3-dimensional, graphical

models, in an unambiguous manner. There are a number of factors that influence the

capability of a solid modelling system. Of these, two are prominent. The ability to

maintain the integrity of a model, through an integrity-checking algorithm, or by

limiting model construction to only integrity-preserving operations. Also, it is useful
to handle large models at differing levels of complexity (or abstraction), which calls
for the use of part and assembly modelling. Further characteristics of solid modelling

32

techniques can be used to classify various approaches to the requirements of this

research:

Expressive Poiver - indicates the degree to which a solid can be modelled, i. e.

accurately or by approximation.

Validity - is akin to the integrity (mentioned previously), where validity-checking

algorithms can be executed, or the enforcement of validity-preserving modelling

techniques undertaken.

Unambiguity and Uniqueness - All solid models should be unambiguous. This

requires that all valid representations correspond to a single solid. Furthermore, if

only one representation of a solid exists, then that representation is said to be unique.

Description Languages - specify the 'input method' for a given representation.

Conciseness - characterises the amount of space required to store the representation.
Clearly this should be kept to a minimum.

Computational Ease and Applicability - are measures of the algorithms that

can/must be written to realise the representation scheme, from an applications

viewpoint. And also implies the suitability of a particular scheme to a given

application.

Almost two decades ago, Requicha (1980) defined six such schemes, suitable for the

representation of unambiguous solid models. The following sections will discuss

only the representation schemes related to this research, and their particular

relevance to storing adaptive solid models, being a primary objective of this

research.

2.8.3 Pure Primitive Instancing

This is a parameter-based scheme, where a generic primitive is created to represent a
family of similar designs. The scheme is based around an implicit, or procedural,
representation of the solid. Therefore individual family members can be instanced by

specifying their parameters and re-executing the stored procedure. Pure Primitive
Instancing has its roots in a concept known as Group Technology (Hyde 198 1). This
is a technique used in Computer Integrated Manufacturing (CIM) to assist process

33

planning, design retrieval and scheduling (for example), by grouping similar parts
into standardised families, thereby encouraging the use of standard parts and

components.

The underlying principle of grouping families of similar designs into a single generic

model, is of considerable interest to this research. To this end, the author has

developed a similar technique, Parametric Primitive Instancing (Andrews 1996). The

goal of this application is to efficiently distribute solid models of standard

(catalogue) parts. This involves the creation of generic, primitive models for

standard component families, such as spur-gears and bearing-housings, which can be

fed into an intelligent engine, to produce the required instances (figure 2.18).

Figure 2.18 Example of the PPI application - Creating A Spur Gear Instance

This representation scheme holds many advantages over traditional geometric

modelling systems. Firstly, its ease of modifying the shape of a solid. It is also very

efficient in terms of storage, requiring only the generic primitive and the set of

necessary parameters to store an entire family of designs. The scheme is also

unambiguous and unique. To some degree, the original intentions of the designer are

maintained, as these are hard-coded within the generic primitive. However, a major

34

drawback of this scheme is that, being procedural, only the geometry (or shape) of

the generic primitive can be changed. Major changes in the topology of solids is

difficult to achieve, as there is no scope for conditional parameter definitions. Also,

the scheme can be slow and resource consuming, as it requires the solid to be built

from scratch (generated) each time it is instanced.

Although this method has significant drawbacks, its foundations are relevant here.

The ability to group a family of similar part designs into a single, generic model, is

an efficient means of storing a family of past designs. Along with the ability to

instance particular family members with a given set of parameters, Pure Primitive

Instancing, in some form, can be used for this research.

2.8.4 Constructive Solid Geometry

Constructive models comprise a set-theoretic approach to representing solids by

combining primitives using Boolean set operations. The history by which this is

achieved is recorded as a binary tree.

Half-Space models (Requicha 1977) define a volume bound by a combination of

surfaces. These, in turn, are defined by inequality relations, such as z>O, which
defines the three-dimensional Euclidean space for all points with aY co-ordinate

greater than zero. Primitives are created by performing Boolean operations to a

number of these inequalities. For example, the cylinder of figure 2.19 can be defined

as follows: I

H, :x2+y2_r2<0
H2: Z> 0

H3: z-h>O
Cylinder = H, nH2nH3

Figure 2.19 A Simple Half-Space Model

(Mintylfi 1988)

35

By itself, the Half-Space model is of limited use, as it is often inconvenient to

construct a model in terrns of complex inequalities. Hence these models are usually

used as the basis of representation of other schemes. Constructive Solid Geometry

(CSG) models (Voelcker and Requicha 1977) make use of Half-Space models as
bounded, pre-defined and parametric primitives, analogous to Pure Primitive

Instancing. These can be instanced and combined by the use of Union, Difference

and Intersection Boolean operations, and simple transformations to represent a

complete solid model, and are structurally represented by the CSG-tree (figure 2.20

for example). The model of the 'L' bracket is formed by instancing two rectilinear
blocks, using a union operation to create the L shape. A cylinder primitive is then
instanced, and subtracted (by a difference operation) from the L.

Figure 2.20 A CSG-tree for an L-bracket

36

The CSG representation scheme is very efficient in terms of storage requirements,
being a high-level interpretation of the solids construction process. Its resultant solid

models are unambiguous and valid, as they are based upon regularised set

operations, which will always result in the interior closed volume of its set-theoretic

operations. However, CSG is not unique. Also, being an implicit data structure,

unforeseen future modifications to the CSG solid model are difficult to implement

(Zuffante 1986). For example, figure 2.21 shows the 'parameterised' CSG-tree for

the L-bracket (minus the hole).

C

-9

C

Figure 2.21 Parameterised CSG-tree for an L-bracket

A block 'A' of dimensions 'c xdx e', and a block 'B' of dimensions 'f xgx h' are

united to form the L-shape. However, the user of the system may wish to represent
the bracket dimensions in terms of overall height and width (e. g. cx il). Such a

37

requirement cannot be fulfilled with the standard CSG representation scheme. Even

if such parameterisation was possible, design intent can be lost, as CSG does not

maintain information relating to mating of primitives (figure 2.22).

010

Figure 2.22 Lack of Primitive Relationships in the CSG-tree

2.8.5 Boundary Representation

The Boundary Representation (or B-Rep) model divides a solid, in terms of its

bounding faces. In turn, these faces are defined in terms of their bounding edges and

vertices. This represents a two-sided-mani fold (Mdntyld 1988), where the inside of
this manifold represents the enclosed volume of the solid. Figure 2.23 shows an

exploded view of the faces that make-up the L-bracket example. Faces are usually
derived to lie on a surface that can be defined by planar, quadratic, toroidal or

parametric expressions, which are also included in the B-rep data structure. Typical
B-rep structures include:

38

Polygon-based Boundary Models - where all edges are straight lines and, therefore,

all faces are planar (polygons). This structure is used extensively in graphics based

applications.

Vertex-based Boundary Models - the wasteful repetition of vertices, when defining

faces in the polygon-based models, is eliminated by defining vertex entities, which
can be referenced to define faces.

Edge-based Boundary Models - for models where some edges are not straight lines.

Here, edges are defined as entities, which are closed to form a loop (see figure 2.24).
Examples of this model include the Winged-edge (Baumgart 1974,75) and Half-edge

(Mdntyld 1988) data structures, as well as the Face-Adjacency-Hypergraph (FAH)

which is a useful representation for automatic feature extraction.

Figure 2.23 Faces Bounding the L-Bracket

(ji, vertex
Gil edge
me loop

face

Figure 2.24 Various Entities of a B-rep model

39

Boundary Models can be created using a variety of techniques, of which the drafting

interfaces of Graphical Representations are popular. Other techniques include Sweep

Representations and CSG construction schemes. However, despite the expressive

power of B-rep models, they are invariably difficult to validate. CSG conversion

techniques can produce vulnerable results, and the use of incremental sweeping

operations is considered unsafe (Braid 1979). Although the use of the Euler-Poincar6

formula and its derived Euler operators (Mdntyld 1988) can be used to determine the
integrity of Boundary Models. Further disadvantages of B-rep include the size of its

models, and that its representations are not unique (Woo 1985).

The ease with which Boundary Models can be constructed (or rather input) has made

the use of B-rep, in some form or another, a popular choice for current geometric

modelling kernels. To this extent, they are of relevance here. B-rep is an explicit

representation scheme, i. e. its geometry is dependent upon related entities. It is

therefore inherently parametric, implying that the shape of its models can be easily

altered by changing the values of its vertex entities.

2.8.5.1 Data Storage and Redundancy

As has been stated, the fundamental objective of solid modelling is to provide a

complete representation of a solid object. However, the effectiveness of boundary

models is dependent upon the algorithms used to answer related geometric questions.
Originally, it was thought that representing geometric and topological data explicitly
enhanced the capability of these algorithms.

Consider the representation of the three fundamental vertex, edge and face entities
for a simple cube. Baer et al (1979) identify nine possible combinations for these

representations, as outlined in figure 2.25. Various applications require (or rather

prefer) the representation of a solid's topology in different forms, e. g. facets (or

faces) are more useful for 'solid' rendering, whereas a vertex-only representation is

more concise. It is therefore possible to state that no single data structure provides a

completely satisfactory representation of topology in all practical cases, and some

redundancy is inevitable.

40

e

f: {q f: {v} f: {e}

v-. {q V-{Vj

e: {q e: {v} e: {e}

Figure 2.25 - Nine Topological Relationships [Baer at al.]

2.8.6 Relevance of Solid Modelling Systems

Of the representation schemes defined by Requicha. (1980), the following three have

been discussed to be of relevence to this research:

* Pure Primitive Instancing

* Constructive Solid Geometry

9 Boundary Representation

Of these, CSG and B-rep hold major significance as they are successful and well

established methods of representing solid models. In fact, current research and

commercial solid modelling systems have combined the distinct advantages of these

two schemes, to form hybrid modellers. Here, CSG is used primarily to validate

representations, and B-rep is used to define loops and surfaces in a parametric

41

fashion. However, they do not readily facilitate the requirements of representing
designs from a family range. On the other hand, Pure Primitive Instancing is based

around this principle, be it typically only for piece parts. Although, it has the

disadvantage of being limited to regularised shape changes.

2.8.7 Enhanced Solid Modelling Schemes

As they stand, CSG and B-rep schemes, and their hybrids, have evolved through four

significant advances, as defined by Requicha and Voelcker (1983):

1) Stored Input Definitions - only the inputs (i. e. the construction history) is stored,

2) Volatile Input Definitions - is an initial attempt to store a useful representation of
the solid, where the inputs are deemed unnecessary and discarded,

3) Stored Input Definitions with Approximate Representations - is an application of

an approximated B-rep scheme,

4) Stored or Volatile Input Definitions together with Auxiliary Representations -
here, auxiliary representations of the model are stored to assist validation and

modification (for example), as well as the original input definition.

The significance of these definitions (figure 2.26), and particularly for this research
that of figure 2.26d, is the use of auxiliary representations. Although these

representations add to the size and complexity of a model definition, their use can

overcome some of the more static properties of Geometric Modelling systems
(Nielson 1987 and Voelcker 1988). Research over the past decade, has seen the

growing use of Parametric, Variational and Feature-based (auxiliary) representations,
which shall be discussed in the following sections.

42

Volatile Input
Definition

Stored Input
Definition

27a

Working
Representation

27b

Stored 19put
iiii Definition

Convert

Approximate
Boundary Rep.

27c

Stored or Volatile
Input Definition

Auxiliary
Representation

Ayroximate/Exad
f epresentation

27d

Figure 2.26 Solid Modelling Schemes Requicha and Voelcker (1983)

2.8.8 An Overview of Geometric Modelling

M
2.

0

0

(I)

The preceding subsections, from 2.8.1 to 2.8.7, described the development of the

'Geometric Modelling' paradigm, and its applications.

It started with the objective of having a complete representation of the object

modelled. Initial attempts were concerned with issues of ensuring Validity,

Uniqueness etc. Primitive Instancing, Half-Space models, CSG and Boundary

Representations were developed as promising modelling techniques.

Application algorithms were also developed with these schemes. Redundant

data storage is seen as a method to resolve application issues. Finally, Hybrid

Modellers (having more than one representation scheme) were developed to

contain the accumulated benefits of the schemes included. This paradigm, even

43

with its significant developments, required further development to

accommodate unforeseen, future requirements of solid modelling applications.

It was felt that a significant leap was necessary. Parametric and Feature-based

modelling were seen as the way forward.

2.9 Parametric and Variational Modelling

With the exception of Pure Primitive Instancing, the Geometric Solid Modelling

systems defined so far can be described as static. In these cases, a representation is

created, where no definitive relationships between primitives (and parts) exist. These

are defined solely by geometry. Therefore, when the model requires modification,

obstructing primitives or surfaces must be deleted, and the remaining and new

geometry created. The aims of Parametric and Variational Modelling (or Design) are

two-fold. Firstly, to adapt an existing model to satisfy a new design requirement, by

the simple modification of a few parameters. And secondly, for the reuse and

standardisation of existing designs as part and product families. Both of these aims

are relevant and well suited to the objectives of this research.

The terms Parametric Modelling and Variational Design have been used
interchangeably in both acadernic and commercial domains (Kurland 1996). In fact,

little or no distinction between the two may be apparent to the users of such systems,

as their construction process is similar (figure 2.27):

44

1) Create a nominal model of the

design using standard geometric

modelling operations, but with no

specific dimensions stated.

2) Define geometric constraints

between entities. These are

generally in the fo rm of

dimensional, or entity-to-entity

constraints. E. g. set a line to be

vertical, or set line A to be parallel

to line B.

3) Evaluate, or regenerate, the models

constraints, by use of a general

solution procedure.

4) Create variants of the model, by

changing parameter values and re-

evaluating the general solution

procedure.

Figure 2.27 Constructing Parametric

and Variant Models

p2=25 Q

pl =30

7.5 r-

25

Ll
: 1,0

1 30

10

The difference between the Parametric and Variational techniques lies with the

method(s) used for the general solution:

Paranietric Modelling techniques make use of a Rigid Constraint Satisfaction

procedure. In this case, the construction history, parameter assignments and

constraints are stored in a defined, sequential order. Parameter assignments can

45

p3=p1/4
iA0

include both numerical values and simple relational expressions. The model is then

solved according to this recorded sequence. The main advantages of this system are
its simplicity to implement, and its speed of execution. However, the main
disadvantage of Parametric Modelling is that the model must be fully constrained.
As each entity in this sequential representation must be satisfied before the next one

can be solved.

Variational Modelling systems adopt a Flexible Constraint Satisfaction method.

Constraints are represented by a set of simultaneous equations, which are solved to

realise the design. The advantages of Variational Modelling are that, the order in

which constraints are defined is not important. Hence the system is more flexible

from the users perspective. Furthermore, under-constrained models can be solved,
i. e. for models where the geometry is not completely defined. Here, the user can

define which constraints are actually known, and evaluate the model to get-a-feel of
how it will look and react to changes, and then proceed to achieve a fully constrained

model. This also allows for a more intuitive design process.

To illustrate this difference, Kurland (1996) defines two parallel lines (figure 2.28).

A Parametric Modeller may define line-A as being parallel to line-B, and a distance

Y apart. So when line-B is moved, line-A will move respectively. However, an

attempt to move line-A will fail, due to the sequential nature of the Parametric

system. For a Variant Modeller, a constraint such as 'let lines A and B be parallel,

and a distance 'x' apart' may be given, allowing both lines to be moved whilst

maintaining this constraint.

46

Parametdc Modelling

A is constrained to lie parallel
and a distance Y from B

A

x

B

Li

1) B is moved, and a follows

2) A is moved, but B does not follow

A

Vafiational Modelling

A is constrained to lie parallel
and a distanceYfrom B

1) B is moved, and a follows

2) A is moved, and B follows

Figure 2.28 Difference between Parametric and Variational Systems

Many authors use differing terminology for these approaches. For example,

Parametric Modelling can also be described as an explicit form of Variational

Design (Shah and Mdntyld 1995), or more generally as being Procedural. Whereas

Variant Design is termed as being implicit. Moreover, both the procedural or

Parametric, and implicit Variational Modelling techniques are suited to storing a

family of similar designs as a single adaptive model. However, both of these

techniques still do not express the engineering significance of a model. Therefore,

the following section shall discuss the use of features in solid modelling and design.

47

2.10 Feature Based Design

In their definition of features, Shah and Mdntyld (1995) state that a feature represents

the engineering meaning or significance of the geometry of a part or assembly.

Features can be thought of as building blocks for product definition, or for geometric

reasoning. For example, consider the design represented in figure 2.29.

Pin En

Orank Ring

Cranking Groove

Balance Boss

I-Section connecto

Orank End

Bearing Lock Notc

Bolt Hole

Figure 2.29 - Design Features of a Connecting Rod (Shah and Mlintylfi 1995)

The figure shows the design features of a 'con-rod, and through the combination of

these features a--complete definition of the design is achieved. Therefore, the

characteristics of a feature can be listed as follows:

a) a feature is a physical constituent of a part,

b) a feature is mappable to a generic part,

c) a feature has engineering significance, and

d) a feature has predictable properties.

A feature can be a single entity (or primitive), or a combination of related primitives,

that perform a defined function. Features (should) also contain and maintain

constraints to their surroundings. A simple example of a feature is a hole. In

48

geometric terms this can either be represented as a cylinder, subtracted from a given
base model (for CSG), or as a cylindrical face, bound at both ends, but whose inner

volume is void (for 13-rep). However, an engineer will typically define a hole as
being 'a cut-out of a given diameter and depth, or as being drilled straight through

the base model', for example, as shown in figure 2.30a and 2.30b.

drilling
depth direction

fýýoffset
2

(C)

er

(b)

Figure 2.30 A Simple (Blind) Hole Feature

This feature should also contain information as to its location and position on the
base model (figure 2.30c), and if, say, defined as a through-hole, should be able to

automatically adapt itself according to changes in its parent entities, i. e. the base part
to which it is attached (figure 2.3 1).

49

(b)
Figure 2.31 A Through-Hole Feature

A feature model is a data structure that represents a given part or assembly, primarily
in terms of its constituent features. Each feature in the feature model is an

identifiable entity that has some explicit representation. The shape of a feature, as

shown earlier, may be expressed in terms of dimensional parameters, enumeration of

geometric and topological entities and relations, or, in terms of the constructional

steps needed to produce the geometry corresponding to the feature.

Shah and Mantyla (1995) enumerate the following feature properties, which indicate

the range of properties that may be included in a feature model:

a) General Shape (topology and/or shape),
b) Dimensional Parameters (independent parameters),

C) Constraint Parameters and Constraint Relations,

d) Default Values for parameters,

e) Location or Attachment Method,

0 Location Parameters,

g) Orientation Method,

h) Orientation Parameters,

i) Tolerances,

j) Construction Procedure for the geometric model,
k) Recognition Algorithm,

1) Parameters computed on the basis of other features,

M) Inheritance Rules or Procedures,

n) Validation Rules or Procedures,

0) Non-Geometric Attributes (part number or function etc.).

There are a number of commercial feature-based design applications in use today.
Prominent examples include Pro/ENGINEER (Parametric Technology Corporation),
Mechanical Desktop (Autodesk) and SolidWorks (SolidWorks Corp.). All of these

systems provide a subset of the above characteristics of modelling with features and
thus make the detailed design process more flexible and useful.

50

2.10.1 Feature Creation Methods

Features are clearly an integrated part of Computer Aided Design and Engineering.

They possess reuse facilities for the design synthesis, manufacturing and adaptation

stages. Therefore it is beneficial to represent the computer model, related to this

research in terms of features. Shah (1991) and Feru et al (1992) define the two

methods of feature creation as follows:

Form Feature Recognition - where features are recognised and extracted, by some

means, from an existing, defined geometric model, and

Design by Features - the solid model is constructed as a combination of features.

2.10.2 Form Feature Recognition
With this method, a solid model, already created using the Geometric Modelling

techniques described earlier in sections 2.8-2.9, is decomposed into form features.

This process is governed by a Feature Recognition System and a Feature Database,

which contains generic primitives of various features, to which elements of the solid

model can be compared. This process can also be either interactive or fully

automatic:

Interactive Feature Recognition - Here the created geometric model is displayed via

a suitable user-interface. The user then picks elements of this model, which they

wish to be recognised as a feature. The feature recognition system then compares

this geometry to what is stored in the (feature) database, and extracts the relevant

geometry from the solid model, whilst adding the feature to an evolving feature

model (figure 2.32).

51

Geometfic
Modeller

User

Geometfic
Model

Interactive
Graphics
System

User
Figure 2.32 Interactive Feature Definition

Feature Model

Automatic Feature Recognition - This technique was originally developed as a

method for Machining Region Recognition (a subset of CAPP). However, here

interest lies in dealing with features bound by the interior volume of the solid model,

and not from a machined volume. Therefore, we will discuss what is termed Pre-

Defined Feature Recognition. This is a fully automated system (i. e. there is virtually

no user-input to the recognition process). Again, the process starts with an existing

solid model, which is processed through various recognition and extraction

algorithms. These typically compare groupings of either B-rep or CSG-tree elements,

to defined 'generic' features in the Feature Database, and perform the extraction to

form a Feature Model (figure 2.33).

Modeller Model

User

Feature Feature

I#

features

Figure 2.33 Automatic Feature Definition

Feature
Model

Both interactive and automatic systems are clearly beneficial, to solid modelling, as

they allow the designer to create a solid model solely in terms of its shape, without

having to think about 'which feature to use where', as the process of feature

52

recognition and extraction is generally the task of the computer. However, a

recognition algorithm can only recognise features that are similar to the feature

patterns stored in its database. Therefore, new features (e. g. those created by the

designer for an innovative product) may either not be recognised, or interpreted as a

collection of known features. Implying that true design intent is not realistically

maintained.

2.10.3 Design By Features
As the title suggests, this is a more manual process, consisting of an interface to a
library of pre-defined, generic features, including primitives such as holes, rounds,
bosses and keyways. The two authoritative forms of design by features shall be

described here, Destructive Modelling with Features and Synthesis by Features:

Destructive Modelling with Features - (also termed Destructive or Deforming Solid

Geometry) was originally proposed by Arbab (1982) and later by Cutkosky (1988)

and Turner (1988). It is essentially a method of removing instanced features from a

stock (or base) block. Such a process is akin to part machining operations, for which
it was originally devised. Figure 2.34a shows an example of how the L-bracket can
be created using this technique.

Synthesis by Features - begins the modelling process with a 'clean sheet', into which

a base feature is inserted. Further features are synthesised and either added or

subtracted from the base. Figure 2.34b shows how the L-bracket can -be. created by

synthesis.

Of these two systems, Synthesis by Features is more popular amongst commercial

systems vendors, as it is more intuitive to established solid modelling approaches.
Destructive Modelling with Features is inherently a preferred for CAPP and NC part

programming.

53

base stock
part

first (base)
feature

L-ý-
block

feature
to be

extracted

feature
model

hole
feature
to be
extracted

Figure 2.34a Destructive

Modelling with features

new hole
feature is

constrained
to base

new block feature is
constrained to base

dhiling d »i n
direction d
ýir
erlc t

?
lo n

d

10

d

ab
2ýý>

Figure 2.34b

Synthesis by Features

54

4:: ýý

2.10.4 User-Def-ined Features

The combination of Design by Features and Parametric and Variational Modelling

techniques lend themselves to the natural progression of the construction of models

using both standard and User-Defined features. This is enabled through the adoption

of Parametric and/or Variational constraint satisfaction. Allowing features to be

sketched topologically, constrained and then geometrically realised by providing

parameters. This technique is the 'state-of-art' for current commercial modelling

systems (Fowler 1996).

p4 'Jrl

Figure 2.35 A User-Derined Arch feature

Figure 2.35 represents a typical example of a user-defined feature. Due to limitations

of constraint satisfaction (discussed in section 2.9), they are typically the result of a

constrained two-dimensional sketch, or profile, which is swept (e. g. extrusion,

rotation etc.) to form a solid. The parameters defining its geometry and location, with

respect to its placement (base) feature, are used to alter its shape.

In summary, it can be said that Feature Based Modelling is developed with the
intention of using and modifying the model in downstream applications. Their

requirements are introduced as parameters of the feature.

55

2.11 Commercial Feature Based Modelling Systems
The past decade has seen an increasing acceptance of Feature Based Design and
Parametric and Variational modelling techniques into the commercial CAD sector.
This section will outline the features of three such modelling systems, covering the

top, middle and lower-ground of computer-based mechanical design.

ProlENGINEER

At the top end of the market is Parametric Technology's Pro/ENGINEER package,

which is considered to be the 'founding father' of commercial Parametric Modelling

systems. As opposed to graphical modelling systems, Pro/ENGINEER adopts a
design-by-solids (and surfaces) approach. The user, as discussed in the previous

section, initiates modelling with the creation of a base feature (usually a datum), to

which additional features can be constrained. All features created in

Pro/ENGINEER, be they standard library features (such as rounds and chamfers), or

user defined features, are parametric and are synthesised to a base feature. Figure

2.36 shows the step-by-step procedure for creating the L-bracket model in

Pro/ENGINEER.

On the modelling side, Pro/ENGINEER has two useful features that are only

partially available in other commercial CAD systems, these are:

a) Feature Suppression and
b) The Family Table.

Feature Suppression allows chosen features of a given part to be turned on and off at

will. This allows various design alternatives to be present within a single CAD

model. An example of this can be to regenerate the L-bracket with, or without, its

hole feature (figure 2.37).

56

CU2
TMl

1%
%

%C II

Start with a datum

4 /

UIR

Figure 2.36 - Creating the L-bracket in Pro[ENGINEER

Hole feature Unsuppressed

Figure 2.37 - Feature Suppression

-- - ---- - ---------------

57

i

Sketch the L-Profile

Extrude to form the solid Create a hole feature

Hole feature Suppressed

The Family Table is where the essence of parametric design comes into play. Here, a

spreadsheet can be created, within Pro/ENGINEER, containing the driving

parameters relating to the family members of a given design. Figure 2.38 shows an

example family table for the L-bracket family. Here, rows correspond to individual

family members and columns refer to parameters, which can include feature

suppression status, as well as geometric parameters. Individual family members are

generated by instancing the appropriate row of the family table. Pro/ENGINEER

also allows these concepts to be extended to full assembly modelling. Invoking the

ability to concisely represent entire product ranges, which can be used for analysis

purposes or automatically converted into 2-dimensional manufacturing drawings.

Pro/ENGINEER is not only a modelling-based application. It comprises a number of

applications, including Finite Element Analysis (Pro/MECHANICA) and kinematics

(Pro/MOTION). On the whole, Pro/ENGINEER is marketed as a complete design to

manufacture tool (for detailed design), and has proven itself to be one of the most

robust and successful CAD packages of recent years.

Rl
jt2
R3
R4
R5
R6
R7
Re
R9
910
Ril
R12
R13
R14
RIS

R21
R22
R23
R24
R2S
R26
R27
R28
R29
R30

ci c2 c3 c4 c5 e6 c7 Co c9 c10 Cil

TWULY TABLE EDITOR

1) PAM beginning with '0' will be saved an ousesnts.
2) PA" beginning with '1' and QMPtY VOWS will be Ignored.

0

3) Ross beginning with 'P contain locked Instances.
1 4) The nummi of each part or assembly instance say begin with a

I

I letter or a number and should be unique within the entire family.
em'

1 5) 1*1 can be used for the default value.
1 6) Values for the generic part cannot be changed.
1 7) Changes W instance values will, lver, be saved,
I If the instance is not locited.
1 9) Generic names of features It appear are enclosed in
1 9) You say add sore entries to the botton of the table as needed.
1 10) Pro/T&= founatting characters will also be Ignored.
1 11) reature identifications are their Internal ids.
I
I Generic part nums: 13UM1? LC
I saw do dl Q 413 M
t

ds d6 r36
(MAI

I....
I QWWUC 65-34 272.77 80.7 268.93 54.76 71.36

L-Bracketl so 2SO so 2SO so so 2SOY
L-tracket? 40 200 40 200 40 40 200M
L-Bracket3 30 ISO 30 ISO 30 30 150N
L-RCAcket4 29 100 20 100 20 20 100 y L-NracketS 50 ISO so ISO so so ISOY
16-Brooket6 4S 2SS so 255 45 so 200 M

c7miz :

Figure 2.38 -A Family Table in Pro[ENGINEER

58

Mechanical Desktop

At the 'lower-end' of the market, Autodesk Mechanical Desktop (Autodesk) is a
bolt-on product to the industry standard drafting package AutoCAD. Mechanical

Desktop also adopts the modelling techniques of Feature Based Design, starting with

a base feature, to which subsequent features can be added. Again these features are

created from either a standard library, or as user defined (or sketched) features. One

advantage of Mechanical Desktop is its easy to use user interface, where unlike
Pro/ENGINEER, specific pictorial dialogs are used to assist the creation of library

features, e. g. countersunk holes and extrusions etc.

However, Mechanical Desktop's roots are not based on a parametric modelling
kernel, and as such, it is less robust than competing packages. Also, its inability to

readily suppress features and parts, and the lack of a structure to represent families of
designs, make it a less capable, but significantly less expensive application.

SolidWorks

The Solidworks modeller lies somewhere in-between Pro/ENGINEER and
Mechanical Desktop. Although in terms of modelling alone, it is functionally as

capable as Pro/ENGINEER. Solidworks also uses Parameter-based variant

modelling techniques. Figure 2.39, demonstrates the power of Solidworks with a
fully parametric spring example.

One of this package's major strengths is that it is a 'Native' Microsoft Windows

application, i. e. unlike applications such as Pro/ENGINEER, it was not 'ported' from

the workstation domains of Unix and Silicon Graphics based architectures. It is

therefore well suited to the middle-ground of mechanical engineering industry. A
further enhancement to Solidworks is its embodiment of an accessible API

(Application Programming Interface) . The API can be used directly to automate the
Solidworks application from an external source, for example, a database application
or a custom coded application.

59

Min
Fdd View)me« Icols Ehobyerks WndoW Ug)p Xi

1) 99 la a rä im a 96 (0 vi 1? IN Aa 4t Ch . IEN ir fa iß fin oý 94 NK mmm Sk Icx

Figure 2.39 -A Parametric Spring in Solidworks

tomnq

2.12 Working techniques for the Capture of Solid Geometry

In an ideal world, old, manufacturing drawings could be scanned into the computer

and automatically transformed into complete, parametric, feature-based

representations. If this was the case, then the purpose of this research would be

(almost) meaningless. In reality, a significant quantity of research, and hardly any

commercial applications for the automatic construction of three-dimensional solid

models form their two-dimensional representations exist. Partially automated

methods, known as Interactive Systems, do exist, though these have been represented

commercially for only a few years. The following sections will outline the state-of-

art in this field, and determine whether any use of available conversion systems and

techniques can be used for this research.

2.12.1 Automatic Capture of Paper Based Manufacturing Drawings

Techniques and algorithms to convert two-dimensional, scanned line drawings

(termed raster or bitmap images), into coherent CAD-based drawings have been

60

available for some time. These methods typically invoke a combination of heuristic

and analytical techniques, such as the Hough Transform (Leavers 1992) to convert

the raster image into a form through which primitives (e. g. lines and arcs) can be

recognised. This process is generally termed Vectorisation, and is not only limited to

the recognition of primitive and composite geometric elements. For example, current

commercial systems can differentiate between hidden, centre and continuous

linetypes and thickness (Lanasami and Langrana 1990), as well as colour, and more

significantly recognise text, Object Character Recognition, (Ogg 1992). Commercial

applications demonstrating these capabilities include VP-Max by Softelec (1997).

These systems, as is typical, allow export of converted drawings into popular
formats, e. g. AutoCAD DXF and IGES, and although these systems may require a

limited degree of user-interaction (for example, identifying objects of a given colour

to be contained within a separate layer) they can be considered as automatic.

However, despite the fact that these systems provide features to express design

intent, they only partially realise our goal of being able to reuse a design's

(geometric) model with the latest advances in CAD-based technology. For this, the

representative three-dimensional solid model is generally required. The following

sections discuss how this can be achieved.

2.12.2 Automatic Conversion to Solid Geometry

Research into the reconstruction / recognition of a three-dimensional object from its

two-dimensional projections has been 'in-progress' for over thirty-years, from the

stages when 2D sketching and drafting were also in their infancy, and can be defined

as follows:

'Reconstruction - involves determining the geometric and topological

relationship of an object's basic parts, whereas,
Recognition - deals with identifying an object by some form of template matching. '

(Wang 1992)

Both of these fields bear relevance to the meaningful conversion of 2D paper-based
drawings to solid CAD models. Reconstruction methods are best suited to forming

the solid model (in typically Brep or CSG form), and Recognition methods are more

61

applicable to the identification of features. The following will discuss the former

method (reconstruction), as feature-based recognition methods have already been

tackled.

