573 research outputs found

    An investigation of mechanics in nanomachining of Gallium Arsenide

    Get PDF
    The first two decades of the 21st Century have seen a wide exploitation of Gallium Arsenide (GaAs) in photoemitter device, microwave devices, hall element, solar cell, wireless communication as well as quantum computation device due to its superior material properties, such as higher temperature resistance, higher electronic mobility and energy gap that outperforms silicon. Ultra-precision multiplex two dimensional (2D) or three dimensional (3D) free-form nanostructures are often required on GaAs-based devices, such as radio frequency power amplifiers and switches used in the 5G smart mobile wireless communication. However, GaAs is extremely difficult to machine as its elastic modulus, Knoop hardness and fracture toughness are lower than other semiconductor materials such as silicon and germanium. This PhD thesis investigated the mechanics of nanomachining of GaAs through molecular dynamics (MD) simulation combined with single point diamond turning (SPDT) and atomic force microscope (AFM) based experimental characterization in order to realise ductile-regime nanomachining of GaAs, which is the most important motivation behind this thesis. The investigation of mechanics of nanomachining of GaAs included studies on cutting temperature, cutting forces, origin ductile plasticity, atomic scale friction, formation mechanism of sub-surface damage, wear mechanism of diamond cutting tool. Machinability of GaAs at elevated temperature was also studied in order to develop thermally-assisted nanomachining process in the future to facilitate plastic material deformation and removal. This thesis contributed to address the knowledge gaps such as what is the incipient plasticity, how does the sub-surface damage form and how does the diamond cutting tool wear during nanomachining of GaAs. Firstly, this thesis investigated the cutting zone temperature, cutting forces and origin of plasticity of GaAs material, including single crystal GaAs and polycrystalline GaAs during SPDT process. The experimental and MD simulation study showed GaAs has a strong anisotropic machinability. The simulation results indicated that the deformation of polycrystalline GaAs is accompanied by dislocation nucleation in the grain boundaries (GBs) leading to the initiation of plastic deformation. Furthermore, the 1/2 is the main type of dislocation responsible for ductile plasticity in polycrystalline GaAs. A phenomenon of fluctuation from wave crests to wave troughs in the cutting forces was only observed during cutting of polycrystalline GaAs, not for single-crystal GaAs. Secondly, this thesis studied the atomic scale friction during AFM-based nanomachining process. a strong size effect was observed when the scratch depths are below 2 nm in MD simulations and 15 nm from the AFM experiments respectively. A strong quantitative corroboration was obtained between the MD simulations and the AFM experiments in the specific scratch energy and more qualitative corroboration with the pile up and the kinetic coefficient of friction. This conclusion suggested that the specific scratch energy is insensitive to the tool geometry and the speed of scratch used in this investigation but the pile up and kinetic coefficient of friction are dependent on the geometry of the tool tip. Thirdly, this thesis investigated formation mechanism of sub-surface damage and wear mechanism of diamond cutting tool during nanomachining of GaAs. Transmission Electron Microscope (TEM) measurement of sub-surface of machined nanogrooves on GaAs and MD simulation of dislocation movement indicated the dual slip mechanisms i.e. shuffle-set slip mechanism and glide-set slip mechanism, and the creation of dislocation loops, multi dislocation nodes, and dislocation junctions governed the formation mechanism of sub-surface damage of GaAs during nanomachining process. Elastic-plastic deformation at the apex of the diamond tip was observed in MD simulations. Meanwhile, a transition of the diamond tip from its initial cubic diamond lattice structure sp3 hybridization to graphite lattice structure sp2 hybridization was revealed. Graphitization was, therefore, found to be the dominant wear mechanism of the diamond tip during nanometric cutting of single crystal GaAs. Finally, in MD simulations study of cutting performance at elevated temperature, hotter conditions resulted in the reduction of cutting forces by 25% however, the kinetic coefficient of friction went up by about 8%. While material removal rate was found to increase with the increase of the substrate temperature, it was accompanied by an increase of the sub-surface damage in the substrate. Moreover, a phenomenon of chip densification was found to occur during hot cutting which referred to the fact that the amorphous cutting chips obtained from cutting at low temperature will have lower density