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The use of sensors and the Internet of Things (IoT) is key to moving the world’s agriculture to a more productive and sustainable
path. Recent advancements in IoT, Wireless Sensor Networks (WSN), and Information and Communication Technology (ICT) have
the potential to address some of the environmental, economic, and technical challenges as well as opportunities in this sector. As the
number of interconnected devices continues to grow, this generates more big data with multiple modalities and spatial and temporal
variations. Intelligent processing and analysis of this big data are necessary to developing a higher level of knowledge base and
insights that results in better decision making, forecasting, and reliable management of sensors. This paper is a comprehensive review
of the application of different machine learning algorithms in sensor data analytics within the agricultural ecosystem. It further
discusses a case study on an IoT based data-driven smart farm prototype as an integrated food, energy, and water (FEW) system.
© The Author(s) 2019. Published by ECS. This is an open access article distributed under the terms of the Creative Commons
Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any
medium, provided the original work is properly cited. [DOI: 10.1149/2.0222003JES]

Manuscript submitted October 8, 2019; revised manuscript received November 27, 2019. Published December 19, 2019. This paper
is part of the JES Focus Issue on Sensor Reviews.

Technology plays a central role in mitigating pressure the farming
industry faces due to factors in the rising population, consumer needs,
and the growing shortages of land, water, and energy. Smart farming
synonymous with other machine to machine (M2M) based implemen-
tation such as smart metering and smart city is also referred to as preci-
sion agriculture (PA). According to Libelium, a primary IoT solution
industry driver, the total market value for PA solutions is expected to
reach $4.7 billion in 2021, almost double the amount in 2016.1 Despite
a growing level of exciting research and new smart farming projects,
the agriculture industry has been slow to adopt the emerging M2M
and IoT technologies as compared with other industries.2 Smart farm-
ing requires the integration of sensor technologies that collect data
from the soil, crop, various environmental attributes, animal conduct,
and tractor status. These sensor data through edge IoT computing and
analytics can afford the farmer with valuable information on weather
conditions and forecasts, crop monitoring, and yield prediction, plant,
and animal disease detection.3

The implementation of smart agriculture is dependent on the type
of farming at hand. In a large farm setting, the use of farm vehicles like
smart tractors equipped with GPS, and several embedded sensors, data
visualization tools are currently in place with the ability to transmit
real-time data.4 Drones are a big player in this setting where built-in
sensors provide different types of aerial imaging, field survey, and lo-
cation mapping.5 In small to medium-sized arable farming, spatially
enabled mobile sensing technologies that provide detail analysis of
field conditions in the different soil layer, nutrient levels, and over-
all ambient environmental conditions are being utilized.6,7 Also, the
implementation of smart irrigation by looking into the evapotranspi-
ration parameter of plants to optimize the irrigation cycle is well in
play. The use of soil moisture content and temperature sensors are
widely prevalent in scheduling irrigation.8–12 IoT solutions are also
deployed in monitoring location and health of livestock where sensors
are placed within the animal to transmit these data wirelessly.13 Other
popular IoT based applications are in greenhouses, and vertical farm-
ing integrated with emerging practices of aquaponics, aeroponics, and
hydroponics.14,15 Additionally, the use of WSN for different environ-
mental monitoring intended for diverse applications have been widely
implemented.16

The objective of this paper is first to highlight the use of WSN and
IoT in agriculture and give a comprehensive review of sensor and IoT
data analytics using machine learning (ML) techniques for agriculture
applications. Different numbers of relevant papers are presented that
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emphasize vital and unique features of ML model specifically in yield
prediction, decision support for irrigation, and crop quality. It also
presents a case study on an experimental testbed that implements an
end-to-end IoT platform to investigate the interdependence of food,
energy, and water (FEW) system. In the literature review, this paper
only uses published works selected from the past three years onward.
The structure of this paper is organized as follows: AI in Agriculture
section presents the recent advances of artificial intelligence (AI) ap-
plications in agriculture. Machine learning techniques section delves
into some of the commonly used machine learning techniques within
the WSN based PA. Literature review section summarizes some of the
recent works utilizing the ML technique for WSN based PA applica-
tion. A case study on IoT based smart agriculture solution is presented
in Case study on IoT based smart agriculture solution section.