The reconstruction problem can itself be categorised into several areas. Firstly,

whether multiple (usually orthogonal) or a single, e. g. plan or perspective, view is

given. Multiple views make the process significantly more manageable. Although

many researchers have attempted the reconstruction of solids from single views, with

some success. Examples of multi-view and single-view projections are given in

figure 2.40. The second problem arises when choosing a representation scheme. Of

the two established formats, Boundary Representation is perhaps the more naturally

suited to this domain, as, like the projection from which it is formed, it is also

structured from vertices, edges, curves and faces. On the other hand CSG-based

approaches require the reconstruction of solid primitives. The third problem involves

determining which of the, possibly many, interpretations is the true representation of

the solid.
Top

10

Front Right

Isometric

Figure 2.40 Orthogonal Projections (left) and Isometric (auxiliary) View (right)

For the majority of mechanical engineering cases, manufacturing drawings are

usually created with more than one view, and are virtually always orthographic.
Hence, the discussion of the reconstruction of single view drawings is somewhat
irrelevant. For the cases where only a single projection is given, this is treated as a
21/21) problem, and is relatively simple to solve, as a lofting exercise. The

reconstruction of isometric, or even perspective, views of mechanical designs is

unrealistic, as these are typically viewed as being auxiliary, may be inaccurate, and
do not portray the 'blind-side' of the object. The following shall therefore discuss

62

only the reconstruction of solids using multiple view projections. It is also

convenient to discuss the techniques developed in terms of their representation

schemes, e. g. B-Rep or CSG.

21/2 D
lofting
E>

Figure 2.41 A simple 2'/2D loft (left) and ambiguous isometric view (right)

2.12.3 B-Rep Approaches

These approaches, in general, follow a similar pattern:
1) Transform the 2D vertices from their respective projections into 3D vertices.
2) Join these 3D vertices to generate 3D line segments.
3) Construct planar faces from these line segments.
4) Build 3D solids from the faces.

Initial work by Idesawa (1973) involves a mathematical approach to the problem. He

determined that, despite the correspondence between views being known, the

reconstruction process would possibly produce what are known as 'ghost figures',

e. g. stray points, lines and faces; to which, various elimination criteria are
introduced. However, Idesawa's method is only suitable for polyhedral designs. A

similar approach was also taken by Wesley and Markowsky (1980), (198 1) in their

'Fleshing-Out Wireframes' and 'Fleshing-Out Projections' papers. Although their

work is also limited to polyhedra. the elimination of misrepresentative solutions is

improved. A major advance from these methods is provided by Sakurai (1983), who
introduced rotational ly-symmetrical objects into the process. These include spheres,

cylinders and cones etc. Further work by Gu et al. (1985) reduced many of the

63

Is the small hole
'through' or'blind'

restrictions, such as the requirement of orthogonal alignment of cylinders, imposed

by Sakurai.

2.12.4 CSG-Based Approaches

To a lesser extent, research has also been undertaken, assuming that a given design

can be reconstructed from a series of primitives using the set theoretic approach.
Here, Aldefeld (1983) initially introduced a method of comparing three orthogonal
views to determine isolated rectangular primitives. However, this approach restricts
these primitives to being fully visible in all three views, and is clearly limited to

regýlar polyhedra. Aldefeld and Richter (1984) later extended this method to allow
for partially obstructed (or defined) primitives, by taking an interactive approach.
Here, the user adds 'missing' lines and arcs to realise individual primitives. A

commercial implementation of an interactive method is the 'Make-IT 3D' package,
EMT (1998). Ho (1986) further extends this work by providing a more intuitive
CAD-based approach, where the user identifies primitives from a set of orthogonal
views and identifies their sense, i. e. by addition or difference. This method
significantly reduces the time required to extract partially visible primitives.

2.12.5 Summary of Multi-View Reconstruction Approaches

Both B-Rep and CSG approaches are only partial attempts for the successful

conversion of 2D projections to a solid model. Their current limitations are
therefore listed below:

a) lack of recognising 'real-world'- designs - many designs contain complex

curved surfaces and obscured views, only identifiable by cross-sections and
hidden line auxiliary views. The reviewed systems cannot cope with these

designs.

b) Inability to capture design intent - manufacturing drawings also contain

constructive information relating to such areas as dimensions, tolerances

and even the inclusion of features that cannot be seen, e. g. small fillets.

These are ignored by these approaches.
It can therefore be concluded that automated reconstruction techniques, in

their current state of development, are not suitable for the modelling of real,

complex engineering products.

64

2.13 State of the Art - Feature-Based Semi-Automated Methods

The semi-automated methods for capturing detailed designs are an attempt to

incorporate the advantages of retaining a high level on design intent, whilst using

techniques, such as Parametric and Variational Design and Feature Based Design, to

automate the generation (or instancing) of

similar designs, i. e. its variants. The two Identify all parameters
principal 'State of the Art' techniques for

the semi-automated capture of past (and

the creation of new) designs, are the Break-down product

Generative (sometimes called Procedural)
into features

and Variant Design Methods.
U

om
Mathematically define

2.13.1 Generative Method

Egeoametry

of each feature

This method adopts a procedural technique V

to create a parametric model for a given Manually build a solid
model of the nominal design. The Generative Model is design

essentially a sequential list of events, or II

instructions, that represent the design's V--

construction process. Real numbers,
Check reliability of model

representing geometry, are replaced with

variables, by editing this data structure.
Other parameters, not necessarily relating I

Tract a CSG tree Manuall write a
to geometry can also be added. Individual f each feature macro

7or
each feature

instances can then be generated by

declaring values for these variables and

parameters, and then re-executing the

procedural data structure.
Parameter & constraints definition of each feature

Shahin (1996) encompasses the generative

method in his PhD thesis, outlining a

methodology to create a series of similar

solid models from a single Generative

Model, with a goal towards design

Build Model

Figure 2.42 The Generative Z!,
Methodology (Shahin)

65

optimisation. Figure 2.42 outlines the relevant sections of this methodology, whic is

categorised by the following three objectives:

Objective I- defines various elements of the design that are related to design intent,

e. g. parameters, features and constraints. Note that the user of this system is required
to manually define the geometry, constraints and relations for geometric elements

and features.

Objective 2- is concerned with the creation of a reliable model. The nominal solid
model should be the best possible representation of all instances that are to be

generated.

Objective 3- describes a scheme to explicitly model each feature of the nominal

model by, either writing an application-specific macro, or by extracting its

representative data structure. This is then edited to include parameter definitions,

constraints and relationships. Finally individual models are instanced by assigning a

new set of parameter values and re-generating the model.

Clearly the process of manually identifying parameters and features that form a

given design is a distinct representation of design intent. Also, having to

mathematically define these features places an intent retaining emphasis upon how

their related elements will react when new parameters are declared. In his research,
Shahin makes use of a hybrid CSG/B-Rep data structure, as the basis of his

Generative model. This is formed by creating a nominal design using a suitable CAD

modelling application. The hybrid data-structure may then be extracted, if such a
feature is available within the application, and edited to include variables (or

parameters) in the place of numerical geometry. Figure 2.43 outlines this process,

using the L-Bracket example.

66

Nominal Model

40

Extracted CSG Tree

Define: "entity-l" as
Create_Solid_Block: (0,0,0) (40,10,40)

End_definition_of "entity_l"

Define: "entity-2" as
Create_Solid_Block: (0,0,0) (10,40,40)

End_definition_of "entity_2"

Define: "entity-3" as
Union: "entity_l" "entity_2"

End_definition_of "entity_3"

Redefine "entity_3" as

Subtract: "entity_3" from

Create_Through_Hole: (25,10,20) (0, -1,0) 20

End_definition_of "entity_3"

Parameter Definition

height

Desiqn Intent
Place Hole centrally on the resultant face of the 'L-Bracket'

67

Editinq of Data Structure

Declare_Variables:

width = 40

heig t= 40

depth = 40

tl = 10

t2 = 10
Hole_dia = 20

End_Variables-declaration

Define: "block_1" as

Create
-

Solid
-

Block: (0,0,0) (width, tl, depth)

End_definition_of "block-l"

Define: "block_2" as

Create_Solid_Block: (0,0,0) (t2, height, depth)

End_definition_of "block_2"

Define: "L_bracket" as

Union: "block_11, "block_2"

End_definition_of "L_bracket"

Redefine "L_bracket" as
Subtract: "L_bracket" from

Create_Through_Hole: (width- (width -t2) /2, tl , depth/2) (0, -1,0)
hole_dia

End_definition_of "L_bracket"

Figure 2.43 - Example of the Generative Method for the L-Bracket

Therefore, by declaring the variables: width, height etc. with different values and re-

executing the edited data structure, other instances of the L-bracket can be generated.
This process is termed 'Interactive Design by Features' and can be further enhanced
by customising the data structure, which is essentially a program listing, with

rudimentary programming code. For example, by adding a loop to create a series of

small holes on one of the L-brackets blocks.

This discussion has, so far, touched only on the advantages of this method. It does,

however, impose a number of restrictions with regard to its implementation. Firstly,
it requires a degree of mathematical, geometric knowledge and programming skills.
Both of these qualities may not be available within a typical SME, that is only just

S.

68

beginning to adopt CAD. A further disadvantage of the generative method is that the

construction of its models is time consuming, especially for models with complex

curved parts, as these will require an exact mathematical definition to be provided by

the user. Furthermore, this method is procedural, implying that the model must be re-

generated from scratch every time a single parameter is modified. For large,

complex, multi-part models this can also be time consuming. In conclusion, the

Generative Method is well suited to geometrically modelling past designs,

including that of design families under a single,

adaptive model. It does, however, impose a heavy
Identify driving pararneters

resource burden on the designer.

Break-dovm product
2.13.2 Variant Method

I
into features

Although similar in operation, the Variant approach

to storing solid geometric models differs primarily in EDet-e
mi b f t

the construction of its models. Whereas the
r ne ase ea ure

-T-T
generative approach involves the often tedious

operation of editing a complex data structure to For each feature:
enable parameterisation, the Variant Method makes 1) Create profile sketch

2) (bristrain profile
use of Parametric and Variant Modelling techniques 3) Create feature
(see section 2.9) and Feature Based Design, in

particular User Designed Features (section 2.10.5), to

interactively draft a geometric model. It requires
rTeate

relations bebwen
features

virtually no complex mathematical and programming

operations, and is typically implemented via an

efficient and familiar user-interface (Kurland 1996). Create Global Parameters &
Despite the difference in terminology, perhaps the

relate to feature parametrs

most well known commercial example of this

technique is the 'Parametric Modeller',
Specify Global and

Pro/ENGINEER, which was pioneered in 1990. More feature parameters

recently other applications vendors have adopted this

technique, including Autodesk. with 'Mechanical

Desktop' as an extension to AutoCAD, and
Pegenerate kbdel

'SolidWorks'. Figure 2.44 The Variant Method

69

The process of creating a variant model is initially similar to that of the generative

model. Where. to begin with, the driving design parameters and features, are

identified.

The majority of current modelling systems work with a 'Synthesis by Features'

approach, where features are constructed in a hierarchical fashion, thereby requiring

the creation of a base feature. Here, features are created by either using predefined,
library features (primitives), or by generating User Defined features. This

construction process has already been described in section 2.10. However, to recap,
it involves the creation of a 2D sketch (or profile) for each feature, which is

parametrically dimensioned and constrained. (If this feature is not the base feature,

then its profile must also be constrained to its parent feature, e. g. the base). This

profile is then transformed, typically by parametric extrusion, to form a solid feature

model. And the process is repeated for all identified features in the design.

Gobal Parameter: Pl
d3 = Pl
d5 = Pl

Figure 2.45 Use of Global Parameters

Finally, relations between features can be established. These generally govern the

control of a given feature's driving parameters, and can be either on a feature to

feature basis, or defined globally. In this case a set of global parameters is typically

created to oversee the declaration of (subordinate) feature parameters. For example,

the block, of figure 2.45, requires the diameters of its two holes to be the same.
Setting the relation 'd3 = d5' will not suffice, as this may still allow 'd5' to be

modified independently. Therefore the use of the global parameter 'Pl' can be

defined through relations as: 'let: 0= Pl' and 'let d5 = Pl'. Regeneration of tile

models relations and constraints will always result in 0 and d5 being equal to Pi's

70

declared value. Variants of this model can now be instanced by modifying features

and global parameters, and re-solving the models constraint set (regeneration).

A ftirther feature, that is typical in many variant design systems, is the ability to

momentarily hide, or Suppress, various child features, and Resume these features

when desired.

Variant based modelling systems are, on the whole much simpler to use than

their generative counterparts. They also require less human resources to create

a 'parametric', or adaptive, model for a given design. Furthermore, such
systems based (even partially) on Flexible Constraint Satisfaction techniques (see

2.9), allow for faster model regeneration, as here only the modified and directly

related features and entities are updated. However, innovative application

methods have to be developed to exploit this power.

2.13.3 A Comparison of Generative and Variant Design Methods

These two methods are divided by a fundamental difference in their creation. The
Generative Method employs a programmatic approach, whereas the Variant Method

provides a more naturally, concurrent approach. However, generative models are
highly customisable. This is very favourable in the case of attempting to combine a
number of topologically dissimilar designs within a single model. Here the
generative model can be programmed to switch between various features depending

upon which individual design is required. Trying to attempt this problem with the
variant method is difficult, as the variant method inherently 'varies' a given model,
and cannot invoke and respond to yes/no decisions, by itselE

71

2.14 Essential Findings from the Literature Survey

2.14.1 Function Means Tree

Unlike the Parts Tree and Function Family Tree, the Function Means Tree'relates
both function and means (parts) under a single data structure. In particular, it directly

relates a given function to it realising means, which is ideal for rapid component
retrieval. Furthermore, a core consideration of this research is to simplify the process
of storing past design cases. The Function Means Tree is a simple, clear and straight-
forward structure to create for each past design case, as its elements are easy to
identify (a means is a part or subsystem name, to which its function can be easily
derived) and input. In comparison to the chart based methods, such as Design
Function Deployment, it is less cumbersome, and does not overburden the designer

too heavily.

2.14.2 Annotated Sketches
If available, sketches are highly regarded as a medium to express design intent, and
demonstrate 'how things work'. Combined with suitable annotation (text), a given

sketch can be stored along side its related function-means pair in the Function Means

Tree.

2.14.3 Variant CAD Model
The traditional, static forms of geometric modelling do not allow existing CAD-

based models to be easily adapted and modified. -Howe-ver, dynamic -systems, such as

the combined Parametric and Feature-Based modellers that are commercially

available facilitate this requirement to some degree. Of the existing methods that can
be adopted to transform an organisations legacy manufacturing drawings into solid
CAD models, the Semi-Automated methods (see section 2.12) are most relevant.
Automatic and Interactive Recognition techniques for 2D Projections (section 2.11)

are still in their infancy, and have been argued to be deficient in representing real,

complex engineering designs. These methods also do not wholly express the degree

of design intent present in a typical manufacturing drawing, as they only represent

elements of the drawing(s) that can be recognised from a pre-defined database.

72

Of the reviewed Semi-Automated design representation methods, both the

Generative and Variant methods incorporate feature-based and parametric
techniques, which allow for rapid design modifications. It is apparent that the

Generative method is best suited to the evolution, or synthesis, of complex,
innovative designs. In contrast the Variant method is better applied to a more well
defined design scenario. In terms of actual modelling, the Variant methods is much

simpler. Therefore, it follows that the Variant method is more readily applicable to

the reconstruction of existing, pre-defined engineering designs, and is chosen here to

represent the Detailed Design.

These findings were used in the development of the methodology for storing a
family of detailed designs.

73

Chapter 3

Generic Methodology
Overview
In chapter Ia number of objectives for this research were defined. These are:
1) To determine suitable data-structures to store the Solution Concept, Embodiment

and Detailed stages of the design process,
2) To create a Methodology to store existing design families for efficient reuse, and,
3) Implement the methodology as a Software Application.

The previous chapter discussed the relevant data-structures to represent these stages

of the design process. This chapter will discuss the proposal of two novel concepts,
followed by a Generic Methodology, to realise these ob ectives. This will be

subsequently illustrated using a simplified propeller-shaft example.

3.1 Data Structures

Before proposing a suitable data structure to effectively store past designs, it is

useful to refresh, or identify, the underlying requirements of this research. Firstly, the

chosen method(s) should represent a given design concisely, but with enough
descriptive meaning, so that whole design, or parts of it can be retrieved by either

name or descriptive function. This information should also be detailed enough to

satisfactorily express the designer's original intent, so that new designers can

understand and learn from past design cases. Secondly, designs should be stored in a

manner that facilitates easy modification, which will allow existing designs to be

readily modified to suit a new scenario of requirements.

To this end, the following design methods have been chosen to represent solution
concept, embodiment and detailed designs:

a) Function Means Tree
b) Variant CAD Model

74

3.2 The Two Novel Concepts

The Generic Methodology proposed here, builds on two novel concepts, these are:
1) the Hybrid Function Means / Parts Tree and

2) the Variant Master Model.

The Hybrid Function Means / Parts Tree accommodates the conceptual and

embodiment stages of the design process, while the Variant Master Model accounts
for detailed design. These concepts are further discussed below.

3.2.1 The Hybrid Function Means / Parts Tree

This section proposes a combination of both the function oriented Function Means

Tree, and the assembly oriented Parts Tree. The union of these two structures allows
the designer to build and view a structure to represent the conceptual and

embodiment stages of design according to their individual context and preference.
For example, when synthesising a new (or viewing an old) design, it is preferable to
design by an evolution of functions (see the Function Family Tree, section 2.3.1).

Whereas, when converting an existing design into a CAD based model, it is easier to

structure this model in terms of its parts and order of assembly.

Figures 3.1 a and b respectively, show a generalised Function Family Tree and Parts

Tree for a simple product. The relationships between functions and means (parts) can
be represented as two lists of information, for both functions and parts, as in figure
3.2. This data structure is comprised of two linked-lists representing the structure of
both trees, by storing the parent node indices (ID's) for each child node.
Relationships between the lists (indicated by straight lines in figure 3.2) are also

stored as the node ID's of the corresponding list. For example, the 'Tertiary Function

A' (node/ID 2 in the Function Family Tree) is realised by 'Part B' (node/ID 3 in the
Parts Tree).

75

imary
cti Fptction

7
4f

r
u on

I[FEOý -0 ýar
Secondary ecl

;
nd

Function IL F nction

2 Ter ry Tertiary, Tertiary Tertiary 8/ Tertiary
/Fun=ln

A
3/Function

Function C7 Function D\ Function E.

Figure 3.1a A Generalised Function Family Tree

Main
A ssembiv mbly

1 r-----l 2

r-
p

---j 4F- Part C art B Part C

A

Figure 3.1b A Generalised Parts Tree

Figures 3.3 and 3.4 show the resulting Function oriented and Parts (assembly)

oriented representations of the Hybrid Function Means/Parts Tree data structure,

respectively.

76

Hybdd Function Means / Parts Tree
--

Function Family Tree Ust Parts Tree Ust

ID Name Parent ID
0 Pfimary

_NULL 1 Secondary A 0
2 Tertiary A 1
3 Tertiag B 1
4 Secondary B 0
5 Tertiary C 4
6 Tertiary D 4
7 Secondary C 0
8 Tertiary E 7

ID Name ParentlD
0 Main Assembly NULL

i1 Sub-Assembly_
--- ___O_ 2

_Part
A __- 0

3 Part B I
4 Part C 1

V I
I --

Figure 3.2 Schematic Data Structure of the Hybrid Function Means / Parts Tree

Mary
u Fpuncdön

0[

1/ Seconda 4 Secoqdary 7/ Secondar
6n

r
ýýco

ja
Function Function Is Functioan7

II

--- 11 Sub Part A Sub
Assembly Assembly

I-I-

. on A
38

Terýary ýary
FuT

'rFunction
E

ry
A

jF9uTenrcb`arnYB

e=
C\

G/F. -uTen
t"

ry
Dý 0

Part BII Part BII Part AII Part A

Figure 3.3 A Function Oriented Representation of the Hybrid Data Structure

77

nmary
ui Fp nd on

OF ain
Assembý

M

1ý Seconda \7 Secondary 4f Secogdary
ion'X Function C Function 5

Sub
Assemb

238 Te ia Te tia Te la
u 10 uu io rý
-L FF lt
ncti

-A,
TR

rt
unction B FunrdliaornyE

5/ Tertiary
Function C

2
Part A

Tertiary
Function D

1
Part B1[Part C

Figure 3.4 A Parts Oriented Representation of the Hybrid Data Structure

3.2.2 The Variant Master Model

The concept of Parameter-Based Modelling can be extended to represent a family of

similar mechanical designs under a single Variant Master Model. On a single-part

basis, this can be achieved by instancing the Master Model with varying sets of

parameters, as demonstrated by the spanner-set example of figure 3.5. This is a very

simplistic example, and is representative of Pure Primitive Instancing (section 2.8-3).

Families of part designs are often less similar, than in this example. Take an

extended family of open-ended and ring spanners (figure 3.6) for example. A

solution to representing this family is to define these differences as separate features,

all contained within the single Master Model, and, depending upon which design

case is required, by turning selected features on and off.

78

Figure 3.5 A Family of Spanner Designs

Figure 3.6 Members of a more Complex Spanner Family

79

Assemblies of parts share similar characteristics to those of individual part designs,

where two or more assemblies, whilst being on the whole similar, may contain (or

not contain) particular parts, unique to each of their designs.

It is therefore convenient to differentiate between these elements of a Master design

model into Master Parts and Master Systems.

A Master Part - is a single Variant CAD model containing all of the features of a
family of similar part designs. Features that are always present, in all instances of the
Master Part, shall be called its Persistent features, and the remaining features, which

may or may-not be present in a particular instance of the Master Part, its Non-

Persistent features. For example, consider a family of designs that contains parts PI,

P2 and P3,, which are each defmed within separate families, and share enough similar

PI features to warrant the creation of a Master Part, Pm.

The Master Part, Pm, contains all of the features of

parts PI, P2 and P3 combined, i. e.

PZ Ps PM = PI U P2 U P3

Pi

With Persistent features, Fp, being the intersection of
PI, P2 and P3:

Fp = Pi r) P2 n P3

And Non-Persistent features, FNp, being all

PI combined features of Pm, apart from its Persistent
features:
FNp -,, = Pm n Fp'

Figure 3.8 gives an example Master Part from a
connector.

Figure 3.7 A Venn Diagram Representation of a Master Part

80

Figure 3.8 Master Part from a Connector

Figure 3.9 A Master System for a Connector and two Instances

81

A Master System - is a single Variant CAD model, made up of all Master Parts and
Master (sub) Systems from a family of similar systems, or assemblies. (The terms

assembly and system are used interchangeably here). The parts and sub-systems that

make up this Master System are termed its Elements, and (again with similarities to

the Master Part) they fall into both Persistent and Non-Persistent categories. A

Master System, Sm, contains all elements from the set of similar systems that form a
family of designs. For example, if systems SI and S2 share enough similar elements
to warrant the creation of a Master System.

sl S2

Then this can be defined as the Master System, Sm,

containing all of the elements of S, and S2:

SM= Sl U S2

With Persistent elements, Ep, the intersection of S1,

andS2

Ep = SiOS2

And Non-Persistent elements, ENp :

ENP = Sm r) Ep'

Figure 3.9 shows an example Master System for a

connector family

Figure 3.10 A Venn Diagram Representation of a Master System

With these definitions, the Variant Master Model can be defined as the

combination of all Master Parts and Master Systems that form a family of

similar designs, as a single Variant assembly model. As with the Master Systemg

differences between family members of the Master Model can be

accommodated by modifying part parameters values, and/or by turning Parts

and Systems on and off (suppression).

82

3.3 The Generic Methodology

This section presents a Generic Methodology to store Conceptual and Embodiment
Designs as a combined Function Means / Parts Tree, and Detailed Designs under a
Variant Master Model. The methodology (figure 3.11) is a step-by-step prescription,
encompassed by the following objectives:

1) Collate and organise the family of existing manufacturing drawings into Master

Parts and Master Systems,

2) Build the Variant Master Part, System and Family CAD models, and determine

and create their driving parameters,
3) Create a database representation of the Master Model in the form of a Parts Tree

and link the part, system and family CAD models to respective elements of this

tree,

4) Determine the functions of each element of the design, and structure this

representation in the database, along side the Parts Tree, to form a hybrid

Function Means / Parts Tree.

5) Create individual database records for each member of the design family.

The following sections give a more detailed description of the stages of this method.

83

W egorise designs into:
zI Products

Z2 Sub-Systems
LU 3 Parts
Ui In Ln - Z5 T7_
;5 t-0 Gro ilar parts and sub-systems

intouNassitmer Parts and Master Systems

For each Master Part:
II Determine Features and Parameters
2 Create Variant CAD model

0R In
z . 1c I

U-
z For each Master System:
us 11 Determine Parameters

OC LU >- Q2 Create Variant CAD assembly model
Uj U-

Determine Parameters for Family
Model. Build Variant Master Model

LU Create Database of Family of designs.
R i P dS b S e resent ng arts an u - ystems A

ý- ti as aster Parts and Master Systems in
a Parts Tree (assembly) structure

rl

LU
Link Master Part and Master System

Z: models to Nodes of databasi tree

_j

U_
Identify Function of each Part

IMS2 LU and Sub-System and relate to Uj t2 m each node in database tree
90 U.

z

.z 'C
Z

se Parts Tree into a Function orci
dF i M T LU e s unct on eans ree

0
cc

Cr .
For each Product (family member): 0 tx

;9 CL.
1 Input Parameters
21 Redefine Functions to be more

6
Pioduct Specific (if required)

= 3) Insert Product Specific Sketches (if
CC available)

Figure 3.11 The Generic Methodology

84

3.3.1 Organisation of Manufacturing Drawings

The methodology begins by collating all manufacturing drawings for the entire
family of designs to be modelled. From these part and assembly drawings, sets of
Product (i. e. family members), Sub-Systems (or sub-assemblies) and Part
(components) can be determined. These groupings can consequently be categorised
into the Master Parts and Master Systems, by comparing similar part and assembly
drawings across the design family.

3.3.2 Creating Variant Master Models

As stated earlier, the Master Part is a combined, variant model of all similar parts

across a family of designs. Therefore various instances of the Master Part may differ

by the definition of which features are and are-not present, as well as the values of its

driving parameters. The Persistent and Non-Persistent features of the Master Part

(section 3.2.2) can now be determined by examination of the concerned

manufacturing part drawings.

An important factor in the creation of a Variant (or parametric) model is to define the

correct parameters to drive the model. These Global Parameters and the Persistent

and Non-Persistent features, allow the Master Part to be adapted to suit the variety of

specific configurations that are required. Some forethought, and knowledge of the

design field, is required here, to ensure that design intent is maintained, and that

these driving parameters are meaningful to the design's application. For example, the

----channel of figure -3.12 may be better defined in terms of its width (w) rather than

offsets from two sides. Also, it may be better to produce a model of a gear with its

pitch (P) as a driving parameter rather than its number of teeth (N) as in figure 3.13.

85

Figure 3.12 Possible Parameter definitions of a Channel

ýjý ý-, f:

KI

pitch P

360"
nx KDx P

GOV N

Better to relate gears,
pitch P racks etc.

in terms of pitch rather
than number of teeth

Figure 3.13 Parameter definitions for a Gear design

Now that all modifiable elements have been defined, a Variant model of the Master

Part can be created, using a suitable Variant CAD modelling system. This can be

achieved by initially creating a base-part from all of the combined Persistent

features. The Non-Persistent features can then be added and suppressed (hidden) as

required. Global (or driving) Parameters can then be defined and related to the

Master Parts own parameters. This procedure can be undertaken for all Master Parts

of the design family.

A Master System is the combination of all similar systems within the design family,

and as such contains Persistent and Non-Persistent elements (again see section
3.2.2). As with the Master Part, these elements of the Master System can be

86

II
CL: :3

determined by inspection of the manufacturing, assembly drawings. For the Master

System, Global Parameters determine the correct dimensions between mating parts,

and can also be used to specify, for example, 'how many times' a particular element

is to be instanced. Figure 3.14 outlines how the Global Parameter, G I, can be used to

control the diameters of both a hole and a peg (p3 and p9 respectively), through the

use of two relations, so that the peg will fit exactly into the hole. In figure 3.15 a
Global Parameter, G2, is used to state how many times the hole feature and the peg

part, will be instanced, as well as the separation (angle) between instances, again

through the use of relations.

global parameter G1 = 10
relation p3 = G1
relation p9 = GI

p3

Figure 3.14 Global Parameters to retain Design Intent in an Assembly

From this, a Variant assembly CAD Model can be created to form the Master

System. All Persistent elements are combined to create a base system, and all Non-

Persistent elements are added and suppressed. The Master Systems set of driving,

Global Parameters are then related to those of its constituent parts and sub-systems.

Again, this procedure is repeated for all Master Systems.

87

number of pegs = G2
angle between pegs = 360"/ G2

global parameter

Figure 3.15 Use of Global Parameters to control Patterned Instancing

The Master Family can be regarded as a 'top-level' analogy of the Master System, as

it is also an assembly model of (Master) parts and sub-systems. Hence, the

procedures to create the Master Family are consistent with those of the Master

System, where family-level Persistent and Non-Persistent elements, Global

Parameters and a Variant CAD Model (the Master Model) can be created. The major

difference here lies with the importance of the Master Family Model, and

particularly with its driving parameters, as these by definition, have the highest level

of control over the design.

3.3.3 Creating a Parts Related Database of the Master Model

The next stage of the methodology is to structure the elements of the Variant Master

Model, within a database environment. This is initially performed in terms of a Parts

Tree, as this hierarchy is already present in the assembly structure of the Master

88

number of holes = G2
angle between holes = 3600/ G2

Model. Here, a tree structure (or a 'linked-list') is created, whose elements relate to

the Master Parts, Master Systems and, at the highest node, the Master CAD Model.

The associated CAD models, and their Global Parameters can then be 'linked' to the

respective nodes of the Parts Tree, to form a Generic representation of the entire
family of designs. How this is achieved will be discussed in Chapter 4- Software

Implementation.

3.3.4 Creating a Hybrid Function Means / Parts Tree

The database structure developed above is Parts-ordered. For evaluation purposes it

is desirable to view a design in terms of functional decomposition and the realising

part, i. e. through a function ordered Function Means Tree. Hence the next stage is to

produce a functional structure, in conjunction with the Parts Tree representation (i. e.

a Function Family Tree) and link respective elements of this structure to individual

parts to form a Function Means Tree. The resulting data structure can now be

automatically re-ordered to display either a function or part ordered representation of

the design family.

3.3.5 Recording Individual Family Members

At this stage, all Master CAD models have been created, and have been structured

with their representative functional descriptions to form a hybrid Function Means /
Parts oriented Tree. This is a Generic structure, representing the entire design family.
Therefore parameters can now be entered for specific, individual products, as can

product specific functions, and stored as records in a database. Along with this,
information regarding which Non-Persistent Master Part features, Master-System,

and Master Model elements are required, is also stored. Hence, each member of the
family of designs is portrayed by a concise representation of its driving parameters,

components and product specific functions.

89

3.4 An Illustrative Example

The Generic Methodology presented describes how an existing, entire family of
designs can be transformed into a single variant model. This section will take a

simple example design to illustrate this principle with regard to the following

criteria:

Storing families of designs in a structured manner (i. e. creating (Master) parts,

systems and family).

Recording design intent, concepts and functional information.

9 Creating a reusable CAD model of a design family.

3.4.1 The Propeller - Shaft Assembly

Figures 3.16 and 3.17 illustrate two design examples from a (hypothetical) simplified

propeller-shaft family. Each design contains a functional description of its

constituent parts and systems, annotated conceptual sketches and dimensioned

manufacturing drawings for the piece parts. Both designs share a common, primary

(or family) function, which is to 'propel a fluid using a rotary motor' as a power

source.

Design 'A' was created to move a high viscosity fluid (e. g. crude oil) at low speeds,
hence the use of a greater number of deep blades. Conversely, the intention for

Design 'B' was to propel a less viscous fluid (such as petrol) at a relatively higher

speed, requiring fewer and narrower blades, to reduce inertia. The interference fit

between the shaft and the hub of Design 'A' was found to be ineffective for Design

'B' (due to a combination of high kinematic forces / torque produced in the contact

area and the low viscosity of the fluid). So, it was decided to use a keyway between

the shaft and hub.

90

Move High Viscosft fluid at Low ýpged

Propeller Propel high viscosity fluid (convert rotary to linear motion)
Shaft Link motor to propeller
Blade Push high viscosity fluid at low speed
Hub Fix blades to shaft

Figure 3.16 Example Design 'A' for a Prop-Shaft assembly

91

BLADE SLOrS,

Z

> INM HUB KEYVYkY IýE
PFEVENTS, M
SUPPING

>0 AT HIGH
S1: 1EEDS;

I - 10

T

15

Figure 3.17 Example Design 'B' for a Prop-Shaft assembly

92

3.4.2 Organisation of Manufacturing Drawings

Both drawings show each product to consist of three Master Parts, the Shaft, Hub

and Blade. (figure 3.18). Where each product contains only one shaft and hub and a

variable number of blades. There is only one Master System in this example, the
Hub-Blades assembly. This, combined with the shaft (Master Part) are the two

elements that make-up the Master (family) Model (figure 3.19).