than the chips obtained from cutting at higher temperatures.The first two decades of the 21st Century have seen a wide exploitation of Gallium Arsenide (GaAs) in photoemitter device, microwave devices, hall element, solar cell, wireless communication as well as quantum computation device due to its superior material properties, such as higher temperature resistance, higher electronic mobility and energy gap that outperforms silicon. Ultra-precision multiplex two dimensional (2D) or three dimensional (3D) free-form nanostructures are often required on GaAs-based devices, such as radio frequency power amplifiers and switches used in the 5G smart mobile wireless communication. However, GaAs is extremely difficult to machine as its elastic modulus, Knoop hardness and fracture toughness are lower than other semiconductor materials such as silicon and germanium. This PhD thesis investigated the mechanics of nanomachining of GaAs through molecular dynamics (MD) simulation combined with single point diamond turning (SPDT) and atomic force microscope (AFM) based experimental characterization in order to realise ductile-regime nanomachining of GaAs, which is the most important motivation behind this thesis. The investigation of mechanics of nanomachining of GaAs included studies on cutting temperature, cutting forces, origin ductile plasticity, atomic scale friction, formation mechanism of sub-surface damage, wear mechanism of diamond cutting tool. Machinability of GaAs at elevated temperature was also studied in order to develop thermally-assisted nanomachining process in the future to facilitate plastic material deformation and removal. This thesis contributed to address the knowledge gaps such as what is the incipient plasticity, how does the sub-surface damage form and how does the diamond cutting tool wear during nanomachining of GaAs. Firstly, this thesis investigated the cutting zone temperature, cutting forces and origin of plasticity of GaAs material, including single crystal GaAs and polycrystalline GaAs during SPDT process. The experimental and MD simulation study showed GaAs has a strong anisotropic machinability. The simulation results indicated that the deformation of polycrystalline GaAs is accompanied by dislocation nucleation in the grain boundaries (GBs) leading to the initiation of plastic deformation. Furthermore, the 1/2 is the main type of dislocation responsible for ductile plasticity in polycrystalline GaAs. A phenomenon of fluctuation from wave crests to wave troughs in the cutting forces was only observed during cutting of polycrystalline GaAs, not for single-crystal GaAs. Secondly, this thesis studied the atomic scale friction during AFM-based nanomachining process. a strong size effect was observed when the scratch depths are below 2 nm in MD simulations and 15 nm from the AFM experiments respectively. A strong quantitative corroboration was obtained between the MD simulations and the AFM experiments in the specific scratch energy and more qualitative corroboration with the pile up and the kinetic coefficient of friction. This conclusion suggested that the specific scratch energy is insensitive to the tool geometry and the speed of scratch used in this investigation but the pile up and kinetic coefficient of friction are dependent on the geometry of the tool tip. Thirdly, this thesis investigated formation mechanism of sub-surface damage and wear mechanism of diamond cutting tool during nanomachining of GaAs. Transmission Electron Microscope (TEM) measurement of sub-surface of machined nanogrooves on GaAs and MD simulation of dislocation movement indicated the dual slip mechanisms i.e. shuffle-set slip mechanism and glide-set slip mechanism, and the creation of dislocation loops, multi dislocation nodes, and dislocation junctions governed the formation mechanism of sub-surface damage of GaAs during nanomachining process. Elastic-plastic deformation at the apex of the diamond tip was observed in MD simulations. Meanwhile, a transition of the diamond tip from its initial cubic diamond lattice structure sp3 hybridization to graphite lattice structure sp2 hybridization was revealed. Graphitization was, therefore, found to be the dominant wear mechanism of the diamond tip during nanometric cutting of single crystal GaAs. Finally, in MD simulations study of cutting performance at elevated temperature, hotter conditions resulted in the reduction of cutting forces by 25% however, the kinetic coefficient of friction went up by about 8%. While material removal rate was found to increase with the increase of the substrate temperature, it was accompanied by an increase of the sub-surface damage in the substrate. Moreover, a phenomenon of chip densification was found to occur during hot cutting which referred to the fact that the amorphous cutting chips obtained from cutting at low temperature will have lower density than the chips obtained from cutting at higher temperatures