AI in Agriculture

Artificial intelligence (AI) can help farmers get more from the land
while using resources more sustainably. Big data refers to the large
volume of data coming from sensors, IoT, GPS, aerial imagery, etc.17

IoT is a system of embedded technologies consisting of wired and
wireless communications, sensors, and actuators that are capable of
acquiring and transferring data to the internet.18 Today’s Farms, with
the help of IoT, Unmanned Aerial Vehicle (UAV), and other emerging
technologies, is producing millions of data points on the ground daily.
With the help of AI, farmers can now analyze weather conditions,
temperature, water usage, energy usage, and soil conditions collected
from their farm to better inform their decisions. Unlike before, farmers
additionally now can use captured sensor data in predicting yield, and
making them better equipped to natural disaster and climate conditions
through intelligent data processing techniques like machine learning.
IoT, combined with AI, is emerging as part of the solutions toward
improved agricultural productivity and efficiency.19 From detecting
plant diseases20 to monitoring harvest time,21 AI’s application in ag-
tech is enormous and yet to be tapped. In Ref. 20, AI has been used
to train data set of cassava leaves to detect disease and pest damages,
and the algorithm was able to detect the damage with 98% accuracy.
Furthermore, AI can be used in training robots to do the mundane
labor of tending, harvesting, and maintaining farmland efficiently that
usually requires a lot of human capital, time, and effort. AI in agri-
culture application is emerging in three areas: robotics, soil and crop
monitoring, and predictive analytics.22,23

Autonomous robots can replace human laborers in efficiently han-
dling essential agricultural tasks such as planting, weed control, and
harvesting.22 Start-up companies like Blue River Technology recently
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acquired by John Deer implement computer vision in its precision
spray to monitor and spray weeds on cotton plants.24 Robotics and
automation are also emerging as a solution to solve the problem of
laborers in harvesting. A robot has been developed by Harvest CROO
Robotics that support farmers in picking and packing strawberry.25

Crop disease detection and soil health monitoring are significant
areas where ML techniques have been mainly implemented. For in-
stance, Plantix, an image recognition app, uses ML techniques in its
software algorithm that can detect soil defects, and plant diseases in
agriculture based on soil patterns.26 Farmers can see the information
through their smartphone camera along with techniques and solutions
to fix the problem. Similarly, deep conventional neural network has
been used to identify three crop diseases and two types of pest dam-
age targeting cassava plants in Tanzania.20 The use of UAV (drones) is
currently prevailing in agriculture, where the market for it is projected
to reach $480 million by 2027.23 Drones can gather massive data of
vast acres of land within a short period and are ideal in large arable
farms. Through AI, data gathered by a drone can improve crop health,
yield, and reduce cost.27

The most popular use of predictive analytics is in connection with
satellite data to predict weather and crop sustainability, in pest and dis-
ease identification, and remote PA application.6,7 Predictive analytics
are used in the data processing, wrangling, and analysis of sensor data
for future prediction and decision models. In addition to this, ML
techniques commonly used in IoT WSN based irrigation schemes as
a decision support.10

Machine Learning Techniques

Machine learning is a type of AI that gives machines the abil-
ity to learn from experience. Its algorithms use computational meth-
ods to learn directly from datasets without depending on predeter-
mined equations as a model. The algorithms progressively adapt to
enhance their performance as the available number of training sam-
ples increases.28–30 ML approaches are powerful tools capable of au-
tonomously solving extensive non-linear problems using sensor data
or other various interconnected sources. It facilitates better decision
making and informed actions in real-world scenarios with minimal
human intervention. ML techniques are constantly undergoing devel-
opments and are widely applied across almost all domains. However,
they have fundamental limitations on their applications. The accuracy
of the prediction is affected by the data quality, proper model repre-
sentation, and dependencies between input and target variables.31

