21,618 research outputs found

    Analysis tools for the interplay between genome layout and regulation

    Get PDF
    Genome layout and gene regulation appear to be interdependent. Understanding this interdependence is key to exploring the dynamic nature of chromosome conformation and to engineering functional genomes. Evidence for non-random genome layout, defined as the relative positioning of either co-functional or co-regulated genes, stems from two main approaches. Firstly, the analysis of contiguous genome segments across species, has highlighted the conservation of gene arrangement (synteny) along chromosomal regions. Secondly, the study of long-range interactions along a chromosome has emphasised regularities in the positioning of microbial genes that are co-regulated, co-expressed or evolutionarily correlated. While one-dimensional pattern analysis is a mature field, it is often powerless on biological datasets which tend to be incomplete, and partly incorrect. Moreover, there is a lack of comprehensive, user-friendly tools to systematically analyse, visualise, integrate and exploit regularities along genomes.Here we present the Genome REgulatory and Architecture Tools SCAN (GREAT:SCAN) software for the systematic study of the interplay between genome layout and gene expression regulation.SCAN is a collection of related and interconnected applications currently able to perform systematic analyses of genome regularities as well as to improve transcription factor binding sites (TFBS) and gene regulatory network predictions based on gene positional information.We demonstrate the capabilities of these tools by studying on one hand the regular patterns of genome layout in the major regulons of the bacterium Escherichia coli. On the other hand, we demonstrate the capabilities to improve TFBS prediction in microbes. Finally, we highlight, by visualisation of multivariate techniques, the interplay between position and sequence information for effective transcription regulation

    chroGPS, a global chromatin positioning system for the functional analysis and visualization of the epigenome

    Get PDF
    Development of tools to jointly visualize the genome and the epigenome remains a challenge. chroGPS is a computational approach that addresses this question. chroGPS uses multidimensional scaling techniques to represent similarity between epigenetic factors, or between genetic elements on the basis of their epigenetic state, in 2D/3D reference maps. We emphasize biological interpretability, statistical robustness, integration of genetic and epigenetic data from heterogeneous sources, and computational feasibility. Although chroGPS is a general methodology to create reference maps and study the epigenetic state of any class of genetic element or genomic region, we focus on two specific kinds of maps: chroGPSfactors, which visualizes functional similarities between epigenetic factors, and chroGPSgenes, which describes the epigenetic state of genes and integrates gene expression and other functional data. We use data from the modENCODE project on the genomic distribution of a large collection of epigenetic factors in Drosophila, a model system extensively used to study genome organization and function. Our results show that the maps allow straightforward visualization of relationships between factors and elements, capturing relevant information about their functional properties that helps to interpret epigenetic information in a functional context and derive testable hypotheses

    Mathematical and computational modelling of post-transcriptional gene relation by micro-RNA

    Get PDF
    Mathematical models and computational simulations have proved valuable in many areas of cell biology, including gene regulatory networks. When properly calibrated against experimental data, kinetic models can be used to describe how the concentrations of key species evolve over time. A reliable model allows ‘what if’ scenarios to be investigated quantitatively in silico, and also provides a means to compare competing hypotheses about the underlying biological mechanisms at work. Moreover, models at different scales of resolution can be merged into a bigger picture ‘systems’ level description. In the case where gene regulation is post-transcriptionally affected by microRNAs, biological understanding and experimental techniques have only recently matured to the extent that we can postulate and test kinetic models. In this chapter, we summarize some recent work that takes the first steps towards realistic modelling, focusing on the contributions of the authors. Using a deterministic ordinary differential equation framework, we derive models from first principles and test them for consistency with recent experimental data, including microarray and mass spectrometry measurements. We first consider typical mis-expression experiments, where the microRNA level is instantaneously boosted or depleted and thereafter remains at a fixed level. We then move on to a more general setting where the microRNA is simply treated as another species in the reaction network, with microRNA-mRNA binding forming the basis for the post-transcriptional repression. We include some speculative comments about the potential for kinetic modelling to contribute to the more widespread sequence and network based approaches in the qualitative investigation of microRNA based gene regulation. We also consider what new combinations of experimental data will be needed in order to make sense of the increased systems-level complexity introduced by microRNAs

    Computational Models for Transplant Biomarker Discovery.

