
Universität Bremen
Fachbereich 3 – Mathematik/Informatik

Dissertation

Reasoning in Many Dimensions:
Uncertainty and Products of Modal Logics

eingereicht am 17.07.2014 von

Jean Christoph Jung, M.Sc.
geboren am 12.08.1984 in Bad Salzungen.

Kolloquium: 06.10.2014

Gutachter:
Prof. Dr. rer. nat. Carsten Lutz, Universität Bremen
Prof. Dr. Diego Calvanese, Freie Universität Bozen-Bolzano

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-LIB Dokumentserver - Staats und Universitätsbibliothek Bremen

https://core.ac.uk/display/46920033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Description Logics (DLs) are a popular family of knowledge representation languages.
They are fragments of first-order logic (FO) that combine high expressiveness with rea-
sonable computational properties; in particular, most DLs are decidable. However, being
based on first-order logic, they share also the shortcomings. One of these shortcomings is
that DLs do not have built-in means to capture uncertainty, a feature that is commonly
needed in many applications. This problem has been addressed in many different ways;
one of the most recent proposals is the introduction of Probabilistic Description Logics
(ProbDLs) which relate to Probabilistic first-order logic (ProbFO) in the same way as DLs
relate to standard FO. In order to capture the uncertainty, ProbFO and thus ProbDLs
adopt a possible world semantics. More specifically, a ProbDL or ProbFO knowledge
base describes a family of distributions over possible worlds.
These logics constitute the scope of the first part of the thesis. We investigate the

following settings:

• Reasoning in full ProbFO is highly undecidable and standard restrictions like the
guarded fragment do not lead to decidability. We identify a fragment, monodic
ProbFO, that shows several nice properties: the validity problem is recursively
enumerable and decidability of FO fragments carries over to the corresponding
monodic ProbFO fragment;

• In order to identify well-behaved, in best-case tractable ProbDLs, we study the
complexity landscape for different fragments of ProbEL; amongst others, we are
able to identify a tractable fragment.

• We then turn our attention to the recently popular reasoning problem of ontological
query answering, but apply it to probabilistic data. More precisely, we define the
framework of ontology-based access to probabilistic data and study the computational
complexity therein. The main results here are dichotomy theorems between PTime
and #P.

Probabilistic logics as described above can be viewed as instances of the framework
of many-dimensional logics, one dimension being classical logic and the other being
reasoning with probabilities. In the final part of the thesis, we remain in this framework
and study the complexity of the satisfiability problem in the two-dimensional modal
logic K×K. Particularly, we are able to close a gap that has been open for more than
ten years.

i

Zusammenfassung

Beschreibungslogiken (BLn) sind eine häufig betrachtete Sprachenfamilie zur Wis-
sensrepräsentation. Sie sind Fragmente der Logik erster Stufe (FO), die gute Aus-
drucksstärke mit angemessenen Berechnungseigenschaften kombinieren. Da BLn auf der
Semantik von FO basieren, erben sie deren Unzulänglichkeiten. Eine solche ist, dass weder
FO noch BLn Mittel zur Repräsentation von Unsicherheit zur Verfügung stellen, was aber
in vielen Anwendungen notwendig ist. Für dieses Problem wurde schon eine Vielzahl von
Ansätzen vorgeschlagen; einer der aktuellsten sind Probabilistische Beschreibungslogiken
(ProbBLn), die sich zu Probabilistischer Logik erster Stufe (ProbFO) so verhalten wie
klassische BLn zu FO. Diesen probabilistischen Logiken unterliegt eine “possible world”-
Semantik um die Unsicherheit zu erfassen: eine ProbBL- oder ProbFO-Wissensbasis
beschreibt eine Menge von möglichen Verteilungen über possible worlds.

Diese Logiken bilden den Rahmen des ersten Teils der Arbeit, in welchem die folgenden
Szenarien betrachtet werden:

• Es ist bekannt, dass Erfüllbarkeit in vollem ProbFO hochgradig unentscheidbar ist.
Es wird das monodische Fragment von ProbFO eingeführt und gezeigt, dass es gute
Eigenschaften aufweist. Zum Beispiel ist das Gültigkeitsproblem rekursiv aufzählbar
und Entscheidbarkeit von FO-Fragmenten überträgt sich auf die entsprechenden
Fragmente von monodischem ProbFO.

• Mit dem Ziel, ProbBLn zu finden, die effizientes Schlussfolgern zulassen, wird eine
nahezu vollständige Analyse der Fragmente von ProbEL durchgeführt.

• Ein in den letzten Jahren sehr gut untersuchtes Szenario im Zusammenhang mit
BLn ist der Ontologie-basierte Datenzugriff. Da auch hier in vielen Anwendungen
mit unsicheren Daten umgegangen werden muss, wird das Framework des Ontologie-
basierten Datenzugriffs auf probabilistische Daten definiert und die Komplexität von
Anfragebeantwortung darin untersucht. Die Hauptresultate in diesem Abschnitt
sind Dichotomietheoreme zwischen PTime und #P.

Die beschriebenen probabilistischen Logiken können als Instanzen mehr-dimensionaler
Logiken aufgefasst werden: eine Dimension ist hierbei die unterliegende klassische Logik
und die andere das Rechnen mit Wahrscheinlichkeiten. Im letzten Teil der Arbeit werden
weitere mehr-dimensionale Logiken untersucht. Das zentrale Resultat ist die inherente
Nichtelementarität des Erfüllbarkeitsproblems für die Logik K×K. Damit wird eine
seit mehreren Jahren offene Frage beantwortet.

iii

Acknowledgements

This thesis is the result of more than four years work as a PhD student. However, it
would not have been possible to write it without the support of so many people.

First of all, I want to thank my advisor Carsten Lutz for the excellent supervision, in
particular, for both giving me the liberty to work on my own projects and supporting me
with many great ideas while collaborating. Apart from learning about computer science,
I also learnt a great deal about how to do research.

Besides Carsten, I want to thank the other members of the working group “Theorie
der künstlichen Intelligenz” at University Bremen: İnanç, Marlott, Maxim, Peter, Stefan,
Thomas, Víctor, and Yazmin. It was (and is) a lot of fun working with you and I
enjoyed the many discussions about diverse topics. Two people stand out: Víctor, with
whom I shared office during the entire PhD, thanks for so many discussions, background
knowledge, motivation, support, and fun during that time. Special thanks go to Stefan:
not only you never gave up telling me about verification of infinite state systems, but
also we had “etliche Biere” and countless conversations about science, work, and life.

I owe thanks to Diego Calvanese for agreeing to review the thesis and coming to
Bremen for the defense. I would also like to thank the Deutsche Forschungsgemeinschaft
for supporting the project “ProbDL” that I was employed on.

When I came to Bremen I was so lucky to move into the “WG”. Warm thanks go to
Alja, Bretti, Jana, Laura, Ney, Timm, Tinchen, and Alex for these incredible years spent
on the veranda, in the garden, kitchen, or living room, and for being like a family to me.
Special thanks go to Jana and my Mum and sister for the continuous support, care, and
always open ears.

v

Contents

1 Introduction 1
1.1 Logic and Uncertainty . 2
1.2 Products of Modal Logics . 9
1.3 Structure of the Thesis . 11
1.4 Summary of Publications . 13

2 Preliminaries 15
2.1 First-Order Logic . 15
2.2 Description Logics . 17
2.3 Probabilistic Description Logics . 20

3 Monodic Fragments of Probabilistic First-order Logic 25
3.1 Probabilistic First-order Logic . 28

3.1.1 Syntax and Semantics . 28
3.1.2 Examples and Expressivity . 31
3.1.3 Complexity and first Observations 33

3.2 Monodic ProbFO . 41
3.2.1 Examples and Expressivity . 42
3.2.2 Equality . 44

3.3 The Quasi-Model Machinery . 45
3.4 Recursive Enumerability and Axiomatization 53
3.5 Decidability and Complexity . 59

3.5.1 Improvements . 61
3.6 Connection to Probabilistic Description Logics 66
3.7 Conclusion and Outlook . 68

4 Subjective Uncertainty in EL 71
4.1 Syntax and Semantics of ProbEL . 74
4.2 Complexity of Probabilistic Concepts . 77

4.2.1 Lower bounds . 77
4.2.2 Subsumption Relative to Classical TBoxes 84

4.3 Complexity of Probabilistic Roles . 93
4.3.1 Subsumption in full ProbEL . 93
4.3.2 Subsumption in ProbEL01 is PSpace-complete 94

vii

Contents

4.4 Conclusion and Outlook . 107

5 Ontology-Based Access to Probabilistic Data 109
5.1 Preliminaries . 112
5.2 The Framework of Probabilistic OBDA 114

5.2.1 Computational Problems . 117
5.2.2 Assertion-independent probabilistic ABoxes 119

5.3 The Dichotomy for First-Order Rewritable (ϕ, T) 121
5.4 The Dichotomy for DL-Lite TBoxes . 125

5.4.1 Dichotomy for disjunctive sentences 127
5.4.2 Dichotomy for DL-Lite . 135

5.5 Beyond First-order Rewritings: ELI-TBoxes 140
5.5.1 TBox Normalization . 143
5.5.2 Fixpoint operator, Boundedness, and FO-rewritability 145
5.5.3 Construction of Âd from Lemma 5.33 148

5.6 Monte Carlo Approximation . 152
5.7 Conclusion and Future Directions . 155

6 Computational Complexity of the Product Logic K×K 159
6.1 Preliminaries . 161

6.1.1 Many-dimensional modal logics 161
6.1.2 Decision problems . 164
6.1.3 Bisimulation equivalence . 167

6.2 K2-SAT is hard for nonelementary time 168
6.2.1 Trees encoding numbers . 168
6.2.2 Formulas enforcing the trees Υ`,n(j) 171
6.2.3 `-NExpTime-hardness for each ` ≥ 1 178

6.3 Hardness results for K4×K, S4×K, and S52 ×K 184
6.4 Conclusions, open problems, further applications 190

7 Conclusion and Outlook 193

List of Figures 197

Bibliography 199

viii

1 Introduction

Logic has been proved to be fundamental to the formalization and solution of many
important problems in different branches of computer science. One of the most important
and successful applications are ontologies which are used to model the terminology of
an area of interest, like the medical domain, genetics, bioinformatics, and many more.
Logic provides the theoretical foundation of many ontology languages such as first-order
logic (FO) or description logics (DLs). Thus, ontologies have a well-defined semantics
which enables automated reasoning supporting both the designer and the user of the
ontology by making implicit knowledge explicit. As a consequence, ontologies play a
fundamental role in the areas of knowledge representation and reasoning, Semantic Web,
and databases.

While classical logics like FO and DLs are well-suited to represent and reason about
static knowledge, they have shortcomings regarding their expressive power when it
comes to modeling of and reasoning about uncertainty or dynamic aspects such as time
or change. Thus, it is highly relevant to investigate principal ways of how to extend
classical logic to capture these aspects. Arguably, the most prominent approach towards
this direction is to adopt a possible world semantics known from modal logics. More
specifically, we move from one formal representation of the real world – as it is standard
in classical logics – to many. Intuitively, classical logic is used to reason inside one world,
whereas another formalism which addresses the dynamic aspects is used to reason about
the worlds seen as entities. As an example, uncertainty is often dealt with by equipping
the worlds with probabilities, expressing how likely the world is considered to be.

Adding uncertainty or a dynamic aspect to classical logic can be viewed as adding an
additional dimension of reasoning, which explains the first part of title of this thesis:
Reasoning in Many Dimensions. The second part Uncertainty and Products
of Modal Logics indicates that we concentrate on two particular ways of extending
classical logics. First, we study in a principled way two frameworks that combine logic
with probability theory for handling uncertainty. We motivate these frameworks in
the realms of ontological modeling and ontology-based data access. Second, we study
products of modal logics. In particular, we show the semantical connection to the first
part of the thesis and solve some open problems from this field. Throughout the thesis,
our main concern will be the study of the computational complexity of the relevant
reasoning problems.

1

1 Introduction

1.1 Logic and Uncertainty

Combining logic with uncertainty is an old and challenging problem in knowledge
representation (KR) and artificial intelligence which has been subject of a lot of research.
Depending on the addressed scenario, there is an abundance of choices about the nature
of uncertainty, independence assumptions, the required logic, and so on, that has to
be considered when developing such a combination. In order to illustrate the scope of
this thesis and to provide some background, we will discuss some of these choices to
be made. Note that we do not claim completeness here; the main goal is to give some
general design aspects of combinations of logic with probabilities. For another (and more
exhaustive) overview about classification of probabilistic logics, see [40].
Let us start with the choice of the logic. In this thesis, we will concentrate on two

settings from KR involving ontologies, that is, logical description of the terminology
of some domain of discourse. We will thus focus on first-order logic and description
logics being well-known ontology languages; in particular, propositional logics are not
considered in such a setting.

Next, let us have a look at the nature of uncertainty. It has been observed, for example
in [67], that there are at least two forms of uncertainty that capture different ideas.

Subjective uncertainty This is uncertainty about particular objects, as in ‘The prob-
ability that Tweety flies is greater than 0.9’. Intuitively, statements of this kind
capture the degree of belief that some object satisfies a property.

Statistical uncertainty This type uncertainty captures statistical information about the
domain, such as ‘90 % of all birds fly’.

Semantically, statistical uncertainty, is typically modeled by a probability distribution
over some domain; in the example about the birds, 90 % of the birds would addition-
ally fly. Subjective uncertainty, on the other hand, is usually modeled in a possible
worlds semantics, that is, using a probability distribution over a set of worlds. For a
mathematician, this is a very natural point of view since possible worlds correspond
to possible outcomes of random experiments. In combination with logic, however, this
approach can be attributed to a seminal paper by Nilsson [110] who studied a setting
involving (subjective) uncertainty of propositions. Intuitively, not only one world—a
formal representation of the real world—is considered possible, but a collection of them.
Moreover, the probability distribution over the worlds assigns probabilities to the worlds
referring to the degree of belief that this is the actual ‘real’ world.

In the scope of this thesis, we will concentrate on the subjective view as motivated in
the scenarios that we will present later. Having decided for a logic (a first-order language
for ontological modeling) and subjective uncertainty (for representing degrees of belief),
there are still several design choices and many approaches have been proposed for this
setting. They can be roughly classified according to two criteria.

2

1.1 Logic and Uncertainty

On the one hand, Halpern and Bacchus introduced probabilistic first-order logic
(ProbFO) to combine first-order logic with means for capturing subjective uncertainty
in a principled way [67, 13], and Lutz and Schröder recently studied description logic
fragments thereof [101]. The distinctive feature is that these logics are proper extensions
of their non-probabilistic versions, first-order logic and description logics. On the other
hand, there is a whole range of formalisms in a different spirit. In a nutshell, they
fix a finite domain and describe in a succinct way a fixed probability distribution over
a set of possible worlds (which is determined by the domain). This corresponds to a
Herbrand-style semantics which, technically, can be viewed as making the logic essentially
propositional (although a first-order language is used). Examples for this are Markov
logic [118] or some first-order generalizations of Bayesian networks [31], and many more;
see [56, 40] for excellent overviews. Note that both fixing a domain and a set of worlds
is inherently different from ProbFO where, intuitively, a formula describes a class of
possible distributions over possible worlds.

The tool for the mentioned succinct representation of a probability distribution are
independence assumptions. Independence of two statements or events S1, S2 in the domain
intuitively refers to the fact that knowing about S1 does not change the beliefs of S2. For
example, a doctor’s belief that a smoker will develop lung cancer is independent from
whether the smoker is male or female. Independence assumptions have been successfully
modeled in propositional settings, namely in Bayesian and Markov networks. Intuitively,
these are graphical structures are used to encode all independence relations in the domain
under consideration. For more details on probabilistic graphical models, we refer the
interested reader to the textbooks [111, 91]. Here, we want to stress that being able to
model the independence relations in the domain under consideration is typically a desired
feature since independences are characteristic properties of the domain. As already
mentioned, independence assumptions are inherent in the models of the second type,
whereas this is not the case forever ProbFO; however, they can be expressed.

In terms of efficient inference algorithms, research has been focused almost entirely on
the second group of formalisms. Particularly, Abadi and Halpern have shown that ProbFO
has prohibitive high complexity outside the arithmetic and analytic hierarchies [1]. With
this in mind, Lutz and Schröder recently introduced a family of probabilistic description
logics (ProbDLs) which relates to ProbFO in the same way as description logics relate to
FO [101]. In particular, they exhibit much better complexity, mostly ExpTime. These
results motivate to take a fresh look at ProbFO and to further study ProbDLs and
different applications thereof. Indeed, this is the main objective of the first part of this
thesis. We next motivate and illustrate the research questions addressed in this thesis by
sketching two realistic scenarios: uncertainty in ontologies and ontology-based access to
probabilistic data.

3

1 Introduction

Modeling Uncertainty in Ontologies

We consider the medical domain in which ontologies such as Snomed CT and Galen
have been successfully used for modeling and classification. Many terms occurring in
these ontologies can be precisely described in FO, take for example:

∀xGastricMucosa(x)↔ Mucosa(x) ∧ ∃y
(
partOf(x, y) ∧ Stomach(y)

)
;

∀xGastricUlcer(x)↔ Ulcer(x) ∧ ∃y
(
locatedAt(x, y) ∧ Stomach(y)

)
.

Intuitively, the former defines the term gastric mucosa, to be the ‘mucosa that is the
inner part of the stomach’ while the latter defines the term gastric ulcer as an ‘ulcer
located at the stomach.’ Somewhat more complex, we can express that, if something is
located at a subpart of some object, it is also located at that object:

∀xyz locatedAt(x, y) ∧ partOf(y, z)→ locatedAt(x, z)

For instance, an ulcer located at the gastric mucosa is also located at the stomach. In
particular, from the above statements we can infer that indeed every ulcer located at the
gastric mucosa is a gastric ulcer, that is,

∀x
(
Ulcer(x) ∧ ∃y

(
locatedAt(x, y) ∧ GastricMucosa(y)

)
→ GastricUlcer(x).

The usefulness of logic lies in the fact that obviously the illustrated pattern applies not
only to gastric ulcers. Much in the same way, we can infer that a cancer that is located
at the left lung is a lung tumor, by specifying that the left lung is part of the lung.

The medical domain involves considerable uncertainty, both of statistical and subjective
nature, and FO lacks a built-in means to capture it. For an instance of subjective
uncertainty, notice that an oncologist is not always certain about the malignancy of a
tumor; based on his experience, he rather has a certain degree of belief about some tumor
to be benign, premalignant, or malignant. For an instance of statistical uncertainty,
observe that as a matter of fact, not all lung cancer patients are smokers. However, there
might be statistics that 75% of all patients suffering from lung cancer are smokers.
As already advertised, we will concentrate on subjective uncertainty throughout this

thesis. To further underpin the need, let us mention that in Snomed CT, uncertain
terms have been “modeled” by giving them names such as ‘probably malignant tumor’ or
‘natural death with probable cause suspected’. Obviously, these terms include subjective
uncertainty which is not reflected in the semantics. Let us illustrate this with a small
example. Assume we have stated that every lung tumor is a tumor:

∀x LungTumor(x)→ Tumor(x)

A desired consequence of this is that a probable malignant lung tumor is also a probably
malignant tumor, that is, we would like to conclude

∀xProbablyMalignantLungTumor(x)→ ProbablyMalignantTumor(x), (∗)

4

1.1 Logic and Uncertainty

0.1 0.3 0.5 0.1

t1

Mal

Tumor

t2

Tumor

t1

Mal

t2

Mal

t1

t2

Mal

t1

t2

Figure 1.1: Example for the possible worlds semantics.

which is clearly not implied. A possible way to repair this is introducing a new concept
name ProbablyMalignant. However, this is not a satisfying solution, since there is no
built-in means for expressing different probababilities of being malignant or for comparing
probabilities.

Halpern’s and Bacchus’ probabilistic first-order logic, ProbFO, provides explicit means
to model degrees of beliefs. For instance, we can define the term probably malignant lung
tumor as:

∀xProbablyMalignantLungTumor(x)↔ LungTumor(x) ∧ w(Malignant(x)) ≥ 0.75,

expressing that a probably malignant lung tumor is defined as a lung tumor which we
believe to be malignant with degree at least 0.75. Now, having an analogous definition
for probable malignant tumor, we indeed get the desired consequence (∗).
Let us explain the possible worlds semantics underlying ProbFO by means of an

example. Assume two tumors t1, t2 for which malignancy is uncertain. This uncertainty
is reflected by considering four possible worlds together with their degree of belief, see
Figure 1.1. For each ti, it is additionally indicated whether it is malignant, i.e., instance
of Mal in the respective world. In the example, t1 is malignant in the left two worlds,
thus with probability 0.1 + 0.3 = 0.4. In contrast, t2 is an instance of Mal in the middle
two worlds and hence with probability 0.3 + 0.5 = 0.8. This means that t2 is a probably
malignant tumor and t1 is not. Clearly, this is not the only distribution over possible
worlds satisfying this condition; for example, one can assign probabilities of 0.4 and 0.4 to
the two middle worlds. In this spirit, a ProbFO-ontology describes possible distributions
over possible worlds, and neither the set of individuals nor the set of worlds is fixed.
ProbFO is a very general language with an immense expressive power and thus able

to encompass many other probabilistic logics. In fact, it can be regarded as a ‘baseline
formalism’ for other probabilistic models and logics, much in the same way as classic

5

1 Introduction

first-order logic provides a baseline for other classic logics. However, the expressive power
comes at a price: the standard reasoning problem of satisfiability has a prohibitive high
complexity outside the arithmetical hierarchy, which is one reason why it has been mostly
disregarded in practice. However, motivated by the recent positive results about the
mentioned family of ProbDLs, it is highly interesting and relevant to revisit ProbFO with
respect to computational complexity. In particular, we try to pinpoint the reason for
ProbFO being so wildly undecidable, and try to identify other useful fragments. Hence,
we are going to address the following research questions which are, as argued, important
in the field of probabilistic logics.

Can we identify other “well-behaved” fragments of probabilistic first-order
logics? What are maximal decidable fragments? How can we explain the good
computational behavior of probabilistic description logics?

Given that we are seeking maximal decidable fragments of ProbFO, one cannot expect
the answers to be of immediate practical relevance. Naturally, such fragments will
exhibit high complexity. Thus, in a second step we move towards the other end of
the expressivity (and thus complexity) scale and try to identify tractable fragments of
ProbFO. In (non-probabilistic) description logics, tractability was achieved by studying
the positive, existential fragment, EL, of the basic description logic ALC [9]. Although
being of restricted expressivity, EL is used as a basis for the aforementioned biomedical
ontologies Snomed CT and parts of Galen. In particular, some of the above logical
statements can actually be rewritten in EL, for example:

GastricMucosa ≡ Mucosa u ∃partOf.Stomach

LungTumor v Tumor.

All this motivated the introduction of a probabilistic variant of EL as member of Lutz’
and Schröder’s family of ProbDLs [101]. It has been shown, though, that reasoning in
ProbEL is as hard as in ProbALC, thus the syntactic restrictions do not result in better
computational complexity. Given the need for practical probabilistic reasoning, it is
interesting to take a closer look at fragments of ProbEL. We investigate the following
questions:

What is the computational complexity for reasoning in fragments of ProbEL?
Are there any non-trivial fragments which offer polynomial time reasoning
services and are still useful in practice?

Again, there are several choices of how to choose fragments of ProbEL. In the scope of
this thesis, we will concentrate on three possibilities. First, we will vary the application
of probabilistic operators: is it only applied to concepts or also to roles? A second way
is to constrain the possible values used as probabilities. Finally, we consider happens if
the TBox language is restricted.

6

1.1 Logic and Uncertainty

Ontology-based access to Probabilistic Data

A recently very popular application of ontologies is ontology-based data access, where
the data is assumed to be incomplete and an ontology is used to retrieve facts that are
only implicit in the data. To illustrate the idea, imagine a database D storing data about
soccer players and their clubs, see Figure 1.2.

Player

Messi
Ronaldo

playsfor

Messi FCBarcelona
Ronaldo RealMadrid

Figure 1.2: Some data about soccer players and their clubs.

An example query in this domain would be to ‘retrieve all players’, which is realized by
the query

q(x) = Player(x).

As expected, the answers to q(x) on database D are Ronaldo and Messi. Suppose now that
there is an additional entry playsfor(Casillas,RealMadrid) and call the modified database
D′. Obviously, the answers of q(x) to D′ remain the same. However, as typically people
who play for some club are players, one would like to also get the answer Casillas. The
framework of ontology-based data access (OBDA) resolves this problem by answering
queries relative to an ontology. In the present example, we might have an ontology T
describing the soccer domain which contains the axiom that ‘everybody who plays for
something is a player’, formulated in first-order logic as:

∀x
(
∃y playsfor(x, y)→ Player(x)

)
.

For answering the above query q(x) relative to such an ontology, we switch to certain
answers: we drop the closed-world assumption (which is standard in database settings),
adopt the open-world assumption instead, and ask for all individuals that are players
in all models of T and D′. Clearly, this yields the additional answer Casillas since in
every model of D′ and T , Casillas is a player. In a nutshell, OBDA uses an ontology
of the application domain that serves as an interface for querying and allows to derive
additional facts.

Imagine now we are aiming at a tool which manages data that is automatically extracted
from the web. As such extracted data usually comes without explicit information about
the involved relations (Player,playsfor,. . .), it is typically incomplete. As demonstrated
above, OBDA is a useful tool in this context. However, such extracted data is inherently
uncertain which can be attributed to different reasons:

• Ambiguity. The tool processes metaphorical or ambiguous sentences, for example
from a newspaper.

7

1 Introduction

• Trust. The tool might have different degrees of confidence in different web pages.

• Currentness. The tool processes a web page displaying data that is possibly
outdated.

Note that in the mentioned items uncertainty is subjective: the tool assigns some degree
of belief to the data it extracts. It has been argued that probabilistic databases, which
intuitively assign a degree of belief to every tuple, are a suitable formalism to capture this
uncertainty [125, 36]. For example, when the tool finds the information that Messi plays
for Barcelona on Wikipedia it would associate a high degree of belief to the assertion
playsfor(Messi,FCBarcelona), since Wikipedia is typically correct. As another example,
after parsing the ambiguous sentence ‘Messi is the soul of the Argentinian national soccer
team’, the tool adds the assertion Player(Messi) with a medium degree of belief, since
“soul” can also refer to the coach or the mascot. The result of this process is depicted
Figure 1.3 where the p-column contains the degree of belief.

Player p

Messi 0.5

playsfor p

Messi FCBarcelona 0.9

Figure 1.3: Extracted data in a probabilistic database.

A probabilistic database such as the one in Figure 1.3 encodes a distribution over possible
worlds as follows: each subset of the tuples is a world whose weight is given by considering
the tuples as independent events. For example, the weight of the world {Player(Messi)}
consisting of a single tuple is 0.5× (1− 0.9) = 0.05. Thus, enabled by this independence
of tuples, probabilistic databases are a succinct representation of a large distribution
over possible worlds. Note that the justification for this independence assumption is that,
in the setting of information extraction, tuples extracted from different (independent)
sources can be regarded as independent.
Overall, we are facing the problem of ontology-based access to probabilistic data on

which, so far, only little research has been conducted. In order to relate this setting to
our baseline formalism ProbFO, let us point out that:

• uncertainty is (only!) in the data, that is, every tuple is equipped with a probability;

• the ontology is a classical (non-probabilistic) FO or DL ontology;

• we assume independence of all tuples in the (probabilistic) database;

• the set of worlds is fixed by the data: all possible subsets of the tuples;

• we assume open worlds; more precisely, we adopt the open world assumption in
every single possible world.

8

1.2 Products of Modal Logics

The natural computational problem in such a setting is not computing certain answers
(as in traditional OBDA), but computing their probability. Given the growing amounts of
data in the web, applications like the sketched information extraction setting are typically
data intensive, that is, the query and the ontology are small compared to the data. It
has been argued that the right complexity measure is data complexity where query and
ontology are fixed and the input consists only of the database, e.g., [127, 36, 28, 27]. While
in traditional OBDA, ‘hardness’ of query answering is often characterized as (co)NP-
hardness, we will use #P-hardness as the natural analog in probability computation
problems.1 A particular way to study complexity of query answering is the non-uniform
approach, where each fixed ontology and/or query defines a single computational problem,
and which has recently been proved central for both OBDA and pure probabilistic
databases [102, 37]. The benefit of this approach is a better understanding of which
conditions lead to tractability of queries. Most interesting in this context is the search
for dichotomies which are theorems saying that each query answering problem (from
a fixed class) is either in PTime or NP (respectively, #P) hard. As an example, a
dichotomy between PTime and #P was recently obtained for unions of conjunctive
queries and probabilistic databases by Dalvi, Schnaitter, and Suciu [37, 33]. In summary,
this motivates to investigate the following research questions for OBDA to probabilistic
data:

How can we define a framework of ontology-based access to probabilistic data
as the combination of traditional OBDA and probabilistic databases? What is
the computational complexity of query answering in the defined framework?
How can we characterize tractable/hard queries? Can we prove dichotomy
results for query answering?

1.2 Products of Modal Logics

An alternative approach of extending classical logics has been taken in the field of
many-dimensional modal logics [52]. Motivated by the good computational behaviour
of modal logics on the one hand and the need to talk about different modalities inside
one application on the other hand, various combinations of different modal logics have
been studied. A typical combination is modeling and reasoning about the evolution
of knowledge over time. Note that there are modal logics for the individual domains—
temporal logic and epistemic logic [43, 20]—but the question is how to combine them.

Several techniques for combining modal logics have been studied, the most fundamental
ones being fusions and products. Intuitively, the fusion of two logics corresponds to a
lightweight, largely independent combination of the logics. Due to that independence,

1Strictly speaking, #P is a complexity class for counting problems, but counting and probability
computation problems are closely related.

9

1 Introduction

fusions often lead to computationally well-behaved logics. For example, the fusion of
basic modal logic K with itself is the bimodal logic K2 which is of the same complexity
(for satisfiability), PSpace [96]. Products, on the other hand, involve a rather strong
interaction between the logics which makes products more complex than fusions. In this
thesis, we will concentrate on products; we refer the reader interested in fusions to [52,
Chapter 4].

The semantics of products of modal logics is given in terms of Kripke structures whose
underlying frames are restricted to be the direct product of two frames. We denote
with L1 × L2 the product of the two modal logics L1,L2. The classes of frames that
are considered are determined by the component logics. For instance, in K×K, there
are no restrictions on the frames while in K4×K4, where K4 is the variant of K for
reasoning over transitive frames, only products of two transitive frames are considered.
The most relevant reasoning problem is satisfiability checking and it has been shown that
the computational complexity in the product of two logics is often considerably higher
than in the component logics. As an example, consider K and its variant K4, for both
of which satisfiability is PSpace-complete [96]. In contrast, only nonelementary upper
bounds were known for K×K and K4×K [54, 105]. Even worse, satisfiability becomes
undecidable in K×K×K [74] and K4×K4 [55].

Although ProbFO and products of modal logics are seemingly unrelated, there is a deep
semantical connection. Probabilistic first-order logic can be viewed as a first-order modal
logic, that is, there is a modal operator—in this case the weight operator w(ϕ)—that
can speak about first-order formulas [68]. Note that further first-order modal logics like
temporal or epistemic first-order logics have been studied [52, Part III]. These logics
can express statements such as ♦ϕ (‘at some point in the future ϕ holds’), or Kiϕ
(‘some agent i knows ϕ’). The basic observation, however, is that the semantics of these
first-order modal logics is ‘product like’. This claim can be justified by considering modal
description logics which are first-order modal logics whose first-order part is restricted to
description logics. As a matter of fact, many complexity results about modal description
logics require similar techniques as for products of modal logics; some can even be proved
via reductions. As prominent example (for the former), let us mention that decidability
of the modal description logic KALC is proved by extending the technique for decidability
of K×K [130].

The goal of this chapter is to study the precise complexity of the product logic K×K
and some related logics, e.g., K4 × K. We already mentioned that decidability in
nonelementary time was established and add here that the best lower bound previously
known was NExpTime from [105]. In fact, determining the precise complexity of
satisfiability in K × K was mentioned as important open problem in the standard
textbook about many-dimensional modal logics [52]; it was conjectured to be hard for
nonelementary time [105]. We confirm this conjecture by proving that:

Satisfiability in K×K is complete for nonelementary time.

10

1.3 Structure of the Thesis

1.3 Structure of the Thesis

Apart from the introduction, preliminaries, and the conclusion, this thesis can be divided
into three main parts. The first part, Chapters 3 and 4, deals with well-behaved
fragments of probabilistic first-order logic and addresses the questions formulated in the
first scenario. In the second part, Chapter 5, we lay out the framework of ontology-based
access to probabilistic data sketched above and study computational complexity in
that framework. Finally, in Chapter 6, we give a nonelementary lower bound for the
two-dimensional modal logic K×K and some variants thereof. In each of the chapters,
we account for detailed related work and bibliographic references. More precisely, the
thesis is structured as follows:

Chapter 2 We introduce basic notions and results for first-order logic, the relevant
description logics, and probabilistic description logics. In particular, we cover syntax
and semantics of these logics, and the complexity of the basic reasoning problems.
The preliminary chapter is rather short, as the chapters differ considerably in the
sense that they often require orthogonal notions and techniques.

Chapter 3 The chapter is devoted to identifying well-behaved fragments of probabilistic
first-order logic (ProbFO). We start with reviewing the complexity and show
that classical approaches for getting decidability of first-order logic such as the
restriction to two variables do not lead to well-behaved fragments. We then
investigate monodic fragments of first-order probabilistic logics, where probabilistic
operators are restricted to formulas with at most one free variable. We introduce a
suitable abstraction – so-called quasi-models – from the possible world semantics
and exploit it in order to prove that this fragment is well-behaved in the following
sense: we show (i) recursive enumerability, (ii) axiomatizability, and (iii) restrictions
to decidable fragments of first-order logic lead to decidable fragments of monodic
ProbFO. Point (iii) is established in a general way treating many fragments at once,
provided that realizability – a slight generalization of satisfiability – is decidable
(which is the case for all standard fragments such as the guarded fragment). We then
take a closer look at the computational complexity for the decidable fragments and
propose two improvements to the general approach. This leads to tight complexity
results in some cases; most notably, we show 2ExpTime-completeness for the
monodic probabilistic guarded fragment. We conclude the chapter by clarifying
the relation to recently introduced probabilistic description logics.

Chapter 4 Having identified in a sense maximal decidable fragments, we move to the
other end of the expressivity and complexity scale and try to identify tractable
fragments based on the well-known tractable description logic EL. In the first part,
we show that reasoning relative to general TBoxes becomes ExpTime-hard as soon
as non-trivial probabilistic operators are allowed. Consequently, we restrict the

11

1 Introduction

general to classical TBoxes and give a polynomial time algorithm for EL extended
with one arbitrary probabilistic operator. We then leave the monodic framework
and consider probabilistic operators applied to roles which are binary predicates in
FO. There, we show PSpace-completeness for subsumption relative to ProbEL01-
TBoxes, that is, the extension with the ‘probabilistic’ operators P>0 and P=1.
We show maximality of the fragment in the sense that adding any probabilistic
operator leads to 2ExpTime-hardness while not even decidability is known.