There are two broad categories of machine learning algorithms: su-
pervised and unsupervised learning. Supervised learning uses a known
set of labeled data to train a model to predict the target variable for out
of sample data.28 Classification and regression techniques are common
applications of supervised learning. The list of common algorithms
that fall under the different techniques is highlighted in Fig. 1. On the
other hand, unsupervised learning relies on hidden patterns or intrin-
sic structures in data to draw deductions from unlabelled data. It is
useful for exploratory applications where there is no specific set goal,
or the information the data consists is not clear. It is also ideal as a
mechanism for dimensionality reduction on data that have a number of
features. Clustering is the most common learning model under this type
of learning, and its application extends to exploratory data analysis,
such as gene sequencing and objects recognition.29 Algorithm selec-
tion depends on the size, type, and expected insight into the data. There
is, however, no general prescription for algorithm selection; in most
cases, it is a trial and error work. Both supervised and unsupervised
learning techniques are used extensively in IoT smart data analysis
across various domains.32 Smart farming enabled by WSN and IoT is
one of the domains where ML techniques are emerging to quantify and
understand the big data in this field. ML application in PA can be cat-
egorized as crop management,31,33–35 livestock management,13 water
management36,37 and soil management.31,38 ML’s application in crop
management deals with yield prediction,31,33–35 disease detection,20

weed detection24 and phenotype classification.27 This paper will fur-
ther focus on WSN driven AI-based for agriculture applications.

Figure 1. Machine learning algorithms.

Regression.—Regression is supervised ML techniques that predict
continuous responses such as stock prices, fluctuations in electricity
demand, and time-series sensor data. Mainly, there are two types of
regression algorithms: linear and nonlinear. Linear models rely on
the assumption of a linear relationship between independent and de-
pendent variables. As presented in Fig. 1, the common regression
algorithms are linear, nonlinear, Gaussian process regression model
(GPRM), support vector machine (SVM) regression, generalized lin-
ear model (GLM), decision tree (DT), ensemble methods, and neural
networks. Four of these techniques were selected to be discussed in
detail as they have been relevant to the application of crop yield pre-
diction.

Decision tree (DT).—This method is also known as classification
and regression trees (CART), which can be applied to both categorical
and continuous input and output variables.39 It works by splitting the
data into two or more homogeneous sets or regions based on the most
significant splitter among the independent variables.

DT works by following the decisions in the tree from the root
down to a leaf node,40 as shown in Fig. 2. The tree is usually shown
inverted, with the root node at the top. A tree also consists of branching
conditions where the value of a predictor is compared to a trained
weight. In Fig. 2 the branching conditions are also shown next to
the branches, where X1, X2, X3, and X4 represent the independent
variables, and a,b,c, and d are the learned weights.

During the training process, the number of branches and the val-
ues of weights is determined. The best differentiator in the splitting
process is the one that minimizes the cost metric. The cost metrics for
a classification tree is often the entropy or the Gini index, whereas,
for a regression tree, the default metric is the Mean Squared Error
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Figure 2. A decision tree that splits the data space into 5 regions R1, R2, R3,
R4 and R5. The regions correspond to the terminal nodes.

(MSE), which is shown in Equation 1. ŷi is the predicted value for the
ith sample and yi is the corresponding true value.

MSE = 1

n

n∑

i=1

(ŷi − yi )
2 [1]

Additional pruning or modification can also be implemented to
simplify the model. Pruning, as the name suggests, is the process of
removing branches that do not significantly reduce the cost function.
DT is easy to interpret and fast to fit and is optimal for applications
where minimal memory usage and low predictive accuracy is not a
priority.41

The performance, in terms of MSE, of simple regression trees is
not as high as the other machine learning methods. But by aggregating
several decision trees, the performance improves significantly. Meth-
ods such as bagging, boosting, and random forests are based on this
approach.42 In particular, random forests has proven to be the most
effective and popular among the tree-based approaches.

Ensemble learning.—Ensemble learning (EL) models strive at en-
hancing the predictive performance model fitting technique by cre-
ating a linear aggregate of a “base learning algorithm”.19 There are
two principal strategies for designing ensemble learning algorithms.
The first method is to form each hypothesis independently to create a
set of hypotheses that are accurate and diverse. One of the common
method for this is ‘bagging’ also known as “Bootstrap Aggregating”43

and random forest.44 The second approach deals with building the hy-
pothesis in a coupled manner, so the weighted vote of the hypothesis
generates a suitable fit to data.45 A common method like random forest
algorithm, unlike DT, overcome over-fitting by reducing the variance
of the decision trees. They are called ‘Forest’ because they are the col-
lection, or ensemble, of several decision trees.44 One major difference
between a DT and a random forest model is how the splits happen. In
random forest, instead of trying splits on all the features, a sample of
features is selected for each split, thereby reducing the variance of the
model.