    Get PDF
    Translational medicine offers a rich promise for improved diagnostics and drug discovery for biomedical research in the field of transplantation, where continued unmet diagnostic and therapeutic needs persist. Current advent of genomics and proteomics profiling called "omics" provides new resources to develop novel biomarkers for clinical routine. Establishing such a marker system heavily depends on appropriate applications of computational algorithms and software, which are basically based on mathematical theories and models. Understanding these theories would help to apply appropriate algorithms to ensure biomarker systems successful. Here, we review the key advances in theories and mathematical models relevant to transplant biomarker developments. Advantages and limitations inherent inside these models are discussed. The principles of key -computational approaches for selecting efficiently the best subset of biomarkers from high--dimensional omics data are highlighted. Prediction models are also introduced, and the integration of multi-microarray data is also discussed. Appreciating these key advances would help to accelerate the development of clinically reliable biomarker systems

    Systems biology in animal sciences

    Get PDF
    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes and animal traits are not yet frequently used. This paper aims to explain what systems biology is and which areas of animal sciences could benefit from systems biology approaches. Systems biology aims to understand whole biological systems working as a unit, rather than investigating their individual components. Therefore, systems biology can be considered a holistic approach, as opposed to reductionism. The recently developed ‘omics’ technologies enable biological sciences to characterize the molecular components of life with ever increasing speed, yielding vast amounts of data. However, biological functions do not follow from the simple addition of the properties of system components, but rather arise from the dynamic interactions of these components. Systems biology combines statistics, bioinformatics and mathematical modeling to integrate and analyze large amounts of data in order to extract a better understanding of the biology from these huge data sets and to predict the behavior of biological systems. A ‘system’ approach and mathematical modeling in biological sciences are not new in itself, as they were used in biochemistry, physiology and genetics long before the name systems biology was coined. However, the present combination of mass biological data and of computational and modeling tools is unprecedented and truly represents a major paradigm shift in biology. Significant advances have been made using systems biology approaches, especially in the field of bacterial and eukaryotic cells and in human medicine. Similarly, progress is being made with ‘system approaches’ in animal sciences, providing exciting opportunities to predict and modulate animal traits

    The ever-evolving concept of the gene: The use of RNA/Protein experimental techniques to understand genome functions

    Get PDF
    The completion of the human genome sequence together with advances in sequencing technologies have shifted the paradigm of the genome, as composed of discrete and hereditable coding entities, and have shown the abundance of functional noncoding DNA. This part of the genome, previously dismissed as "junk" DNA, increases proportionally with organismal complexity and contributes to gene regulation beyond the boundaries of known protein-coding genes. Different classes of functionally relevant nonprotein-coding RNAs are transcribed from noncoding DNA sequences. Among them are the long noncoding RNAs (lncRNAs), which are thought to participate in the basal regulation of protein-coding genes at both transcriptional and post-transcriptional levels. Although knowledge of this field is still limited, the ability of lncRNAs to localize in different cellular compartments, to fold into specific secondary structures and to interact with different molecules (RNA or proteins) endows them with multiple regulatory mechanisms. It is becoming evident that lncRNAs may play a crucial role in most biological processes such as the control of development, differentiation and cell growth. This review places the evolution of the concept of the gene in its historical context, from Darwin's hypothetical mechanism of heredity to the post-genomic era. We discuss how the original idea of protein-coding genes as unique determinants of phenotypic traits has been reconsidered in light of the existence of noncoding RNAs. We summarize the technological developments which have been made in the genome-wide identification and study of lncRNAs and emphasize the methodologies that have aided our understanding of the complexity of lncRNA-protein interactions in recent years
    corecore