Chapter 5 In this chapter, we motivate and introduce the framework of ontology-based
access to probabilistic data. We define it as a natural probabilistic extension of
classical ontology-based data access (OBDA). In this framework, we study the
complexity of computing the probability of certain answers. In doing so, we pursue
the non-uniform approach: each pair (q, T) of query a q and an ontology T defines
a reasoning problem pOBDA(q, T) and we are interested in whether pOBDA(q, T)
is tractable or not, that is, #P-hard. We first have to restrict the input to so-
called assertion-independent pABoxes, because otherwise each of these problems is
intractable, giving rise to problems ipOBDA(q, T). Based on a recent dichotomy
result for answering unions of conjunctive queries on probabilistic databases and
the concept of FO-rewritability known from classical OBDA, we provide several
dichotomy theorems, such as: If the query q is FO-rewritable relative to the TBox T ,
then ipOBDA(q, T) is either in PTime or #P-hard. We also show dichotomies for
the TBox languages DL-Lite and ELI and conjunctive queries. In the case of DL-
Lite-TBoxes, we try to get a better understanding which pairs (q, T) are tractable
and are able to give a concrete classification. For ELI-TBoxes, our main result is
that FO-rewritability turns out to be a necessary condition for a query q being in
PTime, or viewed differently: proving PTime of ipOBDA(q, T) can always be done
via FO-rewritings. We finally study Monte Carlo approximations to the problem
pOBDA(q, T) in the form of FPRASes and show that FO-rewritability often implies
the existence of an FPRAS. Conversely, we show that non-FO-rewritability often
implies non-approximability.

Chapter 6 We study satisfiability in several two-dimensional modal logics. In particular,
we establish a nonelementary lower bound for the logic K×K and some variants
thereof, thereby improving the previously known NExpTime-lower bound. Most
of the chapter is devoted to the technique for proving the lower bound which is of
independent interest. In particular, we first define a family of trees parametrized
by non-negative integers `, n such that a tree associated to `, n has depth `
and is nonelementary branching in the depth ` (the precise influence of n will
become clear later). Then, we provide a family of K × K-formulas that are
satisfiable only in products of the mentioned trees. We use these formulas to
encode arbitrarily big elementary counters, which enables us to do a reduction

12

1.4 Summary of Publications

from `-fold exponential tiling problems. Consequently, we obtain a nonelementary
lower bound for satisfiability in K×K. Finally, we apply well-known reductions
from classical, that is, one-dimensional modal logic to extend this lower bound to
satisfiability in K4×K, S4×K, and S52 ×K.

Chapter 7 We conclude the thesis and sketch future research.

1.4 Summary of Publications

Most of the technical content of the thesis has appeared in journal, conference, or
workshop proceedings. In detail:

Chapter 3

[86] Jean Christoph Jung, Carsten Lutz, Sergey Goncharov, Lutz Schröder. Monodic
Fragments of Probabilistic First-order Logic. In Proceedings of the 41st Inter-
national Conference on Automata, Languages, and Computation (ICALP 2014),
2014.

Chapter 4

[65] Víctor Gutiérrez-Basulto, Jean Christoph Jung, Carsten Lutz, Lutz Schröder. A
Closer Look at the Probabilistic Description Logic Prob-EL. In Proceedings of the
25th Conference on Artificial Intelligence (AAAI 2011), 2011.

[66] Víctor Gutiérrez-Basulto, Jean Christoph Jung, Carsten Lutz, Lutz Schröder. The
Complexity of Probabilistic EL. In Proceedings of the 24th International Workshop
on Description Logics (DL 2011), volume 745 of CEUR-WS, 2011.

Chapter 5

[84] Jean Christoph Jung, Carsten Lutz. Ontology-Based Access to Probabilistic Data
with OWL-QL. In Proceedings of the 11th International Semantic Web Conference
(ISWC 2012). Springer, 2012.

[85] Jean Christoph Jung, Carsten Lutz. Ontology-Based Access to Probabilistic Data.
In Proceedings of the 26th International Workshop on Description Logics (DL 2013),
volume 1014 of CEUR-WS, 2013.

13

1 Introduction

Chapter 6

[57] Stefan Göller, Jean Christoph Jung, Markus Lohrey. The complexity of decom-
posing modal and first-order theories. In Proceedings of the 27th ACM/IEEE
Symposium on Logic in Computer Science (LICS 2012), ACM/IEEE, 2012.

[58] Stefan Göller, Jean Christoph Jung, Markus Lohrey. The complexity of decompos-
ing modal and first-order theories. In ACM Transactions on Computational Logic,
to appear.

14

2 Preliminaries

In this chapter, we briefly introduce fundamental notions that are used throughout this
thesis. Additionally, each chapter has its own preliminary section for notations that
are exclusively used in that chapter. Here, we start with first-order logic and recall
syntax, semantics, and some decidable fragments. Next, we briefly introduce description
logics, focusing on ALCI and some fragments, and on the relevant reasoning problems.
Moreover, we introduce the mentioned probabilistic description logic ProbALC and recall
some complexity results obtained for them so far [101].

2.1 First-Order Logic

First-order logic (FO) is the most fundamental logic in computer science. The syntax
of first-order logic is based on a signature containing predicate and constant symbols,
where each predicate symbol comes with an arity. First-order formulas over a signature
Σ are built according to the following syntax rule:

ϕ,ψ ::= R(t1, . . . , tk) | ¬ϕ | ϕ ∧ ψ | ∃xϕ(x)

where R ∈ Σ is a k-ary predicate symbol and each ti is either a constant symbol from Σ
or a variable (taken from a countably infinite supply of variable symbols). Note that
we do not allow for function symbols except for constants. Sometimes we add equality,
that is, atoms of the form t = t′ with object terms t, t′, and denote the corresponding
extension of FO with FO=. The semantics of FO is given in terms of relational structures
A = (A, π), where:

• A is the domain of A and

• π is the interpretation function assigning to each k-ary predicate symbol R a subset
π(R) ⊆ Ak and to each constant symbol c a domain element π(c) ∈ A.

A valuation for A is a function ν from the set of variables to the domain. The truth
relation |= is now defined by induction on the structure of formulas:

(A, ν) |= R(t1, . . . , tk) if (a1, . . . , ak) ∈ π(R), where
ai is ν(ti) if ti is a variable and π(ti) otherwise;

(A, ν) |= ¬ϕ if not (A, ν) |= ϕ;

15

2 Preliminaries

(A, ν) |= t1 = t2 if a1 = a2, where the ai are defined as above;
(A, ν) |= ϕ ∧ ψ if (A, ν) |= ϕ and (A, ν) |= ψ;

(A, ν) |= ∃xϕ(x) if there is a ∈ A with (A, ν[x/a]) |= ϕ(x).

We indicate with ϕ(~x) that ϕ might have free variables from ~x and call formulas without
free variables sentences. We say that a formula ϕ(~x) is satisfiable if there is a structure A
and a valuation ν such that (A, ν) |= ϕ(~x). For sentences ϕ, we drop the valuation and
just write A |= ϕ. A sentence ϕ is valid if ¬ϕ is not satisfiable. The associated reasoning
problems are defined as follows.

Satisfiability

INPUT: FO formula ϕ
OUTPUT: Is ϕ satisfiable?

Validity

INPUT: FO formula ϕ
OUTPUT: Is ϕ valid?

It is well-known that both the satisfiability and the validity problem for FO are undecid-
able, and validity is recursively enumerable.

Decidable Fragments

Since satisfiability in FO is undecidable, researchers investigate (preferably expressive)
fragments with a decidable satisfiability problem. Relevant for this thesis are:

• the two-variable fragment [62], where at most two variables are allowed;

• the monadic fragment, where only unary predicate symbols are allowed;

• the guarded fragment (GF) [60], which is defined as the minimal set satisfying the
following:

(1) every atomic formula R(t1, . . . , tk) belongs to GF;

(2) GF is closed under the connectives ∧, ¬;
(3) If ~x, ~y are tuples of variables, α(~x, ~y) is atomic (including equality x = x) and

ψ(~x, ~y) is a formula in GF with at most the free variables of the atom α, then
the formula ∃~y α(~x, ~y) ∧ ψ(~x, ~y) is guarded;

• the guarded negation fragment (GNFO) [15], which is defined by the following
syntax rule, restricting the use of negation:

ϕ,ψ ::= R(t1, . . . , tk) | x = y | ϕ ∧ ψ | ϕ ∨ ψ | ∃xϕ(x) | α(~x, ~y) ∧ ¬ϕ(~y)

where α is an atom R(t1, . . . , tk) or x = x containing all free variables of ϕ;

16

2.2 Description Logics

• description logics, which are introduced in more detail below.

It is well-known that satisfiability in all these logics is decidable. More precisely, it is
NExpTime-complete for the monadic and the two-variable fragment, and 2ExpTime-
complete for GF and GNFO. If the number of variables or the maximal arity of the
predicate symbols is bounded, then satisfiability in GF becomes ExpTime-complete.

2.2 Description Logics

Description logics (DLs) are a family of languages for knowledge representation and
reasoning. They are subsets of first-order logic intended for modeling and reasoning
under terminological and assertional knowledge and offer—in contrast to FO—decidable
reasoning services. We only introduce the basic notions and mention relevant results; for
more detailed information, consult [12].

Syntax and Semantics

We use standard notation for the syntax and semantics of description logics. Let NC,
NR, and NI denote countably infinite sets of concept names, role names, and individual
names, respectively. We introduce ALCI as our basic description logic. ALCI-concepts
are formed according to the following syntax rule:

C,D ::= > | A | ¬C | C uD | ∃R.C,

where A ranges over NC and R is either a role name r ∈ NR or its inverse r−. We use
the abbreviations ∀R.C for ¬∃R.¬C, C tD for ¬(¬C u ¬D), and ⊥ for ¬>. The set of
ALC-, ELI-, and EL-concepts is defined by disallowing R to be an inverse role, dropping
negation, and both, respectively, from the syntax rule for ALCI-concepts.
Description logic knowledge bases are typically separated in background or termino-

logical knowledge and assertional knowledge. The former is represented in the TBox
while the latter, the data, is represented in an ABox. For L ∈ {ALCI,ALC, ELI, EL},
a general L-TBox is a set T of concept inclusions C v D with C,D L-concepts. A
classical L-TBox is a set T of concept definitions A ≡ C such that each concept name
A ∈ NC occurs at most once in the left-hand side of a concept definition in T and C
is an L-concept. We will drop the reference to the TBox language when no confusion
is possible. Note that a classical TBox is a special case of a general TBox since we
can replace A ≡ C by the two concept inclusions A v C, C v A. An ABox is a set of
assertions of the form C(a) or r(a, b) with C a concept description, r ∈ NR, and a, b ∈ NI.
We denote the set of all individuals appearing in some ABox A with Ind(A). A DL
knowledge base is a pair K = (T ,A).
The semantics of DLs is given through interpretations. An interpretation is a pair
I = (∆I , ·I) where

17

2 Preliminaries

• ∆I is a non-empty set of individuals, the domain, and

• ·I is an interpretation function mapping each a ∈ NI to some domain element
aI ∈ ∆I , each concept name A ∈ NC to a subset AI ⊆ ∆I of the domain and each
role name r ∈ NR to a binary relation rI ⊆ ∆I ×∆I over the domain.

Throughout the thesis we make the unique name assumption (UNA), that is, we assume
that different individuals are interpreted by different domain elements. The interpretation
function is extended to complex ALCI concepts as follows:

>I = ∆I ;

(¬C)I = ∆I \ CI ;
(C uD)I = CI ∩DI ;

(r−)I = {(y, x) | (x, y) ∈ rI};
∃R.C = {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ RI ∧ e ∈ CI}.

An interpretation I satisfies or is a model of

• a concept C if CI 6= ∅;

• a concept inclusion C v D, written I |= C v D, if CI ⊆ DI ;

• a concept definition A ≡ C, written I |= A ≡ D, if AI = CI ;

• a general TBox T , written I |= T , if I |= C v D for all C v D ∈ T ;

• an ABox A, written I |= A, if for each assertion A(a) ∈ A, we have aI ∈ AI and
for each assertion r(a, b) ∈ A, we have (aI , bI) ∈ rI .

Reasoning Problems and Complexity

Traditional reasoning problems for DLs are concept satisfiability, knowledge base con-
sistency, and subsumption. We say that a concept C is satisfiable relative to a TBox
T if there is a common model of C and T . A concept C is subsumed by D relative to
a TBox T , written T |= C v D, when for all models I of T we have I |= C v D. A
knowledge base K = (T ,A) is consistent if there is a common model of T and A. Thus,
the mentioned reasoning problems are defined as follows:

Concept satisfiability

INPUT: concept C, TBox T
OUTPUT: Is C satisfiable relative to T ?

Knowledge base consistency

INPUT: Knowledge base K = (T ,A)

18

2.2 Description Logics

OUTPUT: Is K consistent?

Subsumption

INPUT: concepts C,D and TBox T
OUTPUT: Is C subsumed by D relative to T ?

These problems will be instantiated to different DL dialects. It is well-known that for
ALCI and ALC, KB consistency is the most general problem in the sense that the
other problems can be reduced to it. In particular, C is satisfiable relative to T iff the
knowledge base (T , {C(a)}) is consistent, and T |= C v D iff (T , {(C u ¬D)(a)}) is
inconsistent. It is known that all problems are ExpTime-complete in the presence of
general and classical ALCI- and ALC-TBoxes [12].
In EL and ELI, every concept and every knowledge base is satisfiable as the logics

lack negation ¬ and bottom ⊥. For this reason, subsumption becomes the standard
reasoning problem. In fact, it has been shown that:

• checking subsumption relative to general ELI-TBoxes is ExpTime-complete [11];

• checking subsumption relative to general EL-TBoxes (and various extensions) can
be done in polynomial time [9].

DL-Lite

The DL-Lite family of description logics has been introduced to reason over database
constraints imposed by conceptual data models such as ER and UML diagrams and for the
purpose of ontology-based data access [28]. Members of the DL-Lite-family are arguably
less expressive than most of the DLs mentioned above. However, DL-Lite is tailored
to allow for query rewriting, a technique for ontology-based data access introduced in
Chapter 5. Moreover, DL-Lite forms the logical underpinning of the OWL language for
accessing databases, OWL2 QL.1 A DL-Litebasic concept B is of the form

B ::= > | ⊥ | A | ∃R

where A is a concept name and R is a role. Note that there is no nesting of concept
constructors in DL-Lite. A DL-Lite-TBox is a finite set of concept inclusions B v B′ and
B uB′ v ⊥ where B and B′ are basic DL-Lite-concepts. This basic version is usually
called DL-Litecore. Sometimes, more expressive concept inclusions are used, such as:

• concept inclusions of the form B1 u . . . uBn v B with Bi, B basic concepts;

• role inclusions R v S.
1http://www.w3.org/TR/owl-profiles/#OWL_2_QL.

19

2 Preliminaries

We refer with DL-Litehorn to the former extension of DL-Lite and add the superscript ·R
for the latter as, for example, in DL-LiteRhorn.
Semantics is given to DL-Lite-concepts and TBoxes in the same way as for the basic

DLs by noting that the concept ∃R is an abbreviation for ∃R.> and an interpretation I
satisfies a role inclusion R v S if RI ⊆ SI .

2.3 Probabilistic Description Logics

We next introduce the family of probabilistic description logics (ProbDLs) that was
recently developed by Lutz and Schröder [101] with the aim to enrich classical DLs
with means for expressing subjective uncertainty. Intuitively, ProbDLs correspond to
ProbFO [67, 13] just as DLs correspond to first-order logic. Let us start with the syntax
and semantics. ProbALC-concepts are formed by extending the syntax rule for ALC; in
particular, we allow to apply probabilistic operators to both concepts and roles.

C,D ::= A | ∃r.C | ¬C | C uD | P∼pC | ∃P∼pr.C,

where p ∈ [0, 1] and ∼ ∈ {<,≤,=,≥, >}. We call P∼pC a probabilistic concept and P∼pr
a probabilistic role. The notion of general TBox is extended in a straightforward way to
ProbALC, that is, a general ProbALC-TBox is a collection of concept inclusions C v D
with C,D ProbALC-concepts.

Probabilistic ABoxes store the knowledge we are having about the instances. They
are expressions formed according to the rule

A ::= C(a) | r(a, b) | ¬A | A ∧ A′ | P∼pA

where C, r, ∼, and p are as above, a, b ∈ NI, and A,A′ range over probabilistic ABoxes.
A knowledge base is a pair K = (T ,A) with T a TBox and A an ABox. Note that,
in contrast to non-probabilistic DLs, we allow probabilistic operators to be applied to
ABoxes. To take full advantage of this operator and speak about the probability of more
than a single fact such as in P≥0.5A(a) ∧ P≥0.1(r(a, b) ∧B(b)), we also include Boolean
connectives as ABox operators.
To provide a semantics for ProbALC, we are using a possible worlds semantics, that

is, we generalize interpretations to probabilistic interpretations. Formally, a probabilistic
interpretation takes the form I = (∆I ,W, (Iw)w∈W , µ), where ∆I is the (non-empty)
domain, W a non-empty set of possible worlds, µ a discrete probability distribution on
W , and for each w ∈W , Iw is a classical DL interpretation with domain ∆I . We assume
rigid constants, that is, aIw = aIw′ for all a ∈ NI and w,w′ ∈ W . Since aIw does not
depend on w, we write only aI . We usually write CI,w for CIw , and likewise for rI,w.
For concept names A and role names d, we define the probability

• pId (A) that d ∈ ∆I is an A as µ({w ∈W | d ∈ AI,w});

20

2.3 Probabilistic Description Logics

• pId,e(r) that d, e ∈ ∆I are related by r as µ({w ∈W | (d, e) ∈ rI,w}).

Next, we extend pId (A) to compound concepts C and define the extension CI,w of
compound concepts by mutual induction on C. The definition of pId (C) is exactly as in
the base case, with A replaced by C. The extension of compund concepts is defined as
follows:

(¬C)I,w = {d ∈ ∆I | d /∈ CI,w}
(C uD)I,w = {d ∈ ∆I | d ∈ CI,w and d ∈ DI,w}

(∃r.C)I,w = {d ∈ ∆I | ∃e ∈ CI,w : (d, e) ∈ rI,w}
(P∼pC)I,w = {d ∈ ∆I | pId (C) ∼ p}

(∃P∼pr.C)I,w = {d ∈ ∆I | ∃e ∈ CI,w : pId,e(r) ∼ p}

A probabilistic interpretation I satisfies a concept inclusion C v D (written I |= C v D)
if CI,w ⊆ DI,w for all worlds w. It is a model of a TBox T if it satisfies all concept
inclusions in T .

To give a semantics to probabilistic ABoxes A, we again use mutual induction, defining
the probability pI(A) that A is true as

pI(A) = µ({w ∈W | I, w |= A})

and defining when a world w of I satisfies A (written I, w |= A) as follows:

I, w |= C(a) iff aI ∈ CI,w
I, w |= r(a, b) iff (aI , bI) ∈ rI,w
I, w |= ¬A iff I, w 6|= A
I, w |= A ∧A′ iff I, w |= A ∧ I, w |= A′

I, w |= P∼p(A) iff pI(A) ∼ p

We say that I is a model of A if I, w |= A for some world w. It is a model of a knowledge
base K = (T ,A) if it is a model of both T and A. We say that a knowledge base K is
consistent if it has a model. This gives rise to the corresponding problem of deciding KB
consistency, defined as for classical ALC.

Example 2.1. Consider the probabilistic interpretation I = (∆I ,W, (Iw)w∈W , µ) de-
picted in Figure 2.1. In particular, we have

• ∆I = {a, b, c};

• W = {w0, w1, w2} with µ(w0) + µ(w1) + µ(w2) = 1;

• AI,w0 = {a}, AI,w1 = AI,w2 = ∅, and similarly for B, C, and r.

21

2 Preliminaries

w0 w1 w2

µ(w0) = 0.1 µ(w1) = 0.3 µ(w2) = 0.6

a
A

b c

a

b c
B

a

b
B

c
C

Figure 2.1: Example for a probabilistic interpretation.

Considering probabilistic concepts, we have, for example, pIa(A) = µ(w0) = 0.1 and hence
a ∈ (P≤pA)I,w for all w ∈W and p ≥ 0.1. For probabilistic roles, we have for instance

pIa,b(r) = 0.4 and pIa,c(r) = 0.9

and thus a ∈ (∃P>0.1r.B)I,w1 and a ∈ (∃P>0.1r.B)I,w2. Note, however, that a /∈
(∃P>0.1r.B)I,w0 as BI,w0 = ∅.

Examples for Modeling with ProbALC

The probabilistic operator enables us to describe concepts involving uncertainty (in the
TBox) and uncertainty of instance data (in the ABox). All our examples are taken
from the medical domain, since uncertainty is pervasive there. For example, the medical
ontology Snomed CT involves concept names indicating uncertainty such as ‘animal
bite by potentially rabid animal’ and ‘disease of possible viral origin’. We can model the
former as

Bite u ∃by.(Animal u P>0.5∃has.Rabies),

where the probabilistic constructor P>0.5 is applied to the concept ∃has.Rabies. The
latter concept can be modeled using a probabilistic role as

Disease u ∃P>0origin.Viral.

Concept inclusions involving probabilistic concepts can, for instance, be used to model
that some diseases, even if not diagnosed with certainty, should be treated since they are
very severe. An example for this situation [101] is:

P≥0.8(∃hasDisease.LymeDisease) v ∃recommendedTreatment.Antibiotics.

22

2.3 Probabilistic Description Logics

ABoxes are used to describe instance data, both non-probabilistic such as

Patient(john), Fever(f), and hasSymptom(john, f),

and probabilistic such as

P≤0.01(∃hasCause.Malaria(f)) and P≥0.9(∃hasCause.Flu(f)).

The latter two assertions express that the fever is probably not caused by malaria, but
probably caused by a flu. This might be the typical diagnosis, when the patient John
has not been out of Europe. In contrast, one might assert

P≥0.7

(
∃hasCause.(Malaria t JapaneseEncephalitis))(f)

)
when John was traveling in the Malaysian jungle, which intuitively expresses that the
probability that John’s fever is caused by malaria or Japanese encephalitis is comparably
high.

Complexity of Reasoning in ProbALC

The complexity of deciding KB consistency for ProbALC is open. There are, however,
results for some useful fragments. We state here only the relevant results; for more details
and further information, consult [101]. Let ProbALCc be the fragment that dispenses
with probabilistic roles, that is, the constructor ∃P∼pr.C is dropped. It was shown that
reasoning in this fragment is no more difficult than in the base logic ALC.

Theorem 2.2. Deciding consistency of ProbALCc knowledge bases is ExpTime-complete.

Let us denote with ProbALC01 the fragment of ProbALC that allows only probabilistic
operators P>0 and P=1, applied to both concepts and roles.

Theorem 2.3. Deciding consistency of ProbALC01 knowledge bases is 2ExpTime-
complete.

Thus, reasoning including probabilistic roles is more complex, even when only qualitative
probabilistic operators are allowed. In fact, reasoning quickly becomes undecidable, for
example when means for expressing linear equalities or independence constraints are
added. In contrast, such constructors can be added to ProbALCc without changing the
complexity [101].

23

3 Monodic Fragments of Probabilistic
First-order Logic

In the introduction of the thesis, we have illustrated the difficulties in modeling and
ontological reasoning in domains involving uncertainty. We thus motivated combinations
of logic with probabilities. In the 1990s, Halpern and Bacchus introduced a natural
and fundamental such combination by enriching classical first-order logic (FO) with
a probabilistic component [67, 13, 14]. The introduced probabilistic first-order logics
(ProbFOs) come in essentially two versions reflecting the two main types of uncertainty
and one version for their combination:

• type-1 ProbFO is used to reason about statistical probabilities. This is modeled
in the semantics by a probability distribution over the domain of a classical FO
structure.

• type-2 ProbFO is used to reason about subjective probabilities or degrees of belief.
Semantically, this is reflected in a possible world semantics, that is, a probability
distribution over a collection of possible worlds.

• type-3 ProbFO is the combination of the above and features both a distribution
over the domain and a distribution over possible worlds.

Since we consider only subjective probabilities throughout the thesis, we will in this
chapter concentrate on type-2 and will from now on generally use ‘ProbFO’ to refer to
‘type-2 ProbFO’. Type-1 and type-3 ProbFO will be mentioned again at the end of the
chapter.
Although reasoning in ProbFO is of course undecidable—it contains full first-order

logic—it is still useful as a general and uniform ‘baseline formalism’ that encompasses
many other probabilistic logics, much in the same way that FO provides a baseline
formalism for many other logics used in computer science. However, traditional ProbFO
is not only undecidable, but computationally much less well-behaved than classical FO.
Its disastrous computational behaviour was analyzed by Abadi and Halpern, who showed
that validity is Π2

1-complete [1], thus outside the arithmetic and analytic hierarchies and,
in particular, far from being recursively enumerable. This result holds up even when only
unary predicates are admitted. A notable exception to the prohibitive high complexity
in this framework is a family of probabilistic description logics recently introduced by
Lutz and Schröder [101, 65] which exhibit lower complexity, mostly ExpTime.

25

3 Monodic Fragments of Probabilistic First-order Logic

Motivated by this, our aim in this chapter is to revisit the computational complexity
of ProbFO and to analyze how and how far the problematic computational properties of
ProbFO can be improved. Our specific goals are to:

• identify a fragment of ProbFO with a recursively enumerable validity problem in
order to enable theorem proving;

• identify maximal decidable fragments of ProbFO; and

• seek an explanation of the good computational properties of the mentioned family
of probabilistic description logics.

Related Work

The combination of logic and probability theory involves a large number of choices and
trade-offs, which has resulted in a broad spectrum of formalisms that vary greatly in spirit,
semantics, and expressive power. Notably, this includes the choice of the ‘right character’
of uncertainty (subjective, statistical, . . .). As argued before, this thesis is mostly
confined to the subjective view, so we will mention here only approaches for modeling
degrees of belief. The vast majority of such proposals is based on (some form of) the
possible world semantics. Many of the early works from the 1980s are propositional such
as Bayesian and Markov networks [91, 111, 80] where the term ‘propositional’ refers to
the fact that these formalisms are extensions of basic propositional logic. As propositional
logic is mostly useless describing ontologies, also these extensions are inappropriate for
our setting. However, there is also a rich body of proposals for probabilistic extensions
of first-order logic besides ProbFO. This class includes Markov logic, see [56, 118] and
the references therein, probabilistic (deductive) databases [108, 125], inductive logic
programming [115], some first-order generalizations of Bayesian networks [31], and many
more; see [56, 40] for good overviews. These formalisms typically have a Herbrand-style
semantics, that is, they come with a specified fixed domain and describe, in a succinct
way, a fixed distribution over the set of possible worlds. The semantics given in this way
enables the lifting of several efficient inference mechanisms known from propositional
models, see for example [112, 39]. However, the mentioned formalisms can be viewed
as being propositional, and thus, they are in a completely different spirit than Halpern
et al.’s ProbFO which neither fixes the domain nor the set of worlds.

From a semantic and computational perspective, there is a clear similarity between
ProbFO and temporal first-order logic (TFO). Both logics adopt a possible world
semantics and although TFO is ‘only’ Π1

1-complete, just like ProbFO it is not recursively
enumerable. In the case of TFO, Hodkinson, Wolter and Zakharyaschev have given an
elegant explanation of why this is the case and how better computational properties
can be recovered, by introducing the monodic fragment of TFO that restricts temporal
operators to be applied only to formulas with at most one free variable [78]. In fact,

26

monodic TFO turns out to be recursively enumerable [131] and decidable fragments of
monodic TFO can often be obtained by restricting the FO part of monodic TFO to a
decidable FO fragment [79, 75, 77, 76].

Contribution and Structure of the Chapter

In Section 3.1, we review syntax and semantics of ProbFO, illustrate its expressive power,
and recall the computational difficulties known from [1]. We add the observation that
many restrictions which to decidability of classical FO do not lead to decidability or
recursive enumerability in ProbFO. In particular, we show that ProbFO is still Π1

1-hard
when considering the two variable, monadic, or the guarded fragment. We further show
that the restriction to probability values 0 and 1 leads to recursive enumerability; however,
we refrain from pursuing this further as we are interested in “real” probabilistic logics,
that is, we want to allow non-trivial probabilities.
In Section 3.2, we take the mentioned work on monodic temporal first-order logic as

inspiration, and in the first step try to identify a monodic fragment of ProbFO. Note
that the formulas of unrestricted ProbFO are obtained by combining classical FO with
the language of real closed fields via real-valued terms of the form w(ϕ) denoting the
probability that the formula ϕ (with possibly free variables) is true. In analogy to TFO,
a natural candidate for monodicity in ProbFO is to admit only weight terms w(ϕ) in
which ϕ has at most one free first-order variable. We show, however, that this is not
an effective choice since the resulting fragment of ProbFO still fails to be recursively
enumerable. We thus have to adopt stronger restrictions and define a ProbFO formula
to be monodic if every weight formula contains at most one free first-order variable and
no real valued variables.
Under this definition of monodicity, we establish in Section 3.3 a useful abstract

representation of models of monodic ProbFO formulas—so-called quasi-models—which are
essentially a collection of monadic formula types that satisfy certain integrity conditions
and are associated with a system of polynomial inequalities over the reals to capture
probabilities. The abstraction to quasi-models is the main result of this chapter and
enables us to achieve the aforementioned goals for this chapter.
In Sections 3.4 and 3.5, we study the computational properties of monodic ProbFO

and some of its fragments. Using quasi-models, we show in a rather direct way that the
valid formulas of monodic ProbFO are recursively enumerable. Moreover, we provide a
sound and complete axiomatization of monodic ProbFO. For this purpose, we extend an
axiomatization of unrestricted ProbFO on finite domains of fixed size by Halpern [67]
to our setting with unrestricted domains. Finally, quasi-models can be used to identify
decidable fragments of monodic ProbFO. We show that for any FO-fragment L such
that a slightly generalized version of satisfiability in L, called realizability, is decidable,
monodic ProbL is decidable, too. For the guarded fragment (GF), the two-variable
fragment, and the guarded negation fragment [15], realizability is reducible to satisfiability

27

3 Monodic Fragments of Probabilistic First-order Logic

and thus decidable. Consequently, we obtain decidability for the case when L is among
the four mentioned logics. The finite model property transfers in the same way.

This decidability transfer is shown via a general algorithm, where ‘general’ refers to its
applicability to all FO fragments for which realizability is decidable. Starting from that
algorithm, we also analyze the computational complexity of some important decidable
fragments of monodic ProbFO. The naive version of our general algorithm yields a
2NExpTime∃R,C upper bound where superscripts denote access to oracles. There, ∃R is
the class of problems that reduce in polynomial time to solving systems of polynomial
inequalities over the reals [121] (recall NP ⊆ ∃R ⊆ PSpace), and C is the complexity of
deciding realizability in the underlying FO fragment L.
As this algorithm is very general, we cannot expect tight bounds. As the next step,

we propose two improvements. The first one consists of a more careful realizability check
as known from monodic TFO, and this modification sometimes allows removing the
oracle for C. For monodic ProbGF, in particular, we obtain in this way an improved
2NExpTime∃R upper bound. The second improvement is the identification of a certain
model-theoretic property that we call closure under unions of types, and it allows
improving the runtime by one exponential if L satisfies it. GF satisfies the mentioned
property, and thus we obtain a tight 2ExpTime upper bound for monodic ProbGF. We
also obtain a NExpTime∃R upper bound when the arity of predicates is bounded, and
a tight NExpTime upper bound for the case where only linear weight formulas are
admitted, that is, multiplication of weight terms is disallowed.

In Section 3.6, we show how monodic ProbFO can be viewed as a natural generalization
of the mentioned family of probabilistic description logics. Thus, we provide a principled
explanation for why these logics are computationally much more well-behaved than
traditional ProbFO.
In Section 3.7, we conclude and point out interesting directions for future work.

3.1 Probabilistic First-order Logic

3.1.1 Syntax and Semantics

Let us introduce Type-2 probabilistic first-order logic (ProbFO) along the lines of [67].
The logic comprises two sorts: objects of the domain of discourse and the real numbers
R. Throughout this chapter, this is reflected by prefixing the standard FO notions with
either ‘object’ or ‘field’ for referring to the respective sort. Accordingly, there are two
types of variables: object variables and field variables, where the former are the standard
FO variables ranging over the domain and the latter are used to represent probabilities
and range over the real numbers. Object terms are object variables or object constants.

28

3.1 Probabilistic First-order Logic

ProbFO-formulas and field terms are defined by mutual recursion:

ϕ,ψ ::= R(t1, . . . , tk) | ϕ ∧ ψ | ¬ϕ | ∃xϕ(x) | f1 ≤ f2

f1, f2 ::= 0 | 1 | r | w(ϕ) | f1 + f2 | f1 × f2

where R is a k-ary predicate symbol, t1, . . . , tk are object terms, r is a field variable, and
f1, f2 are field terms. Formulas of the form f1 ≤ f2 are called weight formulas. Note
that any positive integer k can be expressed as the sum (1 + . . .+ 1) with k summands.
Moreover, rational numbers are not necessary as they can be eliminated by clearing
denominators. For example 1/3 × w(A(x)) + 1/2 × w(B(x)) ≤ 1/6 is equivalent to
2× w(A(x)) + 3× w(B(x)) ≤ 1. Quantification ∃xϕ(x) is possible both over object and
field variables x, with field variables ranging over R. Moreover, we use the common
abbreviations ∨,→, . . . on first-order level and =, <,>,≥ on the level of weight formulas.
We use ProbFO= to denote the extension of ProbFO with equality on object terms.

As a matter of fact, the semantics of ProbFO is the same possible world semantics
that is used for ProbALC as it was introduced in the preliminaries. However, a slightly
different terminology is standard, so we rigorously define it again. Formulas of ProbFO
are interpreted in probabilistic structures that are intuitively collections of standard FO
structures (over the same domain), each carrying a weight given by a probability. More
specifically, a probabilistic structure M = (D,W,µ, π) consists of a non-empty domain
D, a set of worlds W , a discrete probability distribution µ over W and an interpretation
function π that maps each pair (R,w) to a subset of Dk and each pair (c, w) to an
element of D for each k-ary predicate symbol R, w ∈ W , and constant symbol c. In
particular, constant symbols are interpreted in a non-rigid way, that is, they are not
necessarily the same domain element in every world. Note that this is in contrast to
ProbALC, but not a restriction; in fact, we will argue whenever necessary that our results
are also valid for rigid interpretation of constants. A valuation for M is a function ν
that maps object variables to elements of D and field variables to real numbers. Given
M, ν, and a world w ∈W , the semantics is defined similarly to standard FO:

(M, w, ν) |= R(t1, . . . , tk) if (a1, . . . , ak) ∈ π(R,w) where
ai is ν(ti) if ti is a variable and π(ti, w) otherwise;

(M, w, ν) |= ¬ϕ if (M, w, ν) 6|= ϕ;

(M, w, ν) |= ϕ ∧ ψ if (M, w, ν) |= ϕ and (M, w, ν) |= ψ;

(M, w, ν) |= ∃xϕ(x) if there is d ∈ D with (M, w, ν[x/d]) |= ϕ(x)

and x object variable;
(M, w, ν) |= ∃xϕ(x) if there is d ∈ R with (M, w, ν[x/d]) |= ϕ(x)

and x field variable;
(M, w, ν) |= f1 ≤ f2 if [f1](M,w,ν) ≤ [f2](M,w,ν),

29

3 Monodic Fragments of Probabilistic First-order Logic

w0 w1 w2

µ(w0) = 0.1 µ(w1) = 0.3 µ(w2) = 0.6

a
A

b c
p

a

b c
B

p

a
B

b
B

p
c
C

Figure 3.1: Example for a probabilistic structure.

where the interpretation [f](M,w,ν) ∈ R of a field term f is defined in the obvious way,
with terms w(ϕ) interpreted as

[w(ϕ)](M,w,ν) = µ({w′ ∈W | (M, w′, ν) |= ϕ}).

For sentences ϕ, we will use µ(ϕ) to abbreviate µ({w′ ∈ W | (M, w′, ν) |= ϕ}) for an
arbitrary (not relevant) ν, when M is clear.

A ProbFO-sentence ϕ is satisfiable if there is a probabilistic structure M = (D,W,µ, π)
and a world w ∈ W such that (M, w) |= ϕ. In such a case, we also write M |= ϕ. A
sentence ϕ is valid if ¬ϕ is not satisfiable. Note that the world witnessing satisfiability
can have weight 0; this might be undesirable in potential AI applications where one is
interested in satisfiability of a formula ϕ in worlds with positive probability. However,
one can check satisfiability of w(ϕ) > 0 in this case. Let us illustrate the introduced
concepts using an example.