Averaging observations is an effective technique to reduce vari-
ance and improve predictive accuracy. If predictions P1, P2, P3...Pb are
calculated on b different training sets and then averaged to calculate
Pbag, the variance reduces by a factor of b. But it is not always fea-
sible to obtain several data sets for training. Bootstrapping is applied
in this case, where samples are repeatedly extracted from the same
population or data. This approach is referred to as bagging.42

Pbag = 1

b

b∑

i=1

pi [2]

One of the drawbacks of bagging is that all the decision trees trained
for the prediction can be highly correlated. The variable that is a strong

Figure 3. Regression using Support Vector Machine. X1 and X2 are indepen-
dent variables and ε is the margin of tolerance for the error.

predictor will be chosen for the first split (at the root node) by all the
trees. This can limit the improvement in prediction accuracy. Random
forests offer an improvement over bagging by ensuring that the trees
are not correlated. They achieve this by randomly selecting a subset of
m predictors for each tree out of the p available features. And usually,
m is chosen to be much smaller than p. In fact,42 suggests choosing
an m close to

√
p.

Bayesian models.—Bayesian models (BM) are a group of proba-
bilistic graphical models in which the analysis is initiated within the
context of Bayesian inference.28 Equation 3 represents the Bayes’ The-
orem that forms the basis for BM. This equation is used to calculate
the posterior probability using the prior probability and the informa-
tion from the data collected. P(A|B) is the posterior probability that
we wish to calculate. P(A) is the known prior probability. P(B|A) is
known as the likelihood of the observation B.42

They are a type of supervised learning category and can be
employed for solving either classification or regression problems.
Counter to most machine learning algorithms; Bayesian inference
needs a relatively small number of training samples.46 Bayesian meth-
ods modify probability distribution to detect possible concepts without
over-fitting30 efficiently.

P(A|B) = P(B|A)
P(A)

P(B)
[3]

Some of the most common algorithms are Naive Bayes,47 Gaussian
naive Bayes, multinomial Naive Bayes, Bayesian network,28 a mixture
of Gaussians,48 and Bayesian belief network.39

Support vector machine (SVM).—Similar to SVM classification,
SVM regression algorithms are modified to predict a continuous
response.49 Instead of finding a hyperplane that separates data, SVM
regression algorithms find a model that deviates from the measured
data by value no greater than a small amount with parameter values
that minimizes sensitivity to error.40 It is suitable for high-dimensional
data where a large number of predictor variables exist. Potential ap-
plications of SVM in WSNs supported PA are as a regression for yield
and sensor data forecasting.50,51

Figure 3 shows a linear case of support vector regression. The goal
is to fit a linear function of the form y = w.x+b in order to optimize the
cost function. Since w and x are vectors, w.x represents a dot product.
By replacing the dot product with a nonlinear kernel, the data can be
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Figure 4. A simple ANN with one hidden layer.

transformed into a higher-dimensional space. By doing this, the model
can learn higher-order functions.

Artificial neural network (ANN).—ANN is an information-
processing system that has certain performance similar to the bio-
logical neural networks. This learning algorithm could be constructed
by cascading chains of decision units such as perceptrons or radial ba-
sis functions. used to recognize non-linear and complex functions.52

A neural network is characterized by 1) its pattern of connections
between the neurons called its architecture, 2) its method of deter-
mining the weights on the connections called algorithm, and 3) its
activation function. The general architecture of the ANN algorithm
consists of input units, single or multi-layer hidden units, and output
units.53 ANN can be used for regression and classification problems.
Commonly implemented ANN learning algorithms include the radial
basis function,54 perception algorithms, back-propagation, and feed-
forward propagation.19,53

hm
i =

Nm−1
h∑

j=1

W m
i, j .y

m−1
j + bm

j , [4]

ym
i = A(hm

i ). [5]

Equations 4 and 5 are used to calculated the output of the ANN
shown in Fig. 4. Let the number of layers be M, and the number of
nodes in the mth layer be Nm

h . The weight and bias of the mth layer are
given by W m

i, j and bm
j . In Eq. (5), the function A represents the activa-

tion function. There are several choices for A, such as the Sigmoid,
Hyperbolic Tangential function and the Rectified Linear Unit (ReLU).

