115 research outputs found

    On Sub-Propositional Fragments of Modal Logic

    Get PDF
    In this paper, we consider the well-known modal logics K\mathbf{K}, T\mathbf{T}, K4\mathbf{K4}, and S4\mathbf{S4}, and we study some of their sub-propositional fragments, namely the classical Horn fragment, the Krom fragment, the so-called core fragment, defined as the intersection of the Horn and the Krom fragments, plus their sub-fragments obtained by limiting the use of boxes and diamonds in clauses. We focus, first, on the relative expressive power of such languages: we introduce a suitable measure of expressive power, and we obtain a complex hierarchy that encompasses all fragments of the considered logics. Then, after observing the low expressive power, in particular, of the Horn fragments without diamonds, we study the computational complexity of their satisfiability problem, proving that, in general, it becomes polynomial

    Deciding regular grammar logics with converse through first-order logic

    Full text link
    We provide a simple translation of the satisfiability problem for regular grammar logics with converse into GF2, which is the intersection of the guarded fragment and the 2-variable fragment of first-order logic. This translation is theoretically interesting because it translates modal logics with certain frame conditions into first-order logic, without explicitly expressing the frame conditions. A consequence of the translation is that the general satisfiability problem for regular grammar logics with converse is in EXPTIME. This extends a previous result of the first author for grammar logics without converse. Using the same method, we show how some other modal logics can be naturally translated into GF2, including nominal tense logics and intuitionistic logic. In our view, the results in this paper show that the natural first-order fragment corresponding to regular grammar logics is simply GF2 without extra machinery such as fixed point-operators.Comment: 34 page

    Reasoning in Many Dimensions : Uncertainty and Products of Modal Logics

    Get PDF
    Probabilistic Description Logics (ProbDLs) are an extension of Description Logics that are designed to capture uncertainty. We study problems related to these logics. First, we investigate the monodic fragment of Probabilistic first-order logic, show that it has many nice properties, and are able to explain the complexity results obtained for ProbDLs. Second, in order to identify well-behaved, in best-case tractable ProbDLs, we study the complexity landscape for different fragments of ProbEL; amongst others, we are able to identify a tractable fragment. We then study the reasoning problem of ontological query answering, but apply it to probabilistic data. Therefore, we define the framework of ontology-based access to probabilistic data and study the computational complexity therein. In the final part of the thesis, we study the complexity of the satisfiability problem in the two-dimensional modal logic KxK. We are able to close a gap that has been open for more than ten years

    Computational Complexity of a Core Fragment of Halpern-Shoham Logic

    Get PDF
    Halpern-Shoham logic (HS) is a highly expressive interval temporal logic but the satisfiability problem of its formulas is undecidable. The main goal in the research area is to introduce fragments of the logic which are of low computational complexity and of expressive power high enough for practical applications. Recently introduced syntactical restrictions imposed on formulas and semantical constraints put on models gave rise to tractable HS fragments for which prototypical real-world applications have already been proposed. One of such fragments is obtained by forbidding diamond modal operators and limiting formulas to the core form, i.e., the Horn form with at most one literal in the antecedent. The fragment was known to be NL-hard and in P but no tight results were known. In the paper we prove its P-completeness in the case where punctual intervals are allowed and the timeline is dense. Importantly, the fragment is not referential, i.e., it does not allow us to express nominals (which label intervals) and satisfaction operators (which enables us to refer to intervals by their labels). We show that by adding nominals and satisfaction operators to the fragment we reach NP-completeness whenever the timeline is dense or the interpretation of modal operators is weakened (excluding the case when punctual intervals are disallowed and the timeline is discrete). Moreover, we prove that in the case of language containing nominals but not satisfaction operators, the fragment is still NP-complete over dense timelines

    Fast(er) Reasoning in Interval Temporal Logic

    Get PDF
    Clausal forms of logics are of great relevance in Artificial Intelligence, because they couple a high expressivity with a low complexity of reasoning problems. They have been studied for a wide range of classical, modal and temporal logics to obtain tractable fragments of intractable formalisms. In this paper we show that such restrictions can be exploited to lower the complexity of interval temporal logics as well. In particular, we show that for the Horn fragment of the interval logic AA (that is, the logic with the modal operators for Allen’s relations meets and met by) without diamonds the complexity lowers from NExpTime-complete to P-complete. We prove also that the tractability of the Horn fragments of interval temporal logics is lost as soon as other interval temporal operators are added to AA, in most of the cases

    Zero-one laws with respect to models of provability logic and two Grzegorczyk logics

    Get PDF
    It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of elements of finite models increases, every formula holds either in almost all or in almost no models of that size. Therefore, many properties of models, such as having an even number of elements, cannot be expressed in the language of first-order logic. Halpern and Kapron proved zero-one laws for classes of models corresponding to the modal logics K, T, S4, and S5 and for frames corresponding to S4 and S5. In this paper, we prove zero-one laws for provability logic and its two siblings Grzegorczyk logic and weak Grzegorczyk logic, with respect to model validity. Moreover, we axiomatize validity in almost all relevant finite models, leading to three different axiom systems

    Undecidability in Epistemic Planning

    Get PDF
    Dynamic epistemic logic (DEL) provides a very expressive framework for multi-agent planning that can deal with nondeterminism, partial observability, sensing actions, and arbitrary nesting of beliefs about other agents’ beliefs. However, as we show in this paper, this expressiveness comes at a price. The planning framework is undecidable, even if we allow only purely epistemic actions (actions that change only beliefs, not ontic facts). Undecidability holds already in the S5 setting with at least 2 agents, and even with 1 agent in S4. It shows that multi-agent planning is robustly undecidable if we assume that agents can reason with an arbitrary nesting of beliefs about beliefs. We also prove a corollary showing undecidability of the DEL model checking problem with the star operator on actions (iteration)
    • 

    corecore