2,152 research outputs found

    Computational intelligence image processing for precision farming on-site nitrogen analysis in plants

    Get PDF
    PhD ThesisNitrogen is one of the macronutrients which is essentially required by plants. To support the precision farming, it is important to analyse nitrogen status in plants in order to prevent excessive fertilisation as well as to reduce production costs. Image-based analysis has been widely utilised to estimate nitrogen content in plants. Such research, however, is commonly conducted in a controlled environment with artificial lighting systems. This thesis proposes three novel computational intelligence systems to evaluate nitrogen status in wheat plants by analysing plant images captured on field and are subject to variation in lighting conditions. In the first proposed method, a fusion of regularised neural networks (NN) has been employed to normalise plant images based on the RGB colour of the 24-patch Macbeth colour checker. The colour normalisation results are then optimised using genetic algorithm (GA). The regularised neural network has also been effectively utilised to distinguish wheat leaves from other unwanted parts. This method gives improved results compared to the Otsu algorithm. Furthermore, several neural networks with different number of hidden layer nodes are combined using committee machines and optimised by GA to estimate nitrogen content. In the second proposed method, the utilisation of regularised NN has been replaced by deep sparse extreme learning machine (DSELM). In general the utilisation of DSELM in the three research steps is as effective as that of the developed regularised NN as proposed in the first method. However, the learning speed of DSELM is extremely faster than the regularised NN and the standard backpropagation multilayer perceptron (MLP). In the third proposed method, a novel approach has been developed to fine tune the colour normalisation based on the nutrient estimation errors and analyse the effect of genetic algorithm based global optimisation on the nitrogen estimation results. In this method, an ensemble of deep learning MLP (DL-MLP) has been employed in the three research steps, i.e. colour normalisation, image segmentation and nitrogen estimation. The performance of the three proposed methods has been compared with the intrusive SPAD meter and the results show that all the proposed methods are superior to the SPAD based estimation. The nutrient estimation errors of the proposed methods are less than 3%, while the error using the renowned SPAD meter method is 8.48%. As a comparison, nitrogen prediction using other methods, i.e. Kawashima greenness index () and PCA-based greenness index () are also calculated. The prediction errors by means of and methods are 9.84% and 9.20%, respectively.Indonesia Ministry of Research, Technology and Higher Education and Jenderal Soedirman Univerist

    Harvesting Intelligence: A Comprehensive Study on Transforming Aquaponic Agriculture with AI and IoT

    Get PDF
    Aquaponics, an agricultural technique that merges aquaculture and hydroponics, is on the brink of a transformative advancement with the amalgamation of Machine Learning (ML), Deep Learning (DL), and the Internet of Things (IoT). The incorporation of these cutting edge technologies in the field of aquaponics is bringing about a profound transformation in the realm of sustainable agriculture. This extensive investigation delves into the profound influence of these cutting-edge technologies on aquaponics, with a focus on predictive analysis, system optimization, environmental monitoring, and disease prevention. By means of ML and DL algorithms, historical and real-time data are scrutinized in order to forecast environmental fluctuations, optimize resource allocation, and facilitate the growth of crops and fish. IoT devices consistently gather data pertaining to crucial parameters, thereby enabling real-time monitoring and control of the aquaponic system. Furthermore, IoT technology enhances resource utilization and grants the ability to remotely monitor and manage the system. The detection of abnormalities in fish behavior and plant health through the utilization of ML and DL algorithms allows for the implementation of proactive measures aimed at preventing outbreaks and minimizing losses. Furthermore, these advanced technologies also offer personalized recommendations for effective management of various crop and fish species. The incorporation of ML, DL, and IoT into the field of aquaponics signifies a substantial advancement towards a more sustainable, efficient, and productive form of agriculture. These innovative technologies possess the capability to effectively address the challenges associated with global food security by optimizing the utilization of resources, maintaining environmental equilibrium, and mitigating the occurrence of disease outbreaks. In the context of the examined research endeavors presented in this article, it is anticipated that the utilization of smart control units in conjunction with the aquaponics system will yield greater profitability, increased intelligence, enhanced precision, and heightened efficacy. In the context of the examined research endeavors presented in this article, it is anticipated that the utilization of ML, DL and IoT in conjunction with the aquaponics system will yield greater profitability, increased intelligence, enhanced precision, and heightened efficacy