During the training process, the weights and bias in each layer are
learned with the goal of minimizing the cost function. There are several
choices for the cost function as well and MSE shows in Equation 1 is
one of the most common.

Literature Review

Yield prediction is a vital feature of precision agriculture that uti-
lizes farmland and weather data to help farmers increase crop produc-
tion. Farmland data, which can be manipulated by man, can include
land usage and preparation (tillage vs no-till soil) depth of till, soil
texture, soil structure, organic matter present, the amount of (nitro-
gen, phosphorus and potassium) fertilizers present and consumed, ef-
ficiency of water usage based on the type of irrigation scheme, crop
rotation pattern, method for pest and weed control, total yield pro-
duced. Environmental weather data can include temperature, rainfall,
solar radiation, wind speed, presence of pests, weeds, and biodiver-
sity. The use of advanced sensor technology allows this data to be
autonomously collected in a non-destructive manner. This acquired

data is then employed with ML to provide actionable insight, thereby
selecting the best decision management systems for yield predic-
tion. Table I provides a list of algorithms and approaches used for
the prediction of crop yield, irrigation management, and crop disease
detection.

Case Study on IoT Based Smart Agriculture Solution

In this section, a distributed WSN developed using open-source
hardware platforms, Arduino based micro-controller, and ZigBee55

module to monitor and control parameters critical to crop growth such
as soil conditions, environmental and weather conditions is further
discussed. This experimental testbed, as detailed in Ref. 6, is an off-
grid photo-voltaic (PV) supported small-sized smart farm experimen-
tal test-bed, which additionally captures energy and water data as well.
The main objective of this experimental project is to investigate more
about the nexus of food, water, and energy by designing an IoT based
farm system that will give the ability to produce more food with less
energy and water using a simple automated system powered by solar
panel in order to address current and future FEW resource scarcity.70

It further aims to advance the goal of integrated planning, policy, and
management, by using IoT and data analytics; bring together stake-
holders working on different sectors of FEW systems, by providing
a user friendly interface to track and control the system; as well as
flexibility in the size of the system, broadening the user base.

The farm prototype, as shown in Fig. 5 operate on distributed wire-
less sensor technology and is able to monitor and measure various
environmental parameters, such as soil temperature and moisture, in
real-time to schedule precise irrigation events. The system further col-
lects real-time weather information in order to minimize environmen-
tal impact and make better decisions on how to manage resources such
as water and energy. The information gathered is available in the local
and external databases, and the users have the ability to retrieve the
information using an intuitive mobile application. The intent of the
mobile app is to allow users to monitor or interact with the farm in-
frastructure remotely. The overall system is implemented with design
requirements to be power-efficient, cost-effective, and low mainte-
nance, allowing the farmers/users to manage their farm or garden with
little effort. This system is currently deployed at the FIU engineering
campus area for development and testing purposes. The deployment
includes a gateway, 6 WSN, and a weather console.

Sensor nodes.—The wireless sensor units is a customized Arduino
microcontroller consisting of the main functionality module board and
a sensor interface board. The sensor board can be interfaced with var-
ious sensors to measure soil moisture content, pH level, soil tempera-
ture, leaf wetness, ambient temperature, solar radiation, atmospheric
pressure, humidity, and weather parameters, including wind direction,
precipitation, and wind speed. It uses the ZigBee protocol with XBee
PRO S2 2.4 GHz to transmit sensor data to the gateway and also to
communicate among other nodes. Sensor integration and program-
ming can be achieved via the Integrated Development Environment
(IDE). Each WSN is equipped with 3.7 V, 1150 mAh capacity lithium-
ion batteries to take care of power issues.