    Predictive Modeling for Ductile Machining of Brittle Materials

    Get PDF
    Brittle materials such as silicon, germanium, glass and ceramics are widely used in semiconductor, optical, micro-electronics and various other fields. Traditionally, grinding, polishing and lapping have been employed to achieve high tolerance in surface texture of silicon wafers in semiconductor applications, lenses for optical instruments etc. The conventional machining processes such as single point turning and milling are not conducive to brittle materials as they produce discontinuous chips owing to brittle failure at the shear plane before any tangible plastic flow occurs. In order to improve surface finish on machined brittle materials, ductile regime machining is being extensively studied lately. The process of machining brittle materials where the material is removed by plastic flow, thus leaving a crack free surface is known as ductile-regime machining. Ductile machining of brittle materials can produce surfaces of very high quality comparable with processes such as polishing, lapping etc. The objective of this project is to develop a comprehensive predictive model for ductile machining of brittle materials. The model would predict the critical undeformed chip thickness required to achieve ductile-regime machining. The input to the model includes tool geometry, workpiece material properties and machining process parameters. The fact that the scale of ductile regime machining is very small leads to a number of factors assuming significance which would otherwise be neglected. The effects of tool edge radius, grain size, grain boundaries, crystal orientation etc. are studied so as to make better predictions of forces and hence the critical undeformed chip thickness. The model is validated using a series of experiments with varying materials and cutting conditions. This research would aid in predicting forces and undeformed chip thickness values for micro-machining brittle materials given their material properties and process conditions. The output could be used to machine brittle materials without fracture and hence preserve their surface texture quality. The need for resorting to experimental trial and error is greatly reduced as the critical parameter, namely undeformed chip thickness, is predicted using this approach. This can in turn pave way for brittle materials to be utilized in a variety of applications.Ph.D.Committee Chair: Liang, Steven; Committee Co-Chair: Li, Xiaoping; Committee Member: Garmestani, Hamid; Committee Member: Griffin, Paul; Committee Member: Melkote, Shreyes; Committee Member: Neu, Richar

    An atomistic investigation on the nanometric cutting mechanism of hard, brittle materials

    Get PDF
    The demand for ultra precision machined devices and components is growing at a rapid pace in various areas such as the aerospace, energy, optical, electronics and bio-medical industries. Because of their outstanding engineering properties such as high refractive index, wide energy bandgap and low mass density, there is a continuing requirement for developments in manufacturing methods for hard, brittle materials. Accordingly, an assessment of the nanometric cutting of the optical materials silicon and silicon carbide (SiC), which are ostensibly hard and brittle, has been undertaken. Using an approach of parallel molecular dynamics simulations with a three-body potential energy function combined with experimental characterization, this thesis provides a quantitative understanding of the ductile-regime machining of silicon and SiC (polytypes: 3C, 4H and 6H SiC), and the mechanism by which a diamond tool wears during the process. The distinctive MD algorithm developed in this work provides a comprehensive analysis of thermal effects, high pressure phase transformation, tool wear (both chemical and abrasive), influence of crystal anisotropy, cutting forces and machining stresses (hydrostatic and von Mises), hitherto not done so far. The calculated stress state in the cutting zone during nanometric cutting of single crystal silicon indicated Herzfeld–Mott transition (metallization) due to high pressure phase transformation (HPPT) of silicon under the influence of deviatoric stress conditions. Consequently, the transformation of pristine silicon to β-silicon (Si-II) was found to be the likely reason for the observed ductility of bulk silicon during its nanoscale cutting. Tribochemical formation of silicon carbide through a solid state single phase reaction between the diamond tool and silicon workpiece in tandem with sp3-sp2 disorder of carbon atoms from the diamond tool up to a cutting temperature of 959 K has been suggested as the most likely mechanism through which a diamond cutting tool wears while cutting silicon. The recently developed dislocation extraction algorithm (DXA) was employed to detect the nucleation of dislocations in the MD simulations of varying cutting orientation and cutting direction. Interestingly, despite of being a compound of silicon and carbon, silicon carbide (SiC) exhibited characteristics more like diamond, e.g. both SiC iii workpiece and diamond cutting tool were found to undergo sp3-sp2 transition during the nanometric cutting of single crystal SiC. Also, cleavage was found to be the dominant mechanism of material removal on the (111) crystal orientation. Based on the overall analysis, it was found that 3C-SiC offers ease of deformation on either (111) , (110) or (100) setups. The simulated orthogonal components of thrust force in 3C-SiC showed a variation of up to 45% while the resultant cutting forces showed a variation of 37% suggesting that 3C-SiC is anisotropic in its ease of deformation. The simulation results for three major polytypes of SiC and for silicon indicated that 4H-SiC would produce the best sub-surface integrity followed by 3C-SiC, silicon and 6H-SiC. While, silicon and SiC were found to undergo HPPT which governs the ductility in these hard, brittle materials, corresponding evidence of HPPT during the SPDT of polycrystalline reaction bonded SiC (RB-SiC) was not observed. It was found that, since the grain orientation changes from one crystal to another in polycrystalline SiC, the cutting tool experiences work material with different crystallographic orientations and directions of cutting. Thus, some of the grain boundaries cause the individual grains to slide along the easy cleavage direction. Consequently, the cutting chips in RB-SiC are not deformed by plastic mechanisms alone, but rather a combination of phase transformation at the grain boundaries and cleavage of the grains both proceed in tandem. Also, the specific-cutting energy required to machine polycrystalline SiC was found to be lower than that required to machine single crystal SiC. Correspondingly, a relatively inferior machined surface finish is expected with a polycrystalline SiC. Based on the simulation model developed, a novel method has been proposed for the quantitative assessment of tool wear from the MD simulations. This model can be utilized for the comparison of tool wear for various simulation studies concerning graphitization of diamond tools. Finally, based on the theoretical simulation results, a novel method of machining is proposed to suppress tool wear and to obtain a better quality of the machined surface during machining of difficult-to-machine materials