    Ensuring Agricultural Sustainability through Remote Sensing in the Era of Agriculture 5.0

    Get PDF
    This work was supported by the projects: "VIRTUOUS" funded by the European Union's Horizon 2020 Project H2020-MSCA-RISE-2019. Ref. 872181, "SUSTAINABLE" funded by the European Union's Horizon 2020 Project H2020-MSCA-RISE-2020. Ref. 101007702 and the "Project of Excellence" from Junta de Andalucia 2020. Ref. P18-H0-4700. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Timely and reliable information about crop management, production, and yield is considered of great utility by stakeholders (e.g., national and international authorities, farmers, commercial units, etc.) to ensure food safety and security. By 2050, according to Food and Agriculture Organization (FAO) estimates, around 70% more production of agricultural products will be needed to fulfil the demands of the world population. Likewise, to meet the Sustainable Development Goals (SDGs), especially the second goal of “zero hunger”, potential technologies like remote sensing (RS) need to be efficiently integrated into agriculture. The application of RS is indispensable today for a highly productive and sustainable agriculture. Therefore, the present study draws a general overview of RS technology with a special focus on the principal platforms of this technology, i.e., satellites and remotely piloted aircrafts (RPAs), and the sensors used, in relation to the 5th industrial revolution. Nevertheless, since 1957, RS technology has found applications, through the use of satellite imagery, in agriculture, which was later enriched by the incorporation of remotely piloted aircrafts (RPAs), which is further pushing the boundaries of proficiency through the upgrading of sensors capable of higher spectral, spatial, and temporal resolutions. More prominently, wireless sensor technologies (WST) have streamlined real time information acquisition and programming for respective measures. Improved algorithms and sensors can, not only add significant value to crop data acquisition, but can also devise simulations on yield, harvesting and irrigation periods, metrological data, etc., by making use of cloud computing. The RS technology generates huge sets of data that necessitate the incorporation of artificial intelligence (AI) and big data to extract useful products, thereby augmenting the adeptness and efficiency of agriculture to ensure its sustainability. These technologies have made the orientation of current research towards the estimation of plant physiological traits rather than the structural parameters possible. Futuristic approaches for benefiting from these cutting-edge technologies are discussed in this study. This study can be helpful for researchers, academics, and young students aspiring to play a role in the achievement of sustainable agriculture.European Commission 101007702 872181Junta de Andalucia P18-H0-470

    Yield sensing technologies for perennial and annual horticultural crops: a review

    Get PDF
    Yield maps provide a detailed account of crop production and potential revenue of a farm. This level of details enables a range of possibilities from improving input management, conducting on-farm experimentation, or generating profitability map, thus creating value for farmers. While this technology is widely available for field crops such as maize, soybean and grain, few yield sensing systems exist for horticultural crops such as berries, field vegetable or orchards. Nevertheless, a wide range of techniques and technologies have been investigated as potential means of sensing crop yield for horticultural crops. This paper reviews yield monitoring approaches that can be divided into proximal, either direct or indirect, and remote measurement principles. It reviews remote sensing as a way to estimate and forecast yield prior to harvest. For each approach, basic principles are explained as well as examples of application in horticultural crops and success rate. The different approaches provide whether a deterministic (direct measurement of weight for instance) or an empirical (capacitance measurements correlated to weight for instance) result, which may impact transferability. The discussion also covers the level of precision required for different tasks and the trend and future perspectives. This review demonstrated the need for more commercial solutions to map yield of horticultural crops. It also showed that several approaches have demonstrated high success rate and that combining technologies may be the best way to provide enough accuracy and robustness for future commercial systems

    Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges

    Full text link
    Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy

    Review—Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture

    Get PDF
    The use of sensors and the Internet of Things (IoT) is key to moving the world\u27s agriculture to a more productive and sustainable path. Recent advancements in IoT, Wireless Sensor Networks (WSN), and Information and Communication Technology (ICT) have the potential to address some of the environmental, economic, and technical challenges as well as opportunities in this sector. As the number of interconnected devices continues to grow, this generates more big data with multiple modalities and spatial and temporal variations. Intelligent processing and analysis of this big data are necessary to developing a higher level of knowledge base and insights that results in better decision making, forecasting, and reliable management of sensors. This paper is a comprehensive review of the application of different machine learning algorithms in sensor data analytics within the agricultural ecosystem. It further discusses a case study on an IoT based data-driven smart farm prototype as an integrated food, energy, and water (FEW) system

    Enhancing livelihoods in farming communities through super-resolution agromet advisories using advanced digital agriculture technologies

    Get PDF
    Agricultural production in India is highly vulnerable to climate change. Transformational change to farming systems is required to cope with this changing climate to maintain food security, and ensure farming to remain economically viable. The south Asian rice-fallow systems occupying 22.3 million ha with about 88% in India, mostly (82%) concentrated in the eastern states, are under threat. These systems currently provide economic and food security for about 11 million people, but only achieve 50% of their yield potential. Improvement in productivity is possible through efficient utilization of these fallow lands. The relatively low production occurs because of sub-optimal water and nutrient management strategies. Historically, the Agro-met advisory service has assisted farmers and disseminated information at a district-level for all the states. In some instances, Agro-met delivers advice at the block level also, but in general, farmers use to follow the district level advice and develop an appropriate management plan like land preparation, sowing, irrigation timing, harvesting etc. The advisories are generated through the District Agrometeorology Unit (DAMU) and Krishi Vigyan Kendra (KVK) network, that consider medium-range weather forecast. Unfortunately, these forecasts advisories are general and broad in nature for a given district and do not scale down to the individual field or farm. Farmers must make complex crop management decisions with limited or generalised information. The lack of fine scale information creates uncertainty for farmers, who then develop risk-averse management strategies that reduce productivity. It is unrealistic to expect the Agro-met advisory service to deliver bespoke information to every farmer and to every field simply with the help of Kilometre-scale weather forecast. New technologies must be embraced to address the emerging crises in food security and economic prosperity. Despite these problems, Agro-met has been successful. New digital technologies have emerged though, and these digital technologies should become part of the Agro-met arsenal to deliver valuable information directly to the farmers at the field scale. The Agro-met service is poised to embrace and deliver new interventions through technology cross-sections such as satellite remote sensing, drone-based survey, mobile based data collection systems, IoT based sensors, using insights derived from a hybridisation of crop and AIML (Artificial Intelligence and Machine Learning) models. These technological advancements will generate fine-scale static and dynamic Agro-met information on cultivated lands, that can be delivered through Application Programming Interface (APIs) and farmers facing applications. We believe investment in this technology, that delivers information directly to the farmers, can reverse the yield gap, and address the negative impacts of a changing climate

    Automation and Control

    Get PDF
    Advances in automation and control today cover many areas of technology where human input is minimized. This book discusses numerous types and applications of automation and control. Chapters address topics such as building information modeling (BIM)–based automated code compliance checking (ACCC), control algorithms useful for military operations and video games, rescue competitions using unmanned aerial-ground robots, and stochastic control systems