IoT Gateway.—A Linux-based mesh router is used as an IoT gate-
way where all the sensor data is saved in a local MySQL database.
The gateway supports different wireless communication protocols, but
this project uses a ZigBee protocol to communicate with the sensor
nodes. Furthermore, it supports Ethernet or Wi-Fi connection where
data stored in the local database can easily be synchronized to an
external database via TCP/IP through Wi-Fi or cellular connection.
Additionally, the gateway can push sensor data to a cloud platform.
The gateway provides a user interface application to view recently
captured data, as shown in Fig. 6.

Services and the cloud.—The gateway pushes sensor data to the
Microsoft Azure cloud platform, a limited paid cloud service platform,
and Google Firebase, a free cloud service with a generous storage
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Table I. Summary of works published in the last three years (2016-) related to use of ML techniques in WSN based data acquisition for PA.

Algorithms Approach Application Data Acquisition

Extreme Learning Machine
and kernel based ELM56

Compares the approach with
back-propagation (BP), SVM and Elman
through simulations

To predict temperature and humidity in
greenhouse environment

ZigBee WSN based

Fuzzy logic57 Fuzzy rules are used to predict the climate
using temperature, and humidity; predicted
climate and pH of soil from sensor is
concurrently used to predict the crop to be
grown

To predict the type of crop to be grown using
sensor data from soil pH, temperature and
humidity. Critical information about the
field is sent to farmer’s mobile using GSM

GSM and GPS WSN based

ARIMA58 A WSN based system called
“Agri-prediction” to collect air
temperature, soil temperature, air humidity,
soil humidity and luminosity. ARIMA
model was implemented to predict sensor
data. ARIMA model was compared with
ANN and RF where the former model
outperformed by producing lowest MAE

To anticipate crop dysfunction proactively,
farmer is then notified with possible
remedy through smartphone. The model
was tested in greenhouse Arugula
cultivation with gains associated with leaf
development and weight

LoRa WSN based

Data mining techniques,
linear regression, and
Apriori algorithm59

Association rules are applied for data mining
to find relationship among temperature,
humidity, soil moisture, and yields of
lemon, and vegetables. Implemented linear
regression to model relationship between
inputs

To analyze the sensor data for predicting
suitable temperature, humidity, and soil
moisture of crops in the future

WSN based

Naives Bayes Kernel
algorithm60

Real-time sensor data have been used to
understand and quantify hidden correlation
pest/disease, humidity, temperature,
pressure, pH value, nitrogen, soil moisture,
soil temperature are used

In forecasting and detecting pest/disease
accurately using historical and real-time
sensor data to monitor crop quality

ZigBee WSN based

Bayesian statistics61 Sensor and weather data used to forecast
changes and overall crop quality, image
processing for weed extraction

A cloud based decision support system uses
the best algorithm to optimize events based
on sensor data, scheduling irrigation based
on moisture content sensor and weather
forecast

WiFi and MQTT Sensor based
with Raspberry pi and Arduino
controller

Machine vision and
statistical analysis21

Machine vision uses “canny edge” detection
and seeded region growing to estimate leaf
area, one-way and two-way ANOVA are
used to examine correlation between
environmental sensor data with leaf growth

To find the best growth condition for orchids
and increase productivity

WiFi and ZigBee IoT based
environmental monitoring and
IoT based wireless imaging
platform

Multiple linear regression
and density based
clustering 62

Used historical data of rainfall, area of
sowing, yield, year and fertilizers and
production to predict crop yield

To forecast crop yield Historical database

Linear regression, SVM and
neural networks50

Data mining technique in WSN dataset to
correlate & predict with the floral quality
and characteristics. Methodology needs
further fine tuning

To provide the optimal growing conditions
for roses in a greenhouse with the support
of WSN based system

ZigBee based WSN.
Temperature, luminosity, soil
moisture and humidity sensor
data are used

Deep learning techniques:
feed forward, LSTM,
Gated recurrent unit
(GRU)63

Soil temp, atmospheric temp and humidity
level of an area was measured with WSN.
Max and min values of parameters were
determined and used to train ML model.
LSTM and GRU were chosen to forecast
the weather as it is time dependent