    PROTOTYPE TILTING PAD THRUST BEARING WITH NOVEL CERAMIC MATERIAL FOR HARSH SERVICE

    Get PDF
    LectureProduct-lubricated pumping applications require extremely robust bearings, especially in the case of sand-loaded lubrication fluids. For high power/high speed pump applications, tilting pad bearings are the preferred bearing solution, due to their superior rotordynamic characteristics. For product-lubricated applications, materials with good corrosion and abrasion resistance characteristics have to be used. The lubricant for the bearing in these applications is often a water based fluid (e.g. sea water) with low viscosity and with particle contamination (e.g. sand). Existing tilting pad product lubricated bearings (PLB) solutions have the issue that catastrophic failures tend to occur under severe conditions or that they are limited in available size (e.g. polycrystalline diamond (PCD) bearings). A tilting pad thrust bearing and a thrust collar made of a novel ceramic material with improved tribological properties was designed, manufactured and tested for use in such applications. This new ceramic bearing offers several advantages over existing PLB materials. • Lower coefficient of friction and reduced start-up torque • Excellent dry-running capabilities • Increased reliability and robustness • Increased wear and abrasion resistance • No size limitation due to manufacturing constraints such as for PCD bearings The novel ceramic material is a Diamond-SiC composite, and the material has been tested extensively as per its tribological and wear/erosion characteristics before its use and application in a prototype thrust bearing and thrust collar

    Micromachining

    Get PDF
    To present their work in the field of micromachining, researchers from distant parts of the world have joined their efforts and contributed their ideas according to their interest and engagement. Their articles will give you the opportunity to understand the concepts of micromachining of advanced materials. Surface texturing using pico- and femto-second laser micromachining is presented, as well as the silicon-based micromachining process for flexible electronics. You can learn about the CMOS compatible wet bulk micromachining process for MEMS applications and the physical process and plasma parameters in a radio frequency hybrid plasma system for thin-film production with ion assistance. Last but not least, study on the specific coefficient in the micromachining process and multiscale simulation of influence of surface defects on nanoindentation using quasi-continuum method provides us with an insight in modelling and the simulation of micromachining processes. The editors hope that this book will allow both professionals and readers not involved in the immediate field to understand and enjoy the topic

    Understanding the Mechanism of Abrasive-Based Finishing Processes Using Mathematical Modeling and Numerical Simulation