Example 3.1. An example for a probabilistic structure M = (D,W,µ, π) is depicted in
Figure 3.1, where possible worlds w0, w1, w2 are indicated by balloons containing standard
first-order relational structures, that is, dots indicate domain elements, capital letters
indicate the interpretation of unary predicate symbols and edges indicate the interpretation
of a binary predicate symbol. The weight of each world is shown below the according
world, and p denotes the interpretation of a constant name p. Formally, the depicted
probabilistic structure is as follows:

• D = {a, b, c};

• W = {w0, w1, w2} with µ(w0) = 0.1, µ(w1) = 0.3, µ(w2) = 0.6 whose sum is 1;

30

3.1 Probabilistic First-order Logic

• π(A,w0) = {a}, π(A,w1) = π(A,w2) = ∅;

• π(B,w0) = ∅, π(B,w1) = {c}, π(B,w2) = {a, b};

• π(C,w0) = π(C,w1) = ∅, π(C,w2) = {c};

• π(R,w0) = {(a, b), (b, c)}, π(R,w1) = {(a, b), (a, c), (c, b)}, π(R,w2) = {(a, c)}.

• π(p, w0) = c, π(p, w1) = c, π(p, w2) = b.

Consider the formulas

ϕ1 = ∀xw(B(x)) ≥ 0.1; ϕ2 = w(∀xB(x)) ≥ 0.1;

ϕ3 = w(B(p)) = 0.9; ϕ4 = ∃xy B(x) ∧ C(y) ∧ w(R(x, y)) ≥ 0.5;

ϕ5 = ∀xy (B(x) ∧ C(y))→ w(R(x, y)) ≥ 0.5.

It is not hard to verify that (M, w) |= ϕ1 for all worlds w ∈ W since every domain
element satisfies B in some world with positive probability. In contrast, (M, w) 6|= ϕ2 for
every w ∈W , since there is no world where B is satisfied for all elements. ϕ3 is satisfied,
as the constant p satisfies B in worlds w1 and w2 whose weights sum up to 0.9. Further,
we have (M, w2) |= ϕ4 which is witnessed by valuation ν with ν(x) = a and ν(y) = c. In
contrast, (M, w2) 6|= ϕ5 since we can choose ν(x) = b and ν(y) = c. However, we have
(M, w1) |= ϕ5.

Sometimes, we want to abstract from the weight formulas and view a ProbFO formula as
a plain first-order formula. For this purpose, we denote with ϕ the FO formula that is
obtained from the ProbFO formula ϕ by replacing each weight formula f1 ≤ f2 that is
not within the scope of another weight formula and has k free variables x1, . . . , xk with
Pf1≤f2(x1, . . . , xk), where Pf1≤f2 is a fresh k-ary predicate symbol. As an example, ϕ1

and ϕ4 are abstracted to

ϕ1 = ∀x Pw(B(x))≥0.1(x) and ϕ4 = ∃xy
(
B(x) ∧ C(y) ∧ Pw(R(x,y))≥0.5(x, y)

)
.

This notation is lifted to sets of formulas in the obvious way. Note that this is an
abstraction in the sense that ϕ might be satisfiable, while ϕ is unsatisfiable. Conversely,
however, unsatisfiability (resp., validity) of ϕ implies unsatisfiability (resp., validity) of ϕ.

3.1.2 Examples and Expressivity

Let us demonstrate the expressive power of ProbFO using a small example. This example
is orthogonal to the possible applications of ProbFO in biomedical domains. It illustrates
some typical design choices for writing a ProbFO-ontology and presents instances for
reasoning in ProbFO.

31

3 Monodic Fragments of Probabilistic First-order Logic

Example 3.2 (Street food). Imagine you are traveling in India and are offered food
in the street. You recall that your travel guide warned about street food, which is why you
believe that you probably not tolerate the offered food. Your belief is represented as the
following ProbFO sentence:

∀x w(tolerate(I, x) | streetfood(x)) ≤ 0.1 (3.1)

where I is a constant representing yourself and where we encode statements about condi-
tional probabilities by multiplying out denominators, following Halpern [67]: w(ϕ | ψ) ≥ p
abbreviates w(ϕ ∧ ψ) ≥ p× w(ψ). Your travel guide additionally says that local Indian
might be used to the present hygienic conditions. Thus, the belief about your own tolerance
does not generalize and you represent this as follows:

∃y∀x w(tolerate(y, x) | streetfood(x) ∧ Indian(y)) ≥ 0.9. (3.2)

Despite all the warnings and your skepticism, you decide to at least have a look at the
food. It turns out that it looks delicious and smells good, so you are inclined to eat it.
However, you consider again your internal knowledge base consisting of the above two
sentences (3.1) and (3.2). In particular, you ask whether it implies anything about

w(tolerate(I, curry) | streetfood(curry) ∧ looksGood(curry)),

where curry is a constant representing the dish you see. A quick calculation shows that
you are ignorant about things that are street food and look good, that is, you ‘infer’ the
trivial consequence that the above probability is in [0, 1].

Thus, you become insecure, and consult the travel guide again for more specific infor-
mation. You find a sentence saying that “street food should be avoided even if the vendors
tell you that it is OK”. You understand that this is a general warning, and conclude that
the look/smell/promotion/. . . of street food is independent from how well you probably
tolerate it. You represent this as the conditional independence

∀x indep(tolerate(I, x), looksGood(x) | streetfood(x)) (3.3)

for which you add the following sentence to your knowledge base:

∀x w(tolerate(I, x) | streetfood(x) ∧ looksGood(x)) = w(tolerate(I, x) | streetfood(x)).

Hence, you finally conclude that you probably should not eat the curry.

Thus, in ProbFO we are able to describe situations involving uncertainty about the
environment that you or a potential agent might face. In particular, it has means
to express independence statements such as formula (3.3). Consequently, ProbFO
encompasses standard models for probabilistic reasoning like Bayesian networks, and can,
moreover, express also sets of (in-)dependences that cannot be encoded by any Bayesian

32

3.1 Probabilistic First-order Logic

network. Note, however, that Bayesian networks are more succinct a representation, as
they can encode all (in-)dependences in a domain (exponentially many!) in a potentially
small graph; please consult [111] for an overview. The purpose of ProbFO is orthogonal:
it is based on the open-world assumption, thus we do not need to completely specify
all conditional probabilities and we can express substantially more using the included
first-order logic.

3.1.3 Complexity and first Observations

The high expressive power of ProbFO comes at the price of high computational complexity.
In the following, we are interested in the complexity of checking validity. As ProbFO
contains FO, it is certainly undecidable and at best recursively enumerable. For full
ProbFO, however, the complexity results have been discouraging. More specifically,
Abadi and Halpern have shown that validity in ProbFO is Π2

1-complete and, thus, highly
undecidable and far from being recursively enumerable [1]. Trying to pinpoint the
source of the high complexity they considered fragments with restricted vocabularies.
Surprisingly, they show that already over vocabularies that contain only constants,
validity is Π1

∞-complete when equality is allowed. The lower bounds of these theorems
are proved by reductions from suitable higher-order theories of integer arithmetics and
extensively use quantification over real variables. On the positive side, Halpern provided
a sound and complete axiomatization of ProbFO when the domains are bounded by a
constant N [67].

We give additional evidence of the computational difficulty of ProbFO by considering
some standard approaches to get decidability of satisfiability in classical FO. More
precisely, we prohibit quantification over real variables and study the following fragments
of ProbFO:

• the two-variable fragment, where at most two (object) variables are allowed;

• the monadic fragment, where only unary predicate symbols are allowed;

• the guarded fragment, which is defined in analogy of guarded temporal first-order
logic [78]: A ProbFO formula ϕ is guarded, when the FO-abstraction ψ of each
subformula ψ of ϕ is guarded;

• the guarded negation fragment, similarly to the guarded fragment: A ProbFO
formula ϕ has guarded negation, if the FO-abstraction ψ of every subformula ψ of
ϕ has guarded negation.

Thus, for example, the formula

∃xy
(
w(A(x)) + w(A(y)) ≥ 1 ∧ P (x) ∧Q(y)

)

33

3 Monodic Fragments of Probabilistic First-order Logic

is guarded, the guard being the atom w(A(x)) + w(A(y)) ≥ 1. We prove that for all
these fragments, validity is not recursively enumerable. The proof is by a reduction of
recurring domino systems that is rather different in spirit from the mentioned reductions
from integer arithmetic and thus provides additional intuition about the hardness of
ProbFO.

Theorem 3.3. Validity in ProbFO is Π1
1-hard for

• the monadic, two-variable fragment of ProbFO and

• the guarded fragment (and thus the guarded negation fragment) of ProbFO,

even if quantification over field variables is disallowed.

Proof. We give the full proof only for the case of two object variables and sketch how
to adapt it to the monadic and the guarded case. The proof is via a reduction from
recurring tiling problems which are known to be Σ1

1-hard [72]. A recurring tiling problem
is a quadruple P = (T,H, V, tr), where T is a finite set of tile types, H,V ⊆ T ×T are the
horizontal and vertical matching conditions, and tr ∈ T is the recurrent tile. A solution
to P is a mapping τ : N×N→ T such that

• (τ(i, j), τ(i, j + 1)) ∈ H for all i, j ≥ 0;

• (τ(i, j), τ(i+ 1, j)) ∈ V for all i, j ≥ 0;

• there are infinitely many j ≥ 0 such that τ(0, j) = tr

Let P be a tiling problem as above. We use the FO dimension to represent the vertical
dimension of the grid, and possible worlds for the horizontal dimension. To represent the
successor relation in the vertical direction, we introduce a binary relation R. Of course,
R should be unbounded and rigid, there should be exactly one tile type at every grid
element, and the tiling should be compatible with vertical successors:

w
(
∀x∃yR(x, y)

)
= 1 (3.4)

∀x∀y R(x, y)⇒ w(R(x, y)) = 1 (3.5)

w
(
∀x
(∨
t∈T

Xt(x) ∧
∧

t,t′∈T,t6=t′
¬(Xt(x) ∧Xt′(x))

))
= 1 (3.6)

w
(
∀x∀y

(
R(x, y)⇒

∨
(t,t′)∈V

Xt(x) ∧Xt′(y)
))

= 1. (3.7)

To represent the successor relation in the horizontal direction, we use probabilities. More
precisely, a grid node in row i is represented by a domain element that satisfies A with

34

3.1 Probabilistic First-order Logic

probability 1/2i. To make this work, we first enforce that the probability of any element
to satisfy A is 1/2i for some i ∈ N, and that all probabilities of this form are present:

∀x
(
w(A(x)) = 1 ∨ ∃y

(
w(A(y)) = 2w(A(x))

))
(3.8)

∀x∃y 2w(A(y)) = w(A(x)). (3.9)

These probabilities, though, are still associated with the FO dimension. To transfer our
probability scheme to the dimension of possible worlds, we force that in every world,
there is at least one element that satisfies the unary predicate M and all elements that
satisfy M agree on the probability of satisfying A; moreover, every element is marked in
at least one world:

w(∃xM(x)) = 1 (3.10)

w
(
∀x∀y

(
(M(x) ∧M(y))⇒ w(A(x)) = w(A(y))

))
= 1 (3.11)

∀xw(M(x)) > 0. (3.12)

In this way, every world is associated with a unique probability: the probability of the
M -marked elements to satisfy A; conversely, for each probability p = 1/2i, there is
a world associated with p. Note that the probabilities associated with worlds in the
described way are not the probabilities that are assigned to worlds by a probabilistic
structure; in particular, the probabilities associated with worlds need not sum up to
one. We can now enforce as follows that the tiling is compatible also with horizontal
successors:

w
(∧
t∈T
∀xXt(x)⇒

∨
(t,t′)∈H

(
∃yM(y) ∧ w(ψt′(x, y)) = 1

))
= 1 (3.13)

where
ψt′(x, y) = ∃x

(
M(x) ∧ w(A(y)) = 2w(A(x))

)
⇒ Xt′(x).

It remains to enforce that the recurring tile tr occurs infinitely often. We first introduce a
new unary predicate symbol C0 that marks the first row and ensure that, in this column,
the recurring tile tr occurs at least once:

∃x
(
w(C0(x)) = 1 ∧ w(Xtr(x)) > 0

)
. (3.14)

Now infinite occurrence of tr can be expressed as follows:

w
(
∀x
(
(C0(x) ∧Xtr(x))⇒

∃y
(
∃x (M(x) ∧ w(A(y)) < w(A(x))) ∧ w(ϑ(x, y)) = 1

)))
= 1 (3.15)

where
ϑ(x, y) = ∃x

(
M(x) ∧ w(A(y)) = w(A(x))

)
⇒ Xtr(x).

35

3 Monodic Fragments of Probabilistic First-order Logic

Let ϕP be the conjunction of all ProbFO sentences above. It remains to show the
following

Claim. P has a solution iff ϕP is satisfiable.

Proof of the Claim. For the “if”-direction, letM = (D,W,µ, π) be a probabilistic structure
that satisfies ϕP . By Formula (3.8), there is some e ∈ D satisfying A with probability 1.
We say that a world w associated with probability p if all domain elements from π(M,w)
satisfy A with probability p. Observe that this is well-defined due to Formula (3.11).
Moreover, due to Formula (3.10), every world is associated with a probability and by
Formulas (3.8) and (3.9), for every probability p of the form 1/2i, there is a world
associated with p, and all worlds are associated with a probability of this form.

By Formula (3.12), there is some world w0 such that e ∈ π(M,w0), thus the probability
associated with w0 is 1. Starting at w0, fix an infinite sequence of worlds w0, w1, w2, . . .
such that the associated probability of wi is 1/2i. Note that this is possible by what was
said above.

By Formula (3.14), there is some d0 ∈ D that satisfies C0 with probability 1 and Xtr

in some world. Due to Formula (3.15), d0 satisfies Xtr in infinitely many worlds among
w0, w1, . . . ,. Starting at d0, fix an infinite sequence of elements d0, d1, d2, . . . such that
di is related to di+1 by R, for all i ≥ 0 and in all worlds w ∈ W . This is enabled by
Formulas (3.4) and (3.5). We can read off a mapping τ : N×N→ T as follows:

τ(i, j) = t ⇔ di ∈ π(Xt, wj).

The mapping τ is well-defined since every domain element satisfies in every world Xt

for precisely one tile type t ∈ T , by Formula (3.6). Moreover, the vertical matching
condition is satisfied due to (3.7). Finally observe that the horizontal matching condition
is satisfied because of (3.13).
For the “only if”-direction, assume that P has a solution τ . We define a probabilistic
structure M = (D,W,µ, π) by taking D = W = N and

i ∈ π(Xt, j) ⇔ τ(i, j) = t for all i, j ∈ N, t ∈ T.

That is, domain elements model the vertical dimension and worlds the horizontal
dimension of the tiling. It remains to give the interpretation of the predicates C0, R,
A, and M , and ensure that world i is associated with probability 1/2i, in the sense
explained above. Specifically, we have for all j ∈W :

µ(j) = 1/2j+1;

π(R, j) = {(i, i+ 1) | i ∈ N};
π(A, j) = {i | i ≤ j};
π(M, j) = {j};
π(C0, j) = {0}.

36

3.1 Probabilistic First-order Logic

It is now not hard to verify that M |= ϕP , which finishes the proof of the claim.

Note that ϕP is a formula in the two-variable fragment, however, it still uses the binary
predicate symbol R. For getting rid of this predicate, we introduce fresh unary symbols
P,Q and replace R(x, y) with w(P (x) ∧ Q(y)) > 0 in Formulas (3.4), (3.5), and (3.7).
Note that under this modification, Formula (3.5) becomes a tautology and can be omitted.
It is straightforward to adapt the above proof. This establishes the first point of the
theorem.
For the guarded fragment, observe that all formulas, except for (3.11), are guarded

according to our definition: they contain a formula of the form w(A(x)) = 2w(A(y))
which abbreviates w(A(x)) ≤ 2w(A(y)) ∧ w(A(x)) ≥ 2w(A(y)) one of whose atoms can
be used as a guard. Formula (3.11) can, however, be rewritten as follows:

w
(
∀x∀y

(
w(A(x)) ≤ w(A(y))⇒ (w(A(x)) ≥ w(A(y))∨¬M(x)∨¬M(y))

))
= 1 (3.11∗)

This finishes the proof of the theorem. �

A standard approach to lower the computational complexity of probabilistic logics has
been to restrict weight formulas to the form w(ϕ) > 0 or w(ϕ) = 1 [101, 24]. It turns
out that this restriction indeed also leads to recursive enumerability in ProbFO, even
when equality is allowed, and thus it fulfills our first requirement. However, one can
hardly talk about a probabilistic logic anymore, which is why we will later concentrate
on a different approach.
We denote with ProbFO=

01 the fragment of ProbFO= which allows only for weight
formulas of the form w(ϕ(~x)) > 0 and w(ϕ(~x)) = 1 and show recursive enumerability
by a satisfiability preserving reduction to FO=. Intuitively, a domain element in a
first-order structure will correspond to a pair (d,w) of domain element and world in a
probabilistic structure, and two fresh binary predicate symbols D and W are used to
simulate accessibility inside a world and among worlds, resprectively. More precisely,
(a, b) ∈ π(D) means that a and b represent the same domain element in different worlds,
and (a, b) ∈ π(W) means that a and b refer to different domain elements in the same
world.

Theorem 3.4. Validity in ProbFO=
01 is recursively enumerable.

Proof. The proof is provided by giving a satisfiability preserving reduction to FO=. For
the sake of simplicity, we consider satisfiability in worlds with probability greater than
0; this is without loss of generality, which can be proved along the lines of the proof of
Lemma 4.2 in the next chapter.
Let ϕ be a ProbFO=

01 sentence. As a preliminary step, we show that we can as-
sume without loss of generality that ϕ is constant free. For this purpose, assume that
{c1, . . . , cm} is the set of all constants appearing in ϕ. We simulate them using fresh unary
predicate symbols Ci, 1 ≤ i ≤ m. More precisely, we obtain a formula ϕ′ by replacing

37

3 Monodic Fragments of Probabilistic First-order Logic

every atom P (t1, . . . , tn) in ϕ with the formula ∃z1 · · · ∃zm P (t′1, . . . , t
′
n) ∧

∧m
i=1Ci(zi),

where

t′i =

{
ti if ti is variable;
zj if ti is the constant cj .

Moreover, define a formula ψ expressing that in every world there is precisely one element
satisfying Ci for every 1 ≤ i ≤ m (recall that we work with non-rigid constants):

ψ = w
(
∃z1 · · · ∃zm

m∧
i=1

Ci(zi) ∧ ∀xCi(x)→ x = zi
)

= 1.

Using the definition of ψ, it is straightforward to verify the following Claim.

Claim 1. ϕ is satisfiable iff ϕ′ ∧ ψ is satisfiable.

Thus, we can assume that ϕ is constant free. We give a satisfiability preserving reduction
to FO=. For this purpose, introduce two fresh predicate symbols D and W simulating
accessibility inside a world and among worlds. Define a sentence ψ1 as the conjunction
of the following:

• sentences enforcing both D and W to be equivalence relations;

• sentences for left commutativity, right commutativity, and Church-Rosser property,
respectively, that is for axiomatizing product structures, see [52]:

lcom(D,W) = ∀x∀y∀z
(
D(x, y) ∧W(y, z)→ ∃uW(x, u) ∧ D(u, z)

)
;

rcom(D,W) = ∀x∀z∀y
(
W(x, y) ∧ D(y, z)→ ∃uD(x, u) ∧W(u, z)

)
;

cr(D,W) = ∀x∀y∀z
(
D(x, y) ∧W(x, z)→ ∃uW(y, u) ∧ D(z, u)

)
;

• a sentence expressing that equivalence classes of D and W intersect in at most one
element:

∀x∀yW(x, y) ∧ D(x, y)→ x = y;

• a sentence enforcing that predicate symbols in ϕ are interpreted inside a world,
that is, for each k-ary symbol R the following:

∀x1 · · · ∀xk
(
R(x1, . . . , xk)→ (W(x1, x2) ∧ . . . ∧W(xk−1, xk))

)
.

Intuitively, every equivalence class of D represents a domain element and every equivalence
class of W represents a world. We need a further fresh unary predicate symbol World
for defining a unique representative for every world. This is expressed by the following
formula ψ2:

ψ2 =
(
∀x∃yW(x, y) ∧World(y)

)
∧
(
∀xyW(x, y) ∧World(x) ∧World(y)→ x = y

)
.

38

3.1 Probabilistic First-order Logic

It remains to define the translation function from ProbFO=
01 to FO=. We define the

function fow parametrized by a world variable w, that intuitively stores the world where
we are evaluating, as follows:

fow(P (x1, . . . , xk)) = P (x1, . . . , xk)

fow(x = y) = (x = y)

fow(¬ψ) = ¬fow(ψ)

fow(ψ1 ∧ ψ2) = fow(ψ1) ∧ fow(ψ2)

fow(∃xψ(x, y1, . . . , yk)) = ∃xW(x,w) ∧ fow(ψ(x, y1, . . . , yk))

fow((w(ψ(y1, . . . , yk)) > 0)) = ∃w′∃y′1 · · · ∃y′k
(
World(w′) ∧

k∧
i=1

W(w′, y′i) ∧ D(yi, y
′
i)

∧ fow′(ψ(y′1, . . . , y
′
k))
)

Claim 2. ϕ is satisfiable iff ψ1 ∧ ψ2 ∧ ∃w
(
World(w) ∧ fow(ϕ)

)
is satisfiable.

Proof of Claim 2. For the “⇒”-direction, assume a model M = (D,W,µ, π) of ϕ and
define the first-order structure A = (A, σ) as follows:

• A = D ×W ;

• σ(P) = {((d1, w), . . . , (dk, w)) | w ∈ W, (d1, . . . , dk) ∈ π(P,w)} for all predicate
symbols;

• σ(D) = {((d,w), (d′, w)) | d, d′ ∈ D,w ∈W};

• σ(W) = {((d,w), (d,w′)) | d ∈ D,w,w′ ∈W};

• σ(World) = {(d0, w) | w ∈W} for a fixed d0 ∈ D.

It is routine to verify that A |= ψ1 ∧ ψ2. By structural induction on ψ, we show that
the following equivalence holds for all formulas ProbFO=

01 formulas ψ, all worlds w ∈W ,
and all valuations ν

(M, w, ν) |= ψ(y1, . . . , yk) ⇔ (A, νw) |= fow(ψ(y1, . . . , yk)) (3.16)

where νw(x) = (ν(x), w) for all variables x in ψ and νw(w) = (d0, w). The proof of this
equivalence is not hard and we give only the case when ψ = w(ψ′(y1, . . . , yk)) > 0.

“⇒”: If (M, w, ν) |= w(ψ′(y1, . . . , yk)) > 0, there is a world w′ such that (M, w′, ν) |=
ψ′(y1, . . . , yk). By induction, we have (A, νw′) |= fow′(ψ

′(y1, . . . , yk)). By definition of
σ(D), σ(W), σ(World), and νw′ , we get (A, νw) |= fow(w(ψ′(y1, . . . , yk)) > 0).

39

3 Monodic Fragments of Probabilistic First-order Logic

“⇐”: If (A, νw) |= fow(w(ψ′(y1, . . . , yk)) > 0), there are domain elements a, b1, . . . , bk
with a ∈ σ(World), (a, bi) ∈ σ(W) and (bi, νw(yi)) ∈ σ(D) for all 1 ≤ i ≤ k such that
(A, ν̂w) |= fow′(ψ

′(y′1, . . . , y
′
k)) where

ν̂w = νw[w′ → a, y′1 → b1, . . . , y
′
k → bk].

As w′, y′1, . . . , y′k are all free variables in ψ′, we also have (A, νw) |= fow′(ψ
′(y1, . . . , yk))

where
νw = νw[w′ → a, y1 → b1, . . . , yk → bk].

Since a ∈ σ(World), a = (d0, w
′) for some w′ ∈W . Hence, each bi is of the form (di, w

′)
for some di ∈ D. Thus, νw = νw′ and the induction hypothesis yields (M, w′, ν) |=
ψ′(y1, . . . , yk). This finally implies (M, w, ν) |= w(ψ′(y1, . . . , yk)) > 0 and finishes the
proof of (3.16).
It remains to note that (3.16) applied to ϕ yields A |= ∃w (World(w) ∧ fow(ϕ)).

“⇐”: Assume a model A = (A, σ) of ψ1 ∧ ψ2 ∧ ∃w (World(w) ∧ fow(ϕ)). We define a
probabilistic structure M = (D,W, ν, π) as follows:

• D is the set of equivalence classes of σ(D), that is, each d ∈ D is a subset of A;

• W is the set of equivalence classes of σ(W), that is, each w ∈W is a subset of A;

• π(P,w) = {(d1, . . . , dk) | (e1, . . . , ek) ∈ σ(P), di ∩ w = {ei} for all 1 ≤ i ≤ k};

• µ is an arbitrary discrete probability distribution over W (by the Löwenheim-
Skolem Theorems we can assume that A (and thus W) is countable; hence, such a
distribution exists).

Note that M is well-defined since D and W satisfy ψ1; in particular, d ∩ w is a singleton
set for all d ∈ D and w ∈W and predicate symbols are only interpreted inside worlds.
We show that M satisfies the following for all ProbFO=

01 formulas ψ(y1, . . . , yk), worlds
w ∈W , and valuations ν

(M, w, ν) |= ψ(y1, . . . , yk) ⇔ (A, νw) |= fow(ψ(y1, . . . , yk)) (3.17)

where νw(x) is the unique element in ν(x) ∩ w for all variables x in ψ and νw(w) is the
unique v ∈ w ∪ σ(World), which is well-defined due to ψ2. Again, the proof of Equa-
tion (3.17) is straightforward and we show only the case when ψ = w(ψ′(y1, . . . , yk)) > 0.

“⇒”: If (M, w, ν) |= w(ψ′(y1, . . . , yk)) > 0, there is a world w′ such that (M, w′, ν) |=
ψ′(y1, . . . , yk). By induction, we have (A, νw′) |= fow′(ψ

′(y1, . . . , yk)). By definition of
σ(D), σ(W), σ(World), and νw′ , we get (A, νw) |= fow(w(ψ′(y1, . . . , yk)) > 0).
“⇐”: If (A, νw) |= fow(w(ψ′(y1, . . . , yk)) > 0), there are domain elements a, b1, . . . , bk

with a ∈ σ(World), (a, bi) ∈ σ(W) and (bi, νw(yi)) ∈ σ(D) for all 1 ≤ i ≤ k such that
(A, ν̂w) |= fow′(ψ

′(y′1, . . . , y
′
k)) where

ν̂w = νw[w′ → a, y′1 → b1, . . . , y
′
k → bk].

40

3.2 Monodic ProbFO

As w′, y′1, . . . , y′k are all free variables in ψ′, we also have (A, νw) |= fow′(ψ
′(y1, . . . , yk))

where
νw = νw[w′ → a, y1 → b1, . . . , yk → bk].

Put wa = [a]W and di = [bi]D for all 1 ≤ i ≤ k.1 Note that wa ∩ di = {bi} for
every i and a is the unique element from wa in σ(World). In particular, νw = νw′

and the induction hypothesis yields (M, w′, ν) |= ψ′(y1, . . . , yk). This finally implies
(M, w, ν) |= w(ψ′(y1, . . . , yk)) > 0 and finishes the proof of (3.17).

By assumption, we have that A |= ∃w (World(w) ∧ fow(ϕ)), hence (A, ν ′) |= fow(ϕ)
with ν ′(w) = a for some a ∈ σ(World). Note that we have ν ′ = ν[a]W where ν is the
empty valuation. Thus, Equation (3.17) yields (M, [a]W, ν) |= ϕ. �

Let us finish this section by noting that an analogous reduction is possible when rigid
constants are assumed. In particular, we define a formula

ψ3 = ∀x∀yD(x, y)⇒
(k∧
i=1

Ci(x)⇔ Ci(y)
)

which intuitively expresses that any two individuals representing the same domain
element satisfy the same predicates Ci (recall that the Ci mimic the use of the constant
symbols). One can then show along the lines of the above proof that ϕ is satisfiable iff
ψ1 ∧ ψ2 ∧ ψ3 ∧ ∃w

(
World(w) ∧ fow(ϕ)

)
is satisfiable.

3.2 Monodic ProbFO

The complexity results in the previous section, particularly Theorem 3.3, illustrate that
several restrictions of ProbFO that might seem promising on first sight fail to improve
the computational properties of this logic. Inspired by the good computational properties
of monodic fragments of temporal first-order logic [78, 131], we aim to define monodic
fragments of ProbFO that are computationally well-behaved. In the context of temporal
first-order logic, a formula is monodic when temporal operators are applied only to
formulas with at most one free variable. We first show that one has to be careful when
adapting this notion to ProbFO.

Theorem 3.5. Validity in ProbFO is Π0
1-hard (i.e., not recursively enumerable) even if

only one free object variable is allowed to occur in weight formulas.

Proof. The proof is by a reduction from finite validity in FO which is not recursively
enumerable. Let ϕ be an FO sentence, take a fresh unary predicate P , and start with

1As usual, we denote with [a]R the equivalence class of a in an equivalence relation R.

41

3 Monodic Fragments of Probabilistic First-order Logic

enforcing that for every domain element, the probability to satisfy P is 1/2i for some
i ∈ N:

∀x∀r
(

w(P (x)) = r ⇒ ∃y
(
r = 1 ∨ w(P (y)) = 2r

))
.

Next, guarantee that there are no infinite decreasing chains and thus only finitely many
probabilities of satisfying P actually occur:

∃r
(
r > 0 ∧ ∀yw(P (y)) ≥ r

)
.

Note that there can still be infinitely many elements with identical probabilities of
satisfying P . We cannot prevent this, but we can force that ‘having the same probability
of satisfying P ’ is a congruence regarding all relations that occur in ϕ. We illustrate this
for a unary predicate A and a binary predicate R:

∀r∀x∀y
((
A(x) ∧ w(P (x)) = r ∧ w(P (y)) = r

)
⇒ A(y)

)
;

∀r1∀r2∀x1∀x2∀y1∀y2

((
R(x1, y1) ∧ w(P (x1)) = r1 ∧ w(P (x2)) = r1 ∧

w(P (y1)) = r2 ∧ w(P (y2)) = r2

)
⇒ R(x2, y2)

)
.

Let ψ be the conjunction of the above ProbFO formulas. It is now easy to see that ϕ is
finitely valid iff (ψ ⇒ ϕ) is a ProbFO validity. �

The proof nicely illustrates why the restriction formulated in Theorem 3.5 – although a
natural candidate for monodicity – is not strong enough to regain recursive enumerability.
By quantifying over field variables, it is still possible to compare the probabilities of
different domain elements, which is precisely what the monodicity condition seeks to
prevent. To avoid this, we strengthen monodicity and require that weight formula with
a free object variable have no other free variable (object or field). This restriction makes
field variables and quantification over them mostly useless regarding the possibility to
talk about probabilities, so we disallow them altogether.

Definition 3.6 (Monodic ProbFO formula). A ProbFO formula is monodic if it
contains no field variables and every weight formula contains at most one free (object)
variable.

3.2.1 Examples and Expressivity

We will see that the above definition of monodicity indeed guarantees good computational
properties such as recursive enumerability of validity in monodic ProbFO. Of course, in
the balance we lose expressive power to some degree. As discussed before Definition 3.6,
monodicity syntactically restricts the ability to relate different domain elements in terms
of their probabilities. The following proposition shows that this is also reflected in the
semantics by giving explicit examples of ProbFO-formulas that cannot be expressed in
monodic ProbFO. Its proof relies on the main theorem in this chapter, Theorem 3.11

42

3.2 Monodic ProbFO

below, which implies that monodic ProbFO has the finite world property, that is, every
satisfiable monodic ProbFO sentence is satisfiable in a model with only finitely many
worlds.

Proposition 3.7. The following ProbFO formulas are not expressible in monodic
ProbFO:

1. w(P (x, y)) ∼ p with P binary, p ∈ (0, 1), and ∼ ∈ {<,≤,=,≥, >};

2. w(A(x)) > w(A(y)) with A unary.

Proof. For Point 1, assume that ψ(x, y) is a formula expressing w(P (x, y)) ∼ p. Now,
consider the sentence ϕ = ∀x (ϕ1(x) ∧ ϕ2(x) ∧ ϕ3(x)) with

ϕ1(x) = ¬A(x)⇒ (w(A(x)) > 0);

ϕ2(x) = A(x) ⇒ ∃y (ψ(x, y) ∧ ¬A(y));

ϕ3(x) = ¬A(x)⇒ ∀y (ψ(x, y)⇒ ¬A(y)),

which was used before for showing the lack of the finite world property [101]. We repeat
the argument for the sake of completeness. By Theorem 3.11, ϕ is satisfiable in a model
with finitely many, say n, worlds. Fix some domain element d. By ϕ1, there are k > 0
worlds where d satisfies A. Fix one such world w. By formula ϕ2, there is a domain
element d′ not satisfying A in w that is related to d by ψ(x, y). By formula ϕ3, in worlds
w′ where d did not satisfy A, also d′ does not satisfy A. Thus, d′ satisfies A in k′ < k
many worlds. Continuing this argument leads to some domain element d̂ satisfying A in
0 worlds, in contradiction to ϕ1.
For Point 2, let ψ(x, y) be a formula expressing w(A(x)) > w(A(y)) and assume a

model M = (D,W,µ, π) of ϕ = ∀x∃yψ(x, y). By Theorem 3.11, we can assume that W
is finite. Fix some d0 ∈ D and an arbitrary w ∈W . As M is a model of ϕ, there is an
infinite sequence d0, d1, . . . such that (M, w) |= ψ(di, di+1) for each i ≥ 0. Let pi be the
probability that di satisfies A. By the semantics of ψ(x, y), we have pi > pi+1 for each
i ≥ 0. As W is finite, each pi is a finite sum

∑
w∈Wi

µ(w) for some Wi ⊆W . However,
this is a contradiction since there are only finitely many such subsets Wi. �

To give concrete examples, formulas as under Point 1 of the Proposition could be used
to express that any two persons who show up at a party together and both wear rings
are probably married:

∀xy
(
wearsRing(x) ∧ wearsRing(y) ∧ comeTogether(x, y)

)
→ w(married(x, y)) ≥ 0.8.

With a formula as under Point 2., we could say that children are more likely to use a
smartphone than their parents:

∀xy child(x, y)→ w(usesSmartphone(x)) > 2 · w(usesSmartphone(y)).

43

3 Monodic Fragments of Probabilistic First-order Logic

Reconsidering the street food example, we see that sentence (3.2) is not monodic as it
makes a probabilistic statement about the binary predicate tolerate, and we can show
similar to the proof of Proposition 3.7 that the same sentence is really not expressible
in monodic ProbFO. The other formulas used in Example 3.2, however, are monodic.
Intuitively, monodicity allows us to talk about the probabilities of single individuals.
Thus, monodic ProbFO provides an object-centered view on degrees of belief, but features
full expressivity on first-order level. Note that we can sometimes adapt non-monodic
sentences to monodic ones expressing weaker statements. For instance, we can rewrite
the first example above with

∀xy
(
wearsRing(x) ∧ wearsRing(y) ∧ comeTogether(x, y)

)
→ w(∃ymarried(x, y)) ≥ 0.8

expressing that somebody wearing a ring who comes to a party with someone, who is
also wearing a ring, is probably married.

3.2.2 Equality

We conclude this section by providing evidence that excluding equality is essential in the
developments we present. The following theorem illustrates that recursive enumerability
for monodic ProbFO relies on disallowing equality.

Theorem 3.8. Validity in monodic ProbFO= is not recursively enumerable.