To learn and train soil parameters and
environmental data and accurately predict
to suggest a suitable crop to be sowed

ZigBee and GSM based WSN

KNN, RF, Logistic
regression, and linear
regression 64

Air temperature and humidity, co2
concentration, luminosity, soil moisture,
humidity and temperature data, leaf
wetness sensor data were labeled into safe
and risk area. KNN is shown to be very
effective among all the ML techniques

For data collection and analysis to identify a
prediction model which can be used in
predicting outbreaks of plantation disease

ZigBee based WSN

Neural networks &
Multi-Layer Perceptron
(MLP) 65

MLP& neural network model are used to
train input sensor data to decide land
cultivation in terms of four decision classes

For the assessment of agriculture land
suitability

WSN based (pH, soil moisture,
salinity, electromagnetic
sensors are used)

Support Vector Machines66 Using digital imagery to quantify coffee
fruits on a single coffee branch. The coffee
fruits are divided into three categories:
harvestable, not harvestable, and fruits
with disregarded maturation stage.

To increase production of crops through
yield prediction. Counting coffee fruits on
a branch, estimating weight, and the
maturation percentage of the coffee fruits.

Image processing using digital
imagery
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Table I. Continued.

Algorithms Approach Application Data Acquisition

Support Vector Machines67 Using a combination of weather and soil
physio-chemical data with past yield and
development data.

Using a novel method for the rice
development stage prediction

Data was acquired using basic
geographic information
obtained from weather stations
in China.

Various regression models
and hybrid geo-statistical
methods including partial
least squares regression,
artificial neural networks,
random forests, regression
kriging and random forests
residuals kriging.68

Using CCD images of grassland to produce
accurate and timely predictions of
grassland LAI for the meadow steppes of
northern China

Prediction of grassland leaf area index Earth-observing satellites and
high spectral CCD cameras and
GPS.

Partial Least Square
Regression, & ANN69

Crop characteristics were obtained using
remote sensing approaches.

sunflower seed yield could be reasonably
estimated using crop characteristic indexes
under complex environmental conditions
and management options (e.g., saline soils,
nitrogen application.

Remote sensing for collecting
data of high spatial-temporal
resolution, e.g NDVI for crop
development.

limit. The cloud provides convenient and flexible access to data for
the intended user. It enables data access outside the farm network, long
term applications like crop suggestions, and data analytics. Therefore
data from this smart farm system can be accessed through web-based
applications and smartphones.

Application.—Extending the data infrastructure to cloud, part of
the goal for this project is to live-stream sensor data using a mobile
application. The mobile application platform enables intended users
to understand what their farm is doing in real-time and additionally
track critical information on energy consumption, irrigation events,

Figure 5. An experimental testbed for smart farm with end to end IoT platform.
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Figure 6. IoT architecture with hardware and connectivity for the smart farm prototype.

and weather variables. The sensor data stored on the local database of
the IoT gateway are constantly synchronized to an external MySQL
database located in a virtual machine and Google Firebase cloud. It has
been successfully implemented to be pushed to Microsoft Azure cloud
services, as well. However, due to storage limit and cost, Google Fire-
base is selected for this application. The mobile application, Green-
Link Farming, is currently developed for Android OS and will be
extended to iOS in the future. The functionality of the GreenLink
Farming app is summarized as follows:

1. A dashboard menu with soil moisture content, leaf wetness, and
soil temperature, critical to the feedback response of irrigation
events, as shown on the right side of Fig. 8.

2. Insight into previously collected and real-time sensor data. These
data are divided into five tracks: weather data, soil data, yield data,
energy data, and water data, as shown in Fig. 7.

3. Data visualization capability: sensor data can be viewed as a list
view or are plotted to get insight on trends and patterns into the
data.

4. Data analytics: predictive modeling of crop yield, weather, en-
ergy, and water using different ML techniques. The end objective
for this is to eventually maximize food production through multi-
objective optimization of the aforementioned variables. Addition-
ally, it will explore the interdependent networks of food produc-
tion on energy and water.