Mager Part: Shaft
SHAFT'A' SHAFTS'

2-0--
-110 5

15
70 50

Master Part: Blade
BLADE 'A'

Master Nrt: Hub
HUBW

0
LI)

BLADE 'B'

HUBS'
A

V L-. j
40 ý-

Figure 3.18 The Master Parts

93

30

kbster ýjstem: Propeller Assembly
PROP-ASSEMBLY'A' PROP-ASSEMBLYS'

Farrily: Propeller Shaft Assembly
PROP-SHAFT'A' PROP-SHAFTV

Figure 3.19 The Single Master System (above) and Master Model (below)

3.4.3 Creating the Variant CAD Models
Starting with the simplest Master Part, the blade has only one feature -a block,

which must be persistent. The shaft contains one Persistent base feature, a cylinder,

and a Non-Persistent slot feature. Similarly the hub contains a Persistent cylindrical

base feature, a Persistent hole feature to fit the shaft and a Persistent slot feature to fit

a blade. A further Persistent feature is the pattern (or array) of slots to hold multiple

blades. Leaving only a Non-Persistent key feature. Figure 3.20 shows the Persistent

and Non-Persistent feature sets for each product. Driving Parameters for each Master

Part can now be determined, as per figure 3.21.

94

PART FEATURE DRAWING 1 DRAWING 2 PERSISTENT NOW

PFRSTSTfNI-
Blade Block V/ V/

Shaft Cylinder V/ V/

Slot V/

Hub Cylinder V/

Hole V/ V/ V/

Slot V/ V/ V/

Pattern V/ V/ V/

Key V/ V/

Figure 3.20 Table of Feature Persistence for each Product

PART FEATURE PARAMETER

Blade Block Overall height

Overall width

Overall depth

Shaft Cylinder Overall diameter

Overall length

Slot Height of key slot

Depth of key slot

Hub Cylinder Overall diameter

Overall depth

Hole Diameter

Slot Height of blade slot

Width of blade slot

Pattern Total number of slots (blades)

Key Height of keyway

Figure 3.21 Table of Driving Parameters

95

The three Master Parts can now be created using a suitable variant modelling

package. Here, Pro/ENGINEER is used, which is capable of feature suppression, for

the two Non-Persistent Shaft-Slot and Hub-Key features. Figure 3.22 shows the

Pro/ENG]NEER CAD models for each Master Part

4P,,
e,

W HUb

of the Master Parts

Each Master Part is driven by a set of Global Parameters. These, along with a set of
Non-Persistent features, are the parameters that drive the part model when linked to

its Parts Tree node. Lists of the parameters are given below.

BLADE SHAFr HUB

B_height S- dia H_ dla

B_width S_ Iength H_ depth

B_depth S_ key_slot_height H_ hole_dia

S
-key_slot_depth

H_ blade_slot_dia

H
_blade_slot_width

H
_number-of slots

H
_key_height

Figure 3.23 Table of Master Part Global Parameters

96

Figure 3.22 Pro/ENGINEER Variant CAD mo

The single (Master) System in the prop-shaft family is the Propeller assembly model,
in which all elements, the Hub part and the Blade part are Persistent, i. e. they exist in

all products. So, there are no Non-Persistent elements in this Master System. A new

assembly model can now be created, containing the Hub and Blade parts, and the

blade constrained to a respective slot in the hub. It can then be 'insert-patterned'

around the hub for the number of slots in the hub (figure 3.24)

Figure 3.24 Pro/ENGINEER model of the Propeller Assembly

As for the Master Part model, a set of driving Global Parameters must be created to:

relate parameters between parts in the system, and
2) link the Master System CAD model to its Node in the Parts Tree.

97

For the Propeller system, the following Global Parameters were created :

GLOBAL PARAMETER

Sys_ hub_dia

Sys_ depth

Sys- hub hole dia

Sys_ hub_blade_slot_height

Sys_ hub_key_height

Sys
_blade_height

Sys
_blade_width

Sys
_number_of

blades

Therefore, the following System to Part relationships can be created to ensure

respective dimensions between connecting parts can be controlled by a single

parameter at the system level:

PART SYSTEM RELATIONSHIP

for the Blade B_height Sys_blade_height

B_width Sys_blade_width

B_depth Sys_depth

for the Hub H_dia Sys_hub_dia

H_depth Sys_depth

H_hole_dia Sys_hub_hole_dia

H_blade_slot_height Sys_hub_blade_slot_height

H_blade_slot_width Sys_blade_width

H_number-of slots Sys_number_of blades

H_key_height Sys_hub_key_lieiglit

98

ml.

The Master Model can be viewed as a top-level Master System. Hence the procedure

for developing a Master System is adopted. The two (sub-ordinate) elements that

form the Master Family are the Shaft Master Part and the Propeller Master System,

both of which are Persistent. Now, the final CAD model, the Family assembly, can

be created by constraining the Propeller system assembly model to the Shaft part, as

a new Pro/ENGINEER assembly model (figure 3.25).

Figure K. nily assembly

The set of Global Parameters created for this model will control all of the parameters

the designer may wish to modify, for the entire design. Below are the nine Master

Family Global Parameters, created for the Propeller-Shaft model, and their

corresponding Shaft part and Hub-Blades system relations.

GLOBAL PARAMETER GLOBAL PARAMETER

Fam
-shaft-diameter

Fam- blade_depth

Fam
-shaft-length

Fam- hub_diameter

Fam
-keyway_height

Fam_ hub_blade_slot_height

Fam
-blade-width

Fam- number_of blades

Fam
-blade_height

99

ELEMENT FAMILY RELATIONSHIP

for the Shaft S-dia Fam-shaft-diameter

S_length Fam-shaft length

S_key_height = Fam_keyway_height

S-key_length = Fam-blade_depth

for the Hub - Sys_hub_dia Fam-hub_diameter

Blade assembly Sys_depth = Fam-blade_depth

Sys_hub_hole_dia Fam-shaft-diameter

Sys_hub_blade_slot_height Fam-hub_blade_slot_height

Sys_hub_key_height Fam_keyWay_height

Sys_blade_height Fam-blade_height

Sys_blade_width Fam-blade_width

Sys_number_of blades Fam-number_of blades

3.4.4 Linking the Master Model to a Parts Oriented Database

Now the completed CAD models can be represented in a parts tree, as a database.

Chapter 4 will deal with the specific (software) implementation of how this is

achieved, but for the purposes of illustration we shall consider the linked Parts Tree

of figure 3.26. As well as linking the actual CAD model, the lists of Global

Parameters for each Master Part, Master System and Master Model are also linked.

This enables the CAD models parameters to be changed from within the database.

3.4.5 Creating a Function Means Tree

The next stage is to identify the functional structure of the design. Figure 3.27

illustrates a Function Family Tree for the Propeller Shaft Assembly. Therefore, the

Means (or Parts) of figure 3.26 can be related to these functions to form a Function

Means Tree (figure 3.28).

100

Figure 3.26 (left)

A Parts Tree

Representation

of the Master

Model.

Figure 3.27

(below)

A Function Tree

Representation

Wve fluid
using motor

Fix motor
to Propeller Propel fluid Limit efferds.

of oorrosion

71,

Fix blades t ýdium to Prevent hub [
to , Shaft cor cor tac contac With fluid from slipping

101

Wve fluid
using motor

Propeller-Shaft
Assembly

Fix mot ' Propel fluid ' 'o
opelle to Pr Iler
IIi

Urnit effects
of corrosion

blades Medium to Prevent hub
S ft from slipl haft oon=t with fluid from slipping

Shaft-Hub
Keymey

Figure 3.28 The Function Means Tree for the Propeller-Shaft Design

102

Bade

3.4.6 Entering Data for the Family Members

To complete the Variant Design Model, parameter values, suppressed feature status,

and functional descriptions are entered. We can now create any propeller-shaft

design from the features, parts and systems defined in the Master Model. As all

Global Parameters relate to those of the Master Model, only these need to be given,

as below:

GLOBAL PARAMETER DESIGN'A' D ESIG N 'B'

Fam-shaft-diameter 20 15

Fam-shaft-length 70 50

Fam_keyway_height 5 5

Fam-blade_width 10 5

Fam_blade_height 35 25

Fam-blade_depth 30 10

Fam-hub_diameter 50 40

Fam_hLib_blade_slot_heiglit 10 10

Fam-number_of blades 5 4

Also, the feature suppression status for both designs can be set to:

FEATURE DESIGN'A' DESIGNB'

Shaft : cut_keyway SUPPRESSED RESUMED

HLib : protrLision_key SUPPRESSED ESUMED

The functional and means descriptions of figures 3.16 and 3.17 can now be re-

entered, to meet the specific requirements of each design.

103

Chapter 4

Software Implementation
Overview
This chapter outlines the data structures, algorithms and principles used for the

software implementation of the Variant Methodology. The intention here is not to

meticulously describe the line-by-line execution of each procedure, but to outline the

methods used to achieve a computer-based implementation of the methodology

proposed. A listing of the software code is, however, given in Appendix I.

4.1 Objectives of the Software

In essence, the software presented here covers the latter three stages of the Variant

Methodology (figure 3.11, section 3.3), namely to:

a) link the, already created, variant CAD models to a parts oriented database (or

structure)
b) create a function-based representation of this design family, and

c) create database records (or instances) for each member of a family of related
products.

Consequential objectives of this software therefore also include the capability to:

a) use a hybrid Parts Tree and Function Family Tree structure to represent
Conceptual and Embodiment design,

b) use the principles of the Variant Method to represent modifiable detailed designs,

c) make use of existing Variant and Parametric solid modelling systems to realise

the detailed designs,
d) store the combined Conceptual, Embodiment and Detailed designs together, as a

'Generic Master Model', from which instances (the family members) can be

created.

104

A key issue with regard to the applicability of this research is its industrial relevance

and usability, particularly for small to medium enterprises, undergoing the transition

of accepting computer-based design tools. This requires the software to act as an

automated interface to the solid modelling packages, allowing the modification of

existing detailed designs to be fully integrated with the reuse of conceptual and

embodiment design.

4.2 Software Solution

The above objectives require the software to be designed from a users-viewpoint, i. e.
from the information or 'Process Flow' prescribed by the Variant Methodology,

which is represented in figure 4.1.

4.3 Achievable Solutions

This Process Flow can be broken down into realisable tasks (solutions to the

objectives) that must be embodied in the software. They are:

1. Create a User-Interface to Create and Edit a Parts Tree structure,
2. Allow Parameter Names and Values and Feature Suppression to be displayed and

edited for each part,
3. Allow a relevant CAD model to be 'linked' to each node in the Parts Tree,

4. Allow this CAD model to be modified according to changes in the Parameters

and Feature Suppression Status, outlined in (2),

5. Create a User-Interface to Create and Edit a Function Family Tree structure,
6. Allow Part to Function Relationships to be created,

7. Allow the Parts (Means) Tree to be regenerated as a Parts Oriented
Function/Means Tree,

8. Allow the Function Family Tree to be regenerated as a Function Oriented

Function/Means Tree,

9. Allow Instances to be created from this 'Generic Instance' (the Master Model),
10. Create Auxiliary commands, such as:

Output manufacturing drawings for a given part, Create a solid rendering,
Output the Parts Tree, Function Family Tree and Part or Function-Oricntcd

Function Means Tree.

105

Create a Parts Tree representing the
Assembly of the Master Parts and Master Nstems that encompass the

entire product family.

Link each Master Part and Master
Sýstem model its corresponding Node

in the Parts Tree

For each Part Node:

Enter its Parameters and default Values,
Enter its Feature, Sib-Part and Sib
System Suppression Status.

(Yeate a Function Family Tree for the
Master Model, to represent the entire

product family.

Ove Relations between Parts (Means)
in the Parts Tree and Functions in the

Function Farnily Tree.

Oreate Instances of the Gýneric
Instance for each family menter of the

product range

FDr each family mefter in the
proclud range

Create an Instance of the (1-neric Instance,
Enter member-specific:

Name and Details,
Parameter values,
Feature & Sub-Part/Systern suppression status

Figure 4.1 General Process Flowchart

106

4.3 Data Structures

The objectives and solutions outlined in the previous sections indicate the need for a

well-defined data structure to maintain the information stored in a product family.

The Variant Method proposes the use of a single 'Generic Data Structure' to store

the skeleton structure of this family. Instances, or copies, of this structure can then be

created and varied at will to suit the characteristics of each family member. In this

respect, a scherna of this data structure is given in figure 4.2.

adlitreime NIMM

ME-Zim. im# M

Fe. ature
MEDIZIN- M-

Figure 4.2 Elements Comprising a Product Family of Instances

4.3.1 The Part Node

This data structure contains the information relating to each Part of the Master

Design. A Part in this sense can be either a single component, a sub-assembly or the

full assembled product. In general terms, the Part structure stores a link to its

respective CAD file, the parameters the designer wishes to modify in that part, and

which features can be suppressed.

4.3.2 Parts Tree

This is essentially a linked list of Part Nodes, Linked by their index in a one-
dimensional array. For example, a Part's Children can be expressed as a list of their

array indices.

107

'Part - Member Name Type
Name string
Number of Parents integer

List of Parent's Part I[Ys list of integers
Number of Children integer

List of Children's Part I[Ys list of integers
Number of Suppressed Entities integer

List of Suppressed Entity Names list of integers
Number of Function Relations integer

Obs List of Function Wations Function Tree list of integers
Level integer
CADfilename
CADfiletype string

ameters Number of Par integer
____ List of Parameter Names - list of strings

List of Parameter Values list of doubles
List of Parameter . Units list of s tr ings

0 arts Suppression Status boolean

Figure 4.3 Part Node Data Structure

I Nane

List of Parent's Part I[Ys list Of
, nber of Children 1 integý

--I-, -... -- List d Children's"Aifibi ist of
Tber of Wans Pelations I integ(
04'-d-W-anis' -%-ation-'s-F-u-n-ct-io-n'-T-r-e--e-l-[Ys I list of

I,

Figure 4.5 Function Node Data Structure

108

Figure 4.4 Parts Tree Data Structure

Figure 4.6 Function Family Tree Data Structure

4.3.3 Function Node

This is a limited version of the Part Node, comprising only Name, Parent, Child and
Relations data.

4.3.4 Function Family Tree

Again, this is similar in construction to the Parts 'Free, as a linked-list of Function

Nodes.

4.3.5 Hybrid Function/Means(Parts) Tree

Defining relationships between the Parts 'Free Nodes and Function Family Tree
Nodes allows these structures to be regenerated to directly show the Function Means
'Free, in either a Parts Oriented or Function Oriented fashion. Figure 4.7 outlines the
data structure representing these relations.

FEATIONS

Figure 4.7 Hybrid Function/Means Data Structure

4.3.6 The Generic Instance
Each Product in a family can be represented by its combined Parts and Function

Family Tree (the Function Means Tree), its CAD models and its parameters. This

structure is defined as the Generic Instance, figure 4.8.

109

Figure 4.8 Generic Instance Data Structure

4.3.7 The Product Family

Finally, an entire family of products (or instances of the Generic form) can be stored

as a linked list of instance types, as shown below:

ID= ID= 111 ID= 211 ID= 3

Figure 4.9 Product Family Data Structure

4.4 Application Development Environment

The implementation of this research is intended to be applicable to as wide a range

of industrial environments as possible, this especially includes SME's. Therefore the
following implementation details were chosen:

Operating System - Microsoft Windows 95/98/NT4

Development Language - Microsoft Visual Basic

CAD software - Pro/ENGINEER rel20
SolidWorks 98PIus

Autodesk Mechanical Desktop 1.2 and above.

110

4.5 User Interface

Using the appropriate buttons in the toolbar, the user can create and move part nodes

to form a parts tree. When a given node is selected, its particular Parameters and

Feature Suppression Status are displayed, and can be edited. The linked CAD file

can also be updated to accommodate parameter modifications using the methods
discussed in the following section.

Parts Tree Toolbar -
SMtch between Parts Tree
and Parts-Oriented
Function Wans Tree

Function Farnily Tree

Switch betmen Function
Farnily Tree and Function

Oriented Function Means Tree Instanoes

raft Tý Tý w Icl Gwo. - MmW
lw4t-

2
: nztý 3

*ý 4
ztý 5
tra- 6

I. t- 12
13

: n., t- 11
NO 3_ 15

405
lnt- 20
ýWwc. 21
: rtý 22

23
A

k. *- 25

\Msw-shwkSýý FEATUIR FEATURE RELATIONS
s" E-Y I ss Mý; pao P... All N- G- Mbd

G- A. - G- F-t o0

I E-', I SUPPRESS PIA I Fcb- I
By Pw TJ AWý

222 Emy SUPPRESS Pw 2
11

rwcbm 2
I,:,

1 43
Ell, * 3

E"s"

4S

Es"

P.

JSE-y

UPPRESS

NEW DEL OMMIk UO-
_kM

IL-j R do
.

50 CAD W,, d- DEL NEW I

SMW

I

12A3M t29 FM

Parameter editing Feature Function/
Auxiliary - Suppression ktans(Part) Instance CADfilename (bmmands editing relations details

Figure 4.10 The User Interface

A Function Family Tree of Function Nodes can also be created and related to the

Parts Tree (i. e. the selected function is realised by the selected means). In this way a

list of Function to Means (Part) relations can be established. By clicking on the

'switches' at the top of the Parts Tree and Function Family Tree windows, these

III

structures can be combined to display a Parts Oriented Function Means Tree and a

Function Oriented Function Means Tree, respectively.

This process constitutes the creation of the 'Generic Instance' from which all child
instances can be modelled. New instances are created by selecting a 'Parent' instance

in the 'Instances list' from which the child will be an exact copy of the selected

parent. The Product Name and other details can also be entered for each instance.

4.6 Interfacing to CAD Modellers

The principal concerns for linking a commercial CAD package to a database or

external application include:

1) Getting the parameters for each Part and Assembly,

2) Getting the Features, Parts and Sub-assemblies to be Suppressed,

3) Changing the Parameter values in the CAD model,

4) Suppressing entities in the CAD model.

Each of the solid modellers that are implemented here, vary with regard as to how

these concerns can be overcome. The following is a brief description of how a link

between these packages and a development language, such as Microsoft Visual Basic

can be achieved.

Interfacing to ProlENGINEER

a) Create a Family Table in Pro/ENGINEER containing all elements of the CAD

model that are to be modified,
b) Parse the Family Table into the software application (database) and extract the

parameters and features etc.

c) Write back the modified parameter values etc, to the Family Table,

d) Send a command to Pro/ENGINEER to re-load the family table and update the

models for this instance.

112

Interfacing to SolidWorks

a) Enter Parameter names, values and features etc. to be changed.
b) Use the SolidWorks API commands to directly modify the parameter values and

suppression status of features, parts and assemblies.

Interfacing to Mechanical Desktop

a) Save a Parameter List in Mechanical Desktop (this is a built-in function of the
CAD software)

b) Parse this file into the software and select the desired parameters to modify,

c) Write back the modified Parameters List

d) Send commands to Mechanical Desktop to re-load the Parameters List and
Update.

4.7 An Illustrative example - the Propeller Shaft

This section illustrates the use of the software for the Propeller Shaft example, used
originally to illustrate the Variant Methodology in Chapter 3.

Issues regarding the determination of what comprises the Master Parts and Systems

has been covered in the previous chapter, and will not be discussed here. At this

stage it is assumed that these parts have been established and created as variant CAD

models.

The following five screenshots show the Generic Master Parts and Systems, linked

to their respective nodes in the Parts Tree:

113

Figure 4.11 a The Master Blade Part,

Figure 4.11 b The Master Hub Part,

114

NONE=
Flo E& Ve- I, w Twft Alrdw lisiP iwl-ý

It V4 It

Pwu 1ý c

Eq.. bý

Pi
rl-l

HOW I
DowEwdi t

4 -wtý&2

1 A-Mab-

C ýP7\V, ' Sh5tOp, * FEATURE SLW14WSSKM

VAI sel

NEW OEL Op. CAL) We updo. 0,. -g F*%der UpdaleALL DEL NEW

9MU6 12tisIge 1?, 20 AM Eft" Mloftty

Figure 4.1 Ic (top) The Master Propeller Assembly,

-IIIJAJ

ý
Ek F& "i- ý'80't Took wmw ti. 1, -Le

LIZ

-ýJ-LLIJ -!

ý! j NJ a G$12 a rl ý-. 00 Ovo

PWI. Tý

1'ý hatt
q. 01
riq.,
H-3

Lw. %-

-Vý

+
NVW OCI Opw CAD Me UpdIft Dmmq A- Updoe ALL na rJEw

I

as 1211-tva 12 22 AM

Figure 4.11 d (above) The Master Shaft Part,

115

Figure 4.1 le The Master Propeller Shaft Assembly

Figure 4.12 shows the Function Family Tree for the Propeller Shaft design, followed

by figure 4.13, which gives the Parts Oriented representation of the Function Means

Tree.

116

Figure 4.12 The Function Family Tree

Figure 4.13 The Parts Oriented Function Means Tree

With the Generic Instance complete, two instances can be created to represent
Designs A and B (see section 3.4.1). This is achieved by simply instancing the

Generic Instance and changing a few parameter values. Figures 4.14 and 4.15

show these instances.

117

Figure 4.14 Instance for Design A

Figure 4.15 Instance for Design 13

4.7.1 Reuse of the Propeller Shaft Model for a Modified Blade

'I tic example. so far. show, ho%% the sol'(%%arc can tx- Liscd to effilciently and more

rapidly computcrise a family of similar designs. However. these designs will

probably have to be reused. and hence modified at some later stage. The following is

an example showing how the blade part can be adapted to meet a new requirement,
i. e. to contain a fin-clemcrit.

Initially. the blade part is adapted to include an additional fin feature. For Designs A

and B this feature must be suppressed. But for the New Design. it can remain

unsupprcsscd. as shown in figures 4.16 and 4.17.

118

Figure 4.16 A Modified Made Part (vvith fin feature)

Figure 4.17 The Updated Propeller Shaft Assembly model for the New Design

119

Chapter 5

Case Studies
Overview
This chapter presents three industrial case studies with the intention of proving the

Variant Methodology as an effective design reuse tool. Each case has been

developed in conjunction with the related companies: Guindy Machine Tools Ltd.,

Lucas Varity and Hydroflow Europe Ltd., using real, in service products. As a result

of this, and to maintain company confidentiality, the examples presented here are

only representative of the true products. In all cases this is only amounts to the

adjustment of a few parameters, with a minor deviation of the normal dimensions.

5.1 Guindy Machine Tools Ltd. Lathe Chuck Family

Lathe chucks are the main product of Guindy Machine Tools, of Madras, India.
GMT is a medium sized company, with production facilities in three sites across
southern India. As with many companies of a similar size, in Asia and Europe alike,
their entire product line has been developed using conventional, manual methods.
Having seen the benefits of CAD enjoyed by large organisations, the design team at

GMT have adopted computer-based design tools for areas such as drafting and

process planning, and are currently attempting to expand into areas such as finite

element analysis, in order to quantify and improve on their existing products.
Inherently these designs exist as paper-based drawings, and hence their immediate

need is the rapid and effective computerisation of this vast design family.

The chuck family is comprised of a collection of approximately 70 chuck products,

whose applications range from manual lathe operation through to high-speed CNC

machines. The individual designs reflect these applications. For example, high-speed

chucks for CNC operation require some means of counteracting the high centrifugal
forces, whereas a manual lathe does not require this facility.

There are however, clear similarities throughout the GMT lathe chuck range, i. e. all

chucks are connected to a 'Body' part and all hold the job using a number of 'Jaws'.

120

Hard (or Soft) Jaw
%

Wedge Adapter

Balancing Weight
Lever

"P-Nut

Figure 5.1.1 The Generic Section View of the GMT Lathe Chuck

Hence, the chuck family can be readily modelled using the Variant Method, whilst

preserving the application of each chuck type (its solution concept and embodiment)

through the Function Means Tree. Figure 5.1.1 shows an example of the 'Generic

Chuck'. Details of each of the components from which it is comprised are listed

below. Further details. including Global Parameters, are given in Appendix 11.

121

Back Plate

1) Body -Locate all parts together and guide wedge and jaw movement.
2) Wedge - Transform linear pulling movement to radial movement ofjaws.
3) Wedge Adapter - Fix pulling collar to the wedge.
4) Base Jaw - Medium between the body, wedge and 'T'-nut and jaws.

5) 'T'-Nut - enable jaws to be adjusted for irregular job sizes.
6) Hard Jaw - provide a rough grip onto a job.

7) Soft Jaw - provide a distortion-free grip into a job.

8) Collar - Medium between pulling mechanism and the chuck.
9) Cover - Prevents jaws from clashing and covers front the bore.

10) Balancing Weight - Counteract centrifugal force ofjaws at high speeds.
11) Lever - Link balancing weight to the base-jaw.

12) Back Plate - Guide and hold the balancing weights.

These components also yield the following assemblies:

1) Jaw Assembly - Base Jaw, 'T'-Nut, Hard Jaw and the Soft Jaw
2) Wedge Assembly - Wedge and Jaw Assembly
3) Puller Assembly - Collar and Wedge Adapter
4) Gripping Assembly - Wedge Assembly and Puller Assembly
5) Balancing Assembly - Lever and the Balancing Weight
6) Chuck Assembly - Body, Gripping Assembly, Balancing Assembly, Back Plate

and Cover.

Having studied the vast collection of chuck drawings, and visited and consulted the
design team at GMT Madras, it was decided to model the chuck family using
Pro/ENGINEER, being a well established and reliable application. Individual piece

parts were modelled and defined various 'driving' (or global) parameters, as

previously mentioned. The most important decisive parameters that can be changed
in the resulting Variant Model is the Number of Jaws (Nurn

-
Jaws). Figures 5.1-2,

5.1.3 and 5.1.4 show examples of this for a 2-jaw, 3-jaw and 4-jaw chuck.

122

Figure 5.1.3 A 3-Jaw Chuck Figure 5.1.4 A 4-Jaw Chuck

123

Figure 5.1.2 A 2-Jaw Chuck

Figures 5.1.5 and 5.1.6 show the generated Parts Tree and Function Means Tree

structures frorn the Fm, r software.

Figure 5.1.5 Parts Tree for the Generic Chuck

124

14

Jail!,

Figure 5.1.6 Function Means Tree for the Generic Chuck

125

5.2 Lucas Varity Drive End Shield Casting

This case study, a Lucas Varity 'Drive End Shield' casting, is used as a simple
demonstration of the ease of generating new instances from a single master model.
The Drive- End- Shield product is used to house the coil and support the end-shaft of

a family of automotive DC motors, and is cast from S. G. Iron with a typical draft

angle of 1.5'. Being a single piece product, the casting forms a combined family of

seventeen similar designs, and is, in general, a simple product to model, containing

only one non-persistent feature (a boss) and various persistent features that differ

only by dimensional parameter values. Also, as a single part, both the Parts tree and
Function Family Tree contain only one node, as is shown in figure 5.2.1.

Figure 5.2.1 - FMT application for the Drive-End-Shield Casting

126

.. -
a.

"_

I j :.
�

t.
i

'Ni

tc

I

jlý
F I

/. J

U

1 Uli
,

;,

t.
Iii, li

. 4,

all
Ii151

al Lip

Figure 5.2.2 - Manufacturing Drawing for a Drive-End-Shield Casting Variant

(Lucas-CAV)

I

127

1
0-

Figure 5.2.2 shows a typical manufacturing drawing for the Drive-End-Shield

moulding. These drawings are of the traditional (manually drafted) form. A

comparison of the representative family of manufacturing drawings yields the

persistent and non-persistent parameters and features. This is given in figure 5.2.3.

Bump angle and radius
and Key angle not show

F*ýýIicldle

boss dia.

Top boss

Lug dia.

Mge dia. boss g fillet radius
\

K\jTohpeight 4ý

Lug

Md a
depg

Ollinder dia.

, --l Lug.
separ ion

Base depth

T inder
eight

Figure 5.2.3 A Schematic Representation of the Generic Casting.

The casting was modelled using the Autodesk Mechanical Desktop package, which

is suitable for the limited variance of this product. Figure 5.2.4 shows the Generic

manufacturing drawing, generated automatically by Mechanical Desktop, via the

FMT software. The Generic Instance of the Drive-End-Shield, containing all of the

combined features of the casting family, is given in figure 5.2.5.

Further instances of the casting are given in Appendix 11.

128

RON

I -5ýaivp

ill-M
. "ll

4..

13 4i M

i ei 5

w= ic
Z- ti

9

Figure 5.2.4 - Manufacturing Drawing for the Generic Drive-End-Shield

129

paramet6r AfV6101
Luq Separation 75mm
Luq Diameter 28mm
Luq Angle 900
Fillet 2 14mm
Wedge Diameter 102mm
Wedqe_Depth 39mm
Base Depth 12.7mm
Cvlinder Heiqht 94.4mm
Cylinder Bottom Diamet 114.3MM
Top Boss Heiqht 23.8mm
Top Boss Diameter 92.2mm
Middle Boss Heiqht 5mm
Middle Boss Diameter 96.05mm
Centre Hole Diameter 26.5mm
Bump Angle 300
Bump_Radius 12mm
Key Angle 450

Non-Persistent-Feature. I. Status'l., I
I supp

0.
-

Figure 5.2.5 - Drive-End-Shield No. V6211-673 - CAD Model & Parameter

130

5.3 Hydroflow Rotary Drum Filter System

The Rotary Drum Filter, from Hydroflow Europe Ltd., is a modular sub-system,
typically inserted into large conveyor filtration units, also manufactured by

Hydroflow. The sole application for these systems is machining fluid filtration. This

case study is itself a sub-set of ongoing research, undertaken by the author, to
improve the design of Hydroflow's family of filtration systems. The key objectives

of this study are to:

a) Reduce the cost of manufacture,
b) Reduce the size of the systems.

Establishing a high degree of modularisation within their design systems can

substantially realise both of these objectives. Such a characteristic is inherent of the

Variant Method, where existing designs can be combined into core (or Master)

models, which can be varied to suit the particular design requirements.

Figure 5.3.1 shows an example assembly drawing for a typical filtration system. It

consists of a number of 'Cleanliness Stages', e. g., Clean, Very Clean and Ultra

Clean. Fluid is passed through each of these stages and finally extracted, for reuse, at
the Ultra Clean stage. The main feature of this system is the Rotary Drum Filter,

which, according to the size of the system can vary in drum length between 750mm.

and I 000mm. This case study will focus only on the Drum Filter module.

131

jr

-9

no "'.
M

"'g

F07

Adt -L-4ý J

I,
ak 011.1 Rotary

Drum
Filter

lig
Tr ý-E

-LAI

lit

rust

IN

Figure 5.3.1 - Assembly Drawing of a Hydroflow Rotary Drum Filtration

System

132

The Rotary Drum Module is essentially a cylindrical mesh filter and constituted of

the following parts:

1) Drum Body - Holds fluid and Drum Unit.

2) Mesh Clamp - Fixes Mesh Roll on the Drum.

3) Drum Flush Pipe - Flushes the Drum internally

4) Drum Flush Pipe End - Provides periodical tilting of the Flush Pipe

5) Drum Endplate - Supporting end of the Drum

6) Viewing Hood - Lift-up hood for inspection

7) Drum Viewing Window - Perspex window for viewing Drum

8) Mesh - fine mesh roll for filtering

9) End Plate - Rolled, lipped ring to fix mesh to Drum Endplate

10) Rolled Ring - simple clamping ring to fix Mesh to Endplate

11) Drum End Guard - Enclosure for the open end of the Drum Body

Although Hydroflow use drafting systems, such as AutoCAD (in which the

manufacturing drawings were supplied), solid modelling of this system is generally
beyond the scope of Mechanical Desktop. Therefore parts and assemblies were

modelled using SolidWorks, and are given in Appendix II.

Two variants of the Rotary Drum Module are given here, the 1000mm and 750mm

length units. These are shown in figures 5.3.2 and 5.3.3 respectively. (Note that for

both of these models the Drum Body and Mesh are shown as transparent, so that the
inner detail can be seen). In reality (through the FMT software), only the major
length variable need be adjusted to perform this variance, as the remaining, linked

parameters have been defined as functions of this 'driving parameter'. For example,
the length of the actual Drum Mesh is always 80mm. less than the stated drum length,

namely 920mm for the 1000mm unit and 670mm for the 750mm unit. Such relations
allow more rapid design permutations to be considered.

133

Figure 5.3.2 - Solidworks Model of a Hydroflow Rotary Drum Module -
450xlOOOmm unit

134

A

Figure 5.3.3 - Solidworks Model of a Hydroflow Rotary Drum Module -
450x750mm unit

135

Chapter 6

Discussion & Conclusions

6.1 Discussion

This thesis began in Chapter I with the statement of a problem, namely to facilitate a

need in industry to easily computerise existing design cases, allowing for their future

modification in reuse. Chapter 2 continued by discussing the relevant background

and theory in the domains of engineering design throughout the design process.
Initially the design process was categorised into the design Requirements, Product

Concept, Solution Concept, Embodiment and Detailed Design. It was then argued

that only the Solution Concept, Embodiment and Detailed Design stages are of

significant interest here.

Various methods and techniques for representing Conceptual and Embodiment

Design were reviewed, and it was discussed that, to satisfy the aims of this research,

the Function Family Tree is best suited to represent Conceptual Design, and the Parts

Tree to represent Embodiment Design. Both of these can be integrally represented by

a hybrid of the Function Family and Parts Tree, The Function Means Tree. An

extensive survey of representation methods to capture and store adaptable Detailed

Designs was also discussed. This included solid representation schemes such as
Constructive Solid Geometry and Boundary Representation, and a review of Feature-

Based Design. It was concluded that an implementation of Parametric and

Variational solid modelling methods, combined with Feature-Based Design, is best

suited to represent families of designs in an efficient manner.