    Agricultural Robotics:The Future of Robotic Agriculture

    Get PDF

    White paper - Agricultural Robotics: The Future of Robotic Agriculture

    Get PDF
    Agri-Food is the largest manufacturing sector in the UK. It supports a food chain that generates over £108bn p.a., with 3.9m employees in a truly international industry and exports £20bn of UK manufactured goods. However, the global food chain is under pressure from population growth, climate change, political pressures affecting migration, population drift from rural to urban regions and the demographics of an aging global population. These challenges are recognised in the UK Industrial Strategy white paper and backed by significant investment via a wave 2 Industrial Challenge Fund Investment (“Transforming Food Production: from Farm to Fork”). RAS and associated digital technologies are now seen as enablers of this critical food chain transformation. To meet these challenges, here we review the state of the art of the application of RAS in Agri-Food production and explore research and innovation needs to ensure novel advanced robotic and autonomous reach their full potential and deliver necessary impacts. The opportunities for RAS range from; the development of field robots that can assist workers by carrying weights and conduct agricultural operations such as crop and animal sensing, weeding and drilling; integration of autonomous system technologies into existing farm operational equipment such as tractors; robotic systems to harvest crops and conduct complex dextrous operations; the use of collaborative and “human in the loop” robotic applications to augment worker productivity and advanced robotic applications, including the use of soft robotics, to drive productivity beyond the farm gate into the factory and retail environment. RAS technology has the potential to transform food production and the UK has the potential to establish global leadership within the domain. However, there are particular barriers to overcome to secure this vision: 1.The UK RAS community with an interest in Agri-Food is small and highly dispersed. There is an urgent need to defragment and then expand the community.2.The UK RAS community has no specific training paths or Centres for Doctoral Training to provide trained human resource capacity within Agri-Food.3.While there has been substantial government investment in translational activities at high Technology Readiness Levels (TRLs), there is insufficient ongoing basic research in Agri-Food RAS at low TRLs to underpin onward innovation delivery for industry.4.There is a concern that RAS for Agri-Food is not realising its full potential, as the projects being commissioned currently are too few and too small-scale. RAS challenges often involve the complex integration of multiple discrete technologies (e.g. navigation, safe operation, multimodal sensing, automated perception, grasping and manipulation, perception). There is a need to further develop these discrete technologies but also to deliver large-scale industrial applications that resolve integration and interoperability issues. The UK community needs to undertake a few well-chosen large-scale and collaborative “moon shot” projects.5.The successful delivery of RAS projects within Agri-Food requires close collaboration between the RAS community and with academic and industry practitioners. For example, the breeding of crops with novel phenotypes, such as fruits which are easy to see and pick by robots, may simplify and accelerate the application of RAS technologies. Therefore, there is an urgent need to seek new ways to create RAS and Agri-Food domain networks that can work collaboratively to address key challenges. This is especially important for Agri-Food since success in the sector requires highly complex cross-disciplinary activity. Furthermore, within UKRI most of the Research Councils (EPSRC, BBSRC, NERC, STFC, ESRC and MRC) and Innovate UK directly fund work in Agri-Food, but as yet there is no coordinated and integrated Agri-Food research policy per se. Our vision is a new generation of smart, flexible, robust, compliant, interconnected robotic systems working seamlessly alongside their human co-workers in farms and food factories. Teams of multi-modal, interoperable robotic systems will self-organise and coordinate their activities with the “human in the loop”. Electric farm and factory robots with interchangeable tools, including low-tillage solutions, novel soft robotic grasping technologies and sensors, will support the sustainable intensification of agriculture, drive manufacturing productivity and underpin future food security. To deliver this vision the research and innovation needs include the development of robust robotic platforms, suited to agricultural environments, and improved capabilities for sensing and perception, planning and coordination, manipulation and grasping, learning and adaptation, interoperability between robots and existing machinery, and human-robot collaboration, including the key issues of safety and user acceptance. Technology adoption is likely to occur in measured steps. Most farmers and food producers will need technologies that can be introduced gradually, alongside and within their existing production systems. Thus, for the foreseeable future, humans and robots will frequently operate collaboratively to perform tasks, and that collaboration must be safe. There will be a transition period in which humans and robots work together as first simple and then more complex parts of work are conducted by robots; driving productivity and enabling human jobs to move up the value chain
    • …
    corecore