Proof. We reduce finite validity in FO. Let ϕ be an FO sentence, take a fresh unary
predicate symbol P , and a fresh constant symbol c. Let ψ be the conjunction of the
following formulas:

ψ1 = w(P (c)) > 0

ψ2 = ∀xw(P (x)) ≥ w(P (c))

ψ3 = w
(
∀x∀y

(
(P (x) ∧ P (y))→ x = y)

))
= 1

Let M be an arbitrary model of ψ. By ψ1, the constant c satisfies P with positive
probability, say r > 0. By ψ2, every domain element satisfies P with at least r.
Formula ψ3 expresses that in every world, there is at most one object satisfying P , that
is, the probabilities of all elements to satisfy P sum up to at most one. Thus, M can
only have finitely many domain elements. Conversely, for every finite cardinality n, we
can construct a model of ψ with domain size n. Hence, ϕ is finitely valid if, and only if,
(ψ ⇒ ϕ) is valid in ProbFO=. �

This result is analogous to temporal first-order logic. Remarkably, there, Π0
1-hardness

can be proved even when constant symbols are disallowed [131], whereas the proof of
Theorem 3.8 crucially relies using them. Note that simulating the constant c in the
proof of Theorem 3.8 using a fresh variable and equality results in loss of monodicity.

44

3.3 The Quasi-Model Machinery

It remains open whether validity in monodic ProbFO= without constant symbols is
recursively enumerable. Here, we only show that there cannot be an analog to our main
Theorem 3.11, which implies the finite world property.

Theorem 3.9. Monodic ProbFO= lacks the finite world property, even without constant
symbols.

Proof. Consider the conjunction of the following formulas:

ψ1 = ∀x∃y R(x, y)

ψ2 = ∀xyz (R(x, y) ∧R(y, z)→ R(x, z))

ψ3 = ∀x¬R(x, x)

ψ4 = ∀xw(A(x)) > 0

ψ5 = w(∀xy A(x) ∧A(y)→ x = y) = 1

Formulas ψ1, ψ2, ψ3 enforce an infinite domain in a standard way, as they express totality,
transitivity, and irreflexivity, respectively, of a binary relation R. It is known that such a
relation can only be realized over an infinite domain. Formula ψ4 ensures that for every
such domain element, the probability of satisfying A is positive. However, by ψ5, there is
only at most one element per world satisfying A. Thus, there have to be infinitely many
worlds. �

3.3 The Quasi-Model Machinery

We introduce quasi-models, an abstraction of probabilistic structures that underlies the
proofs of all positive results established in this chapter. This requires some preliminary
notation. For what follows, fix a monodic ProbFO-sentence ϕ0. We denote by:

• sub(ϕ0): the set of all subformulas of ϕ0 and their negation;

• subn(ϕ0), n ≥ 0: the formulas from sub(ϕ0) with precisely n free variables;

• con(ϕ0): the set of all constant symbols that occur in ϕ0.

Reflecting the monodicity condition, we mostly concentrate on subformulas with at most
one free variable when defining quasi-models. Fix a fresh variable symbol x and define
the set

subx(ϕ0) = sub0(ϕ0) ∪ {ψ(x), ψ(c) | ψ(y) ∈ sub1(ϕ0), c ∈ con(ϕ0)}.

45

3 Monodic Fragments of Probabilistic First-order Logic

A type is a subset t ⊆ subx(ϕ0) such that t is a maximal satisfiable subset of subx(ϕ0).2

Intuitively, a type is a set of FO formulas that are satisfied by a domain element in a
world of some probabilistic structure; it also includes the FO formulas that are satisfied
by the constants in that world. We say that two types t1, t2 agree on sentences, written
t1 ≡0 t2, if for all sentences ψ ∈ subx(ϕ0), we have ψ ∈ t1 iff ψ ∈ t2. Clearly, only types
that agree on sentences may be realized in the same world.

A world type is a set of types that agree on sentences; it can be viewed as an abstract
representation of a world in a probabilistic structure, that is, of an FO structure. For an
FO structure A = (A, π) and an element d ∈ A, define

tp(A, d) = {ψ(x) ∈ subx(ϕ0) | A |= ψ[d]};

tp(A) = {tp(A, d) | d ∈ A}.

Note that tp(A, d) is a type and tp(A) is a world type. A world type T is realizable
if there is an FO structure A such that tp(A) = T , that is, if the FO formula χ(T) is
satisfiable, where χ(T) is defined as:

χ(T) =
∧
t∈T
∃x
∧
t(x) ∧ ∀x

∨
t∈T

∧
t(x).

Intuitively, χ(T) characterizes the world type T by stating that every type from T
appears and no other types are realized.

Every probabilistic structure can be viewed as the set of world types that are realized.
Thus, (collections of) world types will play a central role in the definition of quasi-models
as they describe the first-order part. However, they need to be suitably enriched with

(i) runs that describe the types of a single domain element in all worlds of a probabilistic
structure; and

(ii) relevant conditions that have to be satisfied by the probabilities of worlds.

For Point (i), let Q be a set of world types. A run through Q is a function r that assigns
to each world type T ∈ Q a non-empty set r(T) ⊆ T and is coherent, that is, whenever
some t ∈ r(T) contains a weight formula θ, then for all T ′ ∈ Q and t′ ∈ r(T ′), we have
θ ∈ t′. Coherence allows us to write θ ∈ r to denote that for all (equivalently: some)
T ∈ Q and t ∈ r(T), we have θ ∈ t. A run selects a set of types for each world type
instead of only a single type because each world type can represent several actual worlds,
and an element might have different types in each of these worlds. To finish Point (i), we
combine world types and runs: A quasi-model candidate is a triple (T0, Q,R) with T0 a
world type, Q a set of world types and R a set of runs through Q∪{T0} such that for all

2Recall that ψ denotes the first-order formula that is obtained from ψ by replacing all weight formulas
θ(~x) by atoms Pθ(~x); this is lifted to sets in the straightforward way.

46

3.3 The Quasi-Model Machinery

T ∈ Q ∪ {T0} and t ∈ T , there is a run r ∈ R with t ∈ r(T). Intuitively, T0 describes a
(single) world of probability 0 while each T ∈ Q describes worlds of positive probability.

To address Point (ii) above and obtain our final quasi-model representation, we augment
quasi-model candidates with a system of polynomial inequalities. It uses a variable xT
for each world type T to represent the probability of T (obtained by summing up the
probabilities of all worlds of world type T) and a variable xr,t,T for each run r, world
type T , and type t ∈ T to describe the (summed up) probability of those worlds of world
type T in which the element described by run r has type t.

Definition 3.10 (Quasi-Model). A quasi-model candidate (T0, Q,R) is a quasi-model
for ϕ0 if ϕ0 ∈ t for some t ∈ T0, every T ∈ Q ∪ {T0} is realizable, and the following
system of polynomial inequalities E(Q,R) has a positive solution over the reals:

1. probability distribution on world types:∑
T∈Q

xT = 1;

2. the probabilities of the types associated by a run r ∈ R to a world type T ∈ Q sum
up to the probability of T :

xT =
∑
t∈r(T)

xr,t,T ;

3. runs respect weight formulas, that is, for all f1 ∼ f2 ∈ r with ∼ ∈ {≤, >}3 add the
equation

[f1]r ∼ [f2]r,

where [f]r is obtained from f by replacing each outermost term w(ψ(x)) with the
following formula that describes probability of ψ:∑

T∈Q

∑
t∈r(T),ψ(x)∈t

xr,t,T .

Note that the field terms f1, f2 in Item 3 of Definition 3.10 can contain addition and
multiplication, thus the system E(Q,R) need not be linear. We say that ϕ is satisfied in
a quasi-model if there is a quasi-model for ϕ. The following provides the basis for our
use of quasi-models in subsequent sections.

Theorem 3.11 (Main Theorem). A monodic ProbFO sentence ϕ0 is satisfiable iff it
is satisfied in some quasi-model. Moreover, every satisfiable monodic ProbFO sentence is
satisfied in a probabilistic structure with finitely many worlds.

3We write f1 > f2 ∈ r in place of f1 ≤ f2 /∈ r.

47

3 Monodic Fragments of Probabilistic First-order Logic

The remainder of this section is devoted to the proof of this theorem. In the “⇒” direction,
we read off a quasi-model for ϕ0 from a probabilistic structure that satisfies ϕ0. To show
that the system E(Q,R) has a solution, the values for the variables xT and xr,t,T are also
read off in a straightforward way. More precisely, let M = (D,W,µ, π) be a probabilistic
structure satisfying ϕ0, that is (M, w0) |= ϕ0. Observe first that we can w.l.o.g. assume
that w0 is the unique world with µ(w0) = 0: all worlds with probability 0 (except for w0)
can be dropped without changing M being a model of ϕ0. If after this transformation
µ(w0) > 0 we can add a world w′0 which is essentially a copy of w0 with probability
µ(w′0) = 0.

Now define a quasi-model (T0, Q,R) for ϕ0. For this purpose, we lift the definition of
the functions tp(·) to probabilistic structures:

tp(M, d, w) = {ψ ∈ subx(ϕ0) |M, w |= ψ[d] };
tp(M, w) = {tp(M, d, w) | d ∈ D}.

Set T0 = tp(M, w0) and Q = {tp(M, w) | w ∈ W,µ(w) > 0}. Obviously, every
T ∈ Q ∪ {T0} is realizable. Next, define a set R = {rd | d ∈ D} where each function rd
is defined as

rd(T0) = {tp(M, d, w0)};

rd(T) = {tp(M, d, w) | w ∈W,µ(w) > 0, tp(M, w) = T} for all T ∈ Q.

Obviously, each function rd is a run through {T0}∪Q. To show that E(Q,R) is positively
satisfiable, choose for each r ∈ R a domain element d(r) ∈ D such that rd(r) = r. Then
define values x∗T for every T ∈ Q and x∗r,t,T for every r ∈ R, T ∈ Q, and t ∈ r(T) by
taking:

x∗T = µ(χ(T));

x∗r,t,T = µ(χ(T) ∧ t(d(r))).

It remains to check that the values x∗T , x
∗
r,t,T present a positive solution to E(Q,R) from

Definition 3.10. Note first that all values are positive. For the remaining equations under
Items 1 to 3, we have:

• The equations under Item 1 are satisfied as∑
T∈Q

x∗T =
∑
T∈Q

µ(χ(T)) = µ(
∨
T∈Q

χ(T)) = 1,

where the second equality holds as world types are pairwise contradictory, and the
last equality holds since any world w ∈W satisfies χ(T) for some T ∈ Q.

48

3.3 The Quasi-Model Machinery

• The equations under Item 2 are satisfied for every r ∈ R, T ∈ Q since∑
t∈r(T)

x∗r,t,T =
∑
t∈r(T)

µ(χ(T) ∧ t(d(r)))

=
∑
t∈T

µ(χ(T) ∧ t(d(r)))

= µ(χ(T) ∧
∨
t∈T

t(d(r)))

= µ(χ(T)) = x∗T .

The second equality holds since µ(χ(T) ∧ t(d(r))) = 0 in case t /∈ r(T). The third
equality holds as types are pairwise contradictory. The fourth equality holds as
χ(T)⇒

∨
t∈T t(x) is a tautology.

• For checking the equations under Item 3, let f1 ∼ f2 ∈ r for some r ∈ R. It suffices
to show that [fi]r = [fi(d(r))]M,w for all w ∈ W and i ∈ {1, 2}. Note that each
fi has at most one free variable, whose valuation we indicate by substituting d(r)
into the term fi, then dispensing with further mention of a valuation. We make an
induction on the structure of field terms f . The cases when f equals 0, 1, f ′ + f ′′,
or f ′ × f ′′ are clear. So it remains to consider the case f = w(ψ(x)).

[w(ψ(d(r)))]M,w = µ(ψ(d(r)))

= µ(
∨

t∈T,ψ(x)∈t

(χ(T) ∧ t(d(r))))

=
∑
T∈Q

∑
t∈T,ψ(x)∈t

µ(χ(T) ∧ t(d(r)))

=
∑
T∈Q

∑
t∈r(T),ψ(x)∈t

µ(χ(T) ∧ t(d(r)))

=
∑
T∈Q

∑
t∈r(T),ψ(x)∈t

x∗r,t,T .

The first equality is just the semantics. The second equality holds as the big
disjunction covers all possibilities. The third equality holds as both distinct
world types and distinct types are contradictory. The last equality holds as
µ(χ(T) ∧ t(d(r))) = 0 in case t /∈ r(T).

It remains to remark that by assumption ϕ0 ∈ t for all t ∈ T0 and thus (T0, Q,R) is a
quasi-model for ϕ0.

For the “⇐”-direction, let (T0, Q,R) be a quasi-model for ϕ0. Hence, every T ∈ Q∪{T0}
is realizable and E(Q,R) has a positive solution which we denote by x∗T for T ∈ Q and

49

3 Monodic Fragments of Probabilistic First-order Logic

x∗r,t,T for r ∈ R, T ∈ Q, t ∈ r(T). To construct a probabilistic structure M that satisfies
ϕ0, we cannot use the world types in Q∪{T0} directly as worlds, since runs can associate
more than one type with a world type. We thus need to subdivide each T ∈ Q into
several worlds, each accommodating a single type that a given run assigns to T . This has
to be done in a careful way since we have to do it simultaneously for all runs while also
ensuring that all types in T are realized in each of the worlds that T is subdivided into.
Note that world type T0 is an exception to what was said above, since we can assume
w.l.o.g. that r(T0) is a singleton set for each r ∈ R: As the types in T0 do not contribute
to the equation system E(Q,R), we can replace a run r with r(T0) = {t1, . . . , tk} by k
runs r1, . . . , rk defined as ri(T0) = {ti} and ri(T) = r(T) for all T ∈ Q and i ∈ {1, . . . , k}.
For the remaining world types from Q we need the following notion.

Definition 3.12 (Subdivision). Let r ∈ R and T ∈ Q. A subdivision of T for r is a
tuple s = (b1, . . . , bn, ζ) such that 0 < b1 < b2 < · · · < bn = x∗T , n = |r(T)|+ 1, and ζ is
a surjective function that assigns to every bi a type ζ(bi) ∈ r(T) such that for all t ∈ r(T)
we have

∑
i∈[1,n],ζ(bi)=t

(bi − bi−1) = x∗r,t,T , where, here and in what follows, b0 := 0.

Intuitively, the interval [0, x∗T] represents the probability covered by all worlds of type T
and we subdivide this range into the intervals (bi, bi+1], with i < n. Elements described
by the run r then have type ζ(bi+1) in the interval (bi, bi+1]. For easier reference, we say
for p ∈ (0, x∗T] that s has type t at p if p ∈ (bi−1, bi] and ζ(bi) = t. We next lift this to
runs.
A subdivided run is a pair (r, S) with r ∈ R a run and S a function that associates

with every T ∈ Q a subdivision S(T) of T for r. We could use the subintervals identified
by a subdivided run (r, S) as worlds if we had only the single run r. Since this is not the
case, though, worlds are defined by combining a sufficiently rich set of subdivided runs
in an appropriate way. This set is identified by the next claim.

Claim 1. There is a finite set Γ of subdivided runs such that

(∗) for all r ∈ R, T ∈ Q,t ∈ r(T), and p ∈ (0, x∗T], there is some (r, S) ∈ Γ such that
S(T) has type t at p.

Proof of Claim 1. It suffices to show the statement for an arbitrary fixed r ∈ R,
T ∈ Q, t ∈ T . By assumption, x∗r,t,T > 0. Obviously, there is a finite set of intervals
(y1, z1], . . . , (yk, zk] each of length x∗r,t,T which cover (0, x∗T]. For each such interval (yi, zi]
we can find a subdivision si = (b1, . . . , bn, ζ) of T for r such that si has type t at p for
all p ∈ (yi, zi]: since n > r(T), we can always arrange the n intervals of a subdivision
such that there is a j with (bj−1, bj] = (yi, zi] and ζ(bj) = t, see Figure 3.2. We have
thus fixed k subdivisions s1, . . . , sk of T for r. Moreover, note that, for T ′ ∈ Q, T ′ 6= T ,
we can trivially fix a subdivision sT ′ of T ′ for r. Combining those with the subdivisions

50

3.3 The Quasi-Model Machinery

0 1tt1 t2

tt1 t1 t2

t t1 t2

Figure 3.2: Idea underlying the Proof of Claim 1. Assume r(T) = {t, t1, t2} with
x∗r,t,T = 1/3, x∗r,t1,T = 1/2, and xr,t2,T = 1/6. The types t, t1, t2 are
represented by bars of colors yellow, blue, and red, respectively. Each row
represents one subdivision of the types; together the subdivisions ensure
that for each p ∈ [0, 1] there is a row where t is satisfied at p. The middle
row demonstrates why we need to divide in at most 4 pieces.

obtained above yields k subdivided runs (r, S1), . . . , (r, Sk) where

Si(T
′) =

{
si if T ′ = T

sT ′ ; otherwise.

This finishes the proof of Claim 1.

We are now ready to define a probabilistic structure M = (D,W,µ, π) that satisfies ϕ0.
We start with the set of worlds W and the distribution µ. Let Γ be the set of subdivided
runs from Claim 1. For every T ∈ Q, let Z(T) denote the set of all values bi that occur in
a subdivision s = (b1, . . . , bn, ζ) for T and r, for some (r, S) ∈ Γ with S(T) = s. Further
assume that Z(T) = {zT1 , . . . , zTmT } with z

T
1 < . . . < zTmT . Now set

W = {(T, z) | T ∈ Q, z ∈ Z(T)} ∪ {(T0, 0)};

µ(T, zTi) = zTi − zTi−1 for all T ∈ Q and 1 ≤ i ≤ mT (where zT0 := 0);

µ(T0, 0) = 0.

Notice that every world (T, z) with T ∈ Q has positive probability and the additional
world (T0, 0) has probability 0.

Next, we define the domain D of M. By assumption, every T ∈ Q ∪ {T0} is realizable.
Hence, for every world type T ∈ Q∪ {T0} we can fix an FO structure AT that realizes it.
Let AT,z = (AT,z, πT,z), for (T, z) ∈W , be pairwise disjoint copies of AT and define D
to be the disjoint union of all AT,z, (T, z) ∈W .
It remains to give the interpretation function π of M. For this purpose, we assign to

every d ∈ D a function σd that associates every world with a type. Given d, we first
determine the unique T, z such that d ∈ AT,z and choose a subdivided run as follows:

• If T ∈ Q, then choose some (r, S) ∈ Γ that has type tp(AT,z, d) at z (possible due
to Claim 1);

51

3 Monodic Fragments of Probabilistic First-order Logic

• if T = T0, choose some (r, S) ∈ Γ with r(T0) = {tp(AT0,0, d)}.

For all (T ′, z′) ∈W with T ′ 6= T0, define σd(T ′, z′) as the type of S(T ′) at z′; additionally,
set σd(T0, 0) = t0, where r(T0) = {t0}.

Let us verify that in every world (T, z) ∈W precisely the types from T appear in the
following sense:

(i) for all t ∈ T , there is some d such that σd(T, z) = t;

(ii) if σd(T, z) = t, then t ∈ T .

For Point (i), observe that by construction there is some d ∈ AT,z realizing t. By the
choice of the run used to define σd, we get σd(T, z) = t. Point (ii) is trivial in case
T = T0. For T 6= T0, observe that σd(T, z) is always the type of some subdivision of T
for some run r, which is always a type from T .

We next show that the types given by the mappings σd are realizable in the sense that,
for each (T, z) ∈W , there is a model BT,z = (D,π′T,z) such that for all d ∈ D we have:

σd(T, z) = t iff tp(BT,z, d).

In fact, the existence of such a model is an immediate consequence of the definition of
σd and the following standard result from model theory which can be proved based on
the fact that we consider FO without equality. Intuitively, we can obtain BT,z from AT,z
by duplicating domain elements.

Lemma 3.13. If a world type T is realizable in a structure A = (A, π) such that every
type t ∈ T is realized by κt elements in A, then for any family of cardinals λt, t ∈ T ,
with λt ≥ κt for all t ∈ T , there is a structure A′ = (A′, π′) such that every type t ∈ T is
realized by precisely λt elements in A′.

To finish the definition of M, set for all predicate names P and all worlds (T, z) ∈W :

π(P, (T, z)) = π′T,z(P).

In order to prove correctness of the construction we show the following claim. There, it
is convenient to write ψ(x) even if ψ is a sentence, i.e., x does not occur freely in ψ.

Claim 2. For all valuations ν, all ψ(x) ∈ subx(ϕ0), and all (T, z) ∈W we have

(BT,z, ν) |= ψ(x) ⇐⇒ (M, (T, z), ν) |= ψ(x).

Proof of Claim 2. The induction base, i.e., ψ(x) = P (x1, . . . , xk), is clear since then
ψ(x) = ψ(x) and, by construction, π′T,z(P) = π(P, (T, z)). The induction steps for the
constructors ∧, ¬, ∀x follow immediately from induction hypothesis.

52

3.4 Recursive Enumerability and Axiomatization

Now let ψ(x) = f1 ≤ f2 and thus ψ(x) = Pψ(x). Assume ν(x) = d and d ∈ AT ∗,z∗
for some (T ∗, z∗) ∈W , and fix the subdivided run (r, S) used in the construction of σd.
By definition of π, (BT,z, ν) |= Pψ(x) is equivalent to ψ(x) ∈ tp(BT,z, d). As ψ(x) is a
weight formula and r satisfies the coherence condition, this is equivalent to the fact that
ψ(x) ∈ r. By Item 3 of Definition 3.10 and maximality of types, this is the case if, and
only if, it holds [f1]r ≤ [f2]r (with the values x∗r,t,T from the fixed solution). Now observe
that subdivisions and subdivided runs do not change the probability of some type t, but
only give some arrangement. Thus, by construction of the set of worlds, [f1]r ≤ [f2]r
is equivalent to [f1](M,w,ν) ≤ [f2](M,w,ν) for any w ∈ W . Finally, this is equivalent to
(M, (T, z), ν) |= f1 ≤ f2. This finishes the proof of Claim 2.

We finally verify that ϕ0 is satisfied in some world of M; in particular, we show that
(M, (T0, 0)) |= ϕ0. By definition of a quasi-model, we have ϕ0 ∈ t for some t ∈ T0. By
construction of M, there is some d ∈ D with BT0,0 |= t(d). As ϕ0 ∈ t is a sentence,
(BT0,0, ν) |= ϕ0 for any valuation ν. By the above claim, (M, (T0, 0), ν) |= ϕ0 for any
valuation ν, and thus (M, (T0, 0)) |= ϕ0.

It remains to note that Claim 1 and the definition of the set of worlds W in M imply
that M is a model comprising only finitely many worlds. Thus, every satisfiable monodic
ProbFO sentence is satisfied in a model with finitely many worlds. This finishes the
proof of Theorem 3.11. �

Recall that our semantics interprets constants in a non-rigid way, that is, the interpretation
of constants may differ in different worlds. However, quasi-models and all results stated
below can be adapted to rigid constants. A world type is then a pair 〈T, {tc | c ∈ con(ϕ0)}〉
with T a set of types and tc ∈ T . We call 〈T, {tc | c ∈ con(ϕ0)}〉 realizable if there is an
FO structure A = (A, π) such that tp(A) = T and tp(A, π(c)) = tc for each c ∈ con(ϕ0).
For a quasi-model candidate (T0, Q,R), we additionally require R to contain, for each
c ∈ con(ϕ0), a run rc defined by rc(T) = {tc} for each 〈T, {tc′ | c′ ∈ con(ϕ0)}〉 ∈ Q. It is
now easy to adapt the proof of Theorem 3.11.

3.4 Recursive Enumerability and Axiomatization

The first application of Theorem 3.11 is to show that validity in monodic ProbFO is
recursively enumerable and hence, our definition of monodicity is suitable. Moreover, we
provide a concrete axiomatization.

For the former, it suffices to devise a semi-decision procedure for unsatisfiability. The
crucial observation is that, for any input sentence ϕ0, the number of quasi-model candi-
dates (T0, Q,R) is bounded. It is thus possible to construct all quasi-model candidates
(T0, Q,R) such that ϕ0 is contained in some t ∈ T0 and then eliminate those for which
the system of polynomial inequalities E(Q,R) from Definition 3.10 is not satisfiable.
Then, enumerate all unsatisfiable FO formulas. For each such formula ψ, eliminate all

53

3 Monodic Fragments of Probabilistic First-order Logic

PC an axiomatization of FO;

OF all instances of the axioms of ordered fields that are well-formed formulas in
monodic ProbFO;

PW1 ϕ ⇒ (w(ϕ) = 1), if all occurrences of predicate symbols in ϕ are inside the
scope of some w();

PW2 w(ϕ) ≥ 0;

PW3 w(ϕ ∧ ψ) + w(ϕ ∧ ¬ψ) = w(ϕ);

PW4 w(∃xϕ(x)) > 0⇒ ∃xw(ϕ(x)) > 0;

RPW from ϕ ≡ ψ infer w(ϕ) = w(ψ).

Figure 3.3: Axiomatization for monodic ProbFO.

quasi-model candidates (T0, Q,R) such that χ(T) = ψ for some T ∈ Q ∪ {T0}: unsatisfi-
ability of χ(T) implies that T is not realizable, thus (T0, Q,R) cannot be a quasi-model.
Once all quasi-model candidates have been eliminated, return with ‘ϕ0 is unsatisfiable’.

Theorem 3.14. The set of valid monodic ProbFO sentences is recursively enumerable.

Although we have already shown recursive enumerability, axiomatizations are of indepen-
dent theoretical interest. Halpern gives an axiomatization of ProbFO for the case where
probabilistic structures are restricted to a domain of bounded size [67]. We propose a
variation of this axiomatization that is sound and complete for monodic ProbFO, without
assuming bounded domains.

Let AX be the set of axioms in Figure 3.3. In comparison to Halpern’s axiomatization,
we have removed the axiom FINN for bounded domains of size N and added axiom PW4.
This axiom follows from Halpern’s axiomatization, but is independent of the axioms
that remain when FINN is removed – in a nutshell, its soundness over discrete measures
depends on σ-additivity, while PW3 captures only finite additivity.4 Moreover, as we
exclude field variables, we no longer need the full axiomatization of real-closed fields, but
can make do with the axioms of ordered fields, which are the field axioms together with
axioms describing a total order ≤ compatible with the field operations, see Figure 3.4.
These axioms are instantiated to monodic ProbFO formulas by replacing real variables
with weight terms, observing the monodicity restriction. As an example, from the
commutativity axiom for +, we get the axiom ∀xw(ϕ(x))+w(ψ(x)) = w(ψ(x))+w(ϕ(x))
for all monodic ProbFO formulas ϕ(x), ψ(x) with at most one free variable x. Thus, OF

4Thanks to Lutz Schröder for pointing this out.

54

3.4 Recursive Enumerability and Axiomatization

commutativity ∀x∀y (x ◦ y) = (y ◦ x) for ◦ ∈ {+,×};

associativity ∀x∀y∀z (x ◦ (y ◦ z)) = ((x ◦ y) ◦ z) for ◦ ∈ {+,×};

identity ∀x (x+ 0) = x and ∀x (x× 1) = x;

inverse ∀x∃x (x+ x) = 0 and ∀x (x 6= 0)→ ∃x (x× x) = 1;

distributivity ∀x∀y∀z (x× (y + z)) =
(
(x× y) + (x× z)

)
;

total order ∀x∀y (x ≤ y) ∨ (y ≤ x), ∀x∀y (x ≤ y) ∧ (y ≤ x)⇒ (x = y), and

∀x∀y∀z (x ≤ y) ∧ (y ≤ z)⇒ (x ≤ z);

compatibility(≤,+) ∀x∀y∀z (x ≤ y)⇒ (x+ z ≤ y + z);

compatibility(≤,×) ∀x∀y (x ≥ 0) ∧ (y ≥ 0)⇒ (x× y ≥ 0).

Figure 3.4: Axiomatization for ordered fields.

enables us to apply standard arithmetical laws to weight formulas. Finally, note that—as
observed in [67]—there is a slight adaptation necessary for the FO axiom ∀xϕ⇒ ϕ[x/t]
whenever t is substitutable for x in ϕ, which is intuitively the case when t does not
contain a variable y that ends up bounded after this substitution. More precisely, as
constants are non-rigid designators, the instance ∀xw(A(x)) = 1/2⇒ w(A(a)) = 1/2 of
this axiom is not valid. Thus, we need to prohibit the substitution of constant symbols
into weight formulas in order to retain soundness of the axiom.

Theorem 3.15. AX axiomatizes validity in monodic ProbFO.

For the axioms except for PW4, soundness is proved essentially as in [67]. For the
additional axiom PW4 assume some probabilistic structure M = (D,W, π, µ) and some
valuation ν such that (M, w, ν) |= w(∃xϕ(x)) > 0 for some world w ∈W . We have:

(M, w, ν) |= w(∃xϕ(x)) > 0⇒ ∃w′ ∈W : µ(w′) > 0 and (M, w′, ν) |= ∃xϕ(x)

⇒ ∃d ∈ D : (M, w′, ν[x→ d]) |= ϕ(x)

⇒ (M, w, ν[x→ d]) |= w(ϕ(x)) > 0

⇒ (M, w, ν) |= ∃xw(ϕ(x)) > 0.

For showing completeness, we need some more notation. We use AX ` ϕ to denote that
ϕ can be derived in AX and call a sentence ϕ consistent if AX 6` ¬ϕ. By Theorem 3.11,
it suffices the following lemma.

55

3 Monodic Fragments of Probabilistic First-order Logic

Lemma 3.16. If a monodic ProbFO sentence ϕ0 is consistent, then there is a quasi-model
for ϕ0.

We first prove some auxiliary statements. For the sake of simplicity, we will sometimes
use PC ` ϕ (instead of PC ` ϕ) to express that ϕ can be derived using the axioms from
PC. Note that this does not lead to confusion as PC ` ϕ implies AX ` ϕ. We say that
ϕ1, . . . , ϕm are pairwise mutually exclusive if PC ` ϕi ⇒ ¬ϕj for i 6= j.

Lemma 3.17. (1) If ϕ1, . . . , ϕk are pairwise mutually exclusive, then AX ` w(ϕ1 ∨
. . . ∨ ϕk) = w(ϕ1) + . . .+ w(ϕk).

(2) If AX ` ϕ, then AX ` w(ϕ) = 1.

(3) AX ` w(ϕ) + w(¬ϕ) = 1.

(4) AX ` w(ϕ ∧ ψ) ≤ w(ϕ).

(5) AX ` w(ϕ ∧ θ) > 0⇒ θ provided that every predicate symbol in θ appears inside a
weight term w(ψ).

(6) AX `
∑

ψ∈Ψ w(ψ) = r ⇒
∨

Ψ′⊆Ψ

(∧
ψ∈Ψ′(w(ψ) > 0) ∧

∑
ψ∈Ψ′ w(ψ) = r

)
.

Proof. Items (1)–(4) are shown in [67]. For Item (5), assume the contrary, that is,
w(ϕ ∧ θ) > 0 ∧ ¬θ is consistent. By Axiom PW1, also w(ϕ ∧ θ) > 0 ∧ w(¬θ) = 1 is
consistent. By Item (3) of this Lemma and OF , also w(ϕ∧θ) > 0∧w(θ) = 0 is consistent.
By Item (4), we get that w(θ) > 0 ∧ w(θ) = 0 is consistent, which is in contradiction to
OF .
For Item (6), observe that, by axiom PW2, we have AX `

∑
ψ∈Ψ w(ψ) = r ⇒∑

ψ∈Ψ w(ψ) = r ∧
∧
ψ∈Ψ w(ψ) ≥ 0. By standard arithmetics, w(ψ) ≥ 0 is equivalent to

(w(ψ) = 0) ∨ (w(ψ) > 0). This, and distributivity of ∨ over ∧ now leads to

AX `
∑
ψ∈Ψ

w(ψ) = r ⇒
∨

Ψ′⊆Ψ

(∧
ψ∈Ψ′

(w(ψ) > 0) ∧
∧

ψ∈Ψ\Ψ′
(w(ψ) = 0) ∧

∑
ψ∈Ψ

w(ψ) = r
)
.

Since 0 is neutral with respect to addition, we can just omit those ψ such that w(ψ) = 0
in the inner sum and obtain the desired derivation. �

We are ready to prove Lemma 3.16. For a type t, let us denote with wf(t) the set of all
weight formulas or their negations contained in t. Moreover, we say that two types t, t′

agree on weight formulas if wf(t) = wf(t′). Denote the set of realizable world types with
W . Note that we can concentrate on realizable world types, since for each unrealizable
world type T , we have PC ` ¬χ(T). We assume that ϕ0 is consistent and begin with
showing the following claim.

Claim 1. There is a realizable world type T0, a type t ∈ T0 with ϕ0 ∈ t, and a set Q of
realizable world types such that

56

3.4 Recursive Enumerability and Axiomatization

(i) the following formula is consistent:

ϑ = χ(T0) ∧
(∑
T∈Q

w(χ(T)) = 1
)
∧
(∧
T∈Q

w(χ(T)) > 0
)
;

(ii) for each T ∈ Q, t ∈ T there is a t0 ∈ T0 agreeing on the weight formulas with t;

(iii) for each T ∈ Q, t0 ∈ T0 there is a t ∈ T agreeing on the weight formulas with t0.

Proof of Claim 1. We begin by noting that PC ` ϕ0 ≡
∨
T∈W0

χ(T), where W0 is the
set of all realizable world candidates containing a type t with ϕ0 ∈ t. Thus, consistency
of ϕ0 implies that χ(T0) is consistent for some realizable world type T0 containing some
t ∈ T0 with ϕ0 ∈ t. Next, observe that PC `

∨
T∈W χ(T), and thus, by Lemma 3.17(2),

AX ` w(
∨
T∈W χ(T)) = 1. As for distinct world types T, T ′ we know that χ(T) and

χ(T ′) are mutually exclusive, Lemma 3.17(1) implies AX `
∑

T∈W w(χ(T)) = 1. As
χ(T0) is consistent, also the formula χ(T0) ∧

∑
T∈W w(χ(T)) = 1 is consistent. By

Lemma 3.17(6), we can identify a subset Q ⊆W such that ϑ is consistent; thus, we are
finished with Item (i).
For Item (ii), assume some T ∈ Q and a type t ∈ T that does not agree on the

weight formulas with any type from T0. Observe that AX ` χ(T0)⇒ ∀x
∨
t0∈T0

wf(t(x)).
On the other hand, we have that AX ` ϑ ⇒ w(χ(T)) > 0 and thus AX ` ϑ ⇒
w(∃x t(x)) > 0 by Lemma 3.17(4). By PW4, we obtain AX ` ϑ ⇒ ∃xw(t(x)) > 0.
Applying Lemma 3.17(5) yields AX ` ϑ⇒ ∃xwf(t(x)). Overall, consistency of ϑ yields
consistency of ∀x

(∨
t0∈T0

wf(t0(x))
)
∧ ∃xwf(t(x)) which is a contradiction by PC, the

assumption that t does not agree on the weight formulas with any t0 ∈ T , and maximality
of types. Item (iii) can be proved analogously. This finishes the proof of Claim 1.

The world type T0 and the set of world types Q identified in Claim 1 establish the basis
for the quasi-model whose existence we are going to prove. In order to show how to use
consistency of ϑ to also identify a suitable set of runs, we need some auxiliary formulas
that can be derived in AX.

Claim 2. For every formula ψ ∈ subx(ϕ0) and all S ∈W , the following can be derived:

AX ` ϑ⇒ w(ψ(x)) =
∑
S∈Q

∑
s∈S,ψ(x)∈s

w(χ(S) ∧ s(x)); (3.18)

AX ` w(χ(S)) =
∑
s∈S

w(χ(S) ∧ s(x)). (3.19)

Proof of Claim 2. We start with deriving (3.18). First observe that we have PC `
ψ(x) ≡

∨
S∈Ŵ

∨
s∈S,ψ(x)∈s(χ(S) ∧ s(x)); thus RPW and Lemma 3.17(1) lead to

AX ` w(ψ(x)) =
∑
S⊆Ŵ

∑
s∈S,ψ(x)∈s

w(χ(S) ∧ s(x)).