Data analysis.—Part of the goal for this project is to use high-
resolution sensor data for the prediction of crop yield, weather, and
crop quality from sensor data. This IoT solution manages variations
in the field to increase crop yield, raise productivity, and reduce the
consumption of agricultural inputs. The data-driven physical model
enables farmers on how much energy is being produced and consumed
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Figure 7. Smartphone application to monitor and control the smart farm.

Figure 8. The back-end data analysis framework of GreenLink Farming mobile application.
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by their farm, how much water is being consumed and recycled, and
the quality of the yields. Monitoring weather data long-term will give
better leverage in building a time-series forecast model that can ac-
curately predict the weather a day ahead, equipping the farmer with
decision making capability on when to irrigate. The mobile application
platform provides just this, giving the intended user when to schedule
irrigation on the dashboard. The number of measurements that sensors
can take make the data storage and management process overwhelm-
ing, but will help narrow down potential predictor attributes in crop
data sets. As this project is ongoing, the data analysis level is in the
prelim nary phase, where more data processing and mapping needs to
be completed. The research task for the data analysis track, as shown
in the left diagram of Fig. 8 are listed as follows:

1. Tracking and gathering data from food, energy, water infrastruc-
ture

2. Data pre-processing to organize, clean, and prepare the data. This
step is critical since the nature of this project has different tem-
poral, spatial scale

3. Modeling of different machine learning algorithms
• Use classification and regression trees (CART) model to

identify potential predictors for crop yield, FEW interactions,
and yield quality

• Use autoregressive integrated moving average (ARIMA)
model for all time-series based sensor data

• Use of deep neural network in remote sensing data to sup-
plement the WSN data

• Evaluation of the models
4. Upgrading and modifying mobile and web-based application to

display predicted values

This project implements an IoT based data-driven prototype for an
integrated food, water, and energy system. The main goal is to mon-
itor and measure the three interdependent resources using wireless
sensor networks and IoT platform across the whole system. To eas-
ily navigate the data acquisition and integration, GreenLink Farming
mobile application is designed and implemented with Google Fire-
base cloud storage as a back-end. The implication of such a system
is many: it advances the current research challenge on the lack of
data-driven integrated FEW systems, and it explores the application
of AI in agriculture, and it facilitates the slowly adopt IoT technology
into the agriculture sector. It revolutionizes the way farmers cultivate
by giving them a direct insight into what their farm is doing through
a mobile application capable of data integration, visualization, and
analytics. With a cost feasibility analysis, the prototype can also be
ideally implemented in regions of the world where access to electric-
ity is a challenge through the use of off-grid solar panels with energy
storage.71–73 There is no doubt data-driven techniques can tremen-
dously help boost agricultural productivity. This case study presents
an end-to-end IoT platform for agriculture to collect, monitor vari-
ous sensors with a data analysis framework to be easily accessed via
smartphone and internet.

Conclusions

Agriculture, like several industries, is undergoing a digital trans-
formation. The amount of data being collected from farms is increas-
ing exponentially. The use of wireless sensor networks, IoT, robotics,
drones, and AI is on the upswing. Machine learning algorithms enable
the extraction of useful information and insights from the deluge of
data. This paper has reviewed the ML methods frequently used by
researchers in the past two years in conjunction with wireless sensor
networks. The coming years may see an increased use of more ad-
vanced techniques like distributed (or edge) deep learning. AI must
be leveraged to increase the automation of tasks in agriculture and
improve the yield while optimizing the use of natural resources. This
paper has shown different ML models applied in multiple applica-
tions within the precision agriculture ecosystem, including yield pre-
diction, weed, and disease detection. The reviewed work has only

been focused specifically on WSN based PA application where ML
algorithms were implemented for data mining, forecasting, and au-
tomation purpose. By applying ML to sensor data, farm management
systems are evolving into real AI systems, providing optimal insights
for decisions and actions to be made. This remark is further proved and
showcased through an experimental smart farm prototype case study.
An environment to help anyone to deploy a PA monitoring application
has been described and successfully evaluated in this case study. The
architecture, hardware, communication protocol, and data acquisition
infrastructure is detailed. The implementation of smartphone appli-
cations and the back-end data analysis framework for prediction of
weather, crop yield, and crop quality is presented.
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