Two prominent methods, the Generative Method and the Variant Method were

compared, and it was decided that the Variant Method will allow existing design

cases to be efficiently modelled, with less effort and overhead that the Generative

Method.

136

Chapter 3 proposed a Generic Variant Methodology to store families of existing
designs. The Methodology allows the designer to encompass an entire family of

desiins, combining conceptual, embodiment and detailed design within a single

Variant model. Chapter 4 implements the methodology as a software application,
incorporating three established Parametric solid Modelling CAD systems;
Pro/ENGINEER, SolidWorks and Mechanical Desktop. The software allows the

designer to create a Parts Tree based representation of a family of designs, which is

linked to a representative set of CAD models. These models can also be adapted, via
driving parameters, in this database. This enables the system to store afamily of
designs, using just a single model, as it only requires the parameters for each
instance to be stored. The database (termed an intelligent engine) handles

regeneration of the model to satisfy the instance specific parameters.

The methodology and software are substantiated with three industrial case-studies; a

Machine Tool - Lathe Chuck family, Drive-End-Shield Motor Casting and a
Filtration System.

6.2 Conclusions

The implementation of the Variant Methodology has proven the usefulness of this

research for a number of companies. It has enabled these companies to transform 2-

dimensional manufacturing drawings (which are of limited use) into 3-dimensional

solid models. Thus enabling them to use the full benefits of Computer Aided Design.

137

6.3 Recommendations for Future Work
In spite of the fact that the software implementation is a very useful industrial tool,

there are a number of issues that will enhance this research further. One particular

area is the lack of coherence between Functions and Parts. The study, of even a

minor product, such as the Propeller Shaft example, highlights that many functions
do not directly map to Parts. It would be more beneficial to provide an intermediate

means, such as 'Features of Parts'. This idea is ffirther enhanced by the use of
Feature-based modelling.

Another area of interest is expanding the Variant Principle to embodiment and even

conceptual design. This would raise the Variant Method to a level more suitable for

'Innovative Design', which has to date been the domain of the Generative Method.

In this respect the author will be employed in the industrial sector to implement such

a system.

Other, more immediate, concerns include the handling of constraint satisfaction

within the software. As it stands, constraint satisfaction between parts and

assemblies, is the responsibility of the CAD package being used. This does pose

problems where the designer would expect constraints to be solved concurrently (see

section 2.9) rather than sequentially.

138

Bibliography

Akiyama K., (199 1),
'Function Analysis - Systematic Improvement of Quality and Performance',
Productivity Press.

Aldefeld B., (1983)
'On Automatic Recognotion of 3D Structures from 21) Representations',
Computer Aided Design, Vol. IS, No. 2

Aldefeld B. and Richter H., (1983)
'Semiautomatic Three-Dimensional Interpretation of Line Drawings',
Computers and Graphics, Vol. 8, No. 4

Andreasen M. M., (1980)
'Machine Design Methods Based on a Systematic Approach - Contribution
to a Design Theory', Dissertation, Department of Machine Design, Lund
Institute of Technology, Sweden

Arbab A. L., (1982)
'Requirements and Architecture of CAM Oriented Systems for Design and
Manufacture of Mechanical Parts', Ph. D. dissertation, University of
California, Los Angeles, USA

Autodesk
'AutoCAD Computer Aided Drafting Application', Autodesk Inc,
, *"vw. autodesk. com

Baer A., Eastman C. and Hanrion M., (1979)
'Geometric Modelling: A Survay', Computer Aided Design

Baumgart B., (1974)
'Geometric Modelling for Computer Vision', Ph. D. dissertation, Department
of Computer Science, Stanford University

Baumgart B., (1975)
'A Polyhedron Representation for Computer Vision', National Computer
Conference, AFIPS Conference Proceedings 44

Besant C. B., and Lui C. W. K., (1986)
'Computer Aided Design and Manufacture', Yd Edition, Ellis Horwood,
West Sussex.

Braid I. C., (1973)
'Designing with Volumes', PhD Thesis, University of Cambridge, 1973.

Braid I. C. (1979)
'Notes on Geometric a Modeller', Computer Laboratory, University of
Cambridge, CAD Group Document 10 1.

British Standards Institute
'Engineering Drawing', BS308. HMSO Publications

Brown K. N., and Williams J. H. S., (1992)
'Grammars of Features in Design', 4rtiflicial Intelligence in Design '92,
Netherlands.

Capoyleas C., et al. (1995)
'Generic Naming in Generative Constraint-Based Design', Technical Report
94-011, Dep. Computer Science, Purdue University, USA.

139

Chamberlain M. A. et al., (1993)
'Protrusion-Features Handling in Design and Manufacturing Planning',
Computer-Aided Design, Volume 25, Number 1, January 1993.

Chen X. and Hofmann C. M., (1995)
'Towards Feature Attachment', Computer-Aided Design, Volume 27,
Number 9, September 1995.

Chiyokura H and Kimura F., (1985)
'A Method of Representing the Solid Design Process', IEEE Computer
Graphics & Applications, April 1985.

Cross N., (199 1)
'Engineering Design Methods', John Wiley and Sons, London

Cutkosky M., Tenenbaum J. M., Muller D., (1988)
'Features in Process Based Design', ASME Computers in Engineering
Conference, ASME Press

De Fazio T. L. et al., (1993)
'A Protoype of Feature-Based Design for Assembly', Journal of Mechanical
Design, Volume 115/723, December 1993.

Duan W. et al., (1993)
'FSMT: A Feature Solid-Modelling Tool for Feature-Based Design and
Manufacture', Computer-Aided Design, Volume 25, Number 1, January
1993.

Duffy ARB, Smith J. S., Duffy S. M., (1998)
'Design Reuse Research: A Computational Prespective', Keynote Paper -
Engineering Design Conference '98, Brunel University, UK

EMT (1998)
'MakeIT-3D', EMT Software, www. emtsoft. com

Ertas A and Jones J. C., (1993)
'The Engineering Design Process', John Wiley & Sons, ISBN: 0-471-51796-
8

Feng C., and Kusiak A., (1995)
'Constraint-Based Design of Parts', Computer Aided Design, Volume 27,
Number 5 (May).

F6ru F. et al., (1992)
'Feature-Based Modelling: State of the art and evolution, Manufacturing in
the era of Concurrent Engineering', IMP, 1992.

Finger S. and Safier S. A., (1990)
'Representing and Recognising Features in Mechanical Design', Design
Theory and Methodology - DTM '90, ASME.

Finger S., (1998)
'Design Reuse and Design Research', Keynote Paper, Engineering Design
Conference '98, Brunel University, UK

Fitzhorn P. A., (1990)
'Language of Topologically Valid Bounding Manifolds', Computer-Aided
Design, Volume 22, number 7, September 1990.

Flasinski M., (1995)
'Use of Graph Grammars for the Description of Mechanical Parts',
Computer-Aided Design, Volume 27, number 6, June 1995.

Grant D. P., (1977)
'The How To Of Decision Making', Design Methods and Theories, Vol. 11,
No. 3, California, USA

140

Gu K, Tang Z., Sun J., (1985)
'Reconstruction of 3D objects from Orthographic Projections', Proceedings
of COMPINT'85

Hall M. A. et al., (1990)
'Feature Abstraction in Knowledge-Based Critique of Designs', ASME
Winter Annual Meeting 1990. -

Ho B., (1986)
'Inputting Constructive Solid Geometry Representations Directly from 2D
Orthographics Engineering drawings', Computer Aided Design, Vol. 18, No.
3

Hoffmann C. M., (1993)
'On the Semantics of Generative Geometry Representations', Advances in
DesignAutomation - Volume 2, DE-Vol, 65-2.

Hoffmann C. M. and Rossignac, (1996)
'A Road Map to Solid Modelling', IEEE Transactions on Visualization and
Computer Graphics, Volume 2, Number 1, March 1996.

Hsu T. and Sinha D. K., (1992)
'Computer-Aided Design: An Integrated iýpproach'. West Publishing
Company, ISBN: 0314-80781-0.

HubkaV., (1982)
'Principles of Engineering Design', Butterworth Scientific, UK

Hubka V. and Eder W. E., (1988)
'Theory of Technical Systems", Springer Verlag, Berlin

Idesawa. M., (1973)
'A System to generate a Solid Figure from Three Views', JSME, Vol. 16

IEE Computing and Control Division,, (1989)
'Character Recognotion and Applications', IEE, London

Johnson A., and Thornton A. C., (1993)
'Modelling Functionality in CAD: Implications for Product Representation',
International Conference on Engineering Design (ICED-93), August 17-19.

Jones J. C., (1980) -
'Design Methods', 1980 Edition, Wiley-Inters. cience Publications, New York

Keirouz W. et al., (1990)
'Integrating Parametric Geometry, Features, and Variational Modeling for
Conceptual Design', Design Theory and Methodology, DTM '90, ASME.

Kimpton M. and Sivaloganathan S., (1998)
'Development of a New Product using Systematic Design Methods. Case
Study: An Elevating Platform for Interior Decorating', Engineering Design
Conference '98, Brunel University, UK

Kondo K., (1990)
'PIGMOD: Parametric and Interactive Geometric Modeller for Mechanical
Design', Computer-A ided Design, Volume 22, No. 10, December 1990

Kurland R. H, (1996)
'Understanding Variable-Driven Modeling", Technical Document,
Technicom Inc.

Laakko T., Mdntyla M., (1993)
'Feature modelling by incremental feature recognition' Coniputer-Aided
Design, Volume 25, No. 8, August 1993

141

Lamure H., and Michelucci D., (1996)
'Solving Geometric Constraints By Homotopy', IEEE Transactions on
Visualization and Computer Graphics, Vol-2, No I March 96 Issue.

Lanasami V. and Langrana N., (1990)
'Engineering Drawing Processing and Vectorisation System', Computer
Vision, Graphics Image Processing

Leavers V. F., (l 992)
'Shape Detection in Computer Cision Using the Hough Transform',
Springer-Verlag, London

Lee K., (1983)
'Shape Optimization of Assemblies Using Geometric Properties', PhD
Thesis, Massachusetts Institute of Technology, December 1983.

Lee Y. C., and Fu K. S., (1987)
'Machine Understanding of CSG: Extraction and Unification of
Manufacturing Features', IEEE Computer Graphics & Applications, January
1987.

Maher M., Balachandran B., Zhang D. M., (1995)
'Case-Based Reasoning In Design', Lawrence Erlbaum Associated
Publishers, Hove, UK.

Malmqvist J., (1995)
'A Computer Based Approach Towards Including Design History
Information In product Models and Function-Means Trees', Proceedngs of
the Design Theory and Methodology Conference, DTM'95, Boston MA.
USA

Mantyla M., (1988)
'An Introduction to Solid Modelling', Principles of Computer Science Series;
13, Computer Science Press, ISBN: 0-88174-108-1.

Medland A. J., (1989)
'Approaching CAD Through Constraint Modelling', CAM-1 Design
Automation Workhop on Current Trends in Product Modelling and Design
A utomation, 7 1h March 1989.

Medland A. J. and Mullineux G., (1988)
'Principles of CAD: A Coursebook', Kogan Page Ltd., London, ISBN: l-
85091-534-2.

Medland A. J. and Mullineux G., (1993)
'A Constraint Approach to Feature-Based Design', Int. J Computer
Integrated Manufacturing, Volume 5, Numbers I&2.

Meeran S. A., (199 1)
'Automated Feature Recognition from 2D CAD Models', PhD Thesis,
Cranfield Institute of Technology, April 199 1.

Mortenson M. E., (1985)
'Geometric Modelling', John Wiley & Sons, New York

Nielsen E. H., Dixon J. R. and Simmons M. K. (1987)
'How Shall We Represent the Geometry of Designed Objects? ' Technical
Report 6-87, Mechanical Design Automation Laboratory, University of
Massachusetts, Amherst, MA

Ogg H. C. and Ogg M. H., (1992)
'Optical Character Recognotion: -A Librarian's Guide', Meckler, London

142

Pahl G. and Beitz W., (1988)
'Engineering Design -A Systematic Approach', The Design Council,
Springer-Verlag, Berlin

Pugh S., (1991)
'Total Design', Addison Wesley Publlishing Company, UK

Requicha A. A. G., (1977)
'Mathematical Models of Rigid Solids', Technical Memo No. 28, Production
Automation Project, University of Rochester

Requicha A. A. G., (1980)
'Representations for Rigid Solids: Theory, Methods and Systems',
Computing Surveys, Vol. 12, No. 4

Requicha A. A. G. and Voelcker H. B., (1982)
'Solid Modeling: A Historical Summary and Contemporary Assessment',
IEEE Computer Graphics and Applications, October 1983.

Requicha A. A. G. and Voelcker H. B. (1983)
'Solid Modelling: Current Status and Research Directions', IEEE Computer
Graphics and Applications

Requicha A. A. G. and Rossignac J. R., (1992)
'Solid Modeling and Beyond', IEEE Computer Graphics and Applications,
September 1992.

Roller D., (199 1)
'An Approach to Computer-Aided Parametric Design', Computer-Aided
Design, Volume 23, Number 5, June 1991.

Sakurai H., (1983)
'Solid Model Input Through Orthographic Views', Computer Aided Design,
Vol. 17, No. 3

Shahin S. and Sivaloganathan S., (1998)
'Representing Conceptual Designs', Engineering Design Conference '98,
Brunel University, UK

Shahin S., Andrews P. T. J. and Sivaloganathan S., (1998)
'A Design Reuse System', Engineering Design Conference '98, Brunel
University, UK

Shah J. J., (199 1)
'Assessment of features technology', Computer-Aided Design, Vol. 23, June
1991

Shah J. J. and Wu J., (1993)
'Hybrid Method for Muti-Target Parametric Design', Advances in Design
Automation - Volume 1, DE-Col 65-1, ASME.

Shah J. J. and Mantyla M., (1995)
'Parametric and Feature-based CAD/CAM', Wiley Interscience, New York

Shah J. J. et al, (1996)
'Research Opportunities in Engineering Design', NSF Strategic Planning
Workshop - Final Report, National Science Foundation, USA

Shahin T. M. M., (1996)
'Automation of Feature-Based Modelling and Finite Element Analysis for
Optimal Design', Ph. D. Thesis, Department of Manufacturing and
Engineering Systems, Brunel university, UK

Sheu L. C. and Lin J. T., (1993)
'Representation Scheme for Defining and Operating Form Features',
Computer-Aided Design, Volume 25, Number 6, June 1993.

143

Shigley J. E., (1977)
'Mechanical Engineering Design', P Edition, McGraw-Hill Book Company,
New York

Sittas E., (1989)
'Appropriate Forms of Solid Modelling for Conceptual Design', PhD Thesis,
Brunel University, Department of Manufacturing and Engineering Systems.

Sivaloganathan S. (1991)
'Sketching Input For Computer-Aided Engineering', PhD Thesis, City
University, England, September 1991

Sivaloganathan S., Evbuoman N. F. O., Jebb A. and Wynn H. P., (1995)
'Design Function Deployment -A Design System for the Future', Design
Studies Journal, Vol. 16, No. 4

Sivaloganathan S. (1996)
'Computer-Aided Design' MN217 Lecture Notes, Brunel University,
Department of Manufacturing and Engineering Systems, England.

Sodhi R and Turner J. U., (1994)
'Towards Modelling of Assemblies for Product Design', Computer-Aided
Design, Volume 26, Number 2, February 1994.

Softelec (1997),
'VP-Max Automated Raster to Vector Software', Softelec, Gmbh.,
www. softelec. com

Solano L., and Brunet P., (1994)
'Constructive Constraint-Based Model for Parametric CAD Systems',
Computer-A ided Design, Volume 26, Number 8 (August)

Suh H. and Ahluwalia R. S., (1995)
'Feature Modification in Incremental Feature Generation', Computer-Aided
Design, Volume 27, Number 8, August 1995.

Sutherland I. E., (1963)
'SKETCHPAD: A man machine graphical communication system', Vol. 12
Spring Joint Computer Conference

Thornton A. C., (1993)
'Constraint Specification and Satisfaction in Embodiment Design', PhD
Thesis, University of Cambridge, July 1993.

Thornton A. C., (1996)
'The Use of Design Knowledge to Improve the Search for Feasible Designs',
MIT Technical Paper, May 1996.

Thornton A. C. and Johnson A., (1993)
'Constraint Specification and Satisfaction in Embodiment Design',
International Conference on Engineering Design, ICED 93.

Turner G. and Anderson D. C, (1988)
'An Object Oriented Approach to Interactive feature-Based Design, for
Quick Turnaround Manufacturing', ASME Computers in Engineering
Conference, ASME Press

Vaiyapuri V. and Okogbaa O. G., (1994)
'An Integrated Design Approach for Feature Based Manufacturing Using
Concurrent Engineering', 2 nd Industrial Engineering Research Conference
Proceedings, Institute of Industrial Engineers.

Voelcker H. B. and Requicha A. A. G., (1977)
'Geometric Modelling of Physical Parts and Processes', IEEE Computers and
Graphics Applications.

144

Voelcker H. B. (1988)
'Modelling in the Design Process' National 4cademy Press, Washington
DC.

Wang W., (1992)
'On the Automatic Reconstruction of a 31) Objects Constructive Solid
Geometry Representation from its 2D Projection Line Drawing', Ph. D.
Thesis, Department of Computer Science, University of Massachusetts,
Lowell, USA

Wesley M. A. and Markowsky G., (198 1)
'Fleshing Out Projections, IBM Journal of Research and Development, Vol.
25, No. 6

Wesley M. A. and Markowsky G., (1980)
'Fleshing Out Wireframes', IBM Journal of Research and Development, Vol.
24, No. 6

Wesley M. A. and Markowsky G., (1986)
'Generation of Solid Models from two-dimensional and three-dimensional
Data', solid Modelling by Computer: from theory to application

Woo T. C, (1985)
'A Combinatorial Analysis of a Boundary Data Schemata', IEEE Computer
Graphics and Applications

Zuffante R. P., (1984)
'A Feature Based Representation for Solid Modelling', Masters Thesis,
Massachusetts Institute of Technology

Publications by the Author

Peter T. J. Andrews & S. Sivaloganathan, (1996),
'Parametric Primitive Instancing and its Implications in Engineering Design',
12'h International Conference on CAD/CAM Robotics and Factories of the
Future, 1996.

Peter T. J. Andrews & S. Sivaloganathan, (1996),
'Implementing Parametric Primitive Instancing In Design Reuse', M&ES
Research Conference, Brunel University
Awarded 'Best Poster Prize'

Peter T. J. Andrews & S. Sivaloganathan, (1998)
'A Variant Model for Storing Families of Mechanical designs' Engineering
Design Conference 1998, Brunel University, UK

Peter T. J. Andrews, T. M. M Shahin & S. Sivaloganathan, (1998),
'Design Reuse of Detailed Designs - Four Case Studies', Computers and
Industrial Engineering

T. M. M Shahin, Peter T. J. Andrews & S. Sivaloganathan, (1998),
'A Design Reuse System', Engineering Design Conference 1998, Brunel
University, UK,
ImechE PartB

145

Appendix I

Software Code Listing

Overview

This chapter outlines the data structures, algorithms and principles used for the

software implementation of the Variant Methodology. The software was written

using Microsoft Visual Basic version 5.0. This compiler (or programming

environment) undertakes the task of 'automatically' producing a large quantity of

code or areas such as the user-interface etc. Hence, these sections of code have been

omitted here, leaving only the relevant subroutines relating to the methodology itself

The program makes use of two 'User Defined Controls' (termed Active-X Controls).

These controls are visual representations of the Part Node of a Parts Tree, and the

Function Node of a Function Family Tree. In essence both of these are simply a

shape (a rectangle for the Part Node and a rhombus for the Function Node) into

which text can be entered. The definition of how these controls were created is of no

relevance here.

Furthermore, this implementation of the Variant Methodology is purely for research

purposes, and can be made available on request, either as source code or as, an
executable. Contact the author at uA-' for further details.

146

AM - Definition of Data Sructures and Global Variables

Structures for both Functions and Means are defined here, as well as the structures

outlined in Chapter 4.

Modulel. bas
Defines the core Data Structures, the Means and Function Nodes, and the Instance structure.

Attribute VB-Name = "Modulel"

Public Const myCol = &HFFDDBB

Public fMainForm As frmMain

'Create user-defined type for MEANS

'This is the MEANS NODE

Type Means

Nodell) As Integer

Name As String

CADfiletype As String

Xpos As Long

Ypos As Long

NumParents As Integer

Parentso As Integer

NumChildren As Integer

Children() As Integer

NumFunctions As Integer

Functions() As Integer

NumOfParams As Integer

ParamName() As String

ParamValueo As Double

ParamUnito As String

NumOfSupps As Integer

SuppEntity() As String

SuppType() As String

SuppStatuso As String

MyPathAndFile As String

MyFileNarne As String

MyCADfileType As Integer

MyDrawing As String

PartSuppression As String

Level As Integer

End Type

147

' Create user-defined type for FUNCTION

'This is the FUNCTION NODE

Type Fund

NodelD As Integer

Name As String

Xpos As Long

Ypos As Long

NumParents As Integer

Parents() As Integer

NumChildren As Integer

Children() As Integer

NumMeans As Integer

Meanso As Integer

Level As Integer

End Type

'Create user-defined type for an INSTANCE

Type Docinstance

DocType As String

Name As String

DrgNo As String

Date As String

By As String

Description As String

'Path As String

'FileName As String

PartsTreeo As Means

FunctTreeo As Fund

ReIM () As Integer

ReIFO As Integer

NumParts As Integer

NumFuncts As Integer

NumRels As Integer

Lixi As Integer

Llyl As Integer

Ll x2 As Integer

Ll y2 As Integer

L2x I As Integer

1-2y I As Integer

148

LWO As Integer

L2y2() As Integer

End Type

Sub Main()

frmSplash. Show

frm5plash. Refresh

Set I'MainForm = New frmMain

Load fMainForm

Unload frmSplash

fMainForm. Show

End Sub

149

Al. 2 - Form Document

The main section of code, containing various subroutines to create and contol the
Parts and Function Trees.

FrmDocument. frm

VERSION 5.00

' Load AxtiveX Control

Object = "(805FMMA46-1 I D2-927F-004A8CO000001#46.0#0"; "NodeMeans. ocx"
Object = "{C077CE62-8A41 -11 D2-927F-004A8CO000001#49.0#0"; "NodeFunction. ocx"

'Global Variables Declarations

Attribute VB-Name = "frmDocument"

Attribute VELGIobalNameSpace = False

Attribute VELCreatable = False

Attribute VB_Predeclaredld = True

Attribute VLExposed = False

Dim MoveSplit As Boolean

Dim Split As Double

Dim LeftDisplay As String

Dim RightDisplay As String

Dim SelPart As Integer

Dim SelFunct As Integer

Dim VGap, HGap, MGap As Integer

Dim DoWhat As String

Dim ParamsPart As Integer

Dim vi, v2, hi, h2 As Integer

Dim RelMeans, RelFunct As Integer

Dim NumFunc2 As Integer

Dim NumLine5 As Integer

Dim NumMeans2 As Integer

Dim Numl-ineG As Integer

Dim DocType As String

Dim Numinstances As Integer 'Includes Generic Instance

'THE FAMILY OF PRODUCTS (INSTANCES)

Dim Instances() As Docinstance

Dim Thislnst As Integer

Dim WhichPart As Integer

Dim Dispinstances As Boolean

150

'INMALISATION DEFAULTS

Private Sub Form-Load

Dim c As Integer

DocType = "GENERIC"

Dispinstances = True

Thisinst =0
Numinstances =I
ReDirn Instances (Numlnstances)

'Instances (Thisinst). NumSuppParts =0
Instances (Thislnst). DocType = "GENERIC"

Instances (Thisinst). By = "Unknown"

Instances (Th isInst). Date = "Unknown"

Instances (Thislnst). Description = "None"

Instances (Thislnst). DrgNo Str(ThisInst)

Instances (Th isl nst). Name "Untitled"

'Instances (Thislnst). FileName = "Untitled. fmt"

'Instances (Thislnst). Path = "c. \PT\FMT-Documents\"

Me. Caption = Instances (Thisinst). Name

DoWhat = "NOTHING"

WhichPart = -1
ParamsPart = -1
MGap = 122
VGap = 488
HGap = 244
Instances (Thisinst). NumParts =I
Instances (Thisinst). NumFuncts =I
SelPart = -1
SelFunct = -1
MoveSplit = False
Split = 0.5
LeftDisplay = "Parts Tree"
Command I O. Caption = LeftDisplay

RightDisplay = "Function Family Tree"

Command I I. Caption = RightDisplay
Form_Resize

'Init first nodes
ReDim Preserve Instances (Thislnst). PartsTree (Instances (Thisinst). NumParts - 1)

Instances (Thislnst). PartsTree (0). PartSuppression = "False"

Instances (Thislnst). PartsTree (0). myDrawing = "None"

151

Instances (Thisinst). PartsTree(0). NodelD =0
Instances (Thisinst). PartsTree (0). Name "Main Assembly"

Instances (Thisinst). PartsTree(0). Xpos Picturel. Width /2- MNodel (0). Width /2+ 32768 /2

Instances (Thisinst). PartsTree(0). Ypos 500

Instances (Thislnst). PartsTree (0). NumParents 0

Instances (Thislnst). PartsTree(0). NumChildren 0
Instances (Thisinst). PartsTree(0). NumFundions =0
Instances (Thisinst). PartsTree (0). Level =0
UpdateMeansNode (0)

ReDirn Preserve Instances (Thislnst). FunctTree (Instances (Thislnst). NumFuncts - 1)

Instances (Thisinst). FunctTree(O). NodelD =0
Instances (Thislnst). FunctTree (0). Name "Primary Function"

Instances (Thisinst). FunctTree(0). Xpos Picture2. Width /2- FNodel (0). Width /2+ 32768 /2

Instances (Thislnst). FunctTree (0). Ypos 500

Instances (Thislnst). FunctTree (0). NumParents 0

Instances (Thislnst). FunctTree (0). NumChildren 0

Instances (Thisinst). FunctTree (0). NumMeans =0
Instances (Thisinst). FunctTree (0). Level =0
TNodell (0). Colour--

UpdateFunctNode (0)

'SCROLL BARS

VScroill. Value 0

VI =0
VScrolll. Min 0

VScrolll. Max 32767
VScrolli. LargeChange = 1024

VScroill. SmaliChange = 128

VScro112. Value 0
Q=0

VScro112. Min 0
VScro[12. Max 32767
VScroll2largeChange = 1024
VScro112. SmaliChange = 128

HScrolll. Value 32768 /2
hl = 32768 2
HScrolll. Min 0
HScroill. Max 32767
HScrolli. LargeChange = 1024
HScrolli. SmallChange = 128

152

Ad

HScroll2. Value = 32768 /2

h2 = 32768 /2

HScro112. Min 0

HScroll2. Max 32767

HScrollZ. LargeChange = 1024

HScroll2. SmallChange = 128

'Setup Parameters & Suppress window
ParamsGdd. ColWidth(0) = 3250

ParamsGHd. ColWidth(1) = ParamsGrid. Width - 450 - 3250 - 105

ParamsGdd. ColWidth(2) = 450

SuppGdd. ColWidth (0) = 450
SuppGdd. ColWidth(1) = 3100

SuppGHd. ColWidth (2) = SuppGrid. Width - 450 - 3100 - 105

ParamsGrid. Rows =1
ParamsGdd. Row =0
ParamsGrid. Col =0
ParamsGrid. Text = "Parameter"

ParamsGrid. Col =1
ParamsGricl. Text = "Value"

ParamsGrid. Col =2
ParamsGricl. Text = "Unit"

PararnsGrid. Rows =I
SuppGrid. Row =0

'Relations

RelMeans = -1
RelFunct = -1
RelsGrid. Row =0
RelsGrid. Col =0
RelsGrid. Text = "Means / Part"

RelsGrid. Col =1
RelsGrid. Text = "Function"

Instances (This In st). Nu mRels =0
' Instancing

For c=0 To Numinstances -I
UpdateInstance (c)

Next c
UpdateInstance (ThisInst)

End Sub

153

'Toggle between Parts Tree and Parts Oriented FMT

Private Sub Command I Q--Click ()

If (LeftDisplay = "Parts Tree") Then

LeftDisplay = "Part Oriented Function/Means Tree"

Elself (LeftDisplay = "Part Oriented Function/Means Tree") Then

LeftDisplay = "Parts Tree"

End If

CommandlO. Caption = LeftDisplay

Command9. SetFocus

RedrawLeftDisplay

End Sub

'Toggle between Function Tree and Function Oriented FMT

Private Sub Commandl I-Clicko

If (RightDisplay "Function Family Tree") Then

RightDisplay "Function Oriented Function/Means Tree"

Elself (RightDisplay = "Function Oriented Function/Means Tree") Then

RightDisplay = "Function Family Tree"

End If

Commandl I. Caption = RightDisplay

Command9. SetFocus

RedrawRightDisplay

End Sub

'Reset Parts Tree - Function Tree Split screen sizes
Private Sub Command 1

-Click()
Split = 0.5

Form-Resize

End Sub

'Print a CAD DRAWING of the current selected mea
Private Sub Commandl 3-Clicko

Const swDocDRAWING =3
Dim RetVal

Dim swApp As Object'Def variable to hold app object
Dim myDraWinq As Object'Define variable to hold part object
If (SelPart >= 0) Then

' Set CancelError is True

CommonDialog I Cancel Error = True

On Error GoTo ErrHandler

154

'Set flags

CommonDialogi. Flags = cdlOFNHideReadOnly
' Set filters

CommonDialogi. Filter = "All Files

Pro/ENGIN EER Dramdng (*. asm) J *. asm"
Mechanical Desktop (*. dwg) I *. dwg" &-

SoliclWorks Dravving (*. SLDDRW) I *. SLDDRW"

Specify default filter

CommonDialogi. Filterindex =4
'Default filename

If (instances (Thislnst). PartsTree (Sel Part). myDrawing <> "None") Then

CommonDialogl. filename = Instances (Thislnst). PartsTree (SelPart). myDraving
End If

' Display the Open dialog box

CommonDialogi. Show0pen

' Display name of selected file

Instances (Thislnst). PartsTree (SeIPart). myDrawing = CommonDialogi. filename

'This will attach to current SolidWorks; session or start up new session in background.

Set swApp = CreateObject("SidWorks. Application")

swApp. Visible (True)

Load file from current directory.