57

3 Monodic Fragments of Probabilistic First-order Logic

It remains to note that that AX ` ϑ⇒ w(χ(S)) = 0 for all S /∈ Q; by Lemma 3.17(4),
also AX ` ϑ⇒ w(χ(S) ∧ s(x)) = 0 for all s ∈ S.
For deriving (3.19), observe that we have for all world types S ∈W :

PC ` χ(S) ≡ χ(S) ∧
∨
s∈S

s(x).

Hence, AX ` w(χ(S)) = w(χ(S) ∧
∨
s∈S s(x)), and Lemma 3.17(1) leads to the result.

This finishes the proof of Claim 2.

The next step is to show how consistency of ϑ induces a run through every type t ∈ T ,
T ∈ Q. For this purpose, fix some T ∈ Q, a type t ∈ T , and the set wf(t) = {θ1, . . . , θm}
of weight formulas (or their negations) in t. Obviously, we have AX ` ϑ⇒ w(χ(T)) > 0.
As χ(T) contains the conjunct ∃x t(x), we have AX ` ϑ⇒ ∃xw(χ(T) ∧ t(x)) > 0 using
PW4. By applying Lemma 3.17(5) to θ1, . . . , θm, we can also derive

AX ` ϑ⇒ ∃xw(χ(T) ∧ t(x)) > 0 ∧ θ1(x) ∧ . . . ∧ θm(x) (3.20)

By (3.18) and standard arithmetical laws (consequences of OF), we can replace each
θj(x) in (3.20) by the formula θ′j(x) that is obtained by substituting every w(ψ(x)) with∑

S∈Q
∑

s∈S,ψ(x)∈s w(χ(S)∧ s(x)). Moreover, we can add formula (3.19) for every S ∈ Q
as conjunct. We thus obtain the following:

AX ` ϑ⇒∃x
(

w(χ(T) ∧ t(x)) > 0 ∧ θ′1(x) ∧ . . . ∧ θ′m(x)∧∧
S∈Q

w(χ(S)) =
∑
s∈S

w(χ(S) ∧ s(x))
)

Recall that AX ` ϑ⇒ w(χ(S)) > 0 for each S ∈ Q. Thus, in the sum in the second line,
w(χ(S) ∧ s(x)) has to be positive for at least one s ∈ S. Using Lemma 3.17(6), one can
show that there exists a choice function selecting the set of all such s for each S. More
precisely, there is a function r such that t ∈ r(T) (due to the conjunct w(χ(T)∧t(x)) > 0),
r(S) 6= ∅ for all S ∈ Q, and the following is consistent:

ϑ ∧ ∃x
(m∧
j=1

θ′j(x) ∧
∧

S∈Q,s∈r(S)

w(χ(S) ∧ s(x)) > 0

∧
S∈Q

w(χ(S)) =
∑
s∈r(S)

w(χ(S) ∧ s(x))
)

Observe now that all types s ∈ r(S), S ∈ Q actually agree on the weight formulas; in
particular, for all such s we have that wf(s) = wf(t). Assume to the contrary, ¬θj(x) ∈ s
for some s ∈ r(S). By Lemma 3.17(5), we have AX ` w(ψ(S) ∧ s(x)) > 0 ⇒ ¬θj(x),

58

3.5 Decidability and Complexity

which contradicts consistency of the above since θj(x) can again be replaced with θ′j(x)
by formula (3.18). By Item (ii) of Claim 1, r can be extended to be a run through
Q ∪ {T0} by setting r(T0) = {t0 ∈ T0 | t0 agrees with t on the weight formulas}.
Repeating the above steps for each T ∈ Q, t ∈ T leaves us with a run rt,T through

Q∪{T0} for each such pair t, T . Define a set of runs by taking R = {rt,T | t ∈ T, T ∈ Q}.
Observe that (T0, Q,R) is a quasi-model candidate: for each T ∈ Q, t ∈ T , we have
t ∈ rt,T (T); for each t ∈ T0, Item (iii) of Claim 1 implies that there is a type t′ ∈ T ′ for
some T ′ ∈ Q that agrees on the weight formulas with t, thus t ∈ rt′,T ′(T0). Moreover, we
obtain a consistent formula of the form∧

T∈Q
w(χ(T)) > 0 ∧

∑
T∈Q

w(χ(T)) = 1 ∧

∧
r∈R

(∧
θ∈r

θ′(xr) ∧
∧

S∈Q,s∈r(S)

w(χ(S) ∧ s(xr)) > 0 ∧

∧
S∈Q

w(χ(S)) =
∑
s∈r(S)

w(χ(S) ∧ s(xr))
)

(3.21)

where χ(T0) and existential quantification of the variables xr, r ∈ R is omitted (possible
as we study consistency). Let ϑ′ be obtained from (3.21) by replacing each w(χ(T))
with xT and each w(χ(T) ∧ t(xr)) in some conjunct for r ∈ R with xr,t,T . Note that
ϑ′ is a formula in the language of ordered fields which is, in fact, equivalent to E(Q,R)
plus positivity of the solution. Consistency of (3.21) implies that ϑ′ is satisfiable in
the theory of ordered fields. Therefore, ϑ′ is satisfiable in some ordered field F . By
the Artin-Schreier theorem [7] in the real-closure of F , thus also in the real numbers.
This implies that E(Q,R) has a positive solution over the reals, that is, (T0, Q,R) is a
quasi-model for ϕ0.

3.5 Decidability and Complexity

Theorem 3.11 reduces satisfiability in monodic ProbFO to satisfiability in FO (in the
disguise of checking realizability) and solving systems of polynomial inequalities over
the reals. In the following, we use this observation to establish decidability results for
fragments of monodic ProbFO that are obtained by restricting its FO part to a decidable
FO fragment such as the guarded or the two-variable fragment. We also derive complexity
results, which in some cases are tight. Given that we aim at maximal decidable fragments
of monodic ProbFO, complexities tend to be high. For a fragment L of FO, let monodic
ProbL be the fragment of monodic ProbFO that consists of all formulas ϕ such that,
for all ψ ∈ sub(ϕ), the FO formula ψ belongs to L. To warm up, we consider the finite
model property (FMP). Recall that, by Theorem 3.11, even full monodic ProbFO has

59

3 Monodic Fragments of Probabilistic First-order Logic

the FMP regarding the number of worlds. Here, we thus mean the number of domain
elements.

Theorem 3.18. For all FO fragments L, monodic ProbL has FMP iff L has FMP.

Theorem 3.18 is a direct consequence of the proof of Theorem 3.11. In the “if”-direction
of that proof, we combine FO structures that witness realizability of world types. If L
has the finite model property, we can choose these structures to be finite. Then, the
resulting probabilistic structure is also finite.
Based on quasi-models, transfer of decidability is also easy to establish. We say that

realizability is decidable in L if it is decidable whether a given world type T formulated
in monodic ProbL is realizable.

Theorem 3.19. If realizability is decidable in the FO fragment L, then so is satisfiability
in monodic ProbL.

Theorem 3.19 is established by the following algorithm which decides satisfiability of a
given ProbL sentence ϕ0:

1. guess a quasi-model candidate (T0, Q,R) for ϕ0;

2. verify that the system E(Q,R) has a positive solution in R;

3. verify that each world type T ∈ Q ∪ {T0} is realizable.

Step 1 is effective since the size of quasi-model candidates is bounded by a computable
function in the size of ϕ0, which is analyzed in more detail below. Step 2 is effective
because satisfiability of the system of polynomial inequalities E(Q,R) over the reals is
decidable and realizability is decidable by assumption.

Recall that realizability of some world type T formulated in monodic ProbL is equivalent
to satisfiability of χ(T). Moreover, it turns out that for many FO fragments L, χ(T) is an
L-formula, that is, realizability in L can be reduced to satisfiability in L. In particular, it
is easy to verify that this is case for the monadic fragment of FO (MonaFO), the guarded
fragment(GF) [2], the guarded negation fragment (GNFO) [15], and the two-variable
fragment FO2 [62]. Thus, Theorem 3.19 applies to all these logics.

Corollary 3.20. Let L be one of MonaFO, GF, GNFO, FO2. Then satisfiability in
monodic ProbL is decidable.

To analyze the complexity of the algorithm from the proof of Theorem 3.19, first note that
it suffices to guess a quasi-model candidate (T0, Q,R) of size at most double exponential
in the size of ϕ0. In fact, Q contains at most double exponentially many world types T ,
and each T contains at most exponentially many types. While R can in principle be larger
than double exponential, it suffices to include one run r for each T ∈ Q and t ∈ T , such

60

3.5 Decidability and Complexity

that t ∈ r(T). Considering for example GF in which satisfiability is 2ExpTime-complete,
we thus obtain a 2NExpTime∃R,2ExpTime upper bound for satisfiability in monodic
ProbGF where the superscripts indicate access to two oracles: one for solving systems
of polynomial inequalities over the reals and one for realizability in GF. Note that ∃R
denotes the class of all problems that are reducible in polynomial time to solving the
mentioned systems [121], and that it is known that NP ⊆ ∃R ⊆ PSpace.

3.5.1 Improvements

For many FO fragments L, though, we can improve on the upper bounds obtained in
this direct way. First, it is helpful to not consider satisfiability of the exponential size
realizability formula χ(T) as a black box. In particular, the regular structure of χ(T)
implies that its satisfiability can be decided in time double exponential in the size of ϕ0

for GF and in space exponential in the size of ϕ0 for both MonaFO and FO2 [77]. This
yields a 2NExpTime∃R upper bound for monodic ProbGF, monodic ProbMonaFO, and
monodic ProbFO2. Second, we identify a general criterion on L that potentially leads
to an exponential improvement of the basic algorithm. We then study the introduced
decidable fragments of ProbFO and investigate the applicability of the criterion. We
start with the definition of the criterion.

Definition 3.21 (Closure under union of types). An FO fragment L is closed under
union of types if for each L-sentence ψ and any two structures A1 and A2 that satisfy the
same sentences from subx(ψ), there is a structure B such that tp(B) = tp(A1) ∪ tp(A2).

Theorem 3.22. If L is closed under union of types, then for every satisfiable monodic
ProbL sentence ϕ0, there is a quasi-model (T0, Q,R) for ϕ0 such that any two distinct
world types do not agree on sentences.

Proof. Let ϕ0 be a satisfiable monodic ProbL sentence. By Theorem 3.11, there is a
quasi-model (T0, Q,R) satisfying ϕ0. Let us write T ≡0 T

′ if two sets of types T, T ′

agree on sentences, that is, for any t ∈ T , t′ ∈ T ′, we have that t ≡0 t
′. Define a new

quasi-model (T0, Q
′, R′) as follows:

• Q′ = {
⋃
T ′∈Q,T≡0T ′

T ′ | T ∈ Q};

• for each r ∈ R define r′ ∈ R′ by taking r′(T0) = r(T0) and for each T ′ ∈ Q′:

r′(T ′) =
⋃

T∈Q,T≡0T ′

r(T).

It should be clear that R′ is a set of runs through Q′ ∪ {T0} and that (T0, Q
′, R′) is a

quasi-model candidate.
Observe first that each T ∈ Q′ is realizable as it is a finite union of realizable T ′ ∈ Q

and, by assumption, L is closed under union of types. Next, we show that E(Q′, R′) has

61

3 Monodic Fragments of Probabilistic First-order Logic

a positive solution. By assumption, E(Q,R) has a positive solution x∗T for every T ∈ Q
and x∗r,t,T for every r ∈ R, T ∈ Q, and t ∈ r(T). For each r′ ∈ R′, fix some an arbitary
run r ∈ R such that r′ = r′ (there might be more than one). Now, define values y∗T ′ and
y∗r′,t,T ′ :

y∗T ′ :=
∑

T∈Q,T≡0T ′

x∗T ;

y∗r′,t,T ′ :=
∑

T∈Q,T≡0T ′

∑
t∈r(T)

x∗r,t,T .

Clearly, all these values are positive. We show that they are also a solution of E(Q′, R′).

• The equations under Item 1 of Definition 3.10 are satisfied as ≡0 partitions Q and
it was satisfied in E(Q,R).

• For the equations under Item 2 we have:∑
t∈r′(T ′)

y∗r′,t,T ′ =
∑

t∈r′(T ′)

∑
T∈Q,T≡0T ′

∑
t∈r(T)

x∗r,t,T

=
∑

T∈Q,T≡0T ′

x∗T = y∗T ′ .

• For seeing that the equations under Item 3 are satisfied it suffices to note that:

[w(ψ(x))]r′ =
∑
T ′∈Q′

∑
t∈r′(T ′),ψ(x)∈t

y∗r′,t,T ′

=
∑
T ′∈Q′

∑
t∈r′(T ′),ψ(x)∈t

∑
T∈Q,T≡0T ′

∑
t∈r(T)

x∗r,t,T

=
∑
T∈Q

∑
t∈r(T),ψ(x)∈t

x∗r,t,T

= [w(ψ(x))]r

The third equality is the most subtle: observe that the sums in the second line
range over all T ∈ Q and do not count any T ∈ Q twice. Moreover, only types t
with ψ(x) ∈ t are considered.

This finishes the proof of Theorem 3.22. �

In order to show the benefits of the proposed improvements, let us define ProbGF
knowledge bases as ProbGF-formulas ϕ1 ∧ϕ2 where ϕ1 is variable free and ϕ2 is constant
free. Observe that formulas of this form appear regularly in the field of knowledge

62

3.5 Decidability and Complexity

representation, for example, in description logics, where assertional and terminological
knowledge are separated. The proof of the following result exploits that GF knowledge
bases are closed under union of types.

Theorem 3.23. Deciding satisfiability of monodic ProbGF knowledge bases is 2ExpTime-
complete.

Proof. The lower bound is inherited from satisfiability in GF. For the upper bound, it
is not hard to show that GF restricted to formulas of this form is closed under union
of types: given two models A1,A2 of ϕ0 = ϕ1 ∧ ϕ2 that satisfy the same sentences of
subx(ϕ), construct a new structure B as the disjoint union of A1 and A′2, where A′2 is
obtained from A2 by dropping the interpretation of all constant symbols. Clearly, B is a
model for ϕ and realizes precisely the types realized either in A1 or A2. By Theorem 3.22,
it suffices to guess a quasi-model candidate of exponential size. The associated system
E(Q,R) is then also of exponential size and thus the existence of a solution can be
checked in space exponential in the size of the input formula ϕ0 since ∃R ⊆ PSpace. It
remains to verify that every world type is realizable, in time double exponential in the
size of ϕ0. �

Unfortunately, it turns out that none of the other logics mentioned in Corollary 3.20 is
closed under union of types.

Proposition 3.24. FO2, MonaFO, GF, and GNFO are not closed under union of types.

Proof. We start with FO2 and MonaFO. Consider the sentence

ψ = ∀x
(
∀y (A(x) ∧B(y)) ∨ ∀y (¬A(y) ∧ ¬B(x))

)
which is equivalent to ∀x (A(x)∧B(x))∨∀x (¬A(x)∧¬B(x)), that is, ψ states that either
all domain elements satisfy A and B or none. It does this in a slightly unorthodox way
to ensure that no sentence from subx(ψ) can distinguish the two cases. More precisely,
let A1,A2 be models of ψ such that A,B are full in A1 and empty in A2. Then, all the
types in A1 contain the formula ∀y (A(x)∧B(y)), and all types in A2 contain the formula
∀y (¬A(y) ∧ ¬B(x)). Clearly, the formula ∃x ∀y (A(x) ∧B(y)) ∧ ∃x ∀y (¬A(y) ∧ ¬B(x))
is unsatisfiable; thus, there cannot be a model realizing all types from A1 and A2.

For GF and GNFO consider the formula

ψ′ = ∃x S(x, c, d) ∧ ∀xyz S(x, y, z)⇒ (P (x)⇔ R(y, z)).

63

3 Monodic Fragments of Probabilistic First-order Logic

Then, define two models A1 = (A1, π1) and A2 = (A2, π2) of ψ′:

A1 = {a1, c, d} A2 = {a2, c, d}
π1(P) = {a1} π2(P) = ∅
π1(R) = {(c, d)} π2(R) = ∅
π1(S) = {(a1, c, d)} π2(S) = {(a2, c, d)}
π1(c) = c π2(c) = c

π1(d) = d π2(d) = d

Observe that the type t1 = tp(A1, a1) contains the formulas P (x) and S(x, c, d) and the
type t2 = tp(A2, a2) contains the formulas ¬P (x) and S(x, c, d). It is not hard to verify
that ∃x

(
P (x)∧S(x, c, d)

)
∧∃x

(
¬P (x)∧S(x, c, d)

)
is not satisfiable. Thus, there cannot

be a model realizing all types from A1 and A2. �

Note that closure under union of types is closely related to closure under disjoint union –
the property that whenever A1,A2 are models of a sentence ϕ, then so is their disjoint
union A1] A2. In fact, closure under disjoint union is one way to prove closure under
union of types. Thus, the result is not surprising for MonaFO and FO2 as these logics
are not closed under disjoint union.
For GF, the problem is the interaction with the constants, and the restriction to

ProbGF knowledge bases provided us with a possibility to restrict this interaction. We
next suggest an orthogonal approach taht is based on strengthening the definition of
types by including all ground atoms in the set subx(ϕ0) of subformulas. For this purpose,
we introduce the notion of extended types. The set subx(ϕ0) is now defined as:

subx(ϕ0) = sub0(ϕ0) ∪ {ψ{x/y} | ψ(y) ∈ sub1(ϕ0)} ∪
{ψ(~c) | ψ(~y) ∈ sub(ϕ0),~c ⊆ con(ϕ0)}.

An extended type is a maximal satisfiable subset of subx(ϕ0). It is not hard to verify that
the quasi-model machinery developed in this chapter, including Theorem 3.22, works
when types are replaced with extended types. However, we have

Proposition 3.25. GF is closed under union of extended types.

Proof. Take structures A1 = (A1, π1),A2 = (A2, π2) that satisfy the same subsentences
of ϕ0. We can assume w.l.o.g. that constants are interpreted as themselves, that they
are distinct (no equality in the language), and that the domains A1 and A2 are disjoint
except for the constants. Define B = (B, π) as the union of A1 and A2, that is:

• B = A1 ∪A2, and

• π(R) = π1(R) ∪ π2(R) for all predicate symbols R;

64

3.5 Decidability and Complexity

• π(c) = c for all constant symbols.

We show the following by induction on the structure of ϕ:

Claim 1. For all subformulas ϕ(~x) of ϕ0 and for all tuples ~a ⊆ Ai, i ∈ {1, 2} we have:

B |= ϕ[~a] ⇔ Ai |= ϕ[~a].

Proof of Claim 1. We assume that formulas of GF are built from negation, conjunction,
and guarded existential quantification ∃~y α(~x, ~y) ∧ ψ(~x, ~y). The guard atom α is allowed
to be an equality atom.
For the induction base, assume ϕ = R(~t), where ~t involves free variables ~x that

are instantiated by the tuple ~a. The “⇐”-direction is clear by construction. For the
“⇒”-direction, we have: B |= R(~t)[~a] implies B |= R(~b) where ~b is obtained from ~t by
replacing the free variables with the corresponding values from ~a. Thus, ~b ∈ π(R) and
~b ∈ πi(R) for some i, hence Ai |= R(~b). If ~b involves non-constants, all these have to
come from Ai, so we are done. If not, that is ~b ⊆ con(ϕ0), then R(~b) is a sentence in
subx(ϕ0). As A1 and A2 satisfy the same sentences, we also have A3−i |= R(~b), which
finishes the proof of the induction base.

The cases for negation and conjunction are immediate consequences of the hypothesis.
For existential quantification let ϕ(~x) = ∃~y α(~x, ~y) ∧ ψ(~x, ~y). Consider first the “⇐”-
direction. Clearly, ~a can be extended to a tuple ~b in Ai such that Ai |= α(~b) and
Ai |= ψ(b). By induction hypothesis, B |= α(~b) ∧ ψ(b). Thus, we have B |= ϕ[~a]. For
the “⇒”-direction, we distinguish two cases:

• α(~x, ~y) is an equality y = y, i.e., ϕ = ∃y y = y ∧ ψ(y) is a sentence. Thus, there
is some a such that B |= ψ[a]. Assume without loss of generality that a is in the
domain of A1. By induction hypothesis, we have A1 |= ψ[a] and thus A1 |= ϕ. As
ϕ is a sentence, we also have A2 |= ϕ.

• α(~x, ~y) is an atom R(~x, ~y). By the guard atom, ~a can be extended to a tuple ~b
such that B |= R(~b)∧ψ(~b). Since B |= R(~b), we have ~b ⊆ Ai for at least one i. For
all i with ~b ⊆ Ai, Induction hypothesis yields Ai |= R(~b) and Ai |= ψ(~b). Hence,
we obtain Ai |= ϕ[~a].

This finishes the proof of Claim 1.

Claim 2. tp(B) = tp(A1) ∪ tp(A2).

“⊆”: Let t ∈ tp(B), that is, for some a ∈ B we have for all ψ(x) ∈ t that B |= ψ[a]. If
a ∈ Ai, then Claim 1 implies Ai |= ψ[a] for all ψ(x) ∈ t and thus t = tp(Ai, a).
“⊇”: Assume t ∈ tp(Ai), that is, for some a ∈ Ai we have for all ψ(x) ∈ t that

Ai |= ψ[a]. By Claim 1, also B |= ψ[a] for all ψ(x) ∈ t, and thus t = tp(B, a).
This finishes the proof of Claim 2 and thus the proof of the Proposition. �

65

3 Monodic Fragments of Probabilistic First-order Logic

Notice that the size of subx(ϕ0) is not polynomial in |ϕ0| anymore, but exponential in
the maximal arity r of predicate symbols occuring in ϕ: subformulas of ϕ0 have at most
r free variables as all free variables need to be guarded by some atom. Thus, we cannot
improve on the basic algorithm for full GF as the number of types is double exponential
now. However, if we restrict our attention to predicates with bounded arities, we get as
a consequence of Theorem 3.22 (as mentioned: lifted to extended types) the following
improved complexity bounds.

Corollary 3.26. Satisfiability in monodic ProbGF is in NExpTime∃R when the arity
of predicates is bounded. It is NExpTime-complete when only linear weight formulas are
allowed.

Proof. The NExpTime∃R upper bound follows from the fact that it suffices to guess
an exponentially sized quasi-model since realizability can be checked in exponential
time. Observe that for restriction to linear weight formulas, E(Q,R) is in fact an
exponentially sized system of linear inequalities and can thus be solved in exponential
time. The NExpTime lower bound follows from the fact that the NExpTime-hard
modal description logic S5ALC [52] is contained in this fragment. �

We finish this section by noting that Theorem 3.22 does not imply any lower bounds, that
is, it does not rule out that, e.g., satisfiability for full ProbGF is possible in 2ExpTime.
In particular, we were aiming at a general criterion for improving the complexity of
the basic algorithm. Surprisingly, this general criterion yields tight upper bounds in
some relevant cases. In this chapter, we leave the precise complexities of satisfiability in
ProbGF, ProbGNFO, ProbMonaFO, and ProbFO2 for future work, and instead focus
on the implications of the above results for probabilistic description logics as recently
introduced in [101].

3.6 Connection to Probabilistic Description Logics

Let us revisit probabilistic description logics (ProbDLs) and the results obtained for
them [101] in the light of the developments of this chapter. We consider probabilistic
structures with rigid constants in this section, since the semantics for ProbDLs features
rigid interpretation of the individual names. We have argued after (the proof of)
Theorem 3.11 that the quasi-model machinery can be adapted to this setting. Also, it is
not hard to verify that the remaining results can be lifted as well.
We study the relationship of ProbDLs to well-behaved fragments of ProbFO by

extending the well-known translation from ALC into first-order logic, see for example [12],
to a translation of ProbALC to ProbFO. More specifically, we provide translation
functions tr and trz, z ∈ {x, y} from ProbALC-concepts, TBoxes, and Aboxes into

66

3.6 Connection to Probabilistic Description Logics

ProbFO-formulas by taking:

trz(A) = A(z) trz(¬C) = ¬trz(C)

trz(C uD) = trz(C) ∧ trz(D) trz(∃r.C) = ∃z
(
R(z, z) ∧ trz(C)

)
trz(P∼pC) = w(trz(C)) ∼ p trz(∃P∼pr.C) = ∃z

(
w(R(z, z)) ∼ p ∧ trz(C)

)
tr(T) =

∧
CvD∈T

tr(C v D) tr(C v D) = ∀x
(
trx(C)→ trx(D)

)
tr(C(a)) = trx(C)[x/a] tr(r(a, b)) = R(a, b)

tr(¬A) = ¬tr(A) tr(A ∧A′) = tr(A) ∧ tr(A′)

tr(P∼pA) = w(tr(A)) ∼ p

where x = y and y = x. The translation function tr can be used to reduce consistency
checking ProbALC to satisfiability in ProbFO as follows.

Proposition 3.27. A knowledge base (T ,A) is consistent iff the ProbFO formula

ϕT ,A = tr(T) ∧ tr(A) ∧ w(tr(T)) = 1

is satisfiable.

The proof is straightforward and relies on the close correspondence of probabilistic
interpretations (for ProbALC) and probabilistic structures (for ProbFO). The crucial
observation for both directions is that we can restrict attention to satisfiability in a world
of probability 0. The additional tr(T) is necessary since w(tr(T)) = 1 does not cover
worlds with probability 0.

Let us take a closer look at the formula ϕT ,A. By definition of the translation functions,
ϕT ,A is a formula in ProbGF, but not in monodic ProbGF due to the translation of
probabilistic roles. Hence, in general, the translation results in a formula outside the
fragments that we identified as “well-behaved”. This can be taken as justification of why
the decidability status of the problem is hard to settle. Conversely, we can explain the
decent complexity results mentioned in the preliminaries by the following:

• For ProbALCc knowledge bases (T ,A), ϕT ,A is a sentence in monodic ProbGF. As
the predicate arity is bounded by 2 and ϕT ,A involves only linear weight formulas,
Corollary 3.26 yields a NExpTime-upper bound. To give an intuitive explanation
for the ExpTime upper bound from [101], we can argue as follows. Note that,
except from possible subformulas of tr(A), there is only one occurrence of a (top-
level) weight formula w(ψ) ∼ p with ψ a sentence, namely w(tr(T)) = 1. In a sense,
this formula gives rise to precisely one world type. Thus, the guessing step in the
general algorithm can be avoided.

67

3 Monodic Fragments of Probabilistic First-order Logic

• For ProbALC01 knowledge base (T ,A), ϕT ,A is a sentence in ProbFO01 which we
found to be a well-behaved fragment of ProbFO (also for rigid constants). Again,
this observation can be viewed as an explanation of the (relatively low) complexity
of concept satisfiability in ProbALC01.

Thus, we have shown that the computational behavior of ProbDLs can be explained by
embedding them into ProbFO. Most notably, monodicity explains the low computational
complexity of ProbALCc, the fragment with only probabilistic concepts.

3.7 Conclusion and Outlook

In this first chapter, we have analyzed the reasons for the disastrous computational
behaviour of ProbFO and we have shown that, unlike other natural restrictions that fail
to establish recursive enumerability and decidability, monodicity is able to tame ProbFO
computationally. We introduced the technical framework of quasi-models and proved its
usefulness by showing axiomatizability and decidability transfer theorems. We were even
able to identify fragments where our general decision procedure behaves optimal, that is,
it provides a tight upper bound. We thus believe that monodic ProbFO lays a promising
foundation for identifying decidable and relevant probabilistic logics for computer science.
As detailed in this chapter, monodic ProbFO in the presented form turned out to be a
significant generalization of some probabilistic description logics recently introduced [101].
In particular, we can explain the decent computational behavior of some ProbDLs by
monodicity. There are several interesting options for future research.

Open technical problems

Let us start with the technical problems that were left open in this chapter. It remains
to determine the precise complexity for several logics such as full monodic ProbGF
(no restrictions on constants or arities) or even monodic ProbGNFO. We believe this
requires specialized techniques for every single logic, in contrast to the general approach
from Section 3.5.1. Second, we argued that equality imposes severe technical problems
on lifting our approach to ProbFO=. Interestingly, in the case of temporal FO, the
monodic fragment with equality is not recursively enumerable even when constant symbols
are disallowed [131]. While also monodic ProbFO= is not recursively enumerable by
Theorem 3.8, the proof of this result crucially relies on constant symbols and it remains
open whether validity in ProbFO= without constant symbols is recursively enumerable.

Independences

An interesting direction for further research is to enrich monodic ProbFO with additional
expressive power that enables complex and succinct statements about independence. This

68

3.7 Conclusion and Outlook

would in particular be useful to enable various applications in AI, where independence
and succinct representations thereof are in the focus of attention.

Combination with Statistical knowledge

Another important extension to be investigated is the combination of statistical and
subjective probabilities in a probabilistic FO logic. A basic version of ProbFO that
combines both kinds of probability was considered by Halpern under the name type-3
ProbFO [67]. The statistical component is realized in the semantics by adding a
discrete distribution η over the domain, that is, type-3 probabilistic structures are tuples
M = (D,W, π, µ, η). In this logic, we can write statistical formulas like wx(Flies(x) |
Bird(x)) ≥ 0.9, expressing that 90% of all birds fly, or mix statistical and subjective
formulas:

wx(Wealthy(x) | Swiss(x)) ≥ 0.6 ∧ Swiss(albert) ∧ w(Wealthy(albert)) = .01. (3.22)

Let us remark that in the advocated combination, the two forms of uncertainties are
largely ‘independent’. In particular, the above sentence (3.22) is satisfiable. Intuitively,
although it is known that at least 60 % of the Swiss population is wealthy and albert is
Swiss, it is consistent to believe that albert is probably not wealthy. Thus, the statistics
do not have immediate influence on the subjective probabilities.
From a practical perspective, this independence is often unsatisfactory; in contrast,

the transfer of statistical knowledge to degrees of belief is a prominent application in
artificial intelligence [95, 14, 92]. Let us illustrate this by picking up the Swiss/wealth
example from above. In particular, from knowing that 60 % of the population is wealthy
and albert being a Swiss, we would like to conclude a degree of belief of 0.6 that he is
rich. Thus, the sentence in (3.22) should be unsatisfiable. This is commonly known as
direct inference [117] which can be justified by Laplace’s principle of indifference [98]:
if we look at all Swiss people without further distinction, we should not have different
beliefs about their monetary status. This is only possible if we believe of everybody that
she is wealthy with probability 60 %.

Other related reasoning patterns in this context are irrelevance reasoning and reference
class reasoning. The former refers to the fact that adding more (unrelated) knowledge
such as Tall(albert) – the fact that albert is tall – should not destroy our belief of 0.6 that
albert is rich. In contrast, for the latter assume that the knowledge base additionally
contains a condition for more wealth such as working for the bank UBS. We would then
like to have that

wx(Wealthy(x) | Swiss(x)) ≥ 0.6 ∧ Swiss(albert) ∧ worksAt(albert,UBS) ∧
wx(Wealthy(x) | Swiss(x) ∧ worksAt(x,UBS)) ≥ 0.9

implies that the subjective belief that albert is rich is 90 %. Thus, the most specific
reference class for an individual is preferred, which in this case is being Swiss and working

69

3 Monodic Fragments of Probabilistic First-order Logic

UBS. There has quite some work aiming to devise a general scheme capturing some
or all of the mentioned patterns, also in the context of first-order probabilistic logics,
please consult [14, 92] and the references therein, but so far there is no complete solution.
Note that incorporating any of the aforementioned reasoning patterns renders the logic
non-monotonic, in contrast to the logics considered in this chapter and also plain type-3
ProbFO.
It would be interesting to see whether our framework of monodic ProbFO can be

extended to capture plain type-3 ProbFO, possibly by identifying a suitable condition on
the statistical weight formulas, similar to monodicity. Having established this, it would
be a fundamental contribution to incorporate reasoning mechanisms like direct inference,
irrelevance, or reference class reasoning.

Notably, despite the seeming independence of the dimensions, decidability of monodic
versions of (plain!) type-3 ProbFO turns out to be non-trivial to establish, and it is
currently not clear how to extend the quasi-model machinery to this logic. We illustrate
the difficulties with a somewhat unexpected effect. Recall that a satisfiable monodic
ProbFO formula can be satisfied in a model with finitely many worlds and that the
number of worlds is determined by the solution of the system of inequalities E(Q,R),
which in turn depends on the subjective probabilities given in the input formula, see
further the proof of Theorem 3.11. Now consider the formula

∀xw(P (x)) > 0 ∧ w(wx(P (x)) ≤ p) = 1,

which says that every domain element satisfies P in some world with positive probability,
but in every world only a proportion of at most p of the domain elements satisfies P . This
enforces the existence of at least 1/p worlds. Thus, the number of worlds depends also
on the statistical probabilities, which shows some non-trivial technical interplay between
statistical and subjective probabilities, although at first sight they seem independent.
Thus, we leave an adaptation of the quasi-model machinery to type-3 ProbFO and its
extensions as a challenging open research objective.

Combinations with S5

Note that ProbFO01 can be viewed as the product of first-order logic with the modal
logic S5. We have shown that this combination is well-behaved in the sense that validity
is recursively enumerable. There has been some work on combinations of first-order
fragments with S5 showing that often the complexity of satisfiability not much worse
than the complexity in the FO fragment [6, 52], and we also contribute a positive result
in the next chapter. However, despite a recursive enumerable validity problem in the
‘base’ logic ProbFO01, there a differences to the monodic framework. For example, an
analog of Theorem 3.19 cannot be proved since the two-variable fragment of ProbFO01

is undecidable [52, 53]. Thus, it is interesting future work to better understand the
complexity of such combinations.

70

4 Subjective Uncertainty in EL

In the previous chapter, we have shown that unfortunately, but not surprisingly given their
expressiveness, the identified decidable fragments exhibit high computational complexity.
Some slightly better behaving exceptions are members of the recently introduced family
of probabilistic description logics (ProbDLs) which can be viewed as fragments of monodic
ProbFO. For instance, reasoning in ProbALCc, the restriction of ProbALC to probabilistic
concepts, c.f. Section 3.6, is ExpTime-complete and thus not harder than in the base
logic ALC [101]. Motivated by the fact that EL is a fragment of ALC offering polynomial
time reasoning services, we will focus on the EL-fragment of ProbALC with the hope
to find well-behaved probabilistic description logics. Syntactically, ProbEL is obtained
from ProbALC by dropping the constructor for negation ¬C, and thus also disjunction
t and universal restrictions ∀r.C. Let us note that some of the examples that we used
so far are actually in ProbEL. For instance, we can express that a gastric ulcer is an
ulcer located at the stomach by the concept definition

GastricUlcer ≡ Ulcer u ∃locatedAt.Stomach,

or describe patients having a disease that is infectious with probability at least 0.25, by

Patient u ∃finding.(Disease u P>0.25Infectious).

Recall that in EL-based languages the studied reasoning problem is typically subsumption,
which we will adopt here as well. There are partial results on the complexity of
subsumption in ProbEL [101]:

• ExpTime-hardness for some fragments of ProbEL, such as the one allowing for
the two probabilistic operators P>0 and P>0.4 applied to concepts;

• a PTime algorithm for the fragment allowing for probabilistic operators P>0 and
P=1 applied to concepts;

• PSpace-hardness for ProbEL01, the fragment from the previous point with the
probabilistic operators also applied to roles. Moreover, a 2ExpTime-upper bound
is inherited from ProbALC01, the corresponding ALC-fragment.

The purpose of this chapter is to provide a more complete picture of subsumption in
probabilistic variants of EL. More specifically, our aim is to find answers to the following
questions:

71

4 Subjective Uncertainty in EL

• Are there tractable fragments except for the one in the second item above? Or can
we generalize the ExpTime-hardness from the first item?

• What is the precise complexity of the fragment ProbEL when also probabilistic
roles are allowed? In particular, can we close the complexity gap for ProbEL01?

Related Work

In the previous chapter, we have already related the underlying logic ProbFO to other
proposals in the literature. Also, in the context of probabilistic description logics, there
has been a large number of proposals of different spirits, see for example [93, 101, 100,
82, 31, 99, 109, 42] and the references therein. Here, we will restrict our attention to
some proposals of probabilistic logics that are based on tractable logics, and point out
rather clearly the commonalities and differences.
Let us start with P-Classic, a proposal by Koller et al. from 1997 [93]. It is a

probabilistic version of the description logic Classic that additionally uses Bayesian
networks to express uncertainty about properties of some individual. For instance, one
can specify a distribution over the number of children of a person. It is shown that
reasoning in this logic is not more difficult than reasoning in Bayesian networks; in
particular, polynomial time when restricted to tractable variants of Bayesian networks.
This work differs from ProbEL in two crucial aspects. First, the semantics is based on a
distribution on the domain, that is, probabilities are interpreted statistically as opposed
to subjectively in ProbEL. Second, in P-Classic as in Bayesian networks, one has to
completely specify the distribution and has implicit independence assumptions.
Log-linear description logics [109] are a combination of EL and the framework of

Markov Logic [118]. Hence, it shares many properties with Markov logic. Most impor-
tantly, probabilities are interpreted in a subjective way and a knowledge base specifies
a single distribution over fixed possible worlds. Weights (the means for expressing
uncertainty in Markov logics) are attached to concept inclusions C v D. Thus, a world
is characterized by a set of concept inclusions being true. This is largely orthogonal
to our semantics as ProbEL supports probabilistic concepts and roles and no proba-
bilistic concept inclusions. We deliberately dispense with such concept inclusions as we
are interested in the uncertainty about specific individuals. Reasoning in this logic is
NP-hard.

Another instance of Markov logic is Tractable Markov Logic (TML) by Domingos and
Webb from 2012 [42]. The language allows to express statements such as probabilistic
inheritance hierarchies. Also being a Markov logic, TML has similar properties as the
mentioned log-linear description logics, that is, probabilities are interpreted subjectively
and every knowledge base encodes precisely one distribution over the worlds. The
difference, however, is that TML allows for polynomial time probabilistic reasoning.
The work perhaps closest to ours is by Finger et al. who study satisfiability in EL

72

with probabilistic ABoxes [47] and adopt the same semantics based on ProbFO as we do.
In contrast to us, they consider standard (non-probabilistic) TBoxes and probabilistic
ABoxes, which are conjunctions of statements of the form P∼pi(Ai). They give a non-
deterministic polynomial time algorithm for deciding satisfiability of such knowledge
bases.

Contribution and Structure of the Chapter

The purpose of this chapter is to establish a more complete picture of subsumption
in ProbEL. In Section 4.1, we start with introducing the syntax and semantics of
probabilistic EL, as well as the relevant reasoning problems of subsumption. Then, the
main part of this chapter is divided into two parts. In the first part, Section 4.2, we
consider fragments of ProbELc, that is, fragments in which probabilistic operators can
only be applied to concepts. In the second part, Section 4.3, we drop this restriction and
study full ProbEL, in which probabilistic operators can be applied to both concepts and
roles, but not to concept inclusions. This separation is motivated both by the results
from the last section and by the results known from ProbDLs, where it was shown that
probabilistic roles tend to increase the complexity [101].
As mentioned above, for ProbELc it was known that some concrete combinations of

probability constructors such as P>0 and P>0.4 lead to intractability (in fact, ExpTime-
completeness) of subsumption while a restriction to the probability values zero and
one does not [101]. We prove the much more general result that the extension of EL
with any single concept constructor P∼p, where ∼ ∈ {<,≤,=,≥, >} and p ∈ (0, 1),
results in ExpTime-hardness of subsumption relative to general TBoxes; containment
in ExpTime is inherited from the ExpTime-upper bound of the same problem for
ProbALCc-TBoxes. The tool for proving these lower bounds is showing non-convexity of
each logic. Intuitively, a logic is non-convex, if it can express disjunction. Note that none
of the logics we consider in this chapter provides disjunction t as a connective. Hence,
in our context non-convexity is witnessed by a TBox T and concepts C, D1, . . . , Dk

such that T |= C v D1 t tDk but not T |= C v Di for any i. Non-convexity can
then be used to reduce from satisfiability in ALC. This is a general observation that
was exploited before, see for example [9, 5]. Inspired by the fact that many biomedical
ontologies such as Snomed CT are classical TBoxes, that is, sets of concept definitions
A ≡ D with A atomic, we then show that probabilities other than zero and one can
be used without losing tractability in classical TBoxes for the cases ∼ ∈ {>,≥}. More
precisely, subsumption in ProbEL is tractable when only the constructors P∼p and P=1

are admitted, for any (single!) choice of ∼ ∈ {≥, >} and p ∈ (0, 1). Moreover, we show
that all the logics obtained in this way actually coincide for all possible choices of p.
For full ProbEL, where probabilities can be applied to both concepts and roles, it is

not hard to see that subsumption relative to general TBoxes exhibits same complexity as
concept satisfiability in ProbALC. For the fragment ProbEL01, where only probability

73

4 Subjective Uncertainty in EL

values 0 and 1 are allowed, it was known that subsumption is in 2ExpTime and PSpace-
hard [101]. It is interesting to note that, so far, any two-dimensional extension of EL
turned out to have the same complexity as the corresponding extension of the expressive
DL ALC, see e.g. [5]. Since subsumption in ProbALC01 is 2ExpTime-complete, it was
tempting to conjecture that the same holds for ProbEL01. We show that this is not the
case by establishing a matching PSpace upper bound for subsumption in ProbEL01. This
also implies PSpace-completeness for the two-dimensional DL S5EL, in sharp contrast
to the 2ExpTime-completeness of S5ALC [6]. We conclude by showing maximality of
the fragment in the following sense: whenever adding another probabilistic operator P∼p
on concepts or roles with p ∈ (0, 1), reasoning becomes 2ExpTime-hard.

4.1 Syntax and Semantics of ProbEL
The logic ProbEL is obtained from ProbALC in the same way as EL is obtained from
ALC, that is, by dropping the constructor ¬ for negation and thus also the abbreviations
disjunction t and universal restrictions ∀r.C. Thus, the semantics of ProbEL is the
same as for ProbALC. For the sake of completeness, let us state that ProbEL-concepts
are formed using the syntax rule

C,D ::= > | A | ∃r.C | C uD | P∼pC | ∃P∼pr.C,

where A is a concept name, r is a role name, ∼ ranges over {<,≤,=,≥, >} and p ∈ [0, 1].
We refer with ProbELc to the fragment of ProbEL which allows only for probabilistic
concepts. As example, the Snomed CT concept ‘animal bite by potentially rabid animal’
can be expressed as

Bite u ∃by.(Animal u P>0.5∃has.Rabies),

which is clearly a ProbELc-concept. An example for a non-ProbELc-concept is ‘possible
viral origin’ which can be expressed using a probabilistic role as ∃P>0origin.Viral. We
will also consider the restriction of ProbEL to a subset of probabilistic constructors; for
instance, if we allow ∼p to be only <0.3 and ≥0.2 we denote this with ProbEL<0.3;≥0.2.
The fragment of ProbEL allowing for operators P>0 and P=1 both to concepts and roles
is referred to with ProbEL01.

The central reasoning task for (extensions of) EL is subsumption checking. In the con-
text of ProbDLs there are two natural notions of subsumption: unrestricted subsumption
and positive subsumption.

Definition 4.1 (Unrestricted and Positive Subsumption). A concept C is un-
restrictedly subsumed by D relative to a TBox T if for all models I of T we have
I |= C v D. A concept C is positively subsumed by D relative to a TBox T if for all
probabilistic models I = (∆I ,W, (Iw)w∈W , µ) of T and all worlds w ∈W with µ(w) > 0

74

4.1 Syntax and Semantics of ProbEL

we have CI,w ⊆ DI,w. We denote the former with T |=0 C v D and the latter with
T |=+ C v D.

Intuitively, unrestricted subsumption captures subsumptions that are logically implied,
that is, which are valid in all worlds. Thus, it can be seen as the result of transferring
the notion of subsumption from standard DLs to probabilistic DLs in a straightforward
way. Positive subsumption, in contrast, is taking into account only worlds with positive
probability, and is thus about subsumptions that are certain. For example, when T∅ is the
empty TBox, then T∅ 6|=0 P=1A v A, but we can only have d ∈ (P=1A)I,v \AI,v when
µ(v) = 0, thus non-subsumption is only witnessed by worlds that are certainly not the
actual world. Consequently, T∅ |=+ P=1A v A. Despite the semantical differences, we
argue that we can mutually reduce unrestricted subsumption and positive subsumption.

Lemma 4.2. Unrestricted and positive subsumption are equivalent under polynomial-time
reductions.

Proof. For reducing positive to unrestricted subsumption, it suffices to observe that

T |=+ A v B iff T |=0 P>0(A uX) v P>0(B uX)

for a fresh concept name X. The X is needed to ‘mark’ a world witnessing that A is
true with positive probability.
For the reduction from unrestricted to positive subsumption, we need some new

notation. For a concept C, denote with Ĉ the concept that is obtained from C by
replacing every concept name A or role name r that is not in the scope of some
probabilistic operator P∼p with a fresh name Â and r̂, respectively. For example, for
C = B u ∃P>0r.A we have Ĉ = B̂ u ∃P>0r.Â as the scope of the probabilistic operator
P>0 is r, not A. Define T̂ as {Ĉ v D̂ | C v D ∈ T }. It is straightforward to show that

T |=0 A v B iff T ∪ T̂ |=+ Â v B̂.

For the “if”-direction, assume T 6|=0 A v B witnessed by a model I = (∆I ,W, (Iw)w∈W , µ)
of T , a world w ∈W , and an element d ∈ ∆I such that d ∈ AI,w but d /∈ BI,w. Define
an extension J = (∆I ,W, (Jw)w∈W , µ) of I by choosing a world ŵ ∈W with µ(ŵ) > 0
and taking:

• X̂I,ŵ = XI,w for all X ∈ NC;

• r̂I,ŵ = rI,w for all r ∈ NR.

Clearly, we have d ∈ ÂI,ŵ \ B̂I,ŵ. By construction, we have J |= T ; thus it remains to
show that J |= T̂ , which is a consequence of the following claim.

Claim 1. For all concepts C, e ∈ ∆I : e ∈ CI,w iff e ∈ ĈJ ,ŵ.

75

4 Subjective Uncertainty in EL

Proof of Claim 1. The proof is by structural induction. For C = A a concept name,
it is clear by definition of J . The case C = C1 u C2 is immediate from the induction
hypothesis. The case C = P∼pD follows from the fact that D does not include any
concepts of the form X̂. The case C = ∃r.D is as follows:

e ∈ (∃r.D)I,w ⇔ ∃e′ ∈ DI,w ∧ (e, e′) ∈ rI,w

⇔ ∃e′ ∈ D̂J ,ŵ ∧ (e, e′) ∈ r̂J ,ŵ

⇔ e ∈ (∃r̂.D̂)J ,ŵ.

The case of C = ∃P∼pr.D is similar. This finishes the proof of the claim.

For the “only if”-direction, assume T ∪ T̂ 6|=+ Â v B̂. Thus, there is a model
I = (∆I ,W, (Iw)w∈W , µ) of T ∪ T̂ , a world w ∈ W , and an element d ∈ ∆I such that
d ∈ ÂI,w but d /∈ B̂I,w. Define an interpretation J = (∆I , Ŵ , (Jw)w∈Ŵ , µ̂) by:

• Ŵ = W ∪ {ŵ} and µ̂(v) = µ(v) for all v ∈W and µ̂(ŵ) = 0;

• XJ ,v = XI,v and rJ ,v = rI,v for all v ∈W ;

• XJ ,ŵ = X̂I,w and rJ ,ŵ = r̂I,w for all X ∈ NC and r ∈ NR.

Intuitively, ŵ is a copy of w where the extension of C is given by ĈI,w.

Claim 2. For all concepts C, e ∈ ∆I : e ∈ ĈI,w iff e ∈ CI,ŵ.

Proof of Claim 2. The claim is proved by structural induction. The base case C = A is
trivial. The case C = C1 u C2 is immediate from the induction hypothesis. The case
C = P∼pD follows from the fact that D̂ = D and the added world does not change the
probabilities. The case C = ∃r.D is as follows: e ∈ (∃r̂.D̂)I,w implies that there is some
e′ ∈ D̂I,w such that (e, e′) ∈ r̂I,w. By construction and induction hypothesis, this is
equivalent to e′ ∈ DJ ,ŵ and (e, e′) ∈ rJ ,ŵ; this is the case if, and only if e ∈ DJ ,ŵ. The
case C = ∃P∼pr.D is similar. This finishes the proof of the claim.

Clearly, CJ ,v ⊆ DJ ,v for all v ∈W and C v D ∈ T . By the claim, we also have CJ ,ŵ ⊆
DJ ,ŵ for all C v D ∈ T . Thus, T |= J and it remains to note that d ∈ AJ ,ŵ \ BJ ,ŵ,
also by the claim. �

It is not hard to verify that Lemma 4.2 applies to all ProbEL variants that we consider
in this chapter. Thus, it is without loss of generality, to restrict our attention to one of
the notions. In the remainder of the chapter, we study positive subsumption, call it only
“subsumption” and abbreviate |=+ with just |=, that is, we write T |= A v B instead of
T |=+ A v B.

76

4.2 Complexity of Probabilistic Concepts

4.2 Complexity of Probabilistic Concepts

In this section, we consider fragments of ProbELc, where we drop the constructor ∃P>0r.C
and apply probabilistic operators to concepts only. It was shown that subsumption
in ProbEL>0;=1

c relative to general TBoxes is in PTime, whereas the same problem is
ExpTime-complete for ProbEL>0;>0.4

c [101]. This raises the question which probabilities
except 0 and 1 can be admitted in ProbELc without losing tractability.

4.2.1 Lower bounds

Our first main theorem provides the strong negative result that there is no such value.

Theorem 4.3. For all p ∈ (0, 1) and ∼ ∈ {≤, <,=, >,≥}, subsumption in ProbEL∼pc
relative to general TBoxes is ExpTime-hard.

Matching upper bounds are an immediate consequence of the fact that each logic
ProbEL∼pc is a fragment of the probabilistic DL ProbALCc for which subsumption was
proved ExpTime-complete in [101]. Hence, we obtain the following corollary.

Corollary 4.4. For all p ∈ (0, 1) and ∼ ∈ {≤, <,=, >,≥}, subsumption in ProbEL∼pc
relative to general TBoxes is ExpTime-complete.

In order to prove Theorem 4.3 we require the notion of (non-)convexity.

Definition 4.5 (Convex). A logic L is convex if for all L-TBoxes T and L-concepts
C,D1, . . . , Dn, n ≥ 2 with T |= C v D1 t · · · tDn we have T |= C v Di for some i.

Note that, although disjunction t is not part of the syntax for ProbEL, this is a valid
definition: disjunction is just interpreted as in ProbALC. We will show that each single
fragment ProbEL∼pc is non-convex by providing a non-convexity witness which consists of
a TBox T and concepts C, D1, . . . , Dn that violate the convexity property. Intuitively,
non-convexity is used to reintroduce disjunction. This enables us to reduce concept
satisfiability in ALC relative to general TBoxes to subsumption in ProbEL∼pc . We will
divide the proof of Theorem 4.3 into four parts. We show:

• non-convexity of ProbEL∼pc with ∼ ∈ {<,≤} and p ∈ (0, 1);

• non-convexity of ProbEL∼pc with ∼ ∈ {>,≥,=} and p ≤ 0.5;

• non-convexity of ProbEL∼pc with ∼ ∈ {>,≥,=} and p > 0.5; and

• non-convexity implies ExpTime-hardness.

77

4 Subjective Uncertainty in EL

0 0.4 0.8 1

?
A1 A2 A3

A3

Figure 4.1: Intuition for non-convexity: A domain element satisfying P≥0.4A1 u
P≥0.4A2 u P≥0.4A3 has to satisfy either A1 u A2, A1 u A3, or A2 u A3

in some world.

Non-convexity of ProbEL∼pc with ∼ ∈ {<,≤}

For this case, choose some ∼ ∈ {<,≤} and p in (0, 1). There is a very simple argument
for non-convexity relative even to the empty TBox as we have

∅ |= > v P∼pA t P∼pP∼pA (4.1)

but both
∅ 6|= > v P∼pA and ∅ 6|= > v P∼pP∼pA. (4.2)

For proving (4.1), observe that for every individual d ∈ ∆I , either d ∈ (P∼pA)I,w or
d /∈ (P∼pA)I,w. In the latter case, the semantics implies that d /∈ (P∼pA)I,v for all
v ∈W , thus d ∈ (P=0P∼pA)I,w and also d ∈ (P∼pP∼pA)I,w. The statements in (4.2) are
also direct consequences of the semantics.

Non-convexity of ProbEL∼pc with ∼ ∈ {>,≥,=}

Let us start with a small example illustrating the idea underlying the proof for this case.
Take p = 0.5, ∼ = ≥, and assume the TBox

T = {A1 uA2 v P≥0.4B1,

A1 uA3 v P≥0.4B2,

A2 uA3 v P≥0.4B3}.

Assume an arbitrary model I of T and a domain element d satisfying the concept
P≥0.4A1 u P≥0.4A2 u P≥0.4A3. It should be clear that there is a world with positive
probability where d satisfies two among A1, A2, A3, but there is a choice which ones
these are; see Figure 4.1. By the TBox, the choice is ‘marked’ using P≥0.4B1, P≥0.4B2,
or P≥0.4B3.

Let us generalize the above construction and consider ProbEL≥pc with p ≤ 0.5. Choose
some k > 0 such that k · p > 1 and set:

T = {Ai uAj v P≥pBij | 1 ≤ i < j ≤ k}
C = P≥pA1 u . . . u P≥pAk

Dij = P≥pBij

78

4.2 Complexity of Probabilistic Concepts

We show that the above witnesses non-convexity. Similar to the small example above,
the probabilities stipulated by C sum up to > 1, thus some of the Ai have to overlap,
but there is a choice as to which ones these are.

Lemma 4.6. T |= C v t1≤i<j≤kDij, but T 6|= C v Dij for 1 ≤ i < j ≤ k.

Proof. For the former, let I be a model of T and d ∈ CI,w. Since d ∈ (P≥pAi)
I,w for

1 ≤ i ≤ k and k · p > 1, there is a world v with d ∈ (Ai u Aj)I,v for some i, j with
1 ≤ i < j ≤ k. It follows that d ∈ DI,vij , thus d ∈ DI,wij .

For the latter, fix arbitrary i0, j0 with 1 ≤ i0 < j0 ≤ k. We show T 6|= C v Di0j0 by
constructing a model I = (∆I ,W, (Iw)w∈W , µ) of T with ∆I = {d} and W = {w1, w2}
such that d ∈ CI,v and d /∈ DI,vi0j0 for any v ∈W . Formally, we set for 1 ≤ i ≤ k:

AI,w1
i :=

{
∅ if i = i0

{d} otherwise

AI,w2
i :=

{
{d} if i = i0

∅ otherwise

and for all 1 ≤ i < j ≤ k:

BI,w1
ij := BI,w2

ij :=

{
∅ if i0 ∈ {i, j};
{d} otherwise.

Finally, set µ(w1) = µ(w2) = 0.5. It is easy to check that I is a model of T . Moreover,
we have pId (Ai) = 0.5 ≥ p, i.e., d ∈ CI,w for any w ∈W , and there is no world w with
d ∈ DI,wi0j0 . �

When we replace ≥ with = in T , C, and the Dij , the first part of the proof of Lemma 4.6
still goes through, without any modifications. For the model construction we need to
slightly modify the above interpretation: we add a new world w3 with AI,w3

i := BI,w3
ij := ∅

and update the probability distribution as follows:

µ(w1) := µ(w2) := p

µ(w3) := 1− 2p

When we replace ≥ with > and assume p < 0.5, the proof of Lemma 4.6 goes through
without any modifications. However, the case ∼ = > and p = 0.5 requires a slightly
different construction. Set

T = {Ai uAj uAk v P≥pBijk | 1 ≤ i < j < k ≤ 4}
C =P≥pA1 u . . . u P≥pA4

Dijk =P≥pBijk

79

4 Subjective Uncertainty in EL

It is only slightly more complicated to show that the above witnesses non-convexity,
similarly to the proof of Lemma 4.6. Let us first show

T |= C v D123 tD124 tD134 tD234

using again the pigeon hole principle. Assume a model I of T and d ∈ CI,w. Since
d ∈ (P>0.5Ai)

I,w for 1 ≤ i ≤ 4, there is a world v with d ∈ (Ai u Aj u Ak)I,v for some
1 ≤ i < j < k ≤ 4. By the TBox, d ∈ DI,vijk .

For the second part, we show only T 6|= C v D123 as the other cases are symmetric. For
this purpose, we define a model I = ({d},W, (Iw)w∈W , µ) of T with W = {w1, . . . , w4}
such that d ∈ CI,w4 but d /∈ DI,w4

123 for some w ∈W .

• AI,v1 = {d} for v ∈ {w1, w2, w3};

• AI,v2 = {d} if v ∈ {w1, w4};

• AI,v3 = {d} if v ∈ {w2, w4};

• AI,v4 = {d} if v ∈ {w3, w4};

• BI,v234 = {d} if v ∈ {w1, w2, w3};

• DI,v234 = {d} for all v;

• the extension of any concept that is not mentioned is empty.

Finally, set µ(w1) = µ(w2) = µ(w3) = 0.2 and µ(w4) = 0.4. It is not hard to check that
I |= T . Moreover, we have pId (Ai) = 0.6 > 0.5 for all 1 ≤ i ≤ 4, i.e., d ∈ CI,w for all
w ∈W . On the other hand, there is no world w ∈W with d ∈ DI,w123 .

Non-convexity of ProbEL∼pc with ∼ ∈ {>,≥,=} and p > 0.5

The main idea here is to use the constructor P∼pC to simulate P>qC, for some q < 0.5.
First let ∼ = > and fix a p > 0.5. Let n > 0 be the smallest integer such that n > 1

2(1−p)
and set q = pn− n+ 1. Note that n ≥ 2 and 0 ≤ q < 0.5. Intuitively, we use the fact
that

P>pX1 u . . . u P>pXn v P>q(X1 u . . . uXn),

which allows us to simply redo the above reduction with probability q < 0.5. Thus, let
k > 0 be such that k · q > 1 and define

T = {Ai1 u . . . uAin v Ai | 1 ≤ i ≤ k}∪
{Ai uAj v P>pBij | 1 ≤ i < j ≤ k}

C = u
1≤i≤k

u
1≤`≤n

P>pAij

Dij = P>pBij

80

4.2 Complexity of Probabilistic Concepts

Indeed, the above witnesses non-convexity.

Lemma 4.7. T |= C v t1≤i<j≤kDij, but T 6|= C v Dij for 1 ≤ i < j ≤ k.

Proof. For the former, let I be a model of T and d ∈ CI,w. We first verify the following:

Claim. d ∈ (P>qAi)
I,w for all 1 ≤ i ≤ k.

Proof of the Claim. Assume this is not the case for some i, i.e., d ∈ (P≤qAi)
I,w. Define

S :=
∑

1≤`≤n
pId (Ai`).

On the one hand, we must have S > p · n since d ∈ CI,w. On the other hand, given an
interpretation I, we can compute S as follows:

S =
∑
w∈W

µ(w) · |{1 ≤ ` ≤ n | d ∈ AI,wi` }|. (4.3)

Let us partition W into W1,W2 such that

(i) |{1 ≤ ` ≤ n | d ∈ AI,wi` }| = n for all w ∈W1 and

(ii) |{1 ≤ ` ≤ n | d ∈ AI,wi` }| < n for all w ∈W2.

By assumption, d ∈ (P≤qAi)
I,w and Ai1 u . . . u Ain v Ai ∈ T . Thus, we obtain

pId (Ai1 u . . . u Ain) ≤ q. Hence, we get µ(W1) ≤ q. Together with Equation (4.3) this
yields:

S =
∑
w∈W1

µ(w) · |{1 ≤ ` ≤ n | d ∈ AI,wi` }|+
∑
w∈W2

µ(w) · |{1 ≤ ` ≤ n | d ∈ AI,wi` }|

≤ nµ(W1) + (n− 1)µ(W2) = nµ(W1) + (n− 1)(1− µ(W1))

= n+ µ(W1)− 1 ≤ n+ q − 1.

It remains to apply q = pn− n+ 1 to obtain S ≤ pn. Thus, overall we got pn < S ≤ pn
which is a clear contradiction and finishes the proof of the claim.

We can now continue as in the proof of Lemma 4.6: since k · q > 1, there is a
world v ∈ W with d ∈ (Ai u Aj)I,v for some i, j with 1 ≤ i < j ≤ k. It follows that
d ∈ (P>pBij)

I,v, thus d ∈ DI,vij .

For showing that none of the Dij is implied by C, fix some i0, j0 with 1 ≤ i0 < j0 ≤ k.
We construct a model I = (∆I ,W, (Iw)w∈W , µ) of T with ∆I = {d} andW = {w1`, w2` |

81

4 Subjective Uncertainty in EL

1 ≤ ` ≤ n} such that d ∈ CI,v and d /∈ DI,vi0j0 for any v ∈W by setting for all 1 ≤ i ≤ k
and 1 ≤ `, `′ ≤ n:

AI,w1`
i :=

{
{d} if i 6= i0;

∅ otherwise

AI,w2`
i :=

{
{d} if i = i0;

∅ otherwise

AI,w1`

i`′ :=

{
{d} if i 6= i0 or ` 6= `′;

∅ otherwise

AI,w2`

i`′ :=

{
{d} if i = i0 or ` 6= `′;

∅ otherwise

and for all 1 ≤ i < j ≤ k, 1 ≤ ` ≤ n:

B
Iw1`
ij := B

Iw2`
ij :=

{
{d} if i0 /∈ {i, j}
∅ otherwise

µ(w1`) := µ(w2`) := 1
2n

Note that for every Ai` with 1 ≤ i ≤ k and 1 ≤ ` ≤ n, there is a b ∈ {1, 2} such that d
satisfies Ai` in wb`′ for all `′ and in all w(3−b)`′ whenever ` 6= `′. Using additionally the
fact that n > 1

2(1−p) we obtain:

pId (Ai`) =
1

2
+ (n− 1) · 1

2n
= 1− 1

2n
> 1− 1

2 · 1
2(1−p)

= 1− 2(1− p)
2

= p.

Thus, we have d ∈ CI,v for any v ∈W . Further observe that d ∈ AI,vi0 iff v is of the form
w2` iff d /∈ AI,vj0 . Thus, d /∈ DI,vi0j0 for any v ∈W . It remains to verify that I is a model
of T .

• Let v ∈W such that d ∈ (Ai1 u . . . uAin)I,v for some i. If i 6= i0, v is of the form
w1`, by construction of I. But then also d ∈ AI,vi . If i = i0, then v is of the form
w2` and d ∈ AI,vi0 .

• Let v ∈ W such that d ∈ (Ai u Aj)I,v for some i < j. By construction, we have
i0 /∈ {i, j}. Hence, d ∈ (P=1Bij)

I,v.

This finishes the proof of the Lemma. �

For the case ∼ = ≥, we can use exactly the same construction and the proof goes through
with only slight modifications. In case of equality, the first part of the proof goes through,
but we have to change the model construction. We add a world w3 such that in this

82

4.2 Complexity of Probabilistic Concepts

world d is not in the extension of any concept, that is, AI,w3
ij := AI,w3

i := BI,w3
ij := ∅.

Moreover, we need to modify the probability distribution µ in the following way:

µ(w1`) := µ(w2`) := p
2n−1 ;

µ(w3) := 1− 4np
2n−1 .

It is not hard to verify that µ(w3) ≥ 0 since p > 0.5, n > 1
2(p−1) , and

∑
w∈W µ(w) = 1,

thus µ is a valid probability distribution. Further, we can verify with the same arguments
as in the proof above that pId (Ai`) = p, thus d ∈ CI,v for every v. Finally, it is easy to
check that d /∈ DI,vi0j0 for any v ∈W .

Non-Convexity implies ExpTime-hardness

We apply a standard proof technique from [9] to show that non-convexity of EL-variants
implies ExpTime-hardness; in particular, we use non-convexity to reduce from concept
satisfiability relative to general ALC-TBoxes which is known to be ExpTime-complete.
Fix any logic ProbEL∼pc .

Suppose that an ALC-TBox T and a concept name A0 are given for which satisfiability
is to be decided. It is well-known that we can without loss of generality assume that:

• the abbreviations for disjunction t and universal quantification ∀r.C do not appear
in the TBox;

• negation ¬ occurs only in front of concept names (otherwise: introduce a fresh
concept name A for every subconcept ¬C in T with C complex, replace ¬C with
¬A, and add A v C and C v A to T).

We eliminate negation as follows.

(1) For every subconcept ¬A, introduce a fresh concept name A, replace every occurrence
of ¬A with A, and add > v A tA and A uA v ⊥ to T .

(2) Eliminate the disjunctions > v AtA introduced in step (1): they are replaced with

> v Ĉ, D̂1 v A, D̂i v A for 2 ≤ i ≤ k,

and the concept inclusions from T̂ where T̂ , Ĉ, D̂1, . . . , D̂k is a fresh copy of the
non-convexity witness that exists for ProbEL∼pc .

Let T ′ be the TBox obtained by these manipulations. It is standard to prove that A0

is satisfiable w.r.t. T iff A0 is satisfiable w.r.t. T ′. Note that T ′ is a ProbALC-TBox
containing only the operators u, ∃, >, ⊥, and P∼p. Thus, it remains to deal with the
concept ⊥ being the last one not allowed by our syntax for ProbEL∼pc . In particular,
we reduce satisfiability of A0 w.r.t. T ′ to (non-)subsumption in ProbEL∼pc . Introduce a

83

4 Subjective Uncertainty in EL

fresh concept name L and obtain T ′′ from T ′ by replacing every occurrence of ⊥ with
L and adding the concept inclusions ∃r.L v L for every role name r from T ′. Then
A0 is satisfiable w.r.t. T ′ iff T ′′ 6|= A0 v L. This finishes the reduction and shows
ExpTime-hardness of ProbEL∼pc .

4.2.2 Subsumption Relative to Classical TBoxes

As we have seen in the previous section, checking subsumption relative to general
ProbEL∼pc -TBoxes is ExpTime-hard for all ∼ ∈ {<,≤,=, >,≥} and p ∈ (0, 1). It has
been shown in [101] that for p ∈ {0, 1}, PTime can be reattained. The goal in this part
is to study another possibility to stay in PTime, namely by the restriction to classical
TBoxes.

Theorem 4.8. For all ∼ ∈ {>,≥} and p ∈ [0, 1], subsumption in ProbEL∼p;=1
c relative

to classical TBoxes is in PTime.

Observe that the theorem is a corollary of the PTime result for subsumption in
ProbEL>0;=1

c relative to general TBoxes in case p = 0 and ∼ = > [101]. For prov-
ing the theorem for the remaining cases, we need some notation. A concept name A is
defined in a classical TBox T if there is a concept definition A ≡ C ∈ T , and primitive
otherwise. For a given TBox T and a defined concept name A in T , we refer with
CA to the defining concept for A in T , i.e., A ≡ CA ∈ T . Moreover, we deliberately
confuse the concept CA = D1 u . . .uDk with the set {D1, . . . , Dk}. We can without loss
of generality restrict our attention to the subsumption of defined concept names and,
moreover, assume that the input TBox is normalized to a set of concept definitions of
the form

A ≡ P1 u . . . u Pn u C1 u . . . u Cm,

where n,m ≥ 0, and P1, . . . , Pn are primitive concept names, and C1, . . . , Cm are of the
form P∼pA, P=1A, or ∃r.A with A a defined concept name (note that the top concept is
completely normalized away). It is well-known that such a normalization can be achieved
in polynomial time, see for instance [8] for details. Finally, we define a set of concepts
certain for CA as

cert(CA) = {P∗B | P∗B ∈ CA} ∪
⋃

P=1B∈CA

{CB},

where, here and in what follows, P∗ ranges over P=1 and P∼p. Intuitively, cert(CA)
contains concepts that hold with probability 1 whenever A is satisfied in some world.

Our main tool for proving the PTime upper bound is a consequence-driven algorithm
similar to the ones in [9, 89]. The algorithm is depicted in Figure 4.2. The algorithm
starts with a normalized input TBox and then exhaustively applies the completion rules
displayed in Figure 4.2. As a general proviso, each rule can be applied only if it adds a

84

4.2 Complexity of Probabilistic Concepts

R1 If ∃r.B ∈ CA, and CB′ ⊆ CB,
then replace A ≡ CA with A ≡ CA ∪ {∃r.B′}

R2 If P=1B ∈ CA,
then replace A ≡ CA with A ≡ CA ∪ CB

R3 If P=1B ∈ CA,
then replace A ≡ CA with A ≡ CA ∪ {P∼pB}

R4 If P∼pB ∈ CA, and D ∈ cert(CB),
then replace A ≡ CA with A ≡ CA ∪ {D}

R5 If CB ⊆ cert(CA),
then replace A ≡ CA with A ≡ CA ∪ {P=1B}

R6 If P∼pB ∈ CA and CB′ ⊆ cert(CA) ∪ CB,
then replace A ≡ CA with A ≡ CA ∪ {P∼pB′}

Figure 4.2: TBox completion rules for subsumption in ProbEL∼p,=1
c .

concept that occurs in T and actually changes the TBox, e.g., R1 can only be applied
when ∃r.B′ occurs in T and ∃r.B′ /∈ CA. Exemplarily, we explain rule R5 in more detail.
If all defining concepts CB of B are contained in the certain concepts for A, then we
can add P=1B to CA since in this case we have T |= A v P=1B. In the following lemma,
we establish correctness of the algorithm. The “only if” direction requires a careful and
subtle model construction.

Lemma 4.9. For all defined concept names A,B, we have T |= A v B iff, after
exhaustive rule application, CB ⊆ CA.

Proof. We start with soundness, that is, the “if”-direction. Using the semantics, it is
straightforward to show that the rules are correct, i.e., if a TBox T2 is obtained from a
TBox T1 by a single rule application, then every model of T1 is also a model of T2 (and
clearly, vice versa). More precisely, let I = (∆I ,W, (Iw)w∈W , µ) be any model of T1 and
assume d ∈ ∆I and w ∈W such that d ∈ AI,w and hence d ∈ (CA)I,w. We show that if
a concept D is added to CA, then we also have d ∈ DI,w.

R1 Assume ∃r.B ∈ CA and CB′ ⊆ CB. By the former, we have d ∈ (∃r.B)I,w,
i.e., there is some element e ∈ ∆I with e ∈ BI,w and (d, e) ∈ rI,w. As I is a
model of T1, we also have e ∈ (CB)I,w and, by the assumption CB′ ⊆ CB, we
obtain e ∈ (CB′)

I,w. Again, as I |= T1, we have e ∈ B′I,w. The semantics yields
d ∈ (∃r.B′)I,w.

85

4 Subjective Uncertainty in EL

R2 Assume P=1B ∈ CA. Hence, we have d ∈ (P=1B)I,w. By the semantics, d ∈ BI,w
and thus d ∈ (CB)I,w.

R3 Assume P=1B ∈ CA. Thus, we have d ∈ (P=1B)I,w which implies d ∈ (P∼pB)I,w.

R4 Assume P∼pB ∈ CA and D ∈ certCB. By the former, we have d ∈ (P∼pB)I,w.
Hence, there is some world v ∈ W with d ∈ BI,v. By definition of cert(CB),
we have that d ∈ EI,w′ for all E ∈ cert(CB) and w′ ∈ W . Thus, in particular,
d ∈ DI,w.

R5 Assume CB ⊆ cert(CA). By definition of cert(CA), we have that d ∈ EI,v for all
E ∈ cert(CA) and v ∈ W . As CB ⊆ cert(CA), we have d ∈ (CB)I,v for all v ∈ W .
As I is a model of T1, we get d ∈ BI,v for all v ∈W , thus d ∈ (P=1B)I,w.