    Get PDF
    Recent advances in technology and refinement of available computational resources paved the way for the extensive use of computers to model and simulate complex real-world problems difficult to solve analytically. The appeal of simulations lies in the ability to predict the significance of a change to the system under study. The simulated results can be of great benefit in predicting various behaviors, such as the wind pattern in a particular region, the ability of a material to withstand a dynamic load, or even the behavior of a workpiece under a particular type of machining. This paper deals with the mathematical modeling and simulation techniques used in abrasive-based machining processes such as abrasive flow machining (AFM), magnetic-based finishing processes, i.e., magnetic abrasive finishing (MAF) process, magnetorheological finishing (MRF) process, and ball-end type magnetorheological finishing process (BEMRF). The paper also aims to highlight the advances and obstacles associated with these techniques and their applications in flow machining. This study contributes the better understanding by examining the available modeling and simulation techniques such as Molecular Dynamic Simulation (MDS), Computational Fluid Dynamics (CFD), Finite Element Method (FEM), Discrete Element Method (DEM), Multivariable Regression Analysis (MVRA), Artificial Neural Network (ANN), Response Surface Analysis (RSA), Stochastic Modeling and Simulation by Data Dependent System (DDS). Among these methods, CFD and FEM can be performed with the available commercial software, while DEM and MDS performed using the computer programming-based platform, i.e., "LAMMPS Molecular Dynamics Simulator," or C, C++, or Python programming, and these methods seem more promising techniques for modeling and simulation of loose abrasive-based machining processes. The other four methods (MVRA, ANN, RSA, and DDS) are experimental and based on statistical approaches that can be used for mathematical modeling of loose abrasive-based machining processes. Additionally, it suggests areas for further investigation and offers a priceless bibliography of earlier studies on the modeling and simulation techniques for abrasive-based machining processes. Researchers studying mathematical modeling of various micro- and nanofinishing techniques for different applications may find this review article to be of great help

    Hybrid micro-machining processes : a review

    Get PDF
    Micro-machining has attracted great attention as micro-components/products such as micro-displays, micro-sensors, micro-batteries, etc. are becoming established in all major areas of our daily life and can already been found across the broad spectrum of application areas especially in sectors such as automotive, aerospace, photonics, renewable energy and medical instruments. These micro-components/products are usually made of multi-materials (may include hard-to-machine materials) and possess complex shaped micro-structures but demand sub-micron machining accuracy. A number of micro-machining processes is therefore, needed to deliver such components/products. The paper reviews recent development of hybrid micro-machining processes which involve integration of various micro-machining processes with the purpose of improving machinability, geometrical accuracy, tool life, surface integrity, machining rate and reducing the process forces. Hybrid micro-machining processes are classified in two major categories namely, assisted and combined hybrid micro-machining techniques. The machining capability, advantages and disadvantages of the state-of-the-art hybrid micro-machining processes are characterized and assessed. Some case studies on integration of hybrid micro-machining with other micro-machining and assisted techniques are also introduced. Possible future efforts and developments in the field of hybrid micro-machining processes are also discussed

    Thermo-Mechanical Effects Of Thermal Cycled Copper Through Silicon Vias

    Get PDF
    The semiconductor industry is currently facing transistor scaling issues due to fabrication thresholds and quantum effects. In this \u27More-Than-Moore\u27 era, the industry is developing new ways to increase device performance, such as stacking chips for three-dimensional integrated circuits (3D-IC). The 3D-IC\u27s superior performance over their 2D counterparts can be attributed to the use of vertical interconnects, or through silicon vias (TSV). These interconnects are much shorter, reducing signal delay. However TSVs are susceptible to various thermo-mechanical reliability concerns. Heating during fabrication and use, in conjunction with coefficient of thermal expansion mismatch between the copper TSVs and silicon substrate, create harmful stresses in the system. The purpose of this work is to evaluate the signal integrity of Cu-TSVs and determine the major contributing factors of the signal degradation upon in-use conditions. Two series of samples containing blind Cu-TSVs embedded in a Si substrate were studied, each having different types and amounts of voids from manufacturing. The samples were thermally cycled up to 2000 times using three maximum temperatures to simulate three unique in-use conditions. S11 parameter measurements were then conducted to determine the signal integrity of the TSVs. To investigate the internal response from cycling, a protocol was developed for cross-sectioning the copper TSVs. Voids were measured using scanning electron microscope and focused ion beam imaging of the cross-sections, while the microstructural evolution of the copper was monitored with electron backscattering diffraction. An increase in void area was found to occur after cycling. This is thought to be the major contributing factor in the signal degradation of the TSVs, since no microstructural changes were observed in the copper

    Grinding and fine finishing of future automotive powertrain components

    Get PDF
    The automotive industry is undergoing a major transformation driven by regulations and a fast-paced electrification. A critical analysis of technological trends and associated requirements for major automotive powertrain components is carried out in close collaboration with industry – covering the perspectives of OEMs, suppliers, and machine builders. The main focus is to review the state of the art with regard to grinding, dressing, texturing and fine-finishing technologies. A survey of research papers and patents is accompanied by case studies that provide further insights into the production value chain. Finally, key industrial and research challenges are summarized

    Discrete element modeling of the machining processes of brittle materials: recent development and future prospective

    Get PDF
    corecore