Set myDrawing = swApp. OpenDoc (Instances (Thisinst). PartsTree(SelPart). myDraVing, swDocDRAWING)
If myDrawing Is Nothing Then

Exit Sub

Else

'Set myDravdng = swApp. ActivateDoc(CommonDialogl. FileTitle)

myDravAng. EditRebuild

'Pdnt ITI II

myDrawing. PdntDirect

swApp. UserControl (True)

Beep

End If

'Exit Sub

Else

MsgBox ("Select a Part Node First")

End If

ErrHandler:

'User pressed the Cancel button

Exit Sub

End Sub

155

'UPDATE Parameters in ALL CAD files

Private Sub Command 1 5Jlick

Dim oldPart As Integer

Dim RetVal

Const swDocPART =I 'These definitions are consistent with type names
Const swDocASSEMBLY =2 'defined in \SldWorks\samples\appComm\swconst. h

Const swDocDRAWING =3
Dim swApp As Object' Define variable used to hold the app object
Dim Part As Object ' Define variable used to hold the part object
Dim c, d, e As Integer

Dim WhatType As Integer

Dim myUnit As String

Dim myVal As Double

Dim nParts; As Integer

Dim maxLevel, thisLevel As Integer

Dim tParts () As Integer

nParts = Instances (Thisinst). NumParts

oldPart = SelPart

maxLevel =0
For e=0 To nParts -1

thisLevel = Instances (Thislnst). PartsTree(e). Level

If (thisLevel > maxLevel) Then

maxLevel = thisLevel

End If

Next e
ReDim tParts (nParts)

For e=0 To maxLevel
For d=0 To nParts -1
If ((Instances (Thisinst). PartsTree (d). Level = e) Or (Instances (Thislnst). PartsTree (d). NumChildren <= 0))

Then

SelPart =d
If (SelPart >= 0) Then

'MakePartSelected (SelPart)

'AdivateParams (SelPart)

'Code example will be given for SOLIDWORKS only
If ((Instances (This I nst). PartsTree (Sel Part). M yCADfileType = 5) Or

(instances (This Inst). PartsTree(SelPart). MyCADfileType = 6))

Then

If (Instances (Thislnst). PartsTree(SelPart). MyCADfileType = 5) Then

156

WhatType = swDocPART
Elself (instances (Thisinst). PartsTree (SelPart). MyCADfileType = 6) Then

WhatType = swDocASSEMBLY
End If

' This will attach to current SolidWorks session or start up new session in background.
Set swApp = CreateObject("SIdWorks. Application")

swApp. Visible (True) ' Uncomment this if you wish to make the new SolidWorks session visible
' Load file from current directory. This is currently hardcoded to cAtemp
Set Part = swApp. Ope n Doc (Instances (This I nst). PartsTree (Sel Part). My PathAnd File, WhatType)

If Part Is Nothing Then

Exit Sub

Else

Set Part= swApp. ActivateDoc (Instances (Thislnst). PartsTree (SelPart). MyFileName)

End If

For c0 To Instances (Thisl nst). PartsTree (Sel Part). Nu mOf Params -1
'Sort Out UNITS

myUnit = Instances (Thisinst). PartsTree(SelPart). ParamUnit(c)

Select Case myUnit
Case "MM"

myVal = Instances (Thislnst). PartsTree (Sel Part). PararnVal ue (c) / 1000
Case "M"

myVal = Instances (Thislnst). PartsTree(SelPart). ParamValue(c)
Case "IN"

myVal = (Instances (Thislnst). PartsTree (SelPart). ParamValue (c) 1000) * 25.4
Case "DEG"

myVal = Instances (Thisinst). PartsTree (Sel Part). PararnValue (c) (3.141592654 / 180)

Case "RAD"

myVal = Instances (Thisinst). PartsTree(Sel Part). PararnValu e(c)
Case "VAI!

myVal = Instances (This I nst). PartsTree(SelPart). ParamValue(c)

End Select

Part. Parameter (Instances (Thisinst). PartsTree (SelPart). ParamName (c)). SystemValue = myVal
Next c
For c=0 To Instances (Thisinst). PartsTree (Sel Part). Nu mOfSupps

'FeatureSuppression Instances (Thislnst). PartsTree (SelPart). SuppEntity (c),
Instances (Thisinst). PartsTree (SelPart). SuppStatus (c)

Next c
'Part. EditRebuil d

swApp. UserControl (False)

End If

157

End If

End If

Next d

Next e
SelPart = oldPart
'MakePartSelected (SelPart)

'ActivateParams (SelPart)

nParts = Instances (Thisinst). NumParts

oldPart = SelPart

maxLevel =0
For e=0 To nParts -1

thisLevel = Instances (Thislnst). PartsTree(e). Level

If (thisLevel > maxLevel) Then

maxLevel = thisLevel

End If

Next e
ReDim tParts(nParts)

For e=0 To maxLevel
For d= nParts -I To 0 Step -1
If ((Instances (Thislnst). PartsTree (d). Level e) Or (Instances (Thisinst). PartsTree (d). NumChildren <= 0))

Then

SelPart =d
If (SelPart >= 0) Then

'MakePartSelected (SelPart)

'ActivateParams (SelPart)

'ONLY CODE FOR SOLIDWORKS WILL BE GIVEN HERE

If ((Instances (Thisinst). PartsTree (SelPart). MyCADfileType = 5) Or

(Instances (Thisinst). PartsTree (SelPart). MyCADfileType = 6)) Then

If (Instances (Thislnst). PartsTree (SelPart). MyCADfileType = 5) Then

WhatType = swDocPART
Elself (Instances (Thislnst). PartsTree (SelPart). MyCADfileType = 6) Then

WhatType = swDocASSEMBLY
End If

' This will attach to current SolidWorks session or start up new session in background.

Set swApp = CreateObject("SIdWorks. Application")

swApp. Visible (True) Uncomment this if you wish to make the new SolidWorks session
visible

Load file from current directory. This is currently hardcoded to cAtemp
Set Part = swApp. OpenDoc (Instances (Thisinst). PartsTree(SelPart). My PathAnd File, WhatType)
If Part Is Nothing Then

158

Exit Sub

Else

Set Part = swApp. ActivateDoc (instances (Thisinst). PartsTree(Sel Part). M yFi le Name)

End If

For c=0 To Instances (Thisinst). PartsTree(SelPart). NumOfParams -I
'Sort Out UNITS

myUnit = Instances (Thislnst). PartsTree (Sel Part). ParamU nit (c)
Select Case myUnit

Case "MM"

myVal = Instances (This Inst). PartsTree (SelPart). ParamValue (c) / 1000
Case "M"

myVal = Instances (Thisinst). PartsTree(SelPart). ParamValue(c)

Case "IN"

myVal = (instances (Thisinst). PartsTree (Sel Part). ParamValue (c) / 1000) 25.4

Case "DEG"

myVal = Instances (Thisinst). PartsTree (SelPart). ParamValue (c) * (3A 41592654 180)

Case "RAD"

myVal = Instances (Thislnst). PartsTree (SelPart). ParamValue (c)

Case "VAV

myVal = Instances (This Inst). PartsTree (Sel Part). ParamVallue (c)

End Select

Part. Parameter (Instances (Thisinst). PartsTree (SelPart). ParamName (c)). SystemVal ue myVal
Next c
For c=0 To Instances (Thislnst). PartsTree (Sel Part). Nu mOfSupps -I

FeatureSuppression Instances (Thisinst). PartsTree(SelPart). SuppEntity(c),

Instances (Thislnst). PartsTree (SelPart). SuppStatus (c)

Next c
Part. EclitRebui Id

swApp. UserControl (False)

End If

End If

End If

Next d

Next e
SelPart = oldPart

End Sub

'ADD NEW PARAMETER

Pdvate Sub Command I 6-Clicko

If (ParamsPart >= 0) Then

159

MakePartSelected (ParamsPart)

ActivateParams (ParamsPart)

Instances (Thislnst). PartsTree(Sel Part). Nu mOf Params

Instances (This] nst). PartsTree (Sel Part). Nu mOf Params+ I

ReDim Preserve

Instances (Thislnst). PartsTree (Sel Part). ParamName (Instances (Thislnst). PartsTree (Sel Part). Nu mOfParam
S)
ReDirn Preserve

Instances (Thislnst). PartsTree (SelPart). ParamValue (Instances (Thisinst). PartsTree (SelPart). NumOfParam

S)
ReDim Preserve

Instances (Thisl nst). PartsTree (Sel Part). ParamU nit (Instances (This Inst). PartsTree (Sel Part). Nu mOf Params

ParamsGrid. Rows = ParamsGrid. Rows +I

ParamsGfid. Row = ParamsGrid. Rows -I
ParamsGrid. Col =0
Instances (Thislnst). PartsTree (Sel Part). ParamName (Instances (Thisinst). PartsTree (SelPart). NumOfParams -

1) = "Param "+ Str(ParamsGrid. Row)

ParamsGrid. Text = "Pararn + Str(ParamsGrid. Row)

ParamsGdd. Col =I
Instances (Thislnst). PartsTree (Sel Part). ParamValu e (Instances (Thisinst). PartsTree (Sel Part). Nu mOf Params; -

1) = ParamsGrid. Row

ParamsGrid. Text = Str(ParamsGHd. Row)

ParamsGrid. Col =2
Instances (ThisInst). PartsTree (Sel Part). ParamU nit (Instances (Thisinst). PartsTree (Sel Part). N umOf Params - 1)

Command 3. Caption

ParamsGrid. Text = Command 3. Caption

End If

End Sub

'TOGGLE SUPPRESSION TYPE BUTTON

Pflvate Sub Commandl7_Clicko

If (Commandl7. Caption = "FEATURE") Then

Command I 7. Caption = "PART"

Elself (Command I 7. Caption = "PART") Then

Commandl7. Caption = "ASSEMBLY"

Elself (Commandl7. Caption = "ASSEMBLY") Then
Command17. Caption = "FEATURE"

End If

End Sub

160

'ADD NEW SUPPRESS

Pflvate Sub Command 1 8LClick ()

If (PararnsPart >= 0) Then

MakePartSelected (ParamsPart)

ActivateParams (PararnsPart)

Instances (Thisinst). PartsTree (SelPart). NumOfSupps = Instances (This Inst). PartsTree (Sel Part). Nu mOf Supps

+1
ReDim Preserve

Instances (Thislnst). PartsTree (SelPart). SuppEntity (Instances (Thisinst). PartsTree (Sel Part). Nu mOfSupps)
ReDim Preserve

Instances (Thisinst). PartsTree (SelPart). SuppType (Instances (Thislnst). PartsTree (SelPart). NumOfSupps)

ReDim Preserve

Instances (Thislnst). PartsTree (SelPart). SuppStatus (Instances (Thisinst). PartsTree (Sel Part). Nu mOfSu pps)

SuppGfld. Rows = SuppGrid. Rows +I
SuppGfld. Row = SuppGdd. Rows -1
SuppGfld. Col =0
SuppGfld. Text = Str(SuppGrid. Row)

SuppGdd. Col =I
Instances (Thislnst). PartsTree (Sel Part). Supp Entity (Instances (Thisinst). PartsTree (Sel Part). Nu mOfSupps - 1)

"Entity "+ Str(SuppG(id. Row)

SuppGrid. Text = "Entity + Str(SuppGrid. Row)

SuppGrid. Col =2
Instances (Thisinst). PartsTree (SelPart). SuppStatus (Instances (Thisinst). PartsTree (Se]Part). NumOfSupps - 1)

= "SUPPRESS"

SuppGfld. Text = "SUPPRESS"

Instances (Thisinst). PartsTree (SelPart). SuppType (Instances (Thisinst). PartsTree (SelPart). NumOfSupps - 1)

="FEATURE"
Commandl7. Caption = "FEATURE"

End If

End Sub

161

'DELETE SELECTED ROW (S! LPPS, I

Nvate Sub CommandZCLClicko

Dim c, RowToDelete, OIdNumOfRows As Integer

Dim tempStrl, tempStrZ As String

If (ParamsPart >= 0) Then

MakePartSelected (ParamsPart)

ActivateParams (ParamsPart)

RowToDelete = SuppGrid. Row

OldNumOfRows = SuppGrid. Rows

For c= RowToDelete To OldNumOfRows -2

SuppGfid. Row =c+I
SuppGdd. Col =I
tempStrl = SuppGfld. Text

SuppGrid. Col =2
tempStr2 = SuppGdd. Text

SuppGdd. Row =c
SuppGeid. Col =1
SuppGrid. Text = tempStrl

SuppGrid. Col =2
SuppGrid. Text = tempStr2

Instances (Thisinst). PartsTree (SelPart). SuppEntity (c - 1)

Instances (Thislnst). PartsTree (Sel Part) SuppEntity (c)

Instances (Thislnst). PartsTree (SelPart). SuppStatus (c - 1)

Instances (Thislnst). PartsTree (SelPart). SuppStatus (c)

Next c

Instances (Thislnst). PartsTree (SelPart). NumOfSupps = Instances (Thisinst). PartsTree (SelPart). NumOfSupps -1
SuppGrid. Rows = SuppGriid. Rows -I
ReDim Preserve

Instances (Thisinst). PartsTree (SelPart). SuppEntity (Instances (Thislnst). PartsTree (SelPart). NumOfSupps)

ReDim Preserve

Instances (Thisinst). PartsTree (SelPart). SuppStatus (Instances (Thislnst). PartsTree (SelPart). NumOfSupps)

End If

End Sub

162

'DELETE SELECTED ROW (RELATIONS)

Pflvate Sub Command2Z_Clicko

Dim c, RowToDelete, OldNumOfRows As Integer

Dim tempStrl, tempStr2 As String

If (NumRels > 0) Then

RowToDelete = RelsGrid. Row

OldNumOfRows = ReisGdd. Rows

For c= RowToDelete To OldNumOfRows -2

RelsGrid. Row =c+I
RelsGrid. Col =0
tempStrl = RelsGfld. Text

RelsGrid. Col =I
tempStrZ = RelsGHd. Text

ReIsGrid. Row =c
ReIsGrid. Col =0
ReIsGrid. Text = tempStri

ReIsGrid. Col =1
ReIsGrid. Text = tempStr2

Instances (Thislnst). ReIM (c - 1) Instances (Thisinst). ReIM (c)

Instances (Thisinst). ReIF(c - 1) Instances (Thisinst). ReIF(c)

Next c
Instances (Thislnst). NumRels = Instances (Thisinst). NumRels -I

ReIsGrid. Rows = ReIsGrid. Rows -1
ReDim Preserve Instances (Thisinst). ReIM (Instances (Thislnst). NumRels)

ReDim Preserve Instances (Thisinst). RelF (Instances (Thisinst). NumRels)

End If

End Sub

163

'SET PARAMETER NAME & VALUE

Pflvate Sub Command3-Clicko

If (Command3. Caption = "MM") Then

CommandlCaption = "DEG"

Elself (Command3. Caption = "DEG") Then

Command3. Capfion =W
Elself (Command3. Caption = W) Then

CommandlCaption = "IN"

Elself (Command3. Caption = "IN") Then

CommandlCaption = "VAL!

Elself (Command 3. Caption = "VAV) Then

CommandlCaption = "MM"

End If

If (ParamsPart >= 0) Then

MakePartSelected (ParamsPart)

ActivateParams (ParamsPart)

PararnsGrid. Col =0
ParamsGrid. Text = Text2. Text

Instances (Thislnst). PartsTree (Sel Part). ParamName (ParamsGrid. Row - 1) Text2. Text

PararnsGrid. Col =I
ParamsGrid. Text = TextI. Text

Instances (This Inst). PartsTree (SelPart). ParamValue (ParamsGrid. Row - 1) Val (Texti Jext)

PararnsGrid. Col =2
ParamsGrid. Text = CommandlCaption

Instances (Thislnst). PartsTree (SelPart). ParamUnit(ParamsGdd. Row - 1) =Command 3. Caption

End If

End Sub

164

'SET SUPPRESS ENTITYTYPE and STATUS

Pflvate Sub Command5jlicko

If (ParamsPart >= 0) Then

MakePartSelected (ParamsPart)

ActivateParams (ParamsPart)

SuppGfld. Col =I
SuppGdd. Text = Text3Jext

Instances (Thisinst). PartsTree (SelPart). SuppEnfity (SuppGrid. Row - 1) = Text3. Text

SuppGfld. Col =2

- SuppGfld. Text = Command8. Caption

Instances (Thislnst). PartsTree (SelPart). SuppStatus (SuppGrid. Row - 1) = Command 8. Caption

Instances (Thislnst). PartsTree (SelPart). SuppType (SuppGrid. Row - 1) = Command i 7. Caption

End If

End Sub

'UPDATE Parameters in CAD file

Private Sub Command9-Clicko

Dim RetVal

'AppActivate "SolidWorks 98PIus"

Const swDocPART =1 'These definitions are consistent vvith type names
Const swDocASSEMBLY =2 'defined in \$IdWorkýýamples\appComm\swconst. h

Const swDocDRAWING =3
Dim swApp As Object Define variable used to hold the application object
Dim Part As Object Define variable used to hold the part object
Dim c As Integer

Dim WhatType As Integer

Dim myUnit As String

Dim myVal As Double

If (ParamsPart >= 0) Then

MakePartSelected (ParamsPart)

ActivateParams (ParamsPart)

'SOLIDWORKS

If ((Instances (Thisinst). PartsTree(Sel Part). MyCADfileType = 5) Or
(Instances (Thisinst). PartsTree(SelPart). MyCADfileType 6)) Then

If (Instances (Thislnst). PartsTree (Sel Part). MyCADfil eType 5) Then
WhatType = swDocPART

Elself (Instances (Thisinst). PartsTree(SelPart). MyCADfileType = 6) Then

165

WhatType = swDocASSEMBLY
End If

' This Vill attach to current SolidWorks session or start up new session in background.

Set swApp = CreateObject("SIdWorks. Application")

swApp. Visible (True) ' Uncomment this if you wish to make the new SolidWorks session Visible

' Load file from current directory. This is currently hardcoded to cAtemp
Set Part = swApp. OpenDoc (Instances (Thisinst). PartsTree(SelPart). MyPathAndFile, WhatType)

If Part Is Nothing Then

Exit Sub

Else

Set Part = swApp. ActivateDoc (Instances (Thislnst). PartsTree(SelPart). MyFileName)

End If

For c=0 To Instances (Thislnst). PartsTree (SelPart). NumOfParams -I
'Sort Out UNITS

myUnit = Instances (Thislnst). PartsTree(SelPart). ParamUnit(c)

Select Case myUnit
Case "MM"

myVal = Instances (Thislnst). PartsTree (Sel Part). PararnVal ue (c) / 1000

Case "M"

myVal = Instances (Thislnst). PartsTree(Sel Part). ParamVal u e(c)
Case "IN"

myVal = (Instances (Thislnst). PartsTree (SelPart). ParamValue (c) / 1000) * 25.4

Case "DEG"

myVal = Instances (Thisinst). PartsTree (SelPart). ParamValue (c) * (3.141592654 / 180)

Case "RAD"

myVal = Instances (Thisinst). PartsTree (SelPart). ParamValue (c)

Case "VAV

myVal = Instances (Thislnst). PartsTree(Sel Part). ParamValu e(c)
End Select

Part. Parameter (Instances (Thisinst). PartsTree (SelPart). ParamName (c)). SystemValue myVal
Next c
For c=0 To Instances (Thisinst). PartsTree (SelPart). NumOfSupps -1

FeatureSuppression Instances (This Inst). PartsTree(SelPart). SuppEntity(c),

Instances (Thisinst). PartsTree (SelPart). SuppStatus (c)

Next c
Part. EditRebuild

swApp. UserControl (True)

End If

End If

End Sub

166

' IF A CELL IN THE INSTANCES PANEL 15 CUCKED THENSET THE CURRENT INSTANCE TO THAT INSTANCE

Private Sub InstGdcLClicko

Dim c As Integer

Dim OldInst As Integer

Dim Newinst As Integer

NewInst = lnstGdd. Row

Oldlnst = Thisinst

'Instances (Oldlnst). Name Text4(0). Text

'Instances (Oldlnst). DrgNo Text4(1). Text

'Instances (Oldlnst). By = Text4 (2). Text

'Instances (Oldlnst). Date = Text4 (3). Text

'Instances (Oldlnst). Descdption = Text4(4)Jext

InstGfld. Col =0

For c=0 To InstGfid. Rows -1
InstGrid. Row =c
If (InstGfid. CellBackColor = &H55DDFF) Then

InstGfid. CellBackColor = vbWhite
End If

Next c
InstGfid. Row = Newlnst

lnstGHd. CeliBackColor = &H55DDFF

Updateinstance (NewInst)

' Load All Data for NewInst into the form

ShowCurrentlnstance Oldlnst, Newinst

ShowRelations Newinst

ShowParams Newlnst

Thislnst = Newinst

Caption = Instances (Thislnst). Name

Make PartSelected SelPart

End Sub

167

' IF A CELL IN THE PARAMS GRID IS CUCK SET THAT PARAMErER FOR EDITING

Pflvate Sub ParamsGflcLClicko

'DISPLAY SELECTED PARAM DETAILS

If (PararnsPart >= 0) Then

MakePartSelected (ParamsPart)

AdvateParams (ParamsPart)

If (ParamsGrid. Row >= 1) Then

'Labell. Caption = "Parameter + Str(ParamsGrid. Row)

ParamsGrid. Col =0
Text2. Text = Instances (Thislnst). PartsTree (SelPart). ParamName (ParamsGHd. Row - 1)
ParamsGrid. Col =I
Textl. Text = Val (Instances (Thislnst). PartsTree (SelPart). ParamValue(ParamsG(id. Row - 1))

ParamsGrid. Col =2
CommandlCaption = Instances (Thisinst). PartsTree (SelPart). ParamUnit (ParamsGrid. Row - 1)

End If

End If

End Sub

168

'DELETE SELECTED ROW (PARAMETER)

Private Sub Command 1 ý-Click ()

Dim c, RowToDelete, OIdNumOfRows As Integer

Dim tempStrl, tempStrZ As String

If (ParamsPart >= 0) Then

MakePartSelected (ParamsPart)

ActivateParams (ParamsPart)

RowToDelete = ParamsGrid. Row

OldNumOfRows = ParamsGrid. Rows

For c= RowToDelete To OIdNumOfRows -2
PararnsGrid. Row =c+I
PararnsGrid. Col =I
tempStrl = ParamsGrid. Text

PararnsGrid. Col =2
tempStrZ = ParamsGdd. Text

ParamsGfid. Row =c
ParamsGfld. Col =I
ParamsGfld. Text = tempStrl

ParamsGfid. Col =2
ParamsGrid. Text = tempStr2

Instances (Thisinst). PartsTree (SelPart). ParamName (c - 1)

Instances (Thisinst). PartsTree (SelPart). ParamName (c)

Instances (Thisinst). PartsTree (S el Part). PararnValue (c - 1)

Instances (Thisinst). PartsTree (SelPart). ParamValue (c)

Next c
Instances (Thislnst). PartsTree (Sel Part). Nu mOf Params = Instances (Thislnst). PartsTree (SelPart). NumOfParams -1
ParamsGrid. Rows = ParamsGrid. Rows -1
ReDim Preserve

Instances (Thisinst). PartsTree (Sel Part). ParamN ame (Instances (Thisinst). PartsTree (SelPart). NumOfParams)

ReDim Preserve

Instances (Thislnst). PartsTree (SelPart). ParamValue (Instances (Thisinst). PartsTree (SelPart). NumOfParams)

End If

End Sub

Private Sub Command4jlicko

Dim dy, dx As Integer

Dim c As Integer

169

VScro112. Value =0
HScro112. Value = 32768 /2

dy = v2 - VScroII2. Value

dx = h2 - HScro112. Value

V2 =0
h2 = 32768 /2

For c=0 To Instances (Thislnst). NumFuncts -I
Model (c). Move Model (c). Left + dx, Model (c). Top + dy, Model (c). Width, Model (c). Height

Next c
End Sub

Private Sub Command I 2LClicko

Dim dy, dx As Integer

Dim c As Integer

VScroill. Value =0
HScrolll. Value = 32768 /2

dy =A- VScrolli. Value

dx = hl - HScrolli. Value

V1 =0
hl = 32768 /2

For c=0 To Instances (Thisinst). NumParts -I
Model (c). Move Model (c). Left + dx, Model (c)Jop + dy, Model (c). Width, Model (c). Height

Next c
End Sub

170

'SET OPERATION TO BE DONE DEPENDING ON WHAT BUTTON HAS BEN CLICKED

Public Sub ToolbarClicks(buttonID As Integer)

Select Case buttonID

Case I

SelPart -1
DoWhat "ADOLCQJEFr"

Case 2

SelPart -1
DoWhat "ADOLCHILD"

Case 3

SelPart -1
DoWhat "AD0LCQ_RIGHT"

Case 5

SelPart -1
DoWhat "MOVE-DOWN"

Case 6

SelPart -1
DoWhat "MOVE-UP"

Case 7

SelPart -1
DoWhat "MOVE-LEFT"

Case 8

SelPart -i
DoWhat "MOVE-RIGHT"

Case 10

DoWhat = "NOTHING"

Case II

DoWhat = "DELETE"

Case 13

DoWhat = "ADELRELATION"

Case 14

DoWhat = "REMOVE-RELATION"

Case 16

AddNewinstance

DoWhat = "NOTHING"

Case 17

DeleteSelected Instance

DoWhat = "NOTHING"

Case 19

If (ThisInst = 0) Then

171

MsgBox ("Cannot Suppress Parts/Systems for the Generic Instance")

DoWhat = "NOTHING"

Else

DoWhat = "SUPPRESS"

End If

Case 20

If (Thislnst = 0) Then

MsgBox ("Cannot Resume Parts/Systems for the Generic Instance")

DoWhat = "NOTHING"

Else

DoWhat = "RESUME"

End If

End Select

End Sub

172

'ADD A NEW CHILD MEANS

Private Sub AddChildMeans (Parent As Integer)

Dim c, Child As Integer

Instances (Thisinst). NumParts = Instances (Thisinst). Nu m Parts +1

Child = Instances (Thisinst). NumParts -1
ReDim Preserve Instances (Thisinst). PartsTree (Child)

Load Model (Child)

Instances (Thisinst). PartsTree (Child). Name "New Part"

Instances (Thislnst). PartsTree (Child). Xpos Instances (Thisinst). PartsTree (Parent). Xpos

Instances (This Inst). PartsTree (Child). Ypos Instances (This I nst). PartsTree (Parent). Ypos +
Model (Instances (Th isInst). PartsTree (Parent). Node ID). Height + VGap

Instances (Thisinst). PartsTree (Child). N odelD = Child

Instances (Thislnst). PartsTree (Child). PartSuppression = Instances (ThisInst). PartsTree (Parent). PartSu ppression
UpdateMeansNode (Child)

'Setup Parent and Child relationships
Instances (Thislnst). PartsTree (Pare nt). Nu mChild re n= Instances (Thislnst). PartsTree (Parent). NumChi Id ren +I

ReDim Preserve

Instances (Thislnst). PartsTree (Parent). Children (Instances (Thislnst). PartsTree (Parent). NumChildren - 1)

Instances (Thisinst). PartsTree (Parent). Children (Instances (Thisinst). PartsTree (Parent). NumChildren - 1) Child

Instances (Thisl nst). PartsTree (Child). Nu mChi ld ren =0
Instances (Thisinst). PartsTree (Child). NumParents =I
ReDim Preserve Instances (Thisinst). PartsTree (Child). Parents (0)

Instances (Thisl nst). PartsTree (Child). Parents (0) = Parent

Instances (Thislnst). PartsTree(Child). NumOfParams =0
Instances (This Inst). PartsTree (Child). Nu mOfSu pps =0
Instances (Thisinst). PartsTree (Child). NumFunctions =0
Instances (Thisinst). PartsTree (Chi ld). Level = Instances (Thisl nst). PartsTree (Parent). Level +I

For c=0 To Instances (Thislnst). NumParts -1M Node I (Instances (ThisInst). PartsTree (c). Node I D). BackColor

vbWhite
Next c
SelPart = -1
'LinkLme

Load Linel (Child)

Linel (Child). Xi = Instances (Thisinst). PartsTree (Parent). Xpos +
Model (Instances (Thislnst). PartsTree (Parent). Nod el D). W idth /2

Linel (Child). Y1 = Instances (Thislnst). PartsTree (Parent). Ypos +
MNodei (Instances (Th isInst). PartsTree (Parent). Node I D). Height

Linel (Child). X2 = Instances (This I nst). PartsTree (Child). Xpos +
Model (Instances (Thisinst). PartsTree(Child). NodeID). Width /2

Linel (Child). Y2 = Instances (Thislnst). PartsTree (Child). Ypos

173

Linel (Child). Visible = True

UpdateLinesArrays Thisinst

End Sub

'ADD A MEANS NODE TO THE LEFT OR RIGHT

Private Sub AddCoMeans(Co As Integer)

Dim c, NewCo, Parent As Integer

Instances (Thislnst). NumParts = Instances (Thisinst). Num Parts +I
NewCo = Instances (Thislnst). NumParts -I
ReDim Preserve Instances (Thislnst). PartsTree (NewCo)

Load Model (NewCo)

Instances (Thislnst). PartsTree (NewCo). Name = "New Part"

If (DoWhat = "ADD_CO_LEFT") Then

Instances (Thisinst). PartsTree (NewCo). Xpos = Instances (Thisinst). PartsTree (Co). Xpos -
Model (Instances (Thisinst). PartsTree (Co). NodeID). Width - HGap

Elself (DoWhat = "ADDJO-RIGHT") Then

Instances (Thislnst). PartsTree (NewCo). Xpos = Instances (Thislnst). PartsTree (Co). Xpos +

Model (Instances (Thisinst). PartsTree (Co). NodeID). Width + HGap

End If

Instances (Thisinst). PartsTree (NewCo). Ypos = Instances (Thisinst). PartsTree (Co). Ypos

Instances (Thisinst). PartsTree (NewCo). NodelD = NewCo

Instances (Thisinst). PartsTree (NewCo). PartSuppression = Instances (Thislnst). PartsTree (Co). PartSuppression

UpdateMeansNode (NewCo)

'Setup Parent and Child relationships
Parent = Instances (Thislnst). PartsTree (Co). Parents (0)

Instances (Thislnst). PartsTree (Parent). NumChildren = Instances (Thisinst). PartsTree (Parent). NumChildren +I

ReDim Preserve

Instances (Thislnst). PartsTree (Pare nt). Child ren (Instances (Thisinst). PartsTree (Parent). NumChildren - 1)

Instances (Thisl nst). PartsTree (Pare nt). Chi ldren (Instances (Th isinst). PartsTree (Parent). Nu mChi Id ren - 1) Newco

Instances (Thislnst). PartsTree (NewCo). NumChildren =0
Instances (Thisinst). PartsTree(NewCo). NumParents =1
ReDim Preserve Instances (Thislnst). PartsTree(NewCo). Parents(0)

Instances (Th isl nst). PartsTree (NewCo). Parents (0) = Parent

Instances (Thislnst). PartsTree (NewCo). Level = Instances (Thislnst). PartsTree (Co). Level
For c=0 To Instances (Thislnst). NumParts -1

Model (Instances (Thisinst). PartsTree (c). NodeID). BackColor = vbWhite
Next c
SelPart = -1
'LinkLine

174

Load Linel (NewCo)

Linel (NewCo). Xi =Instances (Thisinst). PartsTree (Parent). Xpos +

Model (Instances (Thislnst). PartsTree (Parent). Nod el D). Width /2

Unel (NewCo). Yl = Instances (Thisinst). PartsTree (Parent). Ypos +

Model (Instances (Thisinst). PartsTree (Parent). Nod el D). Height

Linel (NewCo). X2 = Instances (Thislnst). PartsTree (NewCo). Xpos +

Model (Instances (Thislnst). PartsTree(NewCo). NodeID). Width /2

Unel (NewCo). Y2 = Instances (Thisinst). PartsTree (NewCo). Ypos

Linel (NewCo). Visible = True

Updatel-inesArrays ThisInst:

End Sub

'UPDATE MEANS NODE

Private Sub UpdateMeansNode(myTreelD As Integer)

Dim myNodelD As Integer

myNodelD = Instances (Thislnst). PartsTree(myTreeID). NodelD

Model (myNodeID). Text = Instances (Thislnst). PartsTree (myTreeID). Name

Model (myNodeID). Move Instances (Thislnst). PartsTree (myTreeID). Xpos,

Instances (Thisinst). PartsTree (myTreeID). Ypos, Model (myNodeID). Width, Model (myNodeID). Height

Model (myNodeID). Visible = True

MNodei (myNodeID). Refresh

End Sub

'ADD A NEW CHILD FUNCTION

Private Sub Add Child Fu nct (Parent As Integer)

Dim c, Child As Integer

Instances (Thislnst). NumFuncts = Instances (Thislnst). NumFuncts +1

Child = Instances (Thislnst). NumFuncts -I
ReDim Preserve Instances (Thislnst). FunctTree (Child)

Load Model (Child)

Instances (Thislnst). FunctTree (Child). Name = "New Function"

Instances (Thislnst). FunctTree (Child). Xpos = Instances (Thisinst). FunctTree (Parent). Xpos

Instances (Thislnst). FunctTree (Child). Ypos = Instances (Thisinst). FunctTree (Parent). Ypos

Model (Instances (Thisl nst). Fu nctTree (Parent). Nodel D). H eight + VGap

Instances (Thislnst). FunctTree (Child). NodelD = Child

UpdateFunctNode (Child)

'Setup Parent and Child relationships
Instances (Thislnst). FunctTree (Parent). NumChildren = Instances (Thisinst). FunctTree (Parent). NumChildren +I

ReDim Preserve

Instances (Thisinst). FunctTree (Parent). Children (Instances (Thislnst). FunctTree (Parent). Nu mChi Id ren - 1)

175

Instances (Thisinst). Fun ctTree (Parent). Child ren (Instances (ThisInst). Fu nctTree (Parent). Nu mCh ildren - 1)

Child

'Instances (Thislnst). FunctTree (Child). Nu mChild ren 0

Instances (Thislnst). FunctTree(Child). NumParents I

ReDim Preserve Instances (Thisinst). FunctTree(Child). Parents(0)

Instances (Thislnst). FunctTree(Child). Parents(0) = Parent

Instances (Thislnst). FunctTree (Child). Level = Instances (Thisinst). FunctTree (Parent). Level 1

For c=0 To Instances (Thislnst). NumFuncts -I
Model (Instances (Thisinst). FunctTree (c). Node I D). BackColo r= myCol

Next c
SelFunct = -1
'LinkLine

Load Line2 (Child)

Line2(Child). X1 = Instances (Thislnst). FunctTree(Parent). Xpos +

Mod e1 (Instances (Th isl nst). Fun ctTree (Pare nt). Nodel D). Width/ 2

Line2 (Child). Y1 = Instances (Thislnst). FunctTree (Parent). Ypos +
Model (Instances (Thisinst). Fun ctTree (Parent). Nod el D). H eight

Line2(Child). X2 = Instances (Thislnst). FunctTree(Child). Xpos +
Model (Instances (Thislnst). FunctTree (Child). NodeID). Width /2

Line2(Child). Y2 = Instances (Thisinst). FunctTree(Child). Ypos
Line2(Child). Visible = True

Updatel-inesArrays ThisInst

End Sub

'ADD A FUNTION NODE TO THE LEFT OR RIGHT

Private Sub AddCoFunct(Co As Integer)

Dim c, NewCo, Parent As Integer

Instances (Thislnst). NumFuncts = Instances (Thislnst). NumFuncts +I

NewCo = Instances (Thisinst). NumFuncts -I
ReDim Preserve Instances (Thisinst). FunctTree (NewCo)

Load Model (NewCo)

Instances (Thislnst). FunctTree (NewCo). Name = "New Function"

If (DoWhat = "ADOLCOJEFT") Then

Instances (Thislnst). FunctTree (NewCo). Xpos = Instances (Thisinst). FunctTree (Co). Xpos -
Model (Instances (Thislnst). FunctTree (Co). NodeID). Width - HGap

Elself (DoWhat = "ADCLCQ-RIGHT") Then

Instances (Thisinst). FunctTree (NewCo). Xpos = Instances (ThisInst). FunctTree (Co). Xpos +
Model (Instances (Thislnst). FunctTree (Co). Node[D). Width + HGap

End If

176

Instances (Thislnst). FunctTree(NewCo). Ypos = Instances (Thisinst). FunctTree (Co). Ypos

Instances (Thisinst). FunctTree (NewCo). NodelD = NewCo

UpdatefunctNocle (NewCo)

'Setup Parent and Child relationships
Parent = Instances (Thisinst). FunctTree(Co). Parents(0)

Instances (Thisinst). Fu nctTree (Parent). Nu mChild ren = Instances (Thislnst). FunctTree (Parent). NumChildren +I
ReDim Preserve

Instances (Thisinst). FunctTree (Parent). Children (Instances (Thisinst). FunctTree (Parent). NumChildren - 1)

Instances (Thislnst). FunctTree (Pare nt). Child ren (Instances (Thisinst). FunctTree (Parent). NumChildren - 1)

NewCo

Instances (Thisinst). FunctTree (NewCo). NumChildren 0
Instances (Thislnst). FunctTree(NewCo). NumParents I

ReDim Preserve Instances (Thisinst). FunctTree(NewCo). Parents(0)

Instances (Thisl n st). Fu nctTree (NewCo). Parents (0) = Parent

Instances (Thislnst). FunctTree (NewCo). Level = Instances (Thislnst). FunctTree (Co). Level

For c=0 To Instances (Thisinst). NumFuncts -I
Model (Instances (Thisinst). FunctTree (c). NodeID). BackColor = myCol

Next c
SelFunct = -1
Unkl-ine

Load Line2(NewCo)

LineZ (NewCo). X1 = Instances (This I nst). Fun ctTree (Parent). Xpos +
Model (Instances (This Inst). FunctTree (Parent). Nod el D). W idth /2

Line2(NewCo). Y1 = Instances (Thisinst). FunctTree (Parent). Ypos +
Model (Instances (Thislnst). FunctTree (Parent). NodeID). Height

Line2(NewCo). X2 = Instances (Thisinst). FunctTree (NewCo). Xpos +
Model (Instances (Thisinst). FunctTree (NewCo). NodeID). Width /2

Ljne2(NewCo). Y2 = Instances (Thisinst). FunctTree (NewCo). Ypos

Line2(NewCo). Visible = True

Updatel-inesArrays Thislnst

End Sub

'UPDATE FUNCIION NODE

Private Sub UpdateFunctNode(myTreelD As Integer)

Dim myNodelD As Integer

myNodell) = Instances (Thislnst). FunctTree (myTreeID). NodelD

FNode I (myNodeID). Text = Instances (Thislnst). FunctTree(myTreeID). Name

Model (myNodeID). Move Instances (Thisinst). FunctTree (myTreeID). Xpos,

Instances (Thislnst). FunctTree (myTreeID). Ypos, Model (myNodeID). Width, Model (myNodeID). Height

Model (myNodeID). Visible = True

177

FNodel (myNodeID). Refresh

End Sub

Private Sub MoveMeans(mylD As Integer)

Dim c, NodelD, dy, dx As Integer

NodelD = Instances (Thislnst). PartsTree (mylD). NodelD

dy =0
dx =0
If (DoWhat = "MOVE-UP") Then

dy = dy - (MNodel (0). Height /2+ VGap / 2)

Elself (DoWhat = "MOVE-DOWN") Then

dy = dy + (MNodel (0). Height /2+ VGap / 2)

Elself (DoWhat = "MOVE-LEFT") Then

dx = dx - (MNodel (0). Width /2+ HGap / 2)

Elself (DoWhat = "MOVE-RIGHT") Then

dx = dx + (MNodel (0). Width /2+ HGap / 2)

End If

Instances (Thislnst). PartsTree (myID). Xpos = Instances (Thisinst). PartsTree (mylD). Xpos + dx

Instances (Thisinst). PartsTree (myID). Ypos = Instances (Thisinst). PartsTree (mylD). Ypos + dy

MNodel (NodeID). Left = MNodel (NodeID). Left + dx

MNodel (NodeID)Jop = MNodel (NodeID). Top + dy

Linell (NodeID). X2 = Linel (NodeID). X2 + dx

Unel (NodeID). Y2 = Unel (NodeID). Y2 + dy

If (Instances (Thisinst). PartsTree (mylD). NumChildren > 0) Then

For c=0 To Instances (Thisinst). PartsTree (mylD). NumChildren -I
Linei (Instances (Thisinst). PartsTree (Instances (Thislnst). PartsTree (mylD). Children (c)). NodeID). Xi

Linel (Instances (Thislnst). PartsTree (Instances (Thislnst). PartsTree (mylD). Children (c)). NodeID). Xj + dx

Linel (Instances (Thisinst). PartsTree (Instances (Thisinst). PartsTree (mylD). Children (c)). NodeID). Yl

Linel (Instances (Thisinst). PartsTree (Instances (Thislnst). PartsTree (mylD). Children (c)). NodeID). Yl + dy

Next c
End If

End Sub

Private Sub MoveFunct(myll) As Integer)

Dim c, myNodelD, dy, dx As Integer

myNodell) = Instances (Thislnst). FunctTree (mylD). NodelD

dy =0
dx =0
If (DoWhat = "MOVLUP") Then

dy = dy - (Model (0). Height /2+ VGap / 2)

Elself (DoWhat = "MOVE.
-DOWN")

Then

dy = dy + (FNodel (0). Height /2+ VGap / 2)

178

Elself (DoWhat = "MOVE-LEFT") Then

dx = dx - (FNodel (0). Width /2+ HGap / 2)

Elself (DoWhat = "MOVE-RIGHT") Then

dx = dx + (FNodel (0). Width /2+ HGap / 2)

End If

Instances (Thisinst). FunctTree (mylD). Xpos = Instances (Thisinst). FunctTree (mylD). Xpos + dx

Instances (Thisinst). FunctTree (mylD). Ypos = Instances (Thisinst). FunctTree (mylD). Ypos + dy

Rodel (myNodeID). Left = Rodel (myNode[D). Left + dx

FNodel (myNode[D). Top = Rodel (myNodeID). Top + dy

Line2(myNodeID). X2 = Line2(myNodeID). X2 + dx

Une2 (myNodeID). Y2 = Line2 (myNodeID). Y2 + dy

If (Instances (Thislnst). FunctTree(mylD). NumChildren > 0) Then

For c=0 To Instances (Thislnst). FunctTree (mylD). NumChildren -I
Line2 (Instances (Thislnst). FunctTree (Instances (Thislnst). FunctTree (mylD). Children (c)). NodeID). Xi

Une2 (Instances (Thisinst). FunctTree (Instances (Thisinst). FunctTree (mylD). Children (c)). NodeID). Xi + dx

Line2 (Instances (Thislnst). FunctTree (Instances (Thislnst). FunctTree (mylD). Children (c)). NodeID). Yl

Line2 (Instances (Thislnst). FunctTree (Instances (Thisinst). FunctTree (mylD). Children (c)). Nodell)). Yl + dy

Next c
End If

End Sub

' RESIZE AND UPDATE DISPLAY

Pdvate Sub Form-Resize()

Dim c, dx, dy As Integer

Dim RealWidth As Integer

On Error Resume Next

If (Dispinstances = True) Then

RealWidth = ScaleWidth - Frame2. Width

Else

RealWidth = ScaleWidth - 120

End If

Framel. Left =0
Framel. Top = ScaleHeight - Framel. Height

Framel. Width RealWidth

Picture3. Width VScroII1. Width /2

Picture3. Left = Split * RealWidth

PictureMeight = Framel. Top - Picture3. Top
Picturel. Width = Picture3. Left - VScroII1. Left VScroII1. Width
Picturel. Height = PictureMeight - HScrolli. Height - Command I O. Height

179

VScrolll. Height = Picturel. Height

HScrolll. Top = PicturelJop + Picturel. Height

HScrolll. Width = Pidurei. Width

Commandl. Top = HScroIIl. Top

VScroII2. Left = RealWidth - VScro112. Width

VScrolIZ. Height = VScrolll. Height

Picture2left = Picturell-eft + Picture3. Width

Picture2. Width = VScro112. Left - Picture2left

Picture2. Height = Picturel. Height

HScroll2left = Picture2left + 10

HScroII2. Width = Picture2. Width - 10

HScroII2. Top = HScrolll. Top

Command2left = VScroII2. Left

Command2. Top = Command I Jop

Command4left = VScroII2. Left

Command I Oleft = Picture I. Left

CommandlO. Width = Picturel. Width

Command 1 I. Left = Picture2left + 10

Command I l. Width = Picture2. Width - 10

ReIsGrid. Width = VScroII2. Left + VScroII2. Width - ReIsGridleft

ReIsGrid. CoIWidth (0) = ReIsGrid. Width /2- 50

ReIsGrid. CoIWidth (1) = ReIsGdd. Width /2- 50

If ((Label3. Width + Command22. Width) < ReIsGrid. Width) Then

Command22. Width = RelsGrid. Width - Label3. Width

Command22. Left = ReIsGrid. Left + ReIsGfid. Width - Command22. Width

Else

Command22. Width =0
Command22. Left = ReIsGrid. Left + ReIsGdd. Width

End If

If (DispInstances = True) Then

Frame2. Left = ScaleWidth - FrameZ. Width

Frame2. Height = ScaleHeight

Frame3. Top = ScaleHeight - Frame3. Height

InstGrid. Height = Frame3. Top - 240

End If

End Sub

180

'PERFORM DO-WHAT WHEN A MEANS NODE IS CLICKED

Private Sub MNodeljlick(Index As Integer)

Dim c As Integer

If ((DoWhat = "NOTHING") And (MNodel (Index). BackColor = vbYellow)) Then

Model (Index). BackColor = vbWhite
SelPart = -1 'ie NO parts selected

Else

For c=0 To (Instances (Thislnst). NumParts - 1)

If (Instances (Thislnst). PartsTree (c). PartSuppression = "False") Then

Model (Instances (Thisinst). PartsTree (c). NodeID). BackColor = vbWhite
Else

Model (Instances (This Inst). PartsTree (c). Node I D). BackColor = myCol
End If

If (Instances (Thislnst). PartsTree (c). NodelD = Index) Then

SelPart =c
End If

Next c
If (Instances (Thislnst). PartsTree(Index). PartSuppression = "False") Then

MNodel (index). BackColor = Mellow

End If

If (DoWhat = "NOTHING") Then

ActivateParams (SelPart)

Display PartsParams (ParamsPart)

End If

End If

If (DoWhat = "ADELCHILD") Then

AddChildMeans (Sell'art)

DoWhat = "NOTHING"

End If

If ((DoWhat = "ADD-CO-LEFT") Or (DoWhat = "ADELCCLRIGHT")) Then

AddCoMeans (SelPart)

DoWhat = "NOTHING"

End If

If ((DoWhat = "MOVE-UP") Or (DoWhat = "MULDOWN") Or (DoWhat "MOVEJEFT") Or (DoWhat

"MOVE-RIGHT")) Then

MoveMeans (SelPart)

End If

If (DoWhat = "DELETE") Then

DeletePart (SelPart)

181

DoWhat = "NOTHING"

End If

If (DoWhat <> "ADD-RELATION") Then

RelMeans = -1
Rell'unct -1

End If

If (DoWhat "ADOLRELATION") Then

Beep

RelMeans = SelPart

AddNewRelation

End If

If (DoWhat = "SUPPRESS") Then

Beep

SuppressPart (SelPart)

DoWhat "NOTHING"

End If

If (DoWhat "RESUME") Then

ResurnePart (SelPart)

DoWhat = "NOTHING"

End If

End Sub

'PERFORM DO-WHAT WHEN FUNCTION NODE IS CUCKED

Private Sub FNode I
-Click

(Index As Integer)

Dim c As Integer

Beep

If ((DoWhat = "NOTHING") And (Rodel (Index). Colour = "Yellow")) Then

Model (Index). Colour = "White"

Model (index). Refresh

SelFunct = -1 'ie NO functions selected
Else

For c=0 To (instances (Thislnst). NumFuncts - 1)

Model (instances (Thislnst). FunctTree (c). NodeID). Colour = "White"

Model (Instances (Thisinst). FunctTree (c). NodeID). Refresh

If (Instances (Thisinst). FunctTree (c). NodelD = Index) Then

Sell'unct =c
End If

Next c
Model (Index). Colour = "Yellow"

Model (Index). Refresh

182

End If

If (DoWhat = "ADELCHILD") Then

AddChildFunct (SelFunct)

DoWhat = "NOTHING"

End If

If ((DoWhat = "ADCLCOJEFT") Or (DoWhat = "ADELCOJIGHT")) Then

AddCoFunct (SelFunct)

DoWhat = "NOTHING"

End If

If ((DoWhat = "MOVE-UP") Or (DoWhat "MOVE-DOWN") Or (DoWhat "MOVLLEFT") Or (DoWhat

"MOVE-RIGHT")) Then

MoveFunct (SelFunct)

End If

If (DoWhat = "DELETE") Then

DeleteFunct (SelFunct)

DoWhat = "NOTHING"

End If

If (DoWhat <> "ADELRELATION") Then

RelMeans = -1
RelFunct -1

End If

If (DoWhat "ADD-RELATION") Then

RelFunct SelFunct

AddNewRelation

End If

End Sub

' DESELECT NODE

Private Sub Picture I
-Click()

If (SelPart >= 0) Then

If (Instances (Thisinst). PartsTree(SelPart). PartSuppression = "False") Then

Model (Instances (Thislnst). PartsTree (Sel Part). Nod eID). BackColor = vbWhite

Else

Model (instances (Thislnst). PartsTree (Sel Part). NodeID). BackColor = myCol
End If

SelPart = -1 'ie NO parts selected
LineMisible = False

Une4. Visible = False

End If

End Sub

183

' DESELECT NODE

Pflvate Sub PictureLClicko

If (Sell'unct >= 0) Then

Model (Instances (Th isinst). FunctTree (Sel Fu nct). Node ID). Colour = "White"

Model (Instances (Thislnst). FunctTree (Sel Funct). Node I D). Refresh

SelFunct = -1 'ie NO functions selected
LineMisible = False

Line4. Visible = False

End If

End Sub

'OPEN A SOLIDWORKS PART OR ASSEMBLY

Private Sub OpenSolidWorksFile()

Dim RetVal

'AppActivate "SolidWorks 98PIus"

Const swDocPART =1 'These definitions are consistent with type names
Const swDocASSEMBLY =2 'defined in \SldWorks\samples\appComm\swconst. h

Const swDocDRAWING =3
Dim swApp As Object Define variable used to hold the application object
Dim Part As Object Define variable used to hold the part object
Dim c As Integer

Dim WhatType As Integer

If (instances (Thislnst). PartsTree(Sel Part). MyCADfileType = 5) Then

WhatType = swDocPART
Elself (Instances (Thislnst). PartsTree (SelPart). MyCADfileType = 6) Then

WhatType = swDocASSEMBLY
End If

This will attach to current SolidWorks session or start up new session in background.

Set swApp = CreateObject("SIdWorks. Application")

swApp. Visible (True) ' Uncomment this if you wish to make the new SolidWorks session visible
Load file from current directory. This is currently hardcoded to cAtemp
Set Part= swApp. OpenDoc (Instances (Thisinst). PartsTree (SelPart). MyPathAnd File, WhatType)

If Part Is Nothing Then

Exit Sub

Else

Set Part= swApp. ActivateDoc (Instances (Thislnst). PartsTree (SelPart). MyFileName)
End If

swApp. UserControl (True)

End Sub

184

'Get CAD filename

Private Sub Command6jlicko

Dim RetVal

If (SelPart >= 0) Then

' Set CancelError is True

CommonDialogl. CancelError = True

On Error GoTo Erri-landler

' Set flags

CommonDialogI. Flags = cdlOFNHideReadOnly
' Set filters

CommonDialogI. Filter = "All Files &

Pro/ENGINEER Part (*. prt) I *. prt" &-

Pro/ENGIN EER Assembly (*. asm) I *. asm" &

Mechanical Desktop (*. dwg) *. dwg" &-

SoliclWorks Part (*. SLDPRT) *. SLDPRT" &

SoliclWorks Assembly (*. SLDASM) I *. SLDASM"

Specify default filter

CommonDialogl. Filterindex =5
' Display the Open dialog box

CommonDialogi. Show0pen

' Display name of selected file

Instances (Thisinst). PartsTree (SelPart). MyFileName CommonDialogi. FileTitle

Instances (Thisinst). PartsTree(SelPart). MyPathAndFile = CommonDialogi. filename

'Exit Sub

Text5. Text = CommonDialog1l. filename

Instances (Th isl nst). PartsTree (Sel Part). MyCADfileType = CommonDialogi. Filterlndex

Else

MsgBox ("Select a Part Node First")

End If

ErrHandler:

'User pressed the Cancel button

Exit Sub

End Sub

185

'OPEN CAD FILE button

Nivate Sub Command7_Clicko

If (ParamsPart >= 0) Then

MakePartSelected (ParamsPart)

If ((Instances (Thisinst). PartsTree (ParamsPart). MyCADfileType = 5) Or

(Instances (Thisinst). PartsTree (ParamsPart). MyCADfileType = 6)) Then

OpenSolidWorksFile

End If

End If

End Sub

' GET FEATURE SUPPRESSION STATUS

Private Sub Command8LClicko

If (Command8. Caption = "SUPPRESS") Then

Command8. Caption = "RESUME"

Elself (Command8. Caption = "RESUME") Then

Command8. Caption = "SUPPRESS"

End If

End Sub

Private Sub ActivateParams(myPart As Integer)

ParamsPart = myPart
SelPart = myPart
Text5. Text = Instances (Thislnst). PartsTree(Se I Part). M yPathAnd File

End Sub

'SHOW THE SELECTED PARTS PARAMETERS

Private Sub DisplayPartsParams(myPart As Integer)

Dim c As Integer

Texti. Text =
Text2. Text =
ParamsGrid. Rows =I
If (instances (Thislnst). PartsTree(SelPart). NumOfParams > 0) Then

ParamsGrid. Rows = Instances (Thisinst). PartsTree (SelPart). NumOfParams +I
For c=0 To Instances (Thisinst). PartsTree (SelPart). NumOfParams -1

ParamsGdd. Row =c+I
ParamsGfld. Col =0
ParamsGHd. Text = Instances (Thislnst). PartsTree (SelPart). ParamName (c)
ParamsGfld. Col =1
ParamsGrid. Text = Instances (This I nst). PartsTree (SelPart) -PararnValue (c)
ParamsGfld. Col =2

186

PararnsGrid. Text = Instances (This I nst). PartsTree (Sel Part). ParamU nit (c)

Next c
End If

Text3. Text

SuppGfld. Rows =I
If (Instances (Thislnst). PartsTree (Sel Part). Nu mOfSu pps > 0) Then

SuppGrid. Rows = Instances (This I nst). PartsTree (Sel Part). Nu mOfSupps +I

For c=0 To Instances (Thisinst). PartsTree (Sel Part). Nu mOfSupps -I
SuppGrid. Row =c+I
SuppGrid. Col =0
SuppGrid. Text =c+I
SuppGrid. Col =1
SuppGrid. Text = Instances (Thislnst). PartsTree (SelPart). SuppEntity (c)

SuppGrid. Col =2
SuppGrid. Text = Instances (Thisinst). PartsTree (Se[Part). SuppStatus (c)

Next c
End If

End Sub

'SELECT A PART AND UPDATE DISPLAY

Private Sub MakePartSelected (myPart As Integer)

Dim c As Integer

For c=0 To Instances (Thisinst). NumParts -I
If (MNodel (c). BackColor <> vbWhite) Then

If (Instances (Thisinst). PartsTree (c). PartSuppression "False") Then

Model (c). BackColor = vbWhite
End If

End If

Next c
If (myPart >= 0) Then

If (Instances (Thisl nst). PartsTree (my Part). PartSu ppressio n "False") Then

Model (myPart). BackColor = vbYellow
End If

End If

SelPart = myPart
End Sub

187

' MOVE THE SPUT SCREEN

Private Sub Picture3-MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

Dim dx As Integer

Dim RealWidth As Integer

If (Dispinstances = True) Then

RealWidth = ScaleWidth - FrameZ. Width

Else

RealWidth = ScaleWidth

End If

Picture3. MousePointer = vbCustorn
If (MoveSplit = True) Then

'If (Imagel. Left < (VScrollZ. Left + VScroII2. Width)) Then

' Beep

'Elself (Imagel. Left > (VScroill. Left - VScrolli. Width)) Then

1 Beep

'Else

dx =X- Image I. Width /2

PictureMove Picture3. Left +X- Picture3. Width / 2, Picture3. Top, Picture3. Width, PictureMeight

Split = Picture3. Left / RealWidth

Form_Resize

Command 1 O. Refresh

Commandl I. Refresh

HScroll I Refresh

HScro112. Refresh

Picture I. Ref resh
Picture2. Refresh

'End If

End If

End Sub

'DISPLAY SELECTED PARAM DETAILS

Private Sub SuppGrid-Slicko

If (PararnsPart >= 0) Then

MakePartSelected (ParamsPart)

ActivateParams (ParamsPart)

If (SuppGrid. Row >= 1) Then

'Labell. Caption = "Parameter + Str(ParamsGrid. Row)

188

SuppGHd. CoI =I
Text3Jext = Instances (Thislnst). PartsTree (SelPart). SuppEntity (SuppGrid. Row -I
SuppGfid. Col =2
Command8. Caption = Instances (Thisinst). PartsTree (SelPart). SuppStatus (SuppGCid. Row - 1)

Command I 7. Caption = Instances (Thisinst). PartsTree (SelPart). SuppType (SuppGeid. Row - 1)

End If

End If

End Sub

'UPDATE INSTANCE TEXT

Private Sub Text4_Change (Index As Integer)

Dim myInst: As Integer

myInst = InstGrid. Row

Select Case Index

Case 0

Instances (mylnst). Name = Text4(index). Text

InstGdd. Text = Text4(index). Text

Case I

Instances (mylnst). DrgNo = Text4(1). Text

Case 2

Instances (myInst). By = Text4(2). Text

Case 3

Instances (myInst). Date = Text4(3). Text

Case 4

Instances (mylnst). Descflption = Text4(4). Text

End Select

End Sub

Pdvate Sub VScroll 1
_Change()

Dim dy As Integer

Dim c As Integer

dy =A- VScroill. Value

A= VScrolli. Value
If (LeftDisplay = "Parts Tree") Then

For c=0 To Instances (Thisinst). NumParts -1
Model (c). Move Model (c). Left, MNodei (c). Top + dy, Model (c). Width, MNodel (c). Height
Instances (Thisinst). PartsTree (c). Ypos = Instances (Thisinst) -PartsTree (c). Ypos + dy

Unel (c). Yl = Unel (c). Yl + dy

Unel (c). Y2 = Unel (c). Y2 + dy

189

Next c
End If

If (LeftDisplay = "Part Oriented Functiton/Means Tree") Then

For c=0 To Instances (Thisinst). NumParts -1
Model (c). Move Model (c). Left, Model (c). Top + dy, Model (c). Width, Model (c). Height

Next c
For c=I To NumLine5

Line5 (c). Yl = Une5 (c). Yl + dy

Line5 (c). Y2 = Uine5 (c). Y2 + dy

Next c
For c=1 To NumFunc2

FNode2(c). Move Mode2(c). Left, FNode2(c). Top + dy, FNode2(c). Width, FNode2(c). Height

Next c
End If

End Sub

Private Sub HScroll 1
-Change()

Dim X As Long

Dim dx As Integer

Dim c As Integer

dx = hl - HScrolll. Value

hl = HScrolll. Value

If (LeftDisplay = "Parts Tree") Then

For c=0 To Instances (Thislnst). NumParts -I
MNodel (c). Move MNodel (c). Left + dx, MNodel (c). Top, MNodel (c). Width, MNodel (c). Height

Instances (Thisinst). PartsTree (c). Xpos = Instances (Thislnst). PartsTree (c) -Xpos + dx

Linel (c). Xi = Linel (c). X1 + dx

Linel (c). X2 = Linel (c). X2 + dx

Next c
End If

If (LeftDisplay = "Part Oriented Function/Means Tree") Then

For c=0 To Instances (Thisinst). NumParts -1
MNodel (c). Move MNodel (c). Left + dx, MNodel (c). Top, MNodel (c). Width, MNodel (c). Height

Next c
For c=1 To NumLine5

Uine5 (c). Xl = Une5 (c). X1 + dx

Line5 (c). X2 = Une5 (c). X2 + dx

Next c
For c=I To NumFunc2

FNode2 (c). Move FNode2 (c). Left + dx, FNode2 (c). Top, FNode2 (c). Width, FNode2 (c). Height

Next c

190

End If

End Sub

Pflvate Sub VScro112-Change()

Dim dy As Integer

Dim c As Integer

dy = v2 - VScro[12. Value

v2 = VScro112. Value

For c=0 To Instances (Thislnst). NumFuncts -I
Model (c). Move Model (c). Left, Model (c). Top + dy, Model (c). Width, Model (c). Height

Instances (Thislnst). FunctTree (c). Ypos = Instances (Thisinst). FunctTree (c). Ypos + dy

Une2 (c). Yl = Une2 (c). Yl + dy

Une2 (c). Y2 = I-me2 (c). Y2 + dy

Next c
End Sub

Private Sub HScroIl2LChange()

Dim dx As Integer

Dim c As Integer

dx = h2 - HScro112. Value

h2 = HScrolIZ. Value

For c=0 To Instances (Thisinst). NumFuncts -I
Model (c). Move Model (c). Left + dx, Model (c). Top, Model (c). Width, Model (c) Height

Instances (Thisinst). FunctTree (c). Xpos = Instances (Thisinst). FunctTree (c). Xpos + dx

Uine2(c). Xl = Une2(c). Xl + dx

Une2(c). X2 = Une2(c). X2 + dx

Next c
End Sub

' INSERT NEW MEANS - FUNCTION RELATION

Private Sub AddNewRelation

Dim xA, K As Integer

Dim yA, yB, yC As Integer

Dim w, h As Integer

Dim M, f As Integer

Dim R As Integer

Dim c As Integer

w= Model (0). Width /2

h= Model (0). Height /2

191

If ((RelMeans >= 0) And (Rell'unct >= 0)) Then

Model (RelMeans). BackColor = vbBlue
Model (RelFunct). Colour = "Blue"

Model (RelFunct). Refresh

xA = Instances (Thislnst). PartsTree(RelMeans). Xpos +w

yA = Instances (Thislnst). PartsTree (RelMeans). Ypos +h

xC = Instances (Thisinst). FunctTree(RelFunct). Xpos +w

yC = Instances (Thisinst). FunctTree (RelFunct). Ypos +h

yB = yA + (yC - yA) /2

Line3. X1 = xA
Line3. Y1 = yA
Line3. X2 = xA + 6000

Line3. Y2 = yB
Line4. X1 = xC
L1ne4. Y1 = yC
Ijne4. X2 = xC - 6000

Line4. Y2 = yB
UlneMisible = True

Une4. Visible = True

f= Instances (Thisinst). PartsTree (RelMeans). NumFunctions

M= Instances (Thislnst). FunctTree(RelFunct). NumMeans

'check to see if relation already exists
If (f > 0) Then

For c=0 To f-1

If (instances (Thislnst). ParisTree (RelMeans). Functions (c) = Rell'unct) Then

MsgBox ("This Relationship Already Existsl")

DoWhat = "NOTHING"

RelMeans = -1
Rell'unct = -1
Exit Sub

End If

Next c
End If

Instances (Thisinst). NumRels = Instances (Thisl nst). N um Reis +I
Instances (Thislnst). PartsTree (RelMeans). NumFunctions =f+1
Instances (Thisinst). FunctTree (RelFunct). NumMeans =M+I
ReDim Preserve Instances (Thisinst). PartsTree (RelMeans). Functions (1)

192

ReDim Preserve Instances (Thisinst). Fu nctTree (RelFund). Means (M)

Instances (Thisinst). PartsTree (RelMeans). Fundions (1) = Rell'unct

Instances (Thislnst). FunctTree (RelFund). Means(M) = RelMeans

ReDim Preserve Instances (Thisinst). ReIM (Instances (Thisinst). NumRels - 1)

ReDim Preserve Instances (Thislnst). ReIF (Instances (Thislnst). NumRels - 1)

Instances (Thislnst). ReIM (Instances (Thislnst). NumRels - 1) RelMeans

Instances (Thislnst). ReIF (Instances (Thisl nst). Nu m Reis - 1) Rell'und

ReIsGrid. Rows = ReIsGrid. Rows +I

RelsGHd. Row = Instances (Thislnst). NumRels

RelsGrid. Col =0
ReIsGrid. Text = Instances (This Inst). PartsTree (RelMeans). Name

ReIsGrid. Col =I
RelsGHd. Text = Instances (Thisinst). FunctTree (RelFunct). Name

DoWhat = "NOTHING"

RelMeans -1
Rell'unct -1

End If

End Sub

'UPDATE DISPLAY

Private Sub RedrawLeftDisplay()

Dim c, d, e, f, g As Integer

Dim Vert As Integer

Dim maxLevel As Integer

Dim ThisWidth, MaxWidth As Long

Dim ThisNumFuncts As Integer

Dim WidestLevel As Integer

Dim OldTop, ThisTop, Middle, Left As Integer

Dim SorteclMeans () As Integer

Dim SectWidth As Integer

Dim NumFunctAtLevel As Integer

Dim NumMeansAtLevel As Integer

Dim thisLevel As Integer

Dim myParent As Integer

If (LeftDisplay = "Part Oriented Function/Means Tree") Then

193

'Hide all Unel's

For c=0 To Instances (Thislnst). NumParts -I
Unel (c). Visible = False

Next c
LineMisible = False

Line4. Visible = False

NumFunc2 0

NumUine5 0

'Get highest level no

maxLevel =0
For c=0 To Instances (Thislnst). NumParts -I

If (Instances (Thislnst). PartsTree (c). Level > maxLevel) Then

maxLevel = Instances (Thisinst). PartsTree (c). Level

End If

Next c

For thisLevel =0 To maxLevel

'Get NumFunctAtLevel and NumMeansAtLevel

NumFunctAtLevel =0
NumMeansAtLevel =0

'Find width of level's functions

MaxWidth =0
ThisNumFuncts =0
For c=0 To Instances (Thisinst). NumParts -I

If (Instances (Thisinst). PartsTree (c). Level = thisLevel) Then

ThisNumFuncts = ThisNumFuncts + Instances (Thislnst). PartsTree (c). NumFunctions

End If

Next c
MaxWidth = ThisNumFuncts * Model (0). Width + (ThisNumFuncts - 1) * HGap

OldTop MNodel (0). Top

Middle MNoclel (0). Left + MNodel (0). Width /2

For c=0 To Instances (Thislnst). NumPatts -I
If (Instances (Thislnst). PartsTree (c). Level = thisLevel) Then

NumMeansAtLevel NumMeansAtLevel +I

NumFunctAtLevel NumFunctAtLevel + Instances (Thislnst). PartsTree(c). NumFunctions

194

End If

Next c
'Make Ust of Means/Parts at ThisLevel

ReDim SortedMeans(NumMeansAtLevel)

d=0

For c=0 To Instances (Thisinst). NumParts -I
If (Instances (This] nst). PartsTree (c). Level = thisLevel) Then

SortedMeans(d) =c
d=d+1

End If

Next c
'Sort u1st

For c=0 To 1000

For d=0 To NumMeansAtLevel -2
e= Instances (Thislnst). PartsTree(SortedMeans(d)). Xpos

f= Instances (Thisinst). PartsTree (SortedMeans (d + 1)). Xpos

If (e >Q Then

g= SortedMeans(d + 1)

SortedMeans(d + 1) = SortedMeans(d)

SortedMeans(d) =g
End If

Next d

Next c

d= NumMeansAtLevel

'display means for ThisLevel

ThisTop = FNodel (0). Height * (thisLevel + 1) + MNodel (0). Height * thisLevel + VGap * (thisLevel *2

1) + FNodel (0). Height - VGap

Left = Middle - MaxWidth /2

For c=0 Tod -1
If (Instances (Thislnst). PartsTree (SortedMeans (c)). NumFunctions > 0) Then

SectWidth = Instances (Thislnst). PartsTree (SortedMeans (c)). NumFunctions Model (0). Width
(Instances (Thisinst). PartsTree (SortedMeans (c)). NumFunctions - 1) * HGap

Model (SortedMeans(c)). Left = Left + SectWidth /2- MNodei (0). Width 2
Else

SectWidth =0
Model (SortedMeans(c)). Left = Left

End If

Model (SortedMeans(c)). Top = ThisTop

Left = Left + SectWidth + HGap

195

Next c
'display functions for ThisLevel

Left = Middle - MaxWidth /2

ThisTop = ThisTop, - VGap - Rodel (0). Height

For c=0 To d-1

If (instances (Thisinst). PartsTree (SortedMeans (c)). NumFunctions > 0) Then

Fore =0 To Instances (Thislnst). PartsTree (SortedMeans (c)). NumFunctions -1
NumFunc2 = NumFuncZ +1

NumLine5 = NumLineS +I
Load FNode2(NumFuncZ)

FNodeZ(NumFunc2). Visible = True

FNode2(NumFunc2). Top = ThisTop

FNode2(NumFunc2). Left = Left

FNode2 (NumFunc2). Text =
FNodel (instances (Thislnst). PartsTree (SortedMeans (c)). Functions (e)). Text

Left = Left + Rodel (0). Width + HGap

Load Line5(Numl-ine5)

Line5(Numl-ine5). Visible = True

Line5 (NumUine5). Xl = FNode2 (NumFunc2). Left + FNode2 (NumFunc2). Width /2

Line5(NumUne5). Yl = FNode2(NumFunc2). Top + FNode2(NumFunc2). Height

Line5 (NumLine5). X2 = MNodel (instances (Thislnst). PartsTree (SortedMeans (c)). NodeID). Left

MNodel (Instances (Thisinst). PartsTree (Sorted Means (c)). Nod el D). Width /2

Ljne5 (NumLine5). Y2 = MNode 1 (Instances (Thisinst). PartsTree (SortedMeans (c)). NodeID). Top

If (SortedMeans(c) > 0) Then

NumUne5 = NumLine5 +I

Load Uine5(Numl-ine5)

Line5(NumLine5). Visible = True

Line5 (NumLine5). Xi = Line5 (NumLine5 - 1). Xl

Uine5 (NumUne5). Yl = Line5 (NumLine5 - 1). Yl - FNodel (0). Height

Line5(NumLine5). X2 =
MNodel (Instances (Thisinst). PartsTree (Instances (Thisl nst). PartsTree (Sorted Means (c)). Parents (0)). NodeID). Left

+ MNodel (0). Width /2

Line5 (NumLine5). Y2 = Line5 (NumLine5 - 1). Yl - MNodel (0). Height - VGap

End If

Next e
Else

NumUne5 = NumLine5 +I
Load Ljne5 (NumLIne5)
Ljne5 (NumLine5). Visible = True

196

Line5(NumLine5). Xl = MNodel (SortedMeans(c)). Left + MNodel (0). Width /2

Line5 (NumLine5). Yl = MNodel (SortedMeans (c)). Top

Line5(NumUne5). X2 =
MNodel (Instances (Thislnst). PartsTree (Instances (This I nst). PartsTree (SortedMeans (c)). Parents (0)). Nodell)). Left

+ MNodel (0). Width /2

Line5(NumLine5). Y2

MNodel (Instances (Thisinst). PartsTree (Instances (Thisinst). PartsTree (Sorted Means (c)). Parents (0)). Node I D). Top

+ MNodel (0). Height

End If

Next c

Next thisLevel

End If

If (LeftDisplay = "Parts Tree") Then

'First cleanup from previous
Beep

For c=I To NumFunc2

Unload FNode2(c)

Next c
NumFunc2 =0
For c=I To NumLine5

Unload Lme5(c)

Next c
NumLine5 =0
For c=0 To Instances (Thisinst). Num Parts -I

Linel (c). Visible = True

UpdateMeansNode (c)

Next c
End If

End Sub

End Sub

Public Sub PrintThisTree

VScrollI. Visible = False

HScroll I Nisible = False

PflntForm

VScrollI. Visible = True

HScroll I Nisible = True

End Sub

197

'OPEN A NEW FMT FILE

Public Sub OpenThisTree

Dim sFile As String

Dim c, d As Integer

Dim sPicFile, sCADFile As String

Dim Truel'alse, Title As String

Dim t As Integer

Dim tmp As String

With CommonDialogi

filter = "All Files (*. fmt) I *. fmt"

. Show0pen

If Len (. filename) =0 Then

Exit Sub

End If

sFile = fiename

End With

Caption = sFile
Open sFile For Input As #1 'Open file for Input.

'INPUT DOCUMENT TYPE - GENERIC / INSTANCE

Input #1, DocType

If (DocType = "GENERIC") Then

Input #1, Numinstances

ReDim Instances (Numinstances)

For 1=0 To NumInstances -1
Input # 1, Instances (i) -By
Input #1, Instances (i). Date

Input #1, Instances (i). Description

Input #1, Instances (i). DrgNo

Input # 1, Instances (i). Name

'input #1, Instances (i). FileName

'input #1, Instances (i). Path

Me. Caption = Instances (0). Name

'INPUT PARTS TREE

Input #1, tmp

Input #1, Instances (i). NumParts

ReDim Instances (i). PartsTree (Instances (i). NumParts)

For c=0 To Instances (i). NumParts -1

198

Input #1, tmp

Input #1, Instances (i). PartsTree (c). NodelD

Input #1, Instances (i). PartsTree (c). Name

Input #1, Instances (i). PartsTree(c). CADfiletype

Input #1, Instances (i). PartsTree(c). Xpos

Input #1, Instances (i). PartsTree (c). Ypos

Input #1, Instances (i). PartsTree (c). NumParents

ReDim Instances (i). PartsTree (c). Parents (Instances (i). PartsTree (c). NumParents)

For d=0 To Instances (i). PartsTree (c). NumParents -I
Input #1, Instances (i). PartsTree (c). Parents (d)

Next d

Input #1, Instances (i). PartsTree (c). NumChildren

ReDim Instances (i). PartsTree (c). Children (Instances (i). PartsTree (c). NumChildren)

For d=0 To Instances (i). PartsTree (c). NumChildren -I
Input #1, Instances (i). PartsTree (c). Children (d)

Next d

Input #1, Instances (i). PartsTree (c). NumFunctions

ReDim Instances (i). PartsTree (c). Functions (Instances (i). PartsTree (c). Nu m Functions)

For d=0 To Instances (i). PartsTree (c). NumFunctions -I
Input # 1, Instances (i). PartsTree (c). Functions (d)

Next d

Input #1, Instances (i). PartsTree (c). NumOfParams

ReDim Instances (i). PartsTree (c). ParamName (Instances (i). PartsTree (c). NumOfParams)

ReDim Instances (i). PartsTree (c). ParamValue (Instances (i). PartsTree (c). NumOfParams)

ReDim Instances (i). PartsTree (c). Param Unit (Instances (i). PartsTree (c). Nu mOf Params)

For d=0 To Instances (i). PartsTree (c). NumOfParams -I
Input # 1, Instances (i). PartsTree (c). ParamName (d)

Input #1, Instances (i). PartsTree (c). ParamValue (d)

Input #1, Instances (i). PartsTree (c). ParamUnit (d)

Next d

Input #1, Instances (i). PartsTree (c). NumOfSupps

ReDim Instances (i). PartsTree (c). SuppEntity (Instances (i). PartsTree (c). NumOtSupps)

ReDim Instances (i). PartsTree (c). SuppType (Instances (i). PartsTree (c). NumOfSupps)

ReDim Instances (i). PartsTree (c). SuppStatus (Instances (i). PartsTree (c). NumOfSupps)
For d=0 To Instances (i). PartsTree (c). NumOfSupps -1

Input #1, Instances (i). PartsTree(c). SuppEntity(d)

Input # 1, Instances (i). PartsTree (c). SuppType (d)
Input #1, Instances (i). PartsTree (c). SuppStatus (d)

Next d

Input #1, Instances (i). PartsTree (c) -MyPathAndFile

199

Input #1, Instances (i). PartsTree(c). MyFileName

Input #1, Instances (i). PartsTree(c). MyCADfileType

Input #1, Instances (i). PartsTree(c). Level

Input #1, Instances (i). PartsTree (c). PartSuppression

Input M, Instances (i). PartsTree (c). myDravAng
'Instances (i). PartsTree (c). Name = Instances (i). PartsTree (c). PartSuppression

'If (c > 0) Then

' Load Model (c)

'End If

'UpdateMeansNode (c)

Next c

'INPUT FUNCTION FAMILY TREE

Input W, tmp

Input #1, Instances (i). NumFuncts

ReDim Instances (i). FunctTree (Instances (i). NumFuncts)

For c=0 To Instances (i). NumFuncts -I
Input #1, tmp

Input# 1, Instances (i). FunctTree (c). NodelD

Input #1, Instances (i). FunctTree (c). Name

Input # 1, Instances (i). FunctTree (c). Xpos

Input# 1, Instances (i). FundTree (c). Ypos

Input #1, Instances (i). FunctTree (c). NumParents

ReDim Instances (i). FunctTree (c). Parents (Instances (i). FunctTree (c). NumParents)

For d=0 To Instances (i). FunctTree (c). NumParents -1
Input #1, Instances (i). FunctTree (c). Parents (d)

Next d

Input #1, Instances (i). FunctTree (c). NumChildren

ReDim Instances (i). FunctTree (c). Children (Instances (i). FunctTree (c). NumChildren)

For d=0 To Instances (i). FunctTree (c). NumChildren -I
Input #1, Instances (i). FunctTree (c). Children (d)

Next d

Input #1, Instances (i). FunctTree (c). NumMeans

ReDim Instances (i). FunctTree (c). Means (Instances (i). FunctTree (c). NumMeans)

For d=0 To Instances (i). FunctTree (c). NumMeans -1
Input # 1, Instances (i). FunctTree (c). Means (d)

Next d

Input #1, Instances (i). FunctTree (c). Level

'If (c > 0) Then

200

' Load Model (c)

'End If

'Update FunctNode (c)

Next c

'INPUT RELATIONS

Input #1, tmp

Input # 1, Instances (i). NumRels

ReDim Instances (i). ReIM (Instances (i). NumRels)

ReDim Instances (i). Rel F (Instances (i). Nu m Reis)
ReIsGrid. Rows = Instances (i). NumRels +1
For c=0 To Instances (i). NumRels -I

Input # 1, Instances (i). ReIM (c)

Input #1, Instances (i). ReIF(c)

ReIsGrid. Row =c+I
ReIsGrid. Col =0
ReIsGrid. Text = Instances (i). PartsTree (Instances (i). ReIM (c)). Name

ReIsGrid. Col =I
ReIsGrid. Text = Instances (i). FunctTree (Instances (i). ReIF(c)). Name

Next c
'Parts Tree Link-Lines

Input #1, tmp

ReDim Instances (i). Ll xl (Instances (i). NumParts)

ReDim Instances (i). 1-1 yl (Instances (i). NumParts)

ReDim Instances (i). Ll x2 (Instances (i). NumParts)

ReDim Instances (i). Ll yZ (Instances (i). NumParts)

For c=I To Instances (i). NumParts -1
'Load Linel (c)

'Linel (c). Visible = True

Input # 1, Instances (i). 1-1 xl (c)

'Linel (c). X1 = Instances (i). Ll xl (c)

Input #1, Instances (i). Llyl (c)

'Linel (c). Yl =Instances (i). Ll yl (c)

Input # 1, Instances (i). Ll xZ (c)

'Line I (c). X2 = Instances (i). Ll x2 (c)

Input # 1, Instances (i). 1-1 y2 (c)

'Linel (c). YZ = Instances (i). Lly2(c)

Next c
'Function Tree Link-Lines

Input #1, tmp

201

ReDim Instances (i). L2xl (Instances (i). NumFuncts)

ReDim Instances (i). L2yl (Instances (i). NumFuncts)

ReDim Instances (i). L2x2 (Instances (i). NumFuncts)

ReDim Instances (i). L2y2 (Instances (i). NumFuncts)

For c=I To Instances (i). NumFuncts -I
'Load Une2(c)

'Line2(c). Visible = True

Input #1, Instances (i). L2xl (c)

'Line2(c). Xi =Instances (i). L2xl (c)

Input #1, Instances (i). L2yl (c)

line2(c). Yl = Instances (i). L2yl (c)

Input #1, Instances (i). I-W(c)

'Line2(c). X2 = Instances (i). L2-x2(c)

Input #1, Instances (i). L2y2(c)

'Line2(c). Y2 = Instances (i). L2y2(c)

Next c
'INPUT SUPPRESSED PARTS

'Input # 1, Instances (i). NumSuppParts

'if (Instances (i). NumSuppParts > 0) Then

ReDim Instances (i). SuppParts (Instances (i). NumSuppParts)

For c=0 To Instances (i). NumSuppParts -1
Input #1, Instances (i). SuppParts (c)

' Next c
'End If

Next i

'Elself (DocType = "INSTANCE") Then

input # 1, Instances (0). By

input # 1, Instances (0). Date

input #1, Instances (0). Description

input #1, Instances (0). DrgNo

input #1, Instances (0). Name

'input #1, Instances (0). FileName

'input #1, Instances (0). Path

End If

Close #1 ' Close file.

Regenerateinstances (0)

Updatelnstance (0)

ShowCurrentInstance -1,0
Form_Resize

End Sub

202

'SAVE CURRENT FMT FILE

Public Sub SaveThisTree

Dim sFile As String

Dim c, d, I As Integer

Dim sPicFile As String

Dim mX, mY As Integer

With CommonDialogi

'To Do

'set the flags and attributes of the

'common dialog control

. Filter = "All Files (*. fmt) I *. fmt"

. ShowSave

If Len (. filename) =0 Then

Exit Sub

End If

sFile = fiename

End With

Caption = sFile
Open sFile For Output As #1 ' Open file for output.

sPicFile = Mid (sFile, 1, Len (sFile) - 4)

UpdateUnesArrays (Thislnst)

'OUTPUT DOCUMENT TYPE - GENERIC / INSTANCE

Pfint #1, DocType

If (DocType = "GENERIC") Then

PHnt #1, Numinstances

For i=0 To NumInstances -I
Hint W, Instances (i). By

Hint # 1, Instances (i). Date

Pfint #1, Instances (i). Description

Pfint #1, Instances (i). DrgNo

PHnt #1, Instances (i). Name

'Pdnt #1, Instances (i). FileName

'Pdnt # 1, Instances (i). Path

'OUTPUT PARTS TREE

203

Priint #1, "PARTS_TREE"

Print #1, Instances (i). NumParts

For c=0 To Instances (i). NumParts; -I
Print #1, "NODU + Str(c)

Print # 1, Instances (i). PartsTree (c). NodelD

Print #1, Instances (i). PartsTree(c). Name

Print #1, Instances (i). PartsTree (c). CADfiletype

Print #1, Instances (i). PartsTree (c). Xpos

Print #1, Instances (i). PartsTree (c). Ypos

Print #1, Instances (i). PartsTree (c). NumParents

For d=0 To Instances (i). PartsTree (c). NumParents -I
Print # 1, Instances (i). PartsTree (c). Parents (d)

Next d

Print #1, Instances (i). PartsTree (c). NumChildren

For d=0 To Instances (i). PartsTree (c). NumChildren -I
Print # 1, Instances (i). PartsTree (c). Children (d)

Next d

Print #1, Instances (i). PartsTree (c). NumFunctions

For d=0 To Instances (i). PartsTree (c). NumFuncfions -I
Print #1, Instances (i). PartsTree(c). Functions(d)

Next d

Print #1, Instances (i). PartsTree (c). NumOfParams

For d=0 To Instances (i). PartsTree (c). NumOfParams -I
Print # 1, Instances (i). PartsTree (c). ParamName (d)
Print #1, Instances (i). PartsTree (c). ParamValue (d)
Print # 1, Instances (i). PartsTree (c). ParamUnit (d)

Next d
Print #1, Instances (i). PartsTree (c). NumOfSupps

For d=0 To Instances (i). PartsTree (c). NumOfSupps -1
Print # 1, Instances (i). PartsTree (c). SuppEntity (d)

Print #1, Instances (i). PartsTree (c). SuppType (d)

Print # 1, Instances (i). PartsTree (c). SuppStatus (d)

Next d

Print #1, Instances (i). PartsTree (c). MyPathAndFile

Print #1, Instances (i). PartsTree (c). MyFileName

Print # 1, Instances (i). PartsTree (c). MyCADfileType

Print #11, Instances (i). PartsTree (c). Level

Print #1, Instances (i). PartsTree (c). PartSuppression

Priint # 1, Instances (i). PartsTree (c). myDraMng
Next c

204

'OUTPUT FUNCTION FAMILY TREE

Print #1, "FUNCTION-TREE"

Print #1, Instances (i). NumFuncts

For c=0 To Instances (i). NumFuncts -1
Print #1, "NODU + Str(c)

Print #1, Instances (i). FunctTree (c). NodelD

Print #1, Instances (i). FunctTree (c). Name

Print #1, Instances (i). FunctTree (c). Xpos

Print #1, Instances (i). FunctTree (c). Ypos

Print # 1, Instances (i). FunctTree (c). NumParents

For d=0 To Instances (i). FunctTree (c). NumParents -1
Print #1, Instances (i). FunctTree(c). Parents(d)

Next d

Print #1, Instances (i). FunctTree (c). NumChildren

Ford =0 To Instances (i). FunctTree (c). NumChildren -I
Print #1, Instances (i). FunctTree (c). Children (d)

Next d

Print #1, Instances (i). FunctTree (c). NumMeans

For d=0 To Instances (i). FunctTree (c). NumMeans

Print #1, Instances (i). FunctTree (c). Means (d)

Next d

Pflnt #1, Instances (i). FunctTree (c). Level

Next c

'OUTPUT RELATIONS

Print #1, "RELATIONS"

Print #1, Instances (i). NumRels

For c=0 To Instances (i). NumRels -I
Print #1, Instances (i). ReIM (c)

Print #1, Instances (i). ReIF (c)

Next c

'Parts Tree Link-Unes

Pflnt #1, "LINEI"

For c=1 To Instances (i). NumParts -I
Print #1, Instances (i). Ll xl (c)

Print #1, Instances (i). Llyl (c)

Print # 1, Instances (i). Ll x2 (c)

Print #1, Instances (i). Lly2(c)

205

Next c
'Function Tree Link-Unes

Print #1, "LINE2"

For c=I To Instances (i). NumFuncts -I
Print #1, Instances (i). L2xl (c)

Print W, Instances (i). L2yl (c)

Print #1, Instances (i). L2x2 (c)

Print #1, Instances (i). L2y2 (c)

Next c

'OUTPUT SUPPRESSED PARTS

'Print #1, Instances (i). NumSuppParts

'If (Instances (i). NumSuppParts > 0) Then

For c=0 To Instances (i). NumSuppParts -I
Print #1, Instances (i). SuppParts (c)

Next c
'End If

Next i

'Elself (DocType = "INSTANCE") Then

Pdnt #1, Instances (0). By

Nint #1, Instances (0). Date

Pdnt #1, Instances (0). Description

PHnt #1, Instances (0). DrgNo

Pdnt #1, Instances (0). Name

'Pdnt #1, Instances (0). FileName

'Pdnt #1, Instances (0). Path

End If

Close #1 'Close file.

Me. Caption = sPicFile
End Sub

'ADD A NEW INSTANCE

Public Sub AddNewInstance

Dim c, d As Integer

Dim Copy0f As Integer

Copy0f = InstGrid. Row

NumInstances = NumInstances +I

206

ReDim Preserve Instances (Numinstances - i)

Thislnst = NumInstances -1

'Copy contents of instance Copy0f to Thisinst

Instances (Thisinst). By = Instances (Copy Of). By

Instances (Thisl nst). Date = Instances (Copy0q. Date

Instances (Thislnst). DescCiption = Instances (CopyOf). Description

Instances (Thisinst). DocType = "INSTANCE"

Instances (Thislnst). DrgNo Str(Thisinst)

Instances (Thislnst). Name "COPY OF (" + Str(CopyOq ++ Instances (Copy0q. Name

Me. Caption = Instances (0). Name

Instances (Thisinst). NumFuncts = Instances (Copy0q. NumFuncts

Instances (Thislnst). NumParts = Instances (Copy0q. NumParts

Instances (Thisinst). NumRels = Instances (Copy0q. NumRels

ReDim Instances (Thislnst). PartsTree (Instances (Thisinst). NumParts)

For c=0 To Instances (Thisinst). NumParts -I
Instances (Thisinst). PartsTree (c). NodelD = Instances (Copy Of). PartsTree (c). NodelD

Instances (Thislnst). PartsTree (c). Name = Instances (Copy0q. PartsTree (c). Name

Instances (This] nst). PartsTree (c). CADfiletype = Instances (Copy0q. PartsTree (c). CADfiletype

Instances (Thisinst). PartsTree (c). Xpos = Instances (CopyOQ. PartsTree (c). Xpos

Instances (Thislnst). PartsTree (c). Ypos = Instances (CopyOQ. PartsTree (c). Ypos

Instances (Thisinst). PartsTree (c). NumParents = Instances (CopyOQ. PartsTree (c). NumParents

ReDim Instances (Thisinst). PartsTree (c). Parents (Instances (Thisinst). PartsTree (c). NumParents)

For d=0 To Instances (Thisinst). PartsTree (c). NumParents -I
Instances (ThisInst). PartsTree (c). Parents (d) = Instances (CopyOQ. PartsTree (c). Parents (d)

Next d

Instances (Thislnst). PartsTree (c). NumChildren = Instances (CopyOQ. PartsTree (c). NumChildren

ReDim Instances (Thisinst). PartsTree (c). Children (Instances (Thislnst). PartsTree (c). NumChildren)

For d=0 To Instances (Thisinst). PartsTree (c). NumChildren -I
Instances (Thisinst). PartsTree (c). Children (d) = Instances (CopyOQ. PartsTree (c). Children (d)

Next d

Instances (Thislnst). PartsTree (c). NumFunctions = Instances (CopyOQ. PartsTree (c). NumFunctions

ReDim Instances (Thisinst). PartsTree (c). Functions (Instances (Thislnst). PartsTree (c). NumFunctions)

For d=0 To Instances (Thislnst). PartsTree (c). NumFunctions -1
Instances (Thisinst). PartsTree (c). Functions (d) = Instances (CopyOQ. PartsTree (c). Functions (d)

Next d

Instances (Thislnst). PartsTree (c). NumOfParams = Instances (CopyOQ. PartsTree (c). NumOfParams

ReDim Instances (Thisinst). PartsTree (c). ParamName (Instances (Thislnst). PartsTree (c). NumOfParams)

ReDim Instances (Thisinst). PartsTree (c). ParamValue (Instances (Thislnst). PartsTree (c). NumOfParams)

207

ReDirn Instances (Thislnst). PartsTree (c). ParamUnit (Instances (Thisinst). PartsTree (c). NumOfParams)

Ford =0 To Instances (Thislnst). PartsTree (c). NumOfParams -1
Instances (Thisinst). PartsTree (c). Param Name (d) = Instances (Copy0f). PartsTree (c). ParamName (d)

Instances (Thislnst). PartsTree (c). ParamValue (d) = Instances (CopyOQ. PartsTree(c). ParamValue (d)

Instances (Thislnst). PartsTree (c). ParamUnit(d) = Instances (CopyOQ. PartsTree (c). ParamUnit(d)

Next d

Instances (Thislnst). PartsTree (c). NumOfSupps = Instances (CopyOQ. PartsTree (c). NumOfSupps

ReDim Instances (Thislnst). PartsTree (c). SuppEntity (Instances (Thislnst). PartsTree (c). NumOfSupps)

ReDim Instances (Thislnst). PartsTree (c). SuppType (Instances (Thisinst). PartsTree (c). NumOfSupps)

ReDirn Instances (Thisinst). PartsTree (c). SuppStatus (Instances (Thislnst). PartsTree (c). NumOfSupps)

For d=0 To Instances (Thislnst). PartsTree (c). NumOfSupps -1
Instances (Thisinst). PartsTree (c). SuppEntity (d) = Instances (CopyOQ. PartsTree (c). SuppEntity (d)

Instances (Thislnst). PartsTree (c). SuppType (d) = Instances (Copy0q. PartsTree (c). SuppType (d)

Instances (Thislnst). PartsTree (c). SuppStatus (d) = Instances (CopyOQ. PartsTree (c). SuppStatus (d)

Next d

Instances (Thislnst). PartsTree (c). MyPathAndFile = Instances (Copy0l). PartsTree (c). MyPathAnd File

Instances (Thisl nst). PartsTree (c). MyFil e Name = Instances (CopyOQ. PartsTree (c). MyFileName

Instances (Thislnst). PartsTree (c). MyCADfileType = Instances (CopyOQ. PartsTree (c). MyCADfileType

Instances (Thislnst). PartsTree (c). Level = Instances (CopyOQ. PartsTree (c). Level

Instances (Thislnst). PartsTree (c). PartSuppression = Instances (Copy0l). PartsTree (c). PartSuppression

Instances (Thisinst). PartsTree (c). myDraiming = Instances (CopyOQ. PartsTree (c). myDravving
Next c:
ReDim Instances (Thislnst). FunctTree (Instances (Thislnst). NumFuncts)

For c=0 To Instances (Thisinst). NumFuncts -I
Instances (Thisinst). FunctTree (c). NodelD = Instances (CopyOQ. FunctTree (c). NodelD
Instances (Thisinst). FunctTree (c). Name Instances (Copy0o. FunctTree (c). Name

Instances (Thisl nst). Fun ctTree (c). Xpos Instances (CopyOQ. FunctTree (c). Xpos

Instances (Thisinst). FundTree (c). Ypos Instances (Copy 00. Fu nctTree (c). Ypos

Instances (Thisinst). FunctTree (c). NumParents = Instances (Copy0o. FunctTree (c). NumParents

ReDirn Instances (Thislnst). FunctTree (c). Parents (Instances (Thislnst). FunctTree (c). NumParents)

For d=0 To Instances (Thislnst). FunctTree (c). NumParents -I
Instances (Thislnst). FundTree (c). Parents (d) Instances (Copy0l). FunctTree (c). Parents (d)

Next d

Instances (Thisinst). FunctTree (c). NumChildren Instances (CopyOQ. FunctTree (c). NumChildren

ReDirn Instances (Thisinst). FunctTree (c). Children (Instances (Thisinst). FunctTree (c). NumChildren)

For d=0 To Instances (Thislnst). FunctTree (c). NumChildren -I
Instances (Thislnst). FunctTree (c). Children (d) = Instances (Copy0q. FunctTree (c). Children (d)

Next d

Instances (Thisinst). FundTree (c). NumMeans = Instances (CopyOQ. FunctTree (c). NumMeans
ReDirn Instances (Thisinst). FunctTree (c). Means (Instances (Thislnst). FunctTree (c). NumMeans)

208

Ford= 0 To Instances (Thisinst). FunctTree(c). NumMeans -I
Instances (Thisinst). FunctTree (c). Means (d) = Instances (CopyOQ. FunctTree (c). Means (d)

Next d

Instances (Thislnst). FunctTree (c). Level = Instances (Copy0q. FunctTree (c). Level

Next c
ReDim Instances (Thislnst). ReIM (Instances (This I nst). N u mRels)
ReDim Instances (Thisinst). RelF (Instances (Thisinst). NumRels)

For c=0 To Instances (Thisinst). NumRels -I
Instances (Thisinst). ReIM (c) = Instances (Copy0f). ReIM (c)

Instances (Thisinst). ReIF(c) = Instances (CopyOQ. ReIF(c)

Next c
ReDim Instances (Thisinst). Ll xi (Instances (Thislnst). NumParts)

ReDim Instances (Thisinst). Liyl (Instances (Thislnst). NumParts)

ReDim Instances (Thisinst). Ll x2 (Instances (Thisl nst). N um Parts)

ReDim Instances (ThisInst). Ll yZ (Instances (Thislnst). NumParts)

For c=1 To Instances (Thisinst). NumParts -I
Instances (Thislnst). Ll xl (c) = Linel (c). X1

Instances (Thisinst). Li yl (c) = Linel (c). Yl

Instances (Thislnst). Ll xZ(c) = Unel (c). X2

Instances (Thisinst). Ll yZ (c) = Linel (c). Y2

Next c
ReDim Instances (This I nst). L2x I (Instances (Thislnst). NumFuncts)

ReDim Instances (Thislnst). L2yl (Instances (Thisinst). NumFuncts)

ReDim Instances (Thislnst). L2x2 (Instances (Thisinst). NumFuncts)

ReDim Instances (Thislnst). L2y2 (Instances (Thisinst). NumFuncts)

For c=I To Instances (Thisinst). NumFuncts -I
Instances (Thislnst) -L2xl (c) = LineZ (c). X1

Instances (Thisinst). L2yi (c) = Line2(c). Yl

Instances (Thislnst). L2x2 (c) = Line2 (c). X2

Instances (Thisinst). L2y2(c) = Line2(c). Y2

Next c
'Instances (Thisinst). NumSuppParts = Instances (CopyOQ. NumSuppParts

'If (Instances (Thislnst). NumSuppParts > 0) Then

ReDim Instances (Thislnst). SuppParts (Instances (Thislnst). NumSuppPatts)

For c=0 To Instances (Thislnst). NumSuppParts -1
Instances (Thislnst). SuppParts (c) = Instances (CopyOQ. SuppParts (c)

Next c
'End If

'Instances (ThisInst) = Instances (Copy0f)

Instances (Thisinst). Name = "Instance "+ Str(ThisInst)

209

lnstGdd. Rows = InstGHd. Rows +I

InstGdd. Row = InstGfld. Rows -1
InstGfld. Text = Instances (Thisinst). Name

Updateinstance (Thislnst)

'ShowCurrentinstance Thisinst, ThisInst:

End Sub

Pfivate Sub DeleteSelectedinstance

'UPDATE LINK LINES

End Sub

Private Sub UpdateLinesArrays (myInst As Integer)

Dim c As Integer

ReDim Instances (myInst). L1 A (Instances (mylnst). NumParts)

ReDim Instances (myInst). L1 yl (Instances (mylnst). NumParts)

ReDim Instances (myInst). L1 x2 (Instances (myl nst). N um Parts)

ReDim Instances (myInst). L1 y2 (Instances (mylnst). NumParts)

For c=1 To Instances (myInst). NumParts; -I
Instances (mylnst). Llxl (c) = linel (c). X1

Instances (myInst). L1 yl (c) = Linel (c). Y1

Instances (myInsQ. L1 x2 (c) = Linel (c). X2

Instances (mylnst). L1 y2 (c) = Linel (c). Y2

Next c
ReDim Instances (mylnst). L2xl (Instances (mylnst). NumFuncts)

ReDim Instances (mylnst). L2yl (Instances (mylnst). NumFuncts)

ReDim Instances (mylnst). L2x2 (Instances (mylnst). NumFuncts)

ReDim Instances (myInst). L2y2 (Instances (mylnst). NumFuncts)

For c=1 To Instances (mylnst). NumFuncts -I
Instances (mylnst). L2xi (c) = Line2 (c). X1

Instances (myInst). L2y1 (c) = Une2 (c). Y1

Instances (mylnst). L2x2 (c) = Line2(c). X2

Instances (mylnst). L2y2 (c) = Lme2(c). Y2

Next c
End Sub

Public Sub Viewlnstances(TrueOrFalse As Boolean)

DispInstances = TrueOrFalse

If (DispInstances = True) Then

Frame2. Visible = True

Elself (DispInstances = False) Then

210

Frame2. Visible = False

End If

Form_Resize

End Sub

Private Sub Updateinstance (myInst As Integer)

'Instancing Layout

Text4 (0). Text = Instances (myInst). Name

Text4(i). Text = Instances (mylnst). DrgNo

Text4 (2). Text = Instances (myInst). By

Text4 (3). Text = Instances (myInst). Date

Text4(4). Text = Instances (myInst). Description

lnstGdd. ColWidth(O) = InstGrid. Width

'InstGfld. Col =0
'InstGrid. Row = myInst
'InstGrid. Text = Instances (myInst). Name

End Sub

'DISPLAY THE SELECTED INSTANCE

Private Sub ShowCurrentinstance (Oldinst As Integer, NewInst As Integer)

Dim c As Integer

If (Oldinst = Newlnst) Then

Exit Sub

End If

'Unload Old Instance

If ((Oldlnst >= 0) And (Oldlnst <> Newinst)) Then

UpdatelinesArrays (Oldlnst)

For c: =I To Instances (Oldinst). NumParts -1
Unload Model (c)

Unload Linel (c)

Next c
For c=1 To Instances (Oldinst). NumFuncts -1

Unload Model (c)

Unload Line2(c)

Next c

If (LeftDisplay = "Part Oriented Function/Means Tree") Then

For c=I To NumFunc2

Unload FNode2(c)

211

Next c
For c=I To NumLine5

Unload Line5(c)

Next c
End If

If (RightDisplay = "Function Oriented Function/Means Tree") Then

For c=I To NumMeans2

Unload MNode2(c)

Next c
For c=I To NumLineG

Unload Line6(c)

Next c
End If

End If

'Load New Instance

Thisinst = Newlnst

If (Oldlnst <> Newlnst) Then

For c=1 To Instances (Newinst). NumParts -I
Load Model (c)

Load Unel (c)

Unel (c). Visible = True

Unel (c). Xl = Instances (Thisinst). Llxl (c)

Unel (c). Yl = Instances (Thislnst). Ll yl (c)

Une I (c). X2 = Instances (ThisInst). Ll x2 (c)

Une I (c). Y2 = Instances (Thisinst). Li y2 (c)

Next c
For c=1 To Instances (Newinst). NumFuncts -I

Load Model (c)

Load Line2(c)

Une2(c). Visible = True

Une2 (c). Xl = Instances (Thisinst). L2xi (c)

Une2(c). Yl = Instances (ThisInst). L2yl (c)

Une2(c). X2 = Instances (Thislnst). L2x2(c)

Line2(c). Y2 = Instances (Thisinst). L2y2(c)

Next c

For c=0 To Instances (Newinst). NumParts -I
UpdateMeansNode (c)

212

If (Instances (Newinst). PartsTree(c). PartSuppression = "True") Then

Model (c). BackColor = myCol
Else

'MNodel (c). BackColor = vbWhite
End If

Next c
For c=0 To Instances (Newlnst). NumFuncts -I

UpdateFunctNode (c)

Next c
End If

RedrawLeftDisplay

RedrawRightDisplay

End Sub

'UPDATEINSTANCES

Private Sub Regeneratelnstances(Sellnst As Integer)

Dim c As Integer

InstGdd. Rows = Numinstances

InstGHd. Col =0
For c=0 To Numinstances -I

InstGrid. Row =c
InstGrid. Text = Instances (c). Name

Next c

InstGrid. Row = Selinst

End Sub

Private Sub SuppressPart(myPart As Integer)

Dim c As Integer

'First ckeck to see if it is already suppressed

If (Instances (Thislnst). PartsTree(myPatt). PartSuppression "True") Then

MsgBox ("Part is ALREADY SUPPRESSED")

'Part is NOT suppressed, so find all children to suppress too

Else

Instances (Thisinst). PartsTree (myPart). PartSuppression = "True"

Model (Instances (Thisinst). PartsTree (myPart). NodeID). BackColor = myCol

End If

End Sub

213

' UNSUPPRESS A PART

Private Sub ResumePart(myPart As Integer)

Dim c As Integer

Dim Suppressed As Boolean

'First ckeck to see if it is already resumed
If (Instances (Thislnst). PartsTree (myPart). PartSuppression = "False") Then

MsgBox ("Part is NOT SUPPRESSED")

'Part is suppressed, so find all children to resume too
Else

Instances (Thisinst). PartsTree (myPart). PartSuppression = "False"

Model (Instances (Thisinst). PartsTree (myPart). NodeID). BackColor vbWhite
End If

End Sub

Private Sub ShowParams (myInst As Integer)

'Dim c, nParams As Integer

nParams = Instances (mylnst). PartsTree(Se I Part). Nu m OfParams

ParamsGrid. Rows = nParams +I

If (nParams > 0) Then

For c=0 To nParams -1
ParamsGHd. Row =c+I
ParamsGHd. Col =0

If (SelPart >= 0) Then

DisplayPartsParams SelPart

End If

End Sub

Private Sub ShowRelations (mylnst As Integer)

Dim c, nRels As Integer

nRels = Instances (mylnst). NumRels

ReIsGrid. Rows = nRels +I

If (nRels > 0) Then

For c=0 To nRels -I
ReisGdd. Row =c+I

ReIsGdd. Col =0
ReIsGfldJext = Instances (mylnst). PartsTree (Instances (mylnst). ReIM (c)). Name
ReIsGHd. CoI =I
ReIsGHd. Text = Instances (mylnst). FunctTree (Instances (mylnst). RelF (c)). Name

Next c
End If

End Sub

214

'SUPPRESS FEATURE

Sub FeatureSuppression (SearchStr, Action)

Dim swApp As Object 'Variable used to hold the SIdWorks object

Dim Model As Object 'Variable used to hold the ModelDoc object
Dim feat As Object 'Variable used to hold the current Feature object
Dim featureName As String

Const swDocPART =I 'These definitions are consistent with type names

Const swDocASSEMBLY =2 'defined in swconst. bas

Const swDocDRAWING =3
Set swApp CreateObject ("Sid Works. Appl ication")

Set Model swApp. ActiveDoc 'Attach to the active document

If Model Is Nothing Then Exit if no model is active

Exit Sub

End If

If (Model. GetType <> swDocPART) Then 'Do not allow drawings or assemblies

Msg = "Only Allowed on Parts" 'Define message
Style vbOKOnly ' OK Button only

Title "Error" Define title

Call MsgBox(Msg, Style, Title) ' Display error message
Exit Sub Exit this program

End If

Set feat = Model. FirstFeature Get the I st feature in part
Do While Not feat Is Nothing 'While we have a valid feature

Let featureName = feat. Name Get the name of the feature

If InStr(l, featureName, SearchStr, 1) Then ' See if the feature name

res = Model. SelectByID(featureName, "BODYFEATURE", 0,0,0)

If (Action = "SUPPRESS") Then User chose to suppress

res = Model. EditSuppress() ' Suppress the feature

Elself (Action = "RESUME") Then ' User chose to unsuppress

res Model. EditUnsuppresso Unsuppress the feature

End If

End If

Set feat feat. GetNextFeature Get the next feature

Loop 'Continue until no more features exist
End Sub

215

Notes:

216

Appendix 11

Case Studies - Further Examples

AIIA Guindy Machine Tools Ltd. Lathe Chuck

This section contains thefollowing material:

1) Figures Aff. 1.1 - AII 1.13, sample manufacturing drawings for a Production

GMT Lathe Chuck;

2) Figures AIII. 14 - AIII. 25, the Generic Master Parts created in

ProlENGINEERfor the Chuckjamily,

3) Figures AII. I. 26-AII. I. 38, manufacturing drawings created in ProlENGINEER

for a sample Chuck;

4) Figures AILI. 39 - AILI. 4Z variants of the Master Model representing actual
Production Chucks,

217

�

C5 1
I.

C) ;
-I

th

In

tn

z AI o 2. 9w&-,,,

ýc
-m (30

w RE w

43UI334 MAVAUQ niM

Figure A11.1.1 - GMT Chuck Assembly - Example Manufacturing Drawing

218

I
a

IC4

;Z

0.

. La
2 tr

w

ro
so

I

iý IQ:

C%I:

CIL

I

0

m

Figure A11.1.2 - GMT Chuck Back-Plate - Example Manufacturing Drawing

219

7

73
60f 7

G
141

cr

XP
F

10 cr) I? 1 C14 LfN

cn -
C*4

E
04

3
2 2f

c c

r

60 f7 *030
0-060

A
- 22f7 : 0.020 0.01 1

1
A

1

Chumfersa5X45
1

+0.018 W'H7
1+06

@

Anq(t3l*Wos36*- 222pWas 22.53P SA. K/29.11.90
ALYCRATIOtt Imbot ARIA DAYS 140-ME

Scale of*., % 0' J-P mov"Ol. -O

13ALANCING WEIG , En 32
......... " 'a

'fnwwom,

PH-CNC ýB-200 CAD 0 8-1-
........ ,,,... . . 58 G OR C

TINSIANYMCAME TONS PARMELAR.
MAOFIAS - 601 302

___[_ _4

Figure A11.1.3 - GMT Chuck Balancing Weight - Example Manufacturing

Drawing

220

. r.

M.: ti

C-2 4). : ý1-4

II
rtl.

I r7

Figure AILIA - GMT Chuck Base-Jaw - Example Manufacturing Drawing

221

1
561 mN

00 oc'i CRq qq do cc do ++ Plot

. q.
A,

- : tý --i .4 . W4 4 ý1.

---. 4 104,
-21

rD +
if,,

1

6,6 C; .6a ci ci ci 0 C, +++
LR

W N,
C6

00T

v 10,0 LHOOOL

i cr Z: co 'M :
a:) C4 L>.

, bq

oot ci

YI TO-0101 9HOOCZ

oosz
91

GH9
2c 0) C ez

,, Xc P 90
-w ;z L) o C: CL

d P,
of -

c>
06c

C:

= L0
I W; .0 iE 151 '- a-L z
-. 0 4le

. 0i
C, - ýb

x

I= tr 0 Im -P -. I C4 wN

-I- -1 - it) .=

a

zs

s: z

, 41 96'ZZ
%" rwo- I.

I m V, 0'0- I

10 W) * go Ii
00 t

ýT -Ly 90
1 01

ý .0 -0 1 co I I
IAJ

I ca

Li 6314.11AS jMAM'WfJO IITINn SPXI 113ANýQj

Figure A11.1.5 - GMT Chuck Body - Example Manufacturing Drawing

222

345 6 .79

'670 vv P LV, 77 I
1

55.50 =0 Lil

. 490
H cli

-- IT T/ 11 1
G In co

C*4

F M55x2 F
Core size - 52. BO

H 62Og6

10 c 2R 2 nos. Equispaced

c

40 Dimple hole
A Nos. Equispaced on-iýý"ED A

10200 '1
-moaf)

0 04:
402ý L-. tv-46tvi

(K
ALTERATILVI WEEX AREA DME NAME aty Assy No.

scj, V4ttrbb

CQUAR EnIQ v

............... Group. .
ý? P7FP9? Mý m,,, chtne

Do-* RV%At#s (14-12-00-cs. Toughen
A-q 4: 94ced a=

UINDY MACHINE TOOLS LIMITED 04-72-00-20
" t1213141 15 1 6 T7 ea-

Figure A11.1.6 - GMT Chuck Collar - Example Manufacturing Drawing

223

-3 4

69kg6 r-A-1

r-b-, %6W 9.5A

15,50

3 6--V

tn

39 9 fj7: 041 AF

C;

EE

Nos Equispaced

on 5e"'P. C. D

CC

'0025
35.447 0'

3W (7 -ms- A

CHAMFER : 0.5X45' 0.050
Cq96 : OUN

AUERATION INDEX AMA DATE NAME 01Y. Assy two.

Sea! # Da. n_ IS 114. me""81

COVER EN 9
. 3B-1654 PHNC

Appd.

....................... mbdA 4 0,9.14O. C" Toughen
? 5-30 RC

R"WRAUNWINE TOOLS BTA9. (lot) 04770-00-04
MADRAS - 600 302 't

13146

Figure A11.1.7 - GMT Chuck Cover - Example Manufacturing Drawing

224

in

Al

- I-

I

I.!

r7

ýJ CýTjmfer! IX4q 21 H7_

C

.. IS

IGO' VWf%&qW L '"a S S-1 T
CAL 81620 woA ri0l

ALTINATION INVIX ARIA DAIK MAMA 01fl A., It..

poollomalle" seats maw"
=Lm -=orlal

I

1- SAE 6620 HATID JAW .1 APpd. Treatment I

I CHD-08-1
. thin* I I -... 56- 58 Rc

TmE Giumor m4amom Tom raivArE tra 04-73-00-00
MACIRAS - 601-301

Figure A11.1.8 - GMT Chuck Ilard-Jaw - Example Manufacturing Drawing

225

346 7- NJ a

Serra lioQj/jo_go VyLvýLvi

cn

(DI G

Cl) IN 7

DI

II

C

F

0

C

�p

F-
A

Q:
COI

Remove all-sharp corners,

I1
I

w,.
H

" I. L.
F

9

20 g6 -0-007 0.02(
-0-006 A

16 arg 6- 1-7.

ALTIPAT104 1"Cle 4 APIA OAT# WAK" ow I Am No.

IC84 are. " L%lb . . 15 melpowt,
En-36

................... 5 5.6 &C
h VE Cill, V, 0YN CA VZF TV OL S AW YA AFLA7.

MADRAS - 601 302 04-72-00-1: ýA
34 7- SII Aý-

Figure A11.1.9 - GMT Chuck Lever - Example Manufacturing Drawing

226

2 34
77

to-I

4

Ir
r

G

0, ý, -0, F

[F

QD
E

tI
er I

do

LC)

Lni +f" .

10-1 120
A

w OU6 7--t, rft-ý6,1 wLA To Ill.,

AiTtRATION thM ARIA DATS NAME DIV. A&SIM10. I

stole Dre"A at* Is,

SOFTJAW Clad.
L

4

1

M. S
.

11111 -

E

Ap 4. Aped.

.,., 2e -z5Q , Doll. Doe ftplaced sy ME Gumr mummi rums PRim TE im '04-73-00- 0 -'ý MADRAS - 601 502 ý1 . - - 21-IIA15 6 7

Figure AILLIO - GMT Chuck Soft-Jaw - Example Manufacturing Drawing

227

45'

tt

r

45!

c
.9 to %I

M12 V. X
D"I

t\[V\
tn c Fc

I

A

ALIERAT113N INDCX AM
vestgna tion

W NUT i: I O * l

ý 9 o*0,, *, *, *, *4-*0,, 0 3B 2000
A V Pd

i Gruc, f P ICNC.....
., 0, I&#&. #a0. . - 6*0,0,0, *0 ,,, 000o* 5ý% 0*01-kcipq

lp
"lor,

- GUINDY MACHINE TOOLS LIMITED -
CKNNAI - 60t 302

3.1 4

-0a l7gS ýI -0: 01

ATE NAME Otyl Assy No,

: L-9) CAM Patwftb
"A"

_%
9, a

TOUGHE

04-72-00-21
71aI.

Figure A11.1.11 -GMT Chuck T-Nut- Example Manufacturing Drawing

228

I- W

9 Ck:

IF

il A -Ir!
li: IJ: K9

iI

I, b

/ ..

Q

i

x

I

s'

W

'0

.e Co !? tie

"0

A 3.13
0

u 11

!Z

Figure A11.1.12 - GMT Chuck Wedge - Example Manufacturing Drawing

PA

i
ul:

: I. S-

i i : In. 9
v; , I

I
:I

229

45

5x45' 2 , 35.6-

670 +0'1

DAg, I rl
G

U")

-1
FL

wl

I

_1
40.1 620 H7

It
o-

r - 0,5x45' 9- Nos at 85 PCD
r

25'

E 25!

35*
12

C 120
P'y 0

12 t

A
+0.030 0 I

1;

ALTERATIM RE DATC NAMC 0t Ass No INDEX A A y .
Designaton scate P"" 21-147 CAN Pttrftb

v MR AP APT .
En 9 ,

1

... Amd . rr"t""b
ýA-2000PHCNC.,,

........... Gcwfwo
llr% Rep acts TOUCHE I

Rpr aced by 2,5-lorlc

WINDY MACHINE TOOLS LIMITED (ýib 04-72-00-18 MADPA2 - (. 01 . 704 1

13145.1 6 7V

Figure A11.1.13 - GMT Chuck Wedge Adaptor - Example Manufacturing

Drawing

230

Outer Diameter 200mm
Back Seat Diameter 170mm
Back Seat Depth 6mm
Back Bore Diameter 102mm
Front Bore Diameter 111mm
Front Bore Depth 19mm
Body Seat Diameter 19mm
Body Seat Depth 8.3mm
Lever Hole PCD 133.4mm
Lock Bolt Offset 15mm
Depth 33mm
Fix Bolt PCD 160mm
Fix Bolt Diameter lomm
Fix Bolt Offset Angle 200
Lock Bolt Diameter lomm
Lock Bolt Depth 20mm
Weight Depth 22mm
Weigh Height 60mm
Num Jaws 3

Figure 5.1.14 - GMT Generic Back Plate - CAD Model & Parameters

Par'ampiteit 4,.,
Width 60mm
Depth 22mm
Chuck Diameter 200mm
Seat Diameter 185mm
Bore Diameter 16mm
Straight Bore_Depth lomm
Seat Offset 14mm

231

Weight - CAD Model & Parameters

P-11 ow-ft 14
Length 67.5mm
Width 60mm
Height 65mm
Body Contact Width 35mm
T Nut Width mm
Cut Out Width 14mm
Wedge Separation 19mm
Nose Major Width
Nose Minor Width
Wedge Angle
Jaw Contact Length
Bore Horiz Offset
Bore Vertical Offset
Bore Diameter
Bore Depth
Nose Depth
Major Conatct Height
Minor Contact H -I-ht Lever Offset

Figure 5.1.16 - GMT Generic Base Jaw - CAD Model & Parameters

Patýameter valuLi. ý.:,
Length 70mm
Width 35mm
Height 40mm
Fillet 2

_14MM Major Bolt Diameter 20mm
Minor Bolt Diameter 14mm
Bolt Separation 19mm

Non-Persistent Feature'l Status
Back Plate Bolt Hole Resume
Lever Pivot Hole Resume

Figure 5.1.17 - GMT Generic Body - CAD Model & Parameters

232

tk zi-VaI6
Lip Diameter 67mm
Seat Diameter 55.5mm
Top Bore Diameter 49mm
Heig ht 34mm
Lip Depth 6
Core Diameter 55mm
Cylinder Diameter 62mm
Cut Width lomm
Cut Height 4.5mm
PCD 60mm

-Non - Persittetit . -, Feature
Icut Out lResume

Figure 5.1.18 - GMT Generic Collar - CAD Model & Parameters

Parameter Value
Outer Diameter 82mm
Chamfer End _ 76.7mm
Bore Diameter 48mm
Cylinder Diameter 53mm
Chamfer Offset 3mm
Height 51mm
Lip Offset 44mm
Bolt Major Diameter llmm
Bolt Major Depth 5.7mm
Bolt Minor Diameter 6.6mm
Loc Hole Diameter 6mm
Loc Hole Offset Angle 160
Bolt PCD 68mm-
Num Jaws 3

Non-Persistent Fea=ture Status
.......... Pin.. Holes IResume

I

Figure 5.1.19 - GMT Generic Cover - CAD Model & Parameters

233

"I Paraoiefte
Length 75.07mm
Width 35mm
Height 50mm
Major Bolt Diameter 20mm
Minor Bolt Diameter 14mm
Bolt Separation 19mm

Non-Persistent Feature Status

Figure 5.1.20 - GMT Generic Hard Jaw - CAD Model & Parameters

Value
Length 55mm
Centre Ball Diameter 20mm
Rear Ball Diameter 16mm
Front Ball Diameter 18mm
Centre Offset 17mm

Non- ersistent Feature Status

Figure 5.1.21 - GMT Generic Lever - CAD Model & Parameters

234

Length 70mm
Width 35mm
Height 40mm
Major Bolt Diameter 20mm
Minor Bolt Diameter 14mm
Bolt Separation 19mm

Figure 5.1.22 - GMT Generic Soft Jaw - CAD Model & Parameters

parameter value
Leng th 40mm
Heig ht 21.5mm
Base Width 17mm
Top Width 23mm
Nose Width llmm
Bore Diameter - - 12mm
Hole Separation _ 19mm
Back Hole offset 9mm

Figure 5.1.23 - GMT Generic 'T'-Nut - CAD Model & Parameters

235

Petameter. 4,. Vajue. -,
Outer Diameter 102mm
Bolt Offset Angle 35"
Wedge Width 27mm
Num Bolts 3mm
Num Jaws 3mm
Minor Bolt Diameter 9mm
Major Bolt Diameter 14mm
Major Bolt Depth 8.5mm
Seat Diameter 67mm
Seat Depth 6
Bore Diameter 62mm
Height 13.5mm
Wedge Offset 35.6mm

Non-Persistent Feature-I Status I
lResume

Figure 5.1.24 - GMT Generic Wedge - CAD Model & Paramete

Paeameter.,
- Value

, Outer Diameter 102mm
Bolt Offset Angle 350
Wedge Width 27mm
Num Bolts 3mm
Num Jaws 3mm
Minor Bolt Diameter 9mm
Major Bolt Diameter 14mm
Major Bolt Depth 8.5mm
Seat Diameter 67mm
Seat Depth 6mm
Bore Diameter 62mm
Height 13.5mm
Wedge Offset 35.6mm

Figure 5.1.25 - GMT Generic Wedge Adaptor - CAD Model & Parameters

236

Figure A11.1.26 - GMT Chuck Assembly - Pro/ENGINEER Drawing

237

ol 9
C\j

C; 0

LLI

ISL

cq
cd , 4

CO Cf)

Z-

120< ta ()

Figure AII. 1.27 - GMT Back Plate - Pro/ENGINEER Drawing

238

2 3

A

60
- 14

rýA 10-

77-/

c 3 80 31.00*

25 30

Lg

37. OC

Rloo
A

R92.50 3-

ý*- 22.70

D SECTION A-A
SCALE 1: 1

E

ALTERATION NAME PTJA
DATE 01/01/99
OTY I
SCALE I

BALANCING WEIGHT
ORG. NO.

F

3B-200OPH-CNC 04.72.00-13

IN18111NOYMMINIT881SPNIMM Aff. [

Figure A11.128 - GMT Balancing Weight - Pro/ENGINEER Drawing

239

Z-
Q<
w (3
U) U)

Figure AII. 129 - GNIT Base Jaw - Pro/ENGINEER Drawing

240

-7 4i N
- r-

z
I. - tu
W-W TT
co < CS R 0

in
:! 7 T.

ca CV)

J*

- L- -- - --------- ----
T F

Figure AII. 130 - GMT Body - Pro/ENGINEER Drawing

241

2 3

-55.50

419

10

34

SE TION A-A
'A SCALE 1: 1

52.80

62

4.50

JI

A8A
L

--- - ---------
Nýý

-------- - ----

0 4

go /tý-oo*

30/ 30

SECTION B-B
SCALE 11

ALTERATION NAME PTJA
DATE 01/01/99
OTY 1
SCALE 1: 1

COLLAR DRG. NO.
F

3B-200OPH-CNC 04.72.00.20

Mfae#INBrN. 4CNINITOVISPBIV. 4TrIM.

Figure AII. 131 - GNIT Collar - Pro/ENGINEER Drawing

242

30.00*

A

6 60 .
T

SECTION A-A SE SCA SC SCALE I: 1

c

JI

AA
L

--- -------- -------

D

082

068

ALTERATION NAME PTJA
DATE 01/01/99
OTY I
SCALE 1: 1

COVER DRG. NO.
F

3B-200OPH-CNC 04.72.00.04

Figure AII. 132 - GMT Cover - Pro/ENGINEER Drawing

243

A

I

C

0

I

I 2I3

(a)

4

(50

/
ALTERATION NAME PTJA

DATE 01/01/99
OTY I
ASSY I

HARD-JAW
ORG. NO.

3B-200OPH-CNC 04.72.00-00

MISYMYNICHINITOVISMINTFIT8.

Figure AII. 133 - GMT Hard Jaw - Pro/ENGINEER Drawing

244

Figure AII. 134 - GMT Lever - ProXNGINEER Drawing

245

AA

\ -

014 - RIO

A r/l

0
(40)

SECTION A-A

ALTERATION NAME PTJA

DATE 01/01199

OTY 1
ASSY I

SOFT JAW
DRG. NO.

3B-200OPH-CNC 04.72.00.10

rN, ts, uls, uy, Y. 4eNlNi. r, ovispBiy, f rum. I

Figure A11.135 - GMT Soft Jaw - Pro/ENGINEER Drawing

246

II11

A

I

C

0 1
45

50

I

F

SECTION
SCALE 2

ALTERATION NAME PTJA
DATE 01/01/99
OTY I
SCALE 1: 1

'T' NUT
DRG. NO.

3B-200OPH-CNC 04.72.00.21

IN SOINDYNACNINIMISPNINIFITO.

Figure A11.136 - GMT 'T' Nut - Pro/ENGINEER Drawing

247

z: 2

Figure AII. 137 - GMT Wedge - Pro/ENGINEER Drawing

248

II11

SECTION A-A
SCALE 1: 1

A

13

5

C

0

ALTERATION NAME PTJA
DATE 01/01/99
OTY I
SCALE I

WEDGE ADAPTOR
DRG. NO.

3B-200OPH-CNC 04.72-00-18

Rf offlWYNICNIN rovispBlyirf IN

Figure AIM 38 - GNIT Wedge Adaptor - Pro/ENGINEER Drawing

249

Tnp

PPW
ý`*o ;.,. ift

SIDE

3D-VIEW

Figure A11.1.39 - Assembly Views for the 3B200-PHCNC Chuck

250

TOP

rn^ikrr

CROSS
SECTION

-

.

3D-VIEW

Figure AII. I. 40 - Assembly Views for the 3B200-PHNC Chuck

251

SIDE -""RR

3D-VIEW

Figure A11.1.41 - Assembly Views for the 2BI65-PHCNC Chuck

252

TOP

FRONT

CROSS
SECTION

SIDE

3D-VIEW

Figure A11.1.42 - Assembly Views for the 413250-PHNC Chuck

253

A11.2 Lucas Varity Drive End Shield Casting

For the purposes ofillustration, four members ofthe castingJamily are given here.:

1) Figures A112.1 - AII. 2.4, variants of the Master Model representing actual
Production Castings,

2) Figures Aff 2.5 - AII 2.8, manufacturing drawings created in Mechanical

Desktop,

3) Figures AII. 2.9 -AII. 2.10, Renderings of the Lucas Casting.

254

Lug Separation 75mm
Lug Diameter 28mm
Lug Angle 901,
Fillet 2 14mm
Wedqe Diameter 102mm
Wedge Depth 24mm
Base Depth 12.7mm
Cylinder Height 76.2
Cylinder Bottom Diamet 114.3mm
Top Boss Height 42mm
Top Boss Diameter 64mm
Middle Boss Height 5mm
Middle Boss Diameter 96.05mm
Centre Hole Diameter 26.5mm
Bump Angle 300
Bump Radius 12mm
Key Angle 450

I',
-Noj7. -Persiitent Feature=Status, ý.,,.

IMiddle Boss iResumed"i

Figure A11.2.1 - Drive-End-Shield No. V6211-673 - CAD Model & Parameters

Parameter value..
Lug Separation 75MM
Lug Diameter 30mm
Lug Angle 900
Fillet 2 15mm
Wedge Diameter 102mm
Wedge Depth 44.7MM
Base Depth 12.7mm
Cylinder Height 103.2mm
Cylinder Bottom Diamet 114.3mm
Top Boss Height 17.5mm
Top Boss Diameter 82mm
Middle Boss Height
Middle Boss Diameter
Centre Hole Diameter 26.5mm
Bump Angle 750

, Bump Radius 12mm
lKey Angle 100

I Non-Persistent Feature Status
IMiddle Boss supp

.

Figure All. 2.2 - Drive-End-Shield No. V6211-679 - CAD Model & Parameters

255

Lug Separation 75mm
Lug Diameter 28mm
Lug Angle 200
Fillet 2 14mm
Wedqe Diameter 102mm
Wedge Depth 42mm
Base Depth 12.7mm
Cylinder Height 94.4mm
Cylinder Bottom Diamet 114.3mm
Top Boss Height 23.8mm
Top Boss Diameter 92.2mm
Middle Boss Height
Middle Boss Diameter
Centre Hole Diameter 26.5mm
Bump Angle 30"

, Bump Radius 2mm
lKey Angle 450

Non-Persistent Fe4ture St atu
IMiddle Boss

-I pp

Figure A11.2.3 - Drive-End-Shield No. V6211-695 - CAD Model & Parameters

Parameter Valde
Lug ýýaration 75mm
Lug Diameter 28mm
Lug Angle 900
Fillet 2 14mm
Wedge Diameter 102mm
Wedge Depth 39mm
Base Depth 12.7mm
Cylinder Height 94.4mm
Cylinder Bottom Diamet 114.3mm
Top Boss Height 23.8mm
Top Boss Diameter 92.2mm
Middle Boss-Height
Middle Boss Diameter
Centre Hole Diameter 26.5mm
Bump Angle 300
Bump Radius 12mm
Key Angle 450

I Non-Persistent Feature status
I. Middle Boss supp

tio

AM

Figure A11.2.4 - Drive-End-Shield No. V6211-710 - CAD Model & Parameters

256

Is 4

IS OX

;

. 011

Ila
2

Figure All. 2.5 - Drive-End-Shield No. V6211-673 - Manufacturing Drawing

257

5-1-21111 II-1314g ;a "I ,
B i - S!

.
St

M-

HTF V% i I I

Fi
,

aR

Figure All. 2.6 - Drive-End-Shield No. V6211-679 - Manufacturing Drawing

258

! 11 ii
a-

MM

3.2

-01

4,

8-1-190

giTy

i31..

Figure All. 2.7 - Drive-End-Shield No. V6211-695 - Manufacturing Drawing

259

HENN; -!

51

Figure All. 2.8 - Drive-End-Shield No. V6211-710 - Manufacturing Drawing

260

: ', .%

,
Lwll

.. x

-

- 31 1

iL

7ý7

Figure All. 2.9 - Drive-End-Shield - Rendering

*11 -24
14ZA*7

261

"AL iM 7T

YA t
gash-

we 1411ir :4'

Olt

fit

Figure A11.2.10 - Drive-End-Shield - Rendering (Section View)

262

A11.3 HydroFlow Rotary Drum Filter System

This section contains the following material:

Figures AII. 3.1 - AII. 3.6, sample manufacturing drawings the Rotary Drum Filter

Unit

Figures AII. 1.7 - AII. 1.14, the Generic Master Parts created in Solidworks for the
Rotary Drum Filter Unit

263

OMW -I

ct

ol
........

LZ Q:: (C) co I

Figure A11.3.1 - Hydroflow Rotary Drum Weld Assembly- Example

Manufacturing Drawing

OMW

zz

ct

264

Figure All. 3.2 - Hydroflow Drum Flush Pipe Assembly- Example

Manufacturing Drawing

265

d

i- i ýý 44,

+t

Figure A11.3.3 - Hydroflow Drum Body Fabrication- Example Manufacturing

Drawing

266

LO 00

0
-a

0 C)
LO
0
0)

OZ

0
00

------------ I ----------- 0
C) F----- ----- ----- ---------- -. a- Q

Q.

n :m
CC) D 0)

ý. ý IL

LLJ Li Ww
F-
V)

ry

m

. cc I

:7 V)

--------------------- -----------------------
St

0091 90,

2

01
.
2.

0 2 Mu 0.

...... ;

0
z-/o+ Jog

0

Figure A11.3.4 - Hydroflow Drum Main Guard- Example Manufacturing

Drawing

267

-4 -'---

Figure A11.3.5 - flydroflow Drum End Guard- Example Manufacturing

Drawing

268

1111Q1

d
L

------- -------

*I - H-
01 "

a

01 10 111

Figure A11.3.6 - Hydroflow End Plate - Example Manufacturing Drawing

269

I
ýý FA m P" Iýýý KV, UAW
Length@Base Extrude Th 1043mm
Dl@Holel 115.5mm
Height@Sketchl 540mm
Width@Sketchl 541mm

INUM No EcM tw bow Dow WWw U* -laux
D9Sw ODL a I* w 1ý0 I

lb qb % qb % qb t? ý %A cl 0+ %ebiblb

DIIýZ-BOC tk

plý2

ov.

Aml

Non-Pergistent Feature

Figure 5.3.7 - HydroFlow Drum Body - CAD Model & Parameters

Parameter Value
Dl@Sketchl 444mm
Dl@Holel 70.5mm

Figure 5.3.8 - HydroFlow Drum Endplate - CAD Model & Parameters

270

r-

-
INIZE

YOW kw" i0als WNXIOW U* -161 x
&a a1 10 w

lb Qb lb qb 4h qb 0-% 14 4. % co 0+ QbttBq)t

Pimal
PIý2
Plwa3
O-W

M

tk
0
v

NON Pwt

Figure 5.3.9 - HydroFlow Drum Flush Pipe - CAD Model & Parameters

Dl@Sketchl 200mm
Dl@Extrude Base 5mm
Offset@Sketch2 50mm
Dl@Sketch2 linch

, PCD@Sketch3 174mm
IFlush An-qle@Sketch3 30"

I,

Figure 5.3.10 - HydroFlow Drum Flush Pipe End - CAD Model & Parameters

271

aa 16 OTO I

Pl-. 2
PIý3
ongm

g Ewatc
I Saso-E

C&EA
A)osl

i

F
LI,

Dl@Base Extrude Thin 1039mm
Depth@Sketchl 502mm
Roof Angle@Sketchl 75.10
Dl@Sketch3 150mm

CI

Figure 5.3.11 - HydroFlow Drum Main Guard - CAD Model & Parameters

Parameter valud. -
Length@Sketchl 150mm
Corner Radius@Sketchl 68.5mm
Thickness@Base Extrude 3mm

f* EdA Yew OW 10016 Wndaw d*

D GS 12 &(A a so WT4

eqt%tqbqhO - %14 GLACI 0+ teelbb

Ull \, 'E\
ý

1* p"It.,

Plm. 2
PIM63
Ongin

"I

Non-Persistent Feature ýt-atuiý

Figure 5.3.12 - HydroFlow Drum Viewing Window - CAD Model & Parameters

272

Outer Dia@Sketchl 460mm
Bore Diameter@Sketchl 409mm
Thickness@Sketchl 3mm
Lip Diameter@Sketchl 450mm
D5@Sketchl 36mm

Figure 5.3.13 - HydroFlow End Plate - CAD Model & Parameters

ý_Parameter Value
Dl@Base Extrude 970mm
Lip Height@Sketchl 5mm
Lip Angle@Sketchl 50

ob ioub Mo4ow
MM

D 90 la & [it aI to a 1; 0 ?

t lb th lb Q qb e-% 14 4k SL OF 0+ qWbibb
AEPI

'IMESH -CL*,

pl::
plans3l

Ho

Figure 5.3.14 - HydroFlow Mesh Clamp - CAD Model & Parameters

273