R6 Assume P∼pB ∈ CA and CB′ ⊆ cert(CA) ∪ CB. By the former, we have d ∈
(P∼pB)I,w and hence pId (CB) ∼ p. By definition of cert(CA) and the semantics,
we have pId (cert(CA)) = 1. Together, this implies pId (cert(CA) u CB) ∼ p. As by
assumption CB′ ⊆ CA ∪ CB, we also have pId (CB′) ∼ p and hence d ∈ (P∼pB

′)I,w.

To finish this direction, assume an arbitrary model I = (∆I ,W, (Iw)w∈W , µ) of T and
some d ∈ ∆I and w ∈ W such that d ∈ AI,w. We showed that I is also a model of
the TBox obtained after exhaustive rule application. Let CA, CB the definitions of A,B
after the algorithm stopped. By the semantics, we have d ∈ (CA)I,w. The assumption
CB ⊆ CA yields d ∈ (CB)I,w. Applying the semantics again implies d ∈ BI,w.

For “only if”, let CB0 6⊆ CA0 for some defined concept names A0, B0 and assume ∼ = >.
Our aim is to construct a model I of T that witnesses T 6|= A0 v B0. Let Def denote
the set of defined concept names in T . Moreover, we use BC to denote all basic concepts,
that is, concepts of the form P (primitive concept name), ∃r.A, P=1A, and P∼pA that
occur in T . We first fix some constants that will be used to define the probabilities of
worlds in the model I:

• first fix α, α′ ∈ (0, 1) such that α
2 < α′ < α < p (possible since p > 0);

• next fix an integer m ≥ 2 such that

(p− α′) +
1− (p− α′ + 3|Def| · α2)

m
< p

(this can be done simply by choosing m sufficiently large as p− α′ < p);

• finally, we choose an integer k ≥ 2 such that

(p− α′) · k − 1

k
+ α > p

(this can be done again by choosing k sufficiently large since (p− α′) + α > p).

86

4.2 Complexity of Probabilistic Concepts

Start with defining an interpretation I = (∆I ,W, (Iw)w∈W , µ) by setting:

W = {δAi, 1j , p` | A ∈ Def, i ∈ {1, 2, 3}, 1 ≤ j ≤ m, 1 ≤ ` ≤ k}
∆I = {(A, v) | A ∈ Def, v ∈W}

µ(p`) = p−α′
k

µ(δAi) = α
2

µ(1j) =
1−(p−α′+3|Def|·α

2
)

m

It is readily checked that the sum
∑

w∈W µ(w) adds up to 1 as required. Moreover,
observe the following two important properties of µ:

(P1) for any set V of worlds that contains at least k − 1 of the worlds in {p` | ` ≤ k}
and at least two distinct δAi, δBj the probabilities sum up to more than p;

(P2) any set of worlds whose probabilities sum up to a value > p includes at least two
worlds from W \ {p` | ` ≤ k}.

Using the condition in the choice of k it is not hard to see that Property (P1) is satisfied.
For Property (P2), define V = {p` | ` ≤ k} and observe that µ(V) = p − α′. Now, by
the choice of α and α′ it is clear that µ(V ∪ {δAi}) = p − α′ + α

2 < p. Finally, by the
choice of m, we have that µ(V ∪ {1j}) = p− α′ + (1− (p− α′ + 3|Def| · α2))/m < p.

To define concept and role memberships, first define a map π : (∆I ×W)→ 2BC such
that each set π(·, ·) is minimal with the following conditions satisfied for all A ∈ Def and
v, w ∈W :

1. CA ⊆ π((A,w), w);

2. if P∗B ∈ CA, then P∗B ∈ π((A,w), v);

3. if P=1B ∈ CA, then CB ⊆ π((A,w), v);

4. if P>pB ∈ CA, then CB ⊆ π((A,w), p`) for all ` ≤ k when w /∈ {p` | ` ≤ k};

5. if P>pB ∈ CA, then CB ⊆ π((A, pi), p`) for all ` ≤ k with i 6= `;

6. if P>pB ∈ CA, then CB ⊆ π((A,w), δB1) and CB ⊆ π((A,w), δB2) when w /∈
{δB1, δB2, δB3};

7. if P>pB ∈ CA, then CB ⊆ π((A, δBi), δBj) for all distinct i, j ∈ {1, 2, 3};

Now define the interpretation of the defined concept names A, primitive concept names
P , and role names r as

AI,w = {d ∈ ∆I | CA ⊆ π(d,w)};
P I,w = {d ∈ ∆I | P ∈ π(d,w)};
rI,w = {(d, (B,w)) ∈ ∆I ×∆I | ∃r.B ∈ π(d,w)}.

87

4 Subjective Uncertainty in EL

We establish the following, central claim.

Claim. For all D ∈ BC, (A,w) ∈ ∆I , and v ∈W , we have:

(A,w) ∈ DI,v iff D ∈ π((A,w), v).

Proof of claim. We start with the “if” direction. Let D ∈ π((A,w), v). We distinguish
the following cases:

• D = P is a primitive concept name. Immediate by definition of P I .

• D = P=1B. Since D ∈ π((A,w), v), the definition of π implies that one of the
following cases applies:

– If D ∈ π((A,w), v) because of Condition 1 or 2, then B ∈ π((A,w), w′) for
all w′. By definition of BI , it follows that (A,w) ∈ (P=1B)I,w as required.

– Assume D ∈ π((A,w), v) because of Condition 3, that is, P=1B
′ ∈ CA and

D ∈ CB′ . Due to rule R2, we have D ∈ CA and can argue as in the previous
case.

– In all other cases, we have P>pB′ ∈ CA, and D ∈ CB′ . Thus, the definition
of cert(·) yields D ∈ cert(CB′). By R4, we have D ∈ CA and can again argue
as before.

• D = P>pB. We distinguish the same cases as above, i.e.,

– D ∈ CA. Then CB ⊆ π((A,w), p) for at least k − 1 distinct worlds p from
{p` | ` ≤ k} (by Conditions 4 and 5 above) and CB ⊆ π((A,w), δBi) and
CB ⊆ π((A,w), δBj) for distinct i, j ∈ {1, 2, 3} (Conditions 6 and 7). By (P1)
and definition of BI , it follows that (A,w) ∈ (P>pB)I,v, as required.

– P=1B
′ ∈ CA and D ∈ CB′ . By rule R2, we have D ∈ CA and can argue as in

the previous case.

– P>pB
′ ∈ CA, and D ∈ CB′ . By definition of cert(·), we have D ∈ cert(CB′).

By R4, we have D ∈ CA and can again argue as before.

• D = ∃r.B. By definition of rI , we have ((A,w), (B, v)) ∈ rI,v. By Condition 1
of π and definition of BI , we have (B, v) ∈ BI,v. Finally, the semantics yields
(A,w) ∈ (∃r.B)I,v.

For the “only if” direction, assume that (A,w) ∈ DI,v. Distinguish the following cases:

• D = P is a primitive concept name. Immediate by definition of P I .

• D = P=1B. Take a 1j ∈ W such that w 6= 1j (exists since there are at least two
worlds of the form 1j). Since (A,w) ∈ DI,v, we have (A,w) ∈ BI,1j . By definition
of BI , we thus have CB ⊆ π((A,w), 1j). By definition of π((A,w), 1j), it follows
that for every D′ ∈ CB, we have

88

4.2 Complexity of Probabilistic Concepts

(i) D′ ∈ CA with D′ of the form P∗B
′ (by Condition 2 of π), or

(ii) there is a P=1B
′ ∈ CA with D′ ∈ CB′ (by Condition 3).

Thus, CB ⊆ cert(CA) and rule R5 yields P=1B ∈ CA. By Condition 2 of π, we
have P=1B ∈ π((A,w), v) as required.

• D = P>pB. Since (A,w) ∈ (P>pB)I,v, (P2) yields the following cases:

– (A,w) ∈ BI,1j for some j with w 6= 1j . Then we can argue as in the previous
case that P=1B ∈ CA. Thus rule R3 yields P>pB ∈ CA and by Condition 2
of π, we have P>pB ∈ π((A,w), v) as required.

– (A,w) ∈ BI,δB′j for some j with w 6= δB′j . By definition of BI , we thus have
CB ⊆ π((A,w), δB′j). By definition of π((A,w), δB′j), it follows that for every
D′ ∈ CB, we have

(i) D′ ∈ CA with D′ of the form P∗B
′′ (Condition 2 of π),

(ii) there is a P=1B
′′ ∈ CA with D′ ∈ CB′′ (Condition 3), or

(iii) P>pB′ ∈ CA and D′ ∈ CB′ (Condition 6 or 7).

If exclusively (i) and (ii) apply, then CB ⊆ cert(CA); otherwise, we have
P>pB

′ ∈ CA and CB ⊆ cert(CA)∪CB′ . In the first case, R5 yields P=1B ∈ CA
and R3 yields P>pB ∈ CA. In the latter case, R6 yields P>pB ∈ CA. By
Condition 2 of π, we have P>pB ∈ π((A,w), v) as required.

• D = ∃r.B. Then there is an (A′, v) such that ((A,w), (A′, v)) ∈ rI,v and (A′, v) ∈
BI,v. By definition of rI , v, we have ∃r.A′ ∈ π((A,w), v). By definition of BI , we
have CB ⊆ π((A′, v), v). By definition of π, Conditions 4 to 7 cannot be responsible
since we are concerned here with a set π((A, v), v′) with v = v′. By Conditions 1-3
of π, it follows that for every D′ ∈ CB we have D′ ∈ CA′ or P=1B

′ ∈ CA′ with
D′ ∈ CB′ . In the latter case, we also obtain B ∈ CA by R2. Thus CB ⊆ CA′ . To
continue, we make a case distinction as follows:

– v = w. Then the definition of π yields that ∃r.A′ ∈ CA or P=1B
′ ∈ CA

with ∃r.A′ ∈ CB′ . In the latter case, we also obtain ∃r.A′ ∈ CA by R2.
This, CB ⊆ CA′ , and R1 yield ∃r.B ∈ CA. By definition of π, we thus have
∃r.B ∈ π((A,w), v).

– v = 1j , v 6= w. Since ∃r.A′ ∈ π((A,w), v), the definition of π yields a
P=1B

′ ∈ CA with ∃r.A′ ∈ CB′ . By R1 and CB ⊆ CA′ , we have ∃r.B ∈ CB′ .
Thus, Condition 3 of π yields ∃r.B ∈ π((A,w), v) as required.

– v = p`, v 6= w. Since ∃r.A′ ∈ π((A,w), v), the definition of π implies that
there is a P=1B

′ ∈ CA with ∃r.A′ ∈ CB′ (Condition 3) or a P>pB′ ∈ CA with
∃r.A′ ∈ CB′ (Conditions 4 and 5). In the former case, we can continue as in

89

4 Subjective Uncertainty in EL

the case v = 1j above. In the latter case, R1 and CB ⊆ CA′ yield ∃r.B ∈ CB′ .
Thus, Conditions 4 and 5 of π yield ∃r.B ∈ π((A,w), v) as required.

– v = δEj , v 6= w. The reasoning is the same is in the previous case; we give it
here for the sake of completeness. Since ∃r.A′ ∈ π((A,w), v), the definition
of π implies that there is a P=1B

′ ∈ CA with ∃r.A′ ∈ CB′ (Condition 3) or a
P>pB

′ ∈ CA with ∃r.A′ ∈ CB′ (Condition 6 and 7). In the former case, we
can continue as in the case v = 1j . In the latter case, R1 and CB ⊆ CA′

yield ∃r.B ∈ CB′ . Thus, Conditions 6 and 7 of π yield ∃r.B ∈ π((A,w), v) as
required.

This finishes the proof of the claim.

It is an immediate consequence of the Claim and the interpretation of defined concept
names that I is a model of the TBox obtained after exhaustive rule applications. As
this is equivalent to the input TBox (see “if”-direction) it is also a model of T .

By Condition 1 on π, definition of AI0 , and the Claim, we have (A0, 11) ∈ AI,11
0 . It thus

remains to show that (A0, 11) /∈ BI,11
0 . Assume that the contrary holds. By definition of

BI,11
0 , this means that CB0 ⊆ π((A0, 11), 11). By definition of π, it follows that for every

D ∈ CB0 , we have D ∈ CA0 or P=1B ∈ CA0 and D ∈ CB. In the latter case, however,
R2 yields D ∈ CA0 . In summary, we thus have CB0 ⊆ CA0 , which is a contradiction to
our initial assumption that CB0 6⊆ CA0 .

This finishes the proof in case ∼ = >. It turns out that when ∼ = ≥, we can use
exactly the same interpretation I. The reason is that the definition of µ also satisfies
the following variations of (P1) and (P2):

(P1’) for any set V of worlds that contains at least k − 1 of the worlds in {p` | ` ≤ k}
and at least two distinct δAi, δBj the probabilities sum up to at least p;

(P2’) any set of worlds whose probabilities sum up to a value ≥ p includes at least two
worlds from W \ {p` | ` ≤ k}.

The rest of the proof is then identical. �

It remains to verify that the completion algorithm in Figure 4.2 requires only polynomial
time. It is clear that the precondition of every rule can be checked in polynomial time.
Further, every successful rule application extends the TBox, and both the number of
concept definitions and of conjuncts in each concept definition is bounded by the size of
the original TBox. This finishes the proof of Theorem 4.8.

It is interesting to note that the proof of Theorem 4.8 is based on exactly the same
algorithm, for all ∼ ∈ {≥, >} and p ∈ (0, 1). It follows that there is in fact only one
single logic ProbEL∼pc , for all such ∼ and p. Formally, given a ProbEL∼pc -concept C,
≈ ∈ {≥, >} and q ∈ (0, 1], let C≈q denote the result of replacing each subconcept P∼pD
in C with P≈qD in C and similarly for ProbEL∼pc -TBoxes T .

90

4.2 Complexity of Probabilistic Concepts

Corollary 4.10. For any p, q > 0, ∼,≈ ∈ {>,≥}, ProbEL∼pc -concepts C,D and -TBox
T , we have T |= C v D iff T≈q |= C≈q v D≈q.

Consequently, the (potentially difficult!) choice of a concrete ∼ ∈ {≥, >} and p ∈ (0, 1]
is moot. In fact, it might be more intuitive to replace the constructor P∼pC with a
constructor LC that describes elements which ‘are likely to be a C’, and to replace
P=1C with the constructor C C to describe elements that ‘are certain to be a C’, see e.g.
[70, 73] for other approaches to logics of likelihood. Note that the case p = 0 is different
from the cases considered above: for example, we have T∅ |= ∃r.A v ∃r.P>pA iff p = 0,
and likewise T∅ |= P>p∃r.A v P>p∃r.P>pA iff p = 0. In the spirit of the constructors C
and L, P>0C can be replaced with a constructor PC that describes elements for which ‘it
is possible that they are a C’. For example, the Snomed CT concepts definite thrombus
and possible thrombus can then be written as C Thrombus and P Thrombus.

As a consequence of the proof of Theorem 4.8 we obtain that the logics ProbEL∼p;=1
c

are convex.

Corollary 4.11. The logics ProbEL∼p;=1
c are convex relative to classical TBoxes for

∼ ∈ {>,≥} and p ∈ (0, 1).

Proof. We assume T 6|= C v D1 and T 6|= C v D2. An inspection of the proof of the
completeness part of Lemma 4.9 yields the existence of a probabilistic interpretation
I = (∆I ,W, (Iw)w∈W , µ) such that, for every defined concept name A ∈ Def, there is
a domain element dA ∈ ∆I and a world wA ∈ W with dA ∈ AI,wA and for all defined
concept names B ∈ Def we have dA ∈ BI,wA if and only if T |= A v B. In this particular
case, the assumption yields dC ∈ CI,wC , but dC /∈ DI,wC1 and dC /∈ DI,wC2 . Thus, we
clearly have dC /∈ (D1 tD2)I,wC which witnesses T 6|= C v D1 tD2. �

It is natural to ask what happens in case of the other comparison operators =, <,
and ≤. In case of =, we believe that the procedure in Figure 4.2 also applies to
ProbEL=p

c : obviously, the rules remain sound and we believe that the ideas underlying
the model construction in the completeness proof can be adapted. In case of the < and
≤, the previous section about general TBoxes already suggested that these operators
are somewhat more difficult as for each such logic non-convexity is witnessed already
using an empty TBox ∅. Indeed one can prove the following theorem (not mentioning a
TBox!).

Theorem 4.12. Let ∼ ∈ {<,≤} and p ∈ (0, 1). Then, checking subsumption between
ProbEL∼pc -concepts is coNP-hard.

Proof. The proof is by a reduction from UNSAT, i.e., checking whether a given proposi-
tional formulas in conjunctive normal form (CNF) is unsatisfiable. The proof is uniform
for every p ∈ (0, 1) and ∼ ∈ {<,≤}, hence we fix some p and consider ProbEL≤pc .

91

4 Subjective Uncertainty in EL

Let ϕ = ϕ1 ∧ . . . ∧ ϕn be a propositional formula in CNF with ϕi = `i1 ∨ . . . ∨ `iki
where each literal `ij is either a variable x or a negated variable ¬x. Assume moreover
that the set of occurring variables is {x1, . . . , xm} and introduce corresponding concept
names X1, . . . , Xm. Define the concept Cϕ as:

Cϕ = P≤pC1 u . . . u P≤pCn with

Ci = f(`i1) u . . . u f(`iki) where f(`) =

P≤pXj if ` = xj ;

P≤p(P≤pXj) if ` = ¬xj .

It is standard to verify the following:

Claim. Cϕ is satisfiable iff ϕ is satisfiable.

Proof of the Claim. “⇒”: If Cϕ is satisfiable, there is some interpretation I =

(∆I ,W, (Iw)w∈W , µ), a domain element d ∈ ∆I and a world w ∈W such that d ∈ CI,wϕ .
We define a truth assignment v by taking for 1 ≤ j ≤ m

v(xj) =

{
1 if d /∈ (P≤pXj)

I,w;

0 otherwise.

We show that v(ϕi) = 1 for every clause ϕi in ϕ and, therefore, v(ϕ) = 1. Fix an
i ∈ {1, . . . , n}. Since d ∈ CI,wϕ , the definition of Cϕ yields pId (Ci) ≤ p for all 1 ≤ i ≤ n.
Since Ci is a conjunction of probabilistic concepts, we must have pId (Ci) = 0. By the
semantics, d /∈ f(`)I,v for some literal ` in ϕi and all worlds v ∈ W , in particular
d /∈ f(`)I,w. We distinguish cases according to the shape of `:

• If ` = xj , then d /∈ (P≤pXj)
I,w by the definition of f . By definition of v, we have

v(xj) = 1 and, thus, v(`) = 1 and v(ϕi) = 1.

• If, on the other hand, ` = ¬xj , then d /∈ (P≤p(P≤pXj))
I,w. The semantics yields

d ∈ (P≤pXj)
I,w. By definition of v, we have v(xj) = 0 and, thus, v(`) = 1 and

v(ϕi) = 1.

“⇐”: If ϕ is satisfiable, there is some satisfying truth assignment v, that is, v(ϕ) = 1
and, in particular, v(ϕi) = 1 for all i ∈ {1, . . . , n}. Let I = (∆I ,W, (Iw)w∈W , µ) be the
probabilistic interpretation defined by taking

• ∆I = {d};

• W = {w};

• µ(w) = 1;

• d ∈ XI,wj iff v(xj) = 1 for all 1 ≤ j ≤ m;

92

4.3 Complexity of Probabilistic Roles

• CI,wϕ = {d}.

We show that I is a model of Cϕ. We start with showing that for every 1 ≤ i ≤ n, there
is some ` in ϕi such that d /∈ f(`)I,w. Since v(ϕi) = 1 there is some literal ` in ϕi such
that v(`) = 1. Again, we distinguish cases according to the form of `:

• If ` = xj , then v(xj) = 1 and f(`) = P≤pXj . By definition of I we get d ∈ XI,wj

and thus pId (Xj) = 1. Consequently, we have d /∈ (P≤pXj)
I,w.

• If, on the other hand, ` = ¬xj , then v(xj) = 0 and f(`) = P≤p(P≤pXj). By
definition of I we get d /∈ XI,wj and thus pId (Xj) = 0. Using the semantics, we
obtain d /∈ (P≤p(P≤pXj))

I,w.

Thus, for each 1 ≤ i ≤ n, we have d /∈ CI,wi . Finally, we obtain d ∈ (P≤pCi)
I,w and

d ∈ CI,wϕ .

It remains to notice that Cϕ is unsatisfiable iff Cϕ v B for any fresh concept name B.
This settles the coNP lower bound. �

4.3 Complexity of Probabilistic Roles

In this section, we study probabilistic variants of EL that support probabilistic roles. It
is known that adding probabilistic roles tends to increase the complexity of reasoning.
For instance, in [101], it was shown that the complexity of satisfiability jumps from Exp-
Time to (at least) 2ExpTime-hardness if probabilistic roles are admitted in ProbALC.
Similarly, subsumption checking in full ProbEL01 was proved PSpace-hard whereas it is
in PTime when restricting to probabilistic concepts.

4.3.1 Subsumption in full ProbEL

Let us start with considering full ProbEL. Notice first that ProbEL is clearly non-convex
as it subsumes the logics considered in the previous section. Along the lines of the
reduction from concept satisfiability in ALC to subsumption in non-convex variants
of ProbELc one can actually reduce from satisfiability in ProbALC to subsumption in
ProbEL. As ProbALC strictly contains ProbEL, we obtain.

Proposition 4.13. Subsumption relative to general TBoxes in ProbEL and concept
satisfiability of ProbALC concepts relative to general TBoxes are mutually polytime-
reducible.

In particular, since not even decidability is known for ProbALC the same holds true for
full ProbEL. On the other hand, we inherit a 2ExpTime-lower bound from satisfiability
in ProbALC01. In order to identify well-behaved fragments of ProbEL, we again restrict

93

4 Subjective Uncertainty in EL

the application of the probabilistic constructors P∼p and ∃P∼pr. A strategy of restricting
the probabilistic constructors that has been successfully applied is the restriction to P>0

and P=1. One instance is Theorem 3.4 from the previous chapter. Other examples are
the restriction ProbALC01 of ProbALC [101] and a similar restriction of probabilistic
CTL [24]. In the former, satisfiability in ProbALC01 was shown to be 2ExpTime-
complete; in the latter, satisfiability in probabilistic CTL restricted to P>0 and P=1 was
shown to be ExpTime-complete. However, in both cases, decidability of the “full” logic
remains open. Thus, it is interesting to study the fragment ProbEL01.
Let us first point out that ProbEL01 is in a sense the maximal fragment that in

principle might have a complexity lower than 2ExpTime. Indeed, consider the logic
ProbEL∼p01 featuring another probabilistic constructor P∼p (on concepts or roles). With
the techniques presented in the previous section, we can easily show that this logic
is non-convex. Thus, we can reduce from concept satisfiability relative to general
ProbALC01-TBoxes to checking subsumption relative to ProbEL∼p01 -TBoxes and obtain:

Theorem 4.14. For all ∼ ∈ {<,≤,=,≥, >} and p ∈ (0, 1), checking subsumption
relative to general ProbEL∼p01 -TBoxes is 2ExpTime-hard.

4.3.2 Subsumption in ProbEL01 is PSpace-complete

As already mentioned, there were reasons to believe that subsumption in ProbEL01 is
actually 2ExpTime-complete: so far any two-dimensional extension of EL turned out
to have the same complexity as the corresponding extension of the expressive DL ALC,
see for example [5, 52]. However, we show here that this is not the case by proving a
PSpace upper bound, thus establishing PSpace-completeness for both positive and
unrestricted subsumption.

It is instructive to have a look at the following example which realizes an exponential
counter in ProbEL01 and thus demonstrates the expressive power of ProbEL01 and the
way inferences are made. Notice that the example is inspired by the PSpace lower
bound for ProbEL01 from [101].

Example 4.15. Fix a positive integer n. We encode a number 0 ≤ k < 2n as follows:

(X = k) =
n−1

u
i=0

{
Xi i-th bit of k is 1;
Xi otherwise,

where Xi, Xi represent the bits of a binary counter. The goal of this example is to give a
(polynomially sized) TBox Tn, n > 0 such that Tn |= A v P>0(X = k) for any 0 ≤ k < 2n.

Let α = P>0r and let the TBox Tn consist of the following set of axioms (the colors

94

4.3 Complexity of Probabilistic Roles

will be used in an illustration below):

A v ∃α.A A v P>0(X = 0)

∃α.X0 v X0 u C1 ∃α.X0 v X0 u C1

Ci u ∃α.Xi v Xi u Ci+1 Ci u ∃α.Xi v Xi u Ci+1 for all 0 < i < n

Ci u ∃α.Xi v Xi u Ci+1 Ci u ∃α.Xi v Xi u Ci+1 for all 0 < i < n.

Intuitively, the first axiom enforces an infinite chain of A-elements. The second axiom
enforces that for each element of the chain, there is some world where this element satisfies
(X = 0). The last 6 concept inclusions imply the inclusion ∃α.(X = i) v (X = i + 1)
(using auxiliary concept names Ci, Ci representing the carry bits).

ow, fix some 0 ≤ k < 2n. By the first axiom, we have that Tn |= A v ∃αk.A. By
the second axiom, we get Tn |= A v ∃αk.P>0(X = 0). By the semantics, we have
Tn |= A v P>0

(
∃αk.(X = 0)

)
. Using the remaining axioms it is not hard to see that

Tn |= A v P>0(X = k); see also Figure 4.3 for an illustration.

On a high level, reasoning in Example 4.15 is performed in three steps:

(i) select (what we will later call) a ‘trace’, i.e., a sequence of probabilistic roles that
is implied by some concept name;

(ii) select some concept of the form P>0B implied by the ‘end’ of the trace (inducing a
fresh world);

(iii) use the TBox to propagate information back to the ‘start’ of the trace.

In Example 4.15, we select in the first step αk for some k for the concept name A. In
the second step, we note that A (the ‘end’ of the trace) implies P>0(X = 0). In step
three, we repeatedly apply the last six concept inclusions to obtain the result. In order
to devise an algorithm for deciding subsumption in ProbEL01, we certainly have to take
care of the kind of reasoning described above. Even better, it turns out that the pattern
we identified in a way already captures all the inferences. In particular, we will rigorously
define traces and use them as the main tool.

In what follows, we specify a non-deterministic consequence-driven algorithm that
decides subsumption and can be implemented in polynomial space. Without loss of
generality, we assume that the TBox is in the following normal form. A basic concept is
a concept of the form >, A, P>0A, P=1A, or ∃α.A, where A is a concept name and α is
a role, i.e., of the form r, P>0r, or P=1r with r a role name. In the latter two cases we
call the role α a probabilistic role. Now, every concept inclusion in the input TBox is
required to be of the form

X1 u . . . uXn v X,

95

4 Subjective Uncertainty in EL

0

A

1

A

...

k − 1

A

k

A

...

0

(X = k)

1

(X = k − 1)

...

k − 1

(X = 1)

k

(X = 0)

...

0

(X = k − 1)

1

(X = k − 2)

...

k − 1

(X = 0)

k

...

...
...

... · · ·

Figure 4.3: Illustration of the reasoning in Example 4.15. Each thread of elements
0, 1, . . . represents one possible world; dashed arrows indicate a probabilistic
role P>0r between two elements. Colored arrows indicate the application of
concept inclusions: orange corresponds to the first CI, blue to the second
CI, and green to the group of the 6 remaining CIs.

with X1, . . . , Xn, X basic concepts. It is not hard to show that every TBox can be
transformed into this normal form in polynomial time such that (non-)subsumption
between the concept names that occur in the original TBox is preserved. We refrain
from giving details here, but refer the reader to similar constructions, e.g., in [10].
Let T be the input TBox in normal form, CN the set of concept names that occur

in T , BC the set of basic concepts in T , and ROL the set of roles in T . Our algorithm
maintains the following data structures:

• a mapping Q that associates with each A ∈ CN a subset Q(A) ⊆ BC such that
T |= A v X for all X ∈ Q(A);

• a mapping Qcert that associates with each A ∈ CN a subset Qcert(A) ⊆ BC such

96

4.3 Complexity of Probabilistic Roles

R1 If X1 u . . . uXn v X ∈ T and X1, . . . , Xn ∈ Γ, then add X to Γ.

R2 If P=1A ∈ Γ, then add A to Γ.

R3 If A ∈ Γ, then add P>0A to Γ.

R4 If ∃P=1r.A ∈ Γ, then add ∃r.A and ∃P>0r.A to Γ.

R5 If ∃r.A ∈ Γ, then add ∃P>0r.A to Γ.

R6 If ∃α.A ∈ Γ and B ∈ Q(A), then add ∃α.B to Γ.

Figure 4.4: Saturation rules for cl(Γ).

that T |= A v P=1X for all X ∈ Qcert(A);

• a mapping R that associates with each probabilistic role α ∈ ROL a binary relation
R(α) on CN such that T |= A v P>0(∃α.B) for all (A,B) ∈ R(α).

Some intuition about the data structures is already provided above; e.g., X ∈ Q(A)
means that T |= A v X. However, there is also another view on these structures that
will be important in what follows: they represent an abstract view of a model of T , where
each set Q(A) describes the concept memberships of a domain element d in a world w
with d ∈ AI,w and R describes the structure of the rigid roles, i.e., when (A,B) ∈ R(α),
then d ∈ AI,w implies that in some world v with positive probability, d has an element
described by Q(B) as an α-successor. In this context, Qcert(A) contains all concepts
that are certain for any domain element that satisfies A in some world, i.e., all concepts
that hold with probability 1. Note that non-probabilistic roles r are not represented in
the R(·) data structure; they are treated in the basic concepts. The data structures are
initialized for all A ∈ CN and probabilistic roles α:

Q(A) = {>, A}; Qcert(A) = {>}; R(α) = ∅.

The sets Q(·), Qcert(·), and R(·) are then repeatedly extended by the application of
various rules. Before we can introduce these rules, we need some preliminaries. As
the first step, Figure 4.4 presents a (different!) set of rules that serves the purpose
of saturating a set of concepts Γ. We use cl(Γ) to denote the set of concepts that is
the result of exhaustively applying the displayed rules to Γ, where any rule can only
be applied if the added concept is in BC, but not yet in Γ. The rules access the data
structure Q(·) introduced above and shall later be applied to the sets Q(A) and Qcert(A),
but they will also serve other purposes as described below. It is not hard to see that rule
application terminates after polynomially many steps.

The rules that are used for completing the data structures Q(·), Qcert(·), and R(·) are
more complex and refer to ‘traces’ through these data structures, which were already
motivated and which we formally define next.

97

4 Subjective Uncertainty in EL

Definition 4.16 (Trace). A trace to An is a finite sequence S,A1, α2, A2, . . . , αn, An
where

1. each Ai ∈ CN and each αi ∈ ROL is a probabilistic role;

2. S = B for some P>0B ∈ Q(A1) or S = (r,B) for some (A1, B) ∈ R(P>0r);

3. (Ai, Ai−1) ∈ R(αi) for 1 < i ≤ n.

If t is a trace S,A1, α2, A2, . . . , αn, An and k ≤ n, we use tk to denote the trace
S,A1, α2, . . . , αk, Ak. Intuitively, the purpose of a trace is to deal with worlds that
are generated by concepts P>0A and ∃P>0r.A; there can be infinitely many such worlds
as ProbEL01 lacks the finite model property, see [101]. The trace starts at some domain
element represented by a set Q(A1) in the world generated by the first element S of the
trace, then repeatedly follows role edges represented by R(·) backwards until it reaches
the final domain element represented by Q(An). The importance of traces stems from
the fact that information can be propagated along them, as illustrated by Example 4.15
and formally captured by the following notion. Note that the rules R1 to R6 are used
in every step of this inductive definition.

Definition 4.17 (Type of a trace). Let t = S,A1, α2, . . . , αn, An be a trace. Then the
type Γ(t) ⊆ BC of t is defined as:

Γ(t) =

cl({B} ∪Qcert(A1)) if t = (B,A1);

cl(Qcert(A1) ∪ {∃r.B′ ∈ BC | B′ ∈ Qcert(B)}) if t = ((r,B), A1);

cl(Qcert(An) ∪ {∃αn.B′ ∈ BC | B′ ∈ Γ(tn−1)}) if n > 1.

Figure 4.5 shows the rules used for completing the data structures Q(·), Qcert(·), and
R(·). Rules S1 to S5 are rather straightforward and do not require further explanation.
Particularly interesting are rules S6 and S7 because they implement the propagation of
information along traces, as announced above: if there is a trace t to B, then any domain
element that satisfies B in some world must satisfy the concepts in Γ(t) in some other
world. So if for example P>0A ∈ Γ(t), we need to add P>0A also to Qcert(B). Precisely
this is captured in rule S6. In a similar way one can explain S7.

Our algorithm for deciding subsumption starts with the initial data structures defined
above and then exhaustively applies the rules shown in Figure 4.5. To decide whether
T |= A v B, it then simply checks whether B ∈ Q(A) after the algorithm terminated.

Lemma 4.18. Let T be a general ProbEL01-TBox in normal form and A0 and B0 be
concept name and a basic concept, respectively. Then T |= A0 v B0 iff, after exhaustive
rule application, B0 ∈ Q(A0).

98

4.3 Complexity of Probabilistic Roles

S1 Apply R1-R6 to Q(A) and Qcert(A).

S2 If P∗B ∈ Q(A),
then add P∗B to Qcert(A).

S3 If C ∈ Qcert(A),
then add P=1C and C to Q(A).

S4 If ∃α.B ∈ Q(A) with α a probabilistic role,
then add (A,B) to R(α).

S5 If (A1, A2) ∈ R(α), B ∈ Qcert(A2),
then add ∃α.B to Qcert(A1).

S6 If t is a trace to B and P∗A ∈ Γ(t),
then add P∗A to Qcert(B).

S7 If t is a trace to B and ∃α.A ∈ Γ(t) with α a probabilistic role,
then add (B,A) to R(α).

Figure 4.5: The rules for completing the data structures.

Proof. For the “if” direction we show that the following invariants of the algorithm hold:

C ∈ Q(A) implies T |= A v C (inv1)
C ∈ Qcert(A) implies T |= A v P=1C (inv2)

(A,B) ∈ R(α) implies T |= A v P>0(∃α.B) (inv3)

The proof is by induction on the number of applications of the rules in Figure 4.5. The
induction base is trivial since A v A and A v >. For showing the induction step, we use
sets of concepts Γ to denote the conjunction u

C∈Γ
C. We start by showing soundness of

the rules R1-R6. In particular, for every set of concepts Γ it holds

T |= Γ v cl(Γ). (∗)

This fact is a direct consequence of the semantics for rules R1-R5. For R6 assume
∃α.A ∈ Γ and B ∈ Q(A). Invariant (inv1) implies T |= A v B, which means that we
can certainly add ∃α.B to Γ.
Next, we analyze traces closer and prove the following claim.

Claim 1. If t is a trace to B, then T |= B v P>0(Γ(t)).
Proof of Claim 1. Let t = S,A1, α2, . . . , αn, An. The proof is by induction on the length
n of t. For the induction base, we let n = 1 and distinguish cases according to the form

99

4 Subjective Uncertainty in EL

of S. Consider first the case that the trace starts with S = B, i.e., P>0B ∈ Q(A1).
From invariants (inv1) and (inv2), it follows that T |= A1 v P>0(B uQcert(A1)). Since
Γ(t) = cl({B} ∪Qcert(A1)) we obtain T |= A1 v P>0(Γ(t)), by Equation (∗).

Assume now that the trace starts with S = (r,B), i.e., (A1, B) ∈ R(P>0r). By (inv3),
we have T |= A1 v P>0(∃P>0r.B), thus T |= A1 v P>0(∃r.P>0B). From invariant
(inv2), we get T |= A1 v P=1(Qcert(A1)) and T |= B v P=1(Qcert(B)). Overall, we
obtain:

T |= A1 v P>0 (Qcert(A1) u ∃r.Qcert(B)) .

Since Γ(t) = cl(Qcert(A1) ∪ {∃r.B′ | B′ ∈ Qcert(B)}), we can apply (∗) to obtain:

T |= A1 v P>0(Γ(t)).

For the induction step, let n > 1. By Definition 4.16, (An, An−1) ∈ R(αn), thus,
invariant (inv3) yields T |= An v P>0(∃αn.An−1). Applying the induction hypothesis,
we get

T |= An v P>0 (∃αn.P>0(Γ(tn−1))) .

Since ∃αn.P>0C v P>0∃αn.C is valid for all C and probabilistic roles αn, we obtain

T |= An v P>0 (∃αn.Γ(tn−1)) .

On the other hand, (inv2) implies T |= An v P=1(Qcert(An)). Together this yields:

T |= An v P>0 (Qcert(An) u ∃αn.Γ(tn−1)) .

Since Γ(t) = cl(Qcert(An) ∪ {∃αn.B | B ∈ Γ(tn−1)}), we can apply (∗) to finally get

T |= An v P>0(Γ(t)).

This finishes the proof of the claim.

It remains to show that the rules in Figure 4.5 preserve the invariants:

S1 Direct consequence of (∗).

S2 Since P>0B v P=1(P>0B) and P=1B v P=1(P=1B) are valid concept inclusions
this is a direct consequence of the semantics.

S3 C ∈ Qcert(A) implies T |= A v P=1C by invariant (inv2), hence also T |= A v C.

S4 ∃α.B ∈ Q(A) implies T |= A v ∃α.B by invariant (inv1), thus also T |= A v
P>0(∃α.B).

S5 On the one hand, (A1, A2) ∈ R(α) implies T |= A1 v P>0(∃α.A2), by (inv3).
On the other hand, B ∈ Qcert(A2) yields T |= A2 v P=1B, by (inv2). By the
semantics, together they imply T |= A1 v P=1(∃α.B).

100

4.3 Complexity of Probabilistic Roles

S6 Let t be a trace to B and Γ = Γ(t) its type. By the above claim, T |= B v P>0C
for every C ∈ Γ. Thus, in particular, T |= B v P∗A for all P∗A ∈ Γ. By the
semantics, T |= B v P=1(P∗A), so P∗A can be added to Qcert(B).

S7 Analogously to S6.

Assume now B0 ∈ Q(A0). Invariant (inv1) implies T |= A0 v B0 which finishes the
proof of the “if”-direction.

For the “only if”-direction, we provide a probabilistic model I = (∆I ,W, (Iw)w∈W) of
T such that there is a world w ∈ W and a domain element d ∈ ∆I with d ∈ AI,w0 but
d /∈ BI,w0 .
We define sequences ∆I0 ,∆I1 , . . . , W0,W1, . . . , and partial maps π0, π1, . . . with

πi : ∆Ii ×Wi → 2BC. Our desired sets ∆I and W are then obtained in the limit. The
elements of the sets ∆Ii are sequences of triples (α,w,A) where α ∈ ROL is a role,
w ∈Wi is a world, and A ∈ CN is a concept name. For such a sequence σ, we use σj to
denote the prefix of σ that consists of the first j triples.
Intuitively, the worlds of I correspond to traces. In particular, all worlds (except

two initial ones) will be of the form (σ, S) for some σ ∈ ∆I and S either B or (r,B)
for some concept name B and role name r. For establishing the close correspondence
between worlds and traces, we define a function δ that maps worlds (σ, S) to the
sequence S,An, α̂n, . . . , α̂2, A1 where σ = (α1, w1, A1) · · · (αn, wn, An) and α̂ = α if α is
a probabilistic role and α̂ = P>0r if α is the role name r. Note that δ reverses the order
of the Ai and the αi. We will show that the world w precisely witnesses the existence of
the trace δ(w).
To start the construction of I, set

• ∆I0 = {(α, ε,A0)} where α is any role (not important) and A0 is the concept name
from the left-hand side of the subsumption which is to be checked;

• W0 = {ε, 0},

• π((α, ε,A0), ε) = Q(A0) and π((α, ε,A0), 0) = Qcert(A0).

For the induction step, we start with setting ∆Ii = ∆Ii−1 , Wi = Wi−1, and πi = πi−1,
and then apply the following rules:

1. If ∃α.A ∈ πi(σ,w) for some σ ∈ ∆Ii and w ∈Wi, then set σ′ := σ · (α,w,A) and

(a) add σ′ to ∆Ii (if it does not exist yet);

(b) set πi(σ′, w) = Q(A) and πi(σ′, v) = Qcert(A) for all v ∈Wi \ {w}.

2. If σ = (α1, w1, A1) · · · (αn, wn, An) ∈ ∆Ii and P>0B ∈ Q(An), then

(a) add (σ,B) to Wi (if it does not exist yet);

101

4 Subjective Uncertainty in EL

(b) set πi(σj , (σ,B)) = Γ(δ(σ,B)n−j+1) for all 1 ≤ j ≤ n; and

(c) set πi(σ′ · (α,w,A), (σ,B)) = Qcert(A) for all σ′ · (α,w,A) ∈ ∆Ii that are not
a prefix of σ.

3. If σ = (α1, w1, A1) · · · (αn, wn, An) ∈ ∆Ii and (An, B) ∈ R(P>0r), then

(a) add (σ, r,B) to Wi (if it does not exist yet);

(b) set πi(σj , (σ, r,B)) = Γ(δ(σ, (r,B))n−j+1) for all 1 ≤ j ≤ n; and

(c) set πi(σ′ · (α,w,A), (σ, r,B)) = Qcert(A) for all σ′ · (α,w,A) ∈ ∆Ii that are
not a prefix of σ.

Finally, set ∆I =
⋃
i≥0 ∆Ii , W =

⋃
i≥0Wi, and π =

⋃
i≥0 πi. Define µ such that

µ(w) > 0 for all w ∈ W and
∑

w∈W µ(w) = 1. If W is finite this is clearly possible;
otherwise assign the probabilities 1/2, 1/4, 1/8, . . . to (an enumeration of) the worlds.
It remains to define the interpretation of concept and role names:

AI,w = {σ ∈ ∆I | A ∈ π(σ,w)};
rI,w = {(σ, σ · (P>0r, v, A)) | σ · (P>0r, v, A) ∈ ∆I , w = (σ, r, A)} ∪

{(σ, σ · (r, w,A)) | σ · (r, w,A) ∈ ∆I} ∪
{(σ, σ · (P=1r, v, A)) | σ · (P=1r, v, A) ∈ ∆I}.

In the following claim we state and prove some important properties of the construction.
Note that Points (i) and (ii) verify that the construction, specifically steps 2(b) and 3(b)
are well-defined.

Claim 2. The following points hold:

(i) for every σ = (α1, w1, A1) · · · (αn, wn, An) ∈ ∆I we have (Aj , Aj+1) ∈ R(α̂j+1) for
all 1 ≤ j < n;

(ii) for every σ = (α1, w1, A1) · · · (αn, wn, An) ∈ ∆I and w ∈ W we have π(σ,w) is
either Q(An), Qcert(An) or Γ(t) for some trace t to An;

(iii) for every σ = (α1, w1, A1) · · · (αn, wn, An) ∈ ∆I , there are worlds w, v with
π(σ,w) = Q(An) and π(σ, v) = Qcert(An);

(iv) P∗A ∈ π(σ,w) if and only if P∗A ∈ π(σ, v) for all σ ∈ ∆I and w, v ∈W ;

(v) for all probabilistic roles α and σ, σ′ ∈ ∆I with σ′ = σ · (α, v,B) and A ∈ π(σ′, w)
we have ∃α.A ∈ π(σ,w).

102

4.3 Complexity of Probabilistic Roles

Proof of Claim 2. Throughout the proof we assume that σ = (α1, w1, A1) · · · (αn, wn, An).
We prove Points (i) and (ii) together by induction on the number of rule applications.
The induction base is immediate by the definition of ∆I0 , W0, and π0. For the induction
step assume first rule 1 is applied to σ, i.e., ∃αn+1.An+1 ∈ πi(σ,w) for some w ∈Wi. By
induction hypothesis of Point (ii), πi(σ,w) is either Q(An), Qcert(An), or Γ(t) for some
trace t to An. Thus, πi(σ,w) is closed under cl and R5 yields ∃α̂n+1.An+1 ∈ πi(σ,w).
Now, rules S4, S3, and S7 imply (An, An+1) ∈ R(α̂n), i.e., Point (i) is preserved after
application of rule 1. Assume now that rule 2 is applied to σ and let P>0B ∈ Q(An). By
this fact and induction hypothesis for Point (i), it is immediately clear that t := δ(σ,B)
is a trace. Moreover, one can easily check that tn−j+1 is a trace to Aj for all 1 ≤ j ≤ n.
Hence, π(σj , (σ,B)) is the type of a trace to Aj , namely Γ(tn−j+1). All other π(·, (σ,B))
are set to Qcert(A) for the correct A. Thus, rule 2 preserves Point (ii). Similarly, it can
be shown that also rule 3 preserves Point (ii).

Point (iii) can be proved by induction on the number of rule applications. The induction
base is clear by the definition of I0. For the induction step it suffices to look at rule 1
and observe that when σ is added to ∆I , we set π(σ,w) = Q(An) for one world w and
π(σ, v) = Qcert(An) for all other worlds v (and there exist at least two worlds).

For Point (iv) we make a case distinction on π(σ,w) and π(σ, v). By Point (ii), both
are either Q(An), Qcert(An) or Γ(t) for some trace t to An. For symmetry reasons it
suffices to consider π(σ,w). If π(σ,w) = Qcert(An), then P∗A ∈ Q(A) (by rule S3) and
P∗A ∈ Γ(t) for any trace t to An, by Definition 4.17. If π(σ,w) = Q(An), then by rule
S2, P∗A will be in Qcert(An) and we proceed as before. If π(σ,w) = Γ(t) for some trace
t to An, then by S6 we have P∗A ∈ Qcert(An) and, again, we can continue as before.

For proving Point (v), we make a case distinction on π(σ′, w) according to Point (ii).

• If π(σ′, w) = Q(B), then construction rule 1 implies ∃α.B ∈ π(σ,w). Since π(σ,w)
is closed under cl, by R6 we obtain ∃α.A ∈ π(σ,w).

• Assume π(σ′, w) = Qcert(B). By Point (i), (An, B) ∈ R(α) (note that α is
probabilistic). Now, S5 implies ∃α.A ∈ Qcert(An) ⊆ π(σ,w).

• Assume π(σ′, w) = Γ(t) for some trace t to B. Thus, π(σ,w) is also defined as the
type Γ(t′) of some trace t′. More precisely, t′ = t, α,B′ for some B′. By definition
of the type of trace t′, we get ∃α.A ∈ π(σ,w).

This finishes the proof of Claim 2 and we are ready to show the ‘truth lemma’ of our
model construction.

Claim 3. For all σ ∈ ∆I , w ∈W , and C ∈ BC, we have σ ∈ CI,w iff C ∈ π(σ,w).

Proof of Claim 3. We prove the claim by a case distinction on the form of C. Throughout
the following we assume σ = (α1, w1, A1) · · · (αn, wn, An).

103

4 Subjective Uncertainty in EL

• C = >. Then both σ ∈ >I,w and > ∈ π(σ,w) for all σ ∈ ∆I and w ∈W .

• C = A ∈ CN. For this case, the claim holds trivially by definition of the interpreta-
tion of concept names.

• C = P>0A. “if”: Let σ ∈ (P>0A)I,w. Then, by the semantics, σ ∈ AI,v for some
v ∈ W . Induction hypothesis implies A ∈ π(σ, v). By R3, also P>0A ∈ π(σ, v),
and by Claim 2(iv), P>0A ∈ π(σ,w).

“only if”: Let P>0A ∈ π(σ,w). By Claim 2(iii), there is some world v with
π(σ, v) = Q(An). By Claim 2(iv), P>0A ∈ Q(An). By construction rule 2(a), the
world v′ = (σ,A) is inW . By step (b) of rule 2, A ∈ π(σ, v′) = Γ(δ(v′)1). Induction
hypothesis yields σ ∈ AI,v′ , thus σ ∈ (P>0A)I,w.

• C = P=1A. “if”: Let σ ∈ (P=1A)I,w, thus σ ∈ AI,v for all v ∈ W . By induction
hypothesis, A ∈ π(σ, v) for all v ∈ W . By Claim 2(iii), there is a world v′ such
that π(σ, v′) = Qcert(An); thus, A ∈ Qcert(An). By S3, P=1A ∈ Q(An), and by S2
also P=1A ∈ Qcert(An). By Claim 2(iv) we obtain P=1A ∈ π(σ,w).

“only if”: Let P=1A ∈ π(σ,w). By Claim 2(iv), P=1A ∈ π(σ, v) for all v ∈W . Since
all π(σ, v) are closed under cl, R2 implies A ∈ π(σ, v) for all v. By the hypothesis,
σ ∈ AI,v for all v ∈W , which, by the semantics, implies σ ∈ (P=1A)I,w.

• C = ∃r.A. “if”: Assume σ ∈ (∃r.A)I,w. By the semantics, there is a σ′ ∈ ∆I

such that σ′ ∈ AI,w and (σ, σ′) ∈ rI,w. By induction hypothesis, we know that
A ∈ π(σ′, w). Due to the model construction, there are three possibilities for (σ, σ′)
being in rI,w:

– σ′ = σ · (P>0r, v,B) and w = (σ, r,B) for some concept name B. By
construction rule 3(c), π(σ′, w) = Qcert(B) since σ′ is not a prefix of σ.
Hence, A ∈ Qcert(B). By rule 3(b), we have that π(σ,w) = Γ(δ(w)1) =
cl(Qcert(An) ∪ {∃r.B′ | B′ ∈ Qcert(B)}). Since A ∈ Qcert(B), ∃r.A ∈ π(σ,w).

– σ′ = σ · (r, w,B) for some B. By construction, in particular rule 1, we have
∃r.B ∈ π(σ,w) and π(σ′, w) = Q(B). Hence, A ∈ Q(B). Since π(σ,w) is
closed under cl, rule R6 yields ∃r.A ∈ π(σ,w).

– σ′ = σ · (P=1r, v,B). We apply Claim 2(v) to obtain ∃P=1r.A ∈ π(σ,w).
Since π(σ,w) is closed under cl, rule R4 yields ∃r.A ∈ π(σ,w).

“only if”: Let ∃r.A ∈ π(σ,w). By rule 1 of the construction, there is a domain
element σ′ = σ·(r, w,A) with π(σ′, w) = Q(A), thus A ∈ π(σ′, w) and, by induction,
σ′ ∈ AI,w. By definition of the interpretation of role names, (σ, σ′) ∈ rI,w. Hence,
σ ∈ (∃r.A)I,w.

• C = ∃P=1r.A. “if”: Let σ ∈ (∃P=1r.A)I,w, thus there is a domain element σ′ with
σ′ ∈ AI,w and (σ, σ′) ∈ rI,v for all v ∈W . By induction hypothesis, A ∈ π(σ′, w).

104

4.3 Complexity of Probabilistic Roles

Consider now the worlds 0, ε ∈ W : By definition of the interpretation of r, it
follows from (σ, σ′) ∈ rI,0 ∩ rI,ε that σ′ = σ · (P=1r, v,B) for some world v ∈ W
and a concept name B. By Claim 2(v), this together with A ∈ π(σ′, w) yields
∃P=1r.A ∈ π(σ,w).

“only if”: Let ∃P=1r.A ∈ π(σ,w). By rule 1 of the construction, there is a domain
element σ′ = σ · (P=1r, w,A) with π(σ′, w) = Q(A), thus A ∈ π(σ′, w) and
σ′ ∈ AI,w. By definition of the interpretation of role names, (σ, σ′) ∈ rI,v for all
v ∈W . Hence, σ ∈ (∃P=1r.A)I,w.

• C = ∃P>0r.A. “if”: Let σ ∈ (∃P>0r.A)I,w, thus there is a σ′ ∈ ∆I with σ′ ∈ AI,w
and (σ, σ′) ∈ rI,v for some v ∈W . By induction hypothesis, A ∈ π(σ′, w). Again,
we distinguish the three cases of the interpretation of the roles.

– σ′ = σ · (P>0r, v
′, B) and w = (σ, r,B) for some concept name B. It follows

immediately from Claim 2(v) that ∃P>0r.A ∈ π(σ,w).

– σ′ = σ · (r, w,B) for some concept name B. By construction, in particular
rule 1, we have ∃r.B ∈ π(σ,w) and π(σ′, w) = Q(B). Since π(σ,w) is closed
under cl, rule R6 implies ∃r.A ∈ π(σ,w). Thus, by R5, ∃P>0r.A ∈ π(σ,w) .

– σ′ = σ ·(P=1r, v,B). Applying Claim 2(v) yields ∃P=1r.A ∈ π(σ,w). Applying
rule R4 we obtain ∃P>0r.A ∈ π(σ,w).

“only if”. Let ∃P>0r.A ∈ π(σ,w). On the one hand, by rule 1 of the construction
there is a domain element σ′ = σ·(P>0r, w,A) with π(σ′, w) = Q(A). By hypothesis
we get σ′ ∈ AI,w. On the other hand, Claim 2(i) implies (An, A) ∈ R(P>0r). Thus,
by rule 3(a), the world v = (σ, r, A) exists. By definition of the interpretation of
role names (σ, σ′) ∈ rI,v for v = (σ,A, r). Hence σ ∈ (∃P>0r.A)I,w.

This finishes the proof of the claim. Using the proved claims it is easy to show that I is
a model of T . Assume X1 u . . . uXn v X ∈ T and there are σ ∈ ∆I and w ∈W such
that σ ∈ XI,wi for all 1 ≤ i ≤ n. By Claim 3, we have Xi ∈ π(σ,w) for all 1 ≤ i ≤ n. By
Claim 2(ii), we know that π(σ,w) is either Q(A), Qcert(A), or Γ(t) for some trace t to
A. In either case π(σ,w) is closed under the rules cl in Figure 4.4, thus rule R1 implies
X ∈ π(σ,w). Another application of Claim 3 yields σ ∈ XI,w.
It remains to show that for σ0 = (α, ε,A0) we have σ0 ∈ AI,ε0 , but not σ0 ∈ BI,ε0 .

However, both are obviously true: first we note that, by construction, π(σ0, ε) = Q(A0).
By definition, A0 ∈ Q(A0), hence σ0 ∈ AI,ε0 by the above claim. On the other hand, by
assumption we have B0 /∈ Q(A0), thus by the above claim σ0 /∈ BI,ε0 . �

We now argue that the algorithm can be implemented using only polynomial space. First,
it is easy to see that there can be only polynomially many rule applications: every rule
application extends the data structures Q(·), Qcert(·), and R(·), but these structures

105

4 Subjective Uncertainty in EL

consist of polynomially many sets, each with at most polynomially many elements. It
thus remains to verify that each rule application can be executed using only polynomial
space. This is obvious for rules R1-R6 and S1-S5. However, for the rules involving
traces, i.e., S6 and S7, we have to show that it is not necessary to consider all (infinitely
many!) traces. We show the following proposition using a straightforward pumping
argument.

Proposition 4.19. If there is a trace t to B, then there is a trace t̂ to B with Γ(t̂) = Γ(t)
and length at most M := |T | · 2|T |.

Proof. Let t = S,A1, α2, . . . , αn, An and n > M . In what follows, Γi denotes the type of
the trace ti, i.e., Γ(ti). Consider the sequence (A1,Γ1), . . . , (An,Γn) of concept names
with their corresponding types. Note that there are at most 2|T | possible types and at
most |T | concept names. Since n > M , the pigeon hole principle implies that there are
1 ≤ i < j ≤ n with Ai = Aj and Γi = Γj . It should be clear that the sequence

t′ = S,A1, α2, . . . , αi, Ai, αj+1, Aj+1, . . . , An

is, in fact, a trace to B and Γ(t′) = Γ(t). Obviously, t′ is shorter than t. If the length of
t′ is at most M , we are done; otherwise, set t := t′ and repeat the above steps. �

Now, to implement S6 and S7 in polynomial space, we use a non-deterministic approach,
enabled by Savitch’s theorem: to check whether there is a trace t to B with C ∈ Γ(t),
we guess t step-by-step, at each time keeping only a single Ai, αi and Γ(ti) in memory.
When we reach a situation where Ai = B and C ∈ Γ(ti), our guessing was successful and
we apply the rule. In order to stop this procedure, we also maintain a binary counter of
the number of steps that have been guessed so far. As soon as this counter exceeds M
from Proposition 4.19, the maximum length of non-repeating traces, we stop the guessing
and do not apply the rule. Clearly, this yields an algorithm that runs in polynomial
space.

Theorem 4.20. Subsumption relative to general ProbEL01-TBoxes is PSpace-complete.

As a byproduct, the proof of Lemma 4.18 yields a unique least model (in the sense of
Horn-logic). This can be used in proving convexity of ProbEL01.

Corollary 4.21. Subsumption in ProbEL01 is convex, i.e., T |= C v D1 tD2 implies
T |= C v D1 or T |= C v D2.

Proof. We prove the contrapositive. Take an arbitrary general TBox T and concept
names C, D1, and D2 such that

T 6|= C v D1 and T 6|= C v D2.

106

4.4 Conclusion and Outlook

By Lemma 4.18, we get that D1 /∈ Q(C) and D2 /∈ Q(C). Note that the model
I = (∆I ,W, (Iw)w∈W , µ) constructed in the proof of Lemma 4.18 features some individual
d ∈ ∆I and a world w with d ∈ CI,w and for all concept names: d ∈ DI,w iff D ∈ Q(C).
Thus, we have d ∈ CI,w but d /∈ DI,w1 and d /∈ DI,w2 and hence d /∈ (D1 tD2)I,w. This
proves that T 6|= C v D1 tD2. �

Let us remark that the logic ProbEL01 is a syntactic variant of the two-dimensional logic
S5EL which can be seen as a fragment of the description logic ‘of change’ S5ALCQI [6].
More precisely, define C† to be the S5EL concept that is obtained from the ProbEL01

concept C by replacing P>0 with ♦ and P=1 with � and lift this translation ·† in the
natural way to TBoxes. We then have that

T |= C v D iff T † |= C† v D†.

With a similar mapping, we can reduce from subsumption in S5EL to subsumption in
ProbEL01. Hence, the PSpace-completeness result transfers to S5EL.

Corollary 4.22. Subsumption in S5EL relative to general TBoxes is PSpace-complete.

4.4 Conclusion and Outlook

In this chapter, we have taken a closer look at probabilistic extensions of the tractable
description logic EL with the hope of identifying tractable fragments. However, in
the first part, we showed that—quite to the contrary—any extension of EL with a
single probabilistic operator P∼p with p ∈ (0, 1) renders subsumption relative to general
TBoxes ExpTime-hard. Motivated by the fact that many ontologies used in biomedical
applications are in fact classical TBoxes, we then studied subsumption relative to classical
TBoxes. In particular, we were able to identify tractable fragments, namely ProbEL∼pc
for any choice of ∼ ∈ {>,≥}. Notably, these fragments coincide for any choice. We
complemented this result by showing that for ∼ ∈ {<,≤}, these logics are coNP-hard. In
the second part, we studied the fragment ProbEL01 and managed to close the complexity
gap to PSpace-completeness.

Open problems

In the case of probabilistic concepts, classical TBoxes have proved to be a promising
alternative to general TBoxes in the sense that they admit polynomial time reasoning
for some fragments that are intractable for general TBoxes. We leave as future work the
precise complexity for subsumption checking relative to full ProbELc classical TBoxes,
that is, when we allow more than a single probabilistic operator. It would be interesting
to also admit probabilistic roles in this framework.

107

5 Ontology-Based Access to
Probabilistic Data

In the introduction, we have argued that applications which require data to be first
extracted from the web and then further processed and accessed locally by feeding it
into a relational database system (RDBMS) face two crucial difficulties:

(1) data extracted from the web is often provided without explicit schema information;

(2) extracted data is often uncertain because of the unreliability of many web data
sources and due to the data extraction process, which relies on heuristic decisions
and is significantly error prone [97].

Item (1) is addressed by the framework of ontology-based database access (OBDA),
where an ontology provides background knowledge about the domain and is used for the
interpretation or completion of data. While the current techniques developed in OBDA
are well-suited to deal with the first aspect, they are not able to deal with Item (2),
uncertainty. Thus, in this chapter,

we assume uncertainty in the data and propose and analyze the framework
of ontology-based access to probabilistic data (pOBDA).

In our framework, we adopt data models from the recently very active area of probabilistic
databases [32, 125], but use an open world assumption as is standard in the context of
OBDA. In a nutshell, our framework pOBDA relates to probabilistic database systems
in the same way that traditional OBDA relates to relational database systems. To put
it into context with the previous chapters, let us note that we allow for probabilistic
data non-probabilistic ontologies formulated in first-order logic or a description logic. In
fact, we deliberately avoid probabilities in the ontology because this results in a simple
and fundamental, yet useful formalism that still admits a very transparent semantics.
Finally, notice that the adopted data model features implicit independence assumptions,
which are not made in ProbFO and enable us to encode exponentially many worlds in a
succinct way.
While the relevant reasoning problem in traditional OBDA is query answering, we

switch here to computing answer probabilities to (mostly) conjunctive queries. In database
research, practical feasibility is usually identified with PTime data complexity, where
data complexity means to treat only the (probabilistic) data as an input while considering
both the ontology and the query to be fixed. Hence, the main aim of this chapter is to

109

5 Ontology-Based Access to Probabilistic Data

study the data complexity of computing answer probabilities in the framework
of pOBDA described above.

More precisely, we pursue a non-uniform approach to complexity as recently initiated
by [102] and continued in [18]; however, in contrast to the former and similar to the
latter, we define one problem for each pair (q, T) of query and ontology. Notice that
computing answer probabilities is not a decision problem but rather closely related to
counting problems. Thus, instead of identifying hard problems with NP-hardness, we
use the natural analog in counting complexity #P [126].
Our running example is web data extraction where the extracted data is stored in a

probabilistic database, in the spirit of [64]. There are plenty of web data extraction tools
which often use some kind of confidence score attached to assertions since the extraction
process is error prone; two examples are [21, 41]. One particular way to implement these
confidence scores is via probabilities. Further note that in many information extraction
tools, background knowledge in form of an ontology is already used at the stage of
extraction, see for example [51]. This is in contrast to our approach where the ontology
is employed during querying. We believe, however, that the two approaches are not
excluding each other and can be orchestrated to play together.

Related Work

The probabilistic ABox formalism studied in this chapter is inspired by the probabilistic
database models in [36], but can also be viewed as a variation of probabilistic versions of
datalog and Prolog, see [116, 50, 107] and references therein. They can also be seen as less
succinct version of pc-tables, a traditional data model for probabilistic databases due to
Imielinski and Lipski [81]. Most relevant for us is the intensive study of tuple-independent
databases; in particular, we will exploit the PTime/#P-dichotomy for answering unions
of conjunctive queries over such databases [37]. Nowadays, there is an abundance of
other probabilistic data models, see [63, 120, 4, 125] and the references therein. All
these models provide a compact representation of distributions over potentially large
sets of possible worlds. Taking into account the open-world assumption and the TBox,
our semantics can be compared to probabilistic datalog [116, 49], however, without
uncertainty in the TBox.

The motivation for our framework is somewhat similar to what is done in [124], where
the retrieval of top-k-answers in OBDA is considered under a fuzzy logic-like semantics
based on ‘scoring functions’. There have recently been other approaches to combining
ontologies and probabilities for data access [47, 59], yet with a different semantics; the
setup considered by Gottlob, Lukasiewicz, and Simari in [59] is close in spirit to the
framework studied here, but also allows probabilities in the TBox and has a different,
rather intricate semantics based on Markov logic. The proposal by Finger et al. [47]
differs from our setting as it does not adopt any independence assumptions. There has

110

also been a large number of proposals for enriching description logic TBoxes (instead
of ABoxes) with probabilities, see Chapter 4 and [100, 101] and the references therein.
The setting perhaps closest to ours with respect to the semantics is probabilistic data
exchange recently introduced by Fagin, Kimelfeld, and Kolaitis [44]. They adopt the
same data model, but—as is common for data exchange settings—study the influence of
schema mappings including tuple and equality generating dependencies instead of an
ontology.

Contribution and Structure of the Chapter

In Section 5.1, we introduce the necessary preliminaries for queries and query answering
relative to an ontology in traditional OBDA. In Section 5.2, we introduce the framework
of ontology-based access to probabilistic data. First, we formally specify our data model
probabilistic ABoxes (pABoxes) and a restricted variant of it, assertion-independent
probabilistic ABoxes (ipABoxes), which can be viewed as counterpart of tuple-independent
databases. Second, we define the relevant computational problem, namely computing
the probability of certain answers to a query relative to an ontology. Additionally, we
observe that allowing full probabilistic ABoxes always leads to #P-hardness and we thus
restrict our attention mostly to to ipABoxes.
As the central tool for studying complexity, we use query rewriting, which is an

important and well-studied technique for traditional OBDA [28, 94, 17, 90]. In a nutshell,
a query q and an ontology T are rewritten into a new query qT such that answering q
relative to T is the same as answering qT . The fact that we can use query rewritings from
traditional OBDA also in the context of pOBDA is based on the following observation:
for any pABox A, the probability that a tuple ~a is a certain answer to q over A relative
to an ontology T is identical to the probability that ~a is an answer to qT over A viewed
as a probabilistic database. This lifting of query rewriting to the probabilistic case
immediately implies that one can implement pOBDA based on existing PDBMSs such
as MayBMS, Trio, and MystiQ [3, 129, 23].

In Section 5.3, we begin our study of the complexity landscape in pOBDA by considering
pairs (q, T) of first-order queries and first-order ontologies which can be rewritten
in the above sense. Lifting allows us to carry over the dichotomy between PTime
and #P-hardness for computing the probabilities of answers to unions of conjunctive
queries (UCQs) over probabilistic databases recently obtained by Dalvi, Schnaitter, and
Suciu [33, 37] to our pOBDA framework provided that we restrict ourselves to ipABoxes.
That is, each such pair (q, T) can be answered in polynomial time or it is #P-hard to
do so.
In Section 5.4, we instantiate this to concrete ontology and query languages, namely

DL-Lite and Boolean, connected conjunctive queries (CQs) without individual names.
Most notably, we provide a transparent and decidable characterization of those queries q
and DL-Lite-ontologies T for which computing answer probabilities is in PTime. As a nec-

111

5 Ontology-Based Access to Probabilistic Data

essary preliminary step, we restate the mentioned dichotomy of UCQs over probabilistic
databases [37].
In Section 5.5, we proceed to showing that query rewriting is a complete tool for

proving PTime data complexity in pOBDA, in the following sense: we replace DL-Lite
with the strictly more expressive description logic ELI, where, in contrast to DL-Lite,
rewritings into first-order queries do not exist for every CQ q and ontology T ; we then
prove that if any (q, T) does not have a rewriting, then computing answer probabilities
for q relative to T is #P-hard. Thus, if it is possible at all to prove that some (q, T) has
PTime data complexity, then this can always be done using query rewriting.
Both in DL-Lite and ELI, the class of queries and TBoxes with PTime data com-

plexity is relatively small, which leads us to also consider the approximation of answer
probabilities, based on the notion of a fully polynomial randomized approximation scheme
(FPRAS). This is the subject of Section 5.6. It is not hard to see that all pairs (q, T)
have an FPRAS when T is formulated in DL-Lite. Even better, this result generalizes
to a more expressive data model which allows for DNF annotations. This observation
clearly gives hope for practical applications. As in the exact, case we move to the
ontology language ELI and show that FO-rewritability is again the right tool to study
(non-)existence of FPRASes. Our two main results are as follows. Over ipABoxes, we
choose one non-FO-rewritable pair (q, T) and show that there is an FPRAS if, and only
if there is an FPRAS for a certain notoriously hard probabilistic network reliability
problem. Over pABoxes allowing for DNF annotations, we show that the existence of an
FPRAS for a Boolean, connected q and ELI-TBox T is equivalent to FO-rewritability
of q relative to T .

5.1 Preliminaries

A first-order query (FOQ) is a first-order formula ϕ(~x) constructed from atoms A(t)
and r(t, t′) using negation, conjunction, and existential quantification where t, t′ denote
terms, that is, variable symbols or individual names. The free variables ~x are the answer
variables of ϕ(~x). A FOQ ϕ is n-ary if it has n answer variables and Boolean if it is
0-ary. We will mostly consider a special class of FOQs: conjunctive queries (CQs) take
the form ∃~y ϕ(~x, ~y), where ϕ a conjunction of atoms of the form A(t) and r(t, t′). We call
the variables in ~y the quantified variables. The set of all variables in a CQ q is denoted
by var(q) and the set of all terms in q by term(q). Whenever convenient, we treat a CQ
as a set of atoms and sometimes write r−(t, t′) instead of the atom r(t′, t). Unions of
conjunctive queries (UCQs) are disjunctions of CQs. A conjunctive query q is called
connected if the graph (Vq, Eq) is connected, where

• Vq = term(q);

• Eq = {{t, t′} | r(t, t′) ∈ q}.

112

5.1 Preliminaries

Let ϕ be an n-ary FOQ. For an interpretation I = (∆I , ·I)1, we write ans(ϕ, I) to
denote the answers to ϕ in I, that is, the set of all tuples ~a ∈ (∆I)n such that I |= ϕ[~a].
For conjunctive queries, answers are characterized using the notion of matches. More
specifically, let q(~x) be a CQ with answer variables (x1, . . . , xn). For ~a = a1 · · · an ∈ (NI)

n,
an ~a-match for q in I is a mapping π : term(q)→ ∆I such that:

• π(xi) = ai for 1 ≤ i ≤ n,

• π(a) = aI for all a ∈ term(q) ∩ NI, and

• π(t) ∈ AI for all A(t) ∈ q, and (π(t1), π(t2)) ∈ rI for all r(t1, t2) ∈ q.

Obviously, ~a is an answer to q in I iff there is an ~a-match of q in I. We extend the
notion of matches to UCQs by saying that a UCQ q has an ~a-match in I if one disjunct
of q has an ~a-match in I.
We use the formal term TBox instead of “ontology”, and let a TBox just be a finite

set of first-order sentences. For a TBox T , an ABox A, and a FOQ ϕ(~x) we write
T ,A |= ϕ[~a] if I |= ϕ[~a] for all models I of T and A. In this case and when all elements
of ~a are from Ind(A), ~a is a certain answer to ϕ w.r.t. A and T . We use certT (ϕ,A) to
denote the set of all certain answers to ϕ w.r.t. A and T .
Ontology-based data access (OBDA) is the problem of finding the certain answers.

More precisely, the corresponding decision problem is as follows:

Certain Answer

INPUT: TBox T , ABox A, query ϕ(~x), candidate answer ~a
OUTPUT: Is ~a ∈ certT (ϕ,A)?

Thus, in this setting, one adopts the open-world assumption: the data (stored in the
ABox) is assumed to be incomplete and the ontology T is used to infer implicit knowledge.
In general, finding certain answers requires looking at all models of A and T which is
in contrast to just computing answers without an ontology; intuitively, we move from
model checking to inference problems.

For two CQs q, q′, we write q v q′ in case ans(q, I) ⊆ ans(q′, I) for all interpretations I,
that is, when q implies q′. We say that a CQ q is minimal if there is no strict sub-query
q′ (q with q′ v q. Implication among Boolean conjunctive queries can be conveniently
characterized via the notion of homomorphisms. A homomorphism from q′ to q is a
mapping h : term(q′)→ term(q) such that:

• h(a) = a for each a ∈ term(q) ∩ NI;

• A(h(t)) ∈ q for all A(t) ∈ q′, and r(h(t1), h(t2)) ∈ q for all r(t1, t2) ∈ q′.
1Note that, for the sake of uniformity, we use a notation that is typically used for DLs, since we will
mainly consider DLs as ontology language.

113

5 Ontology-Based Access to Probabilistic Data

It is well-known that q v q′ iff there is a homomorphism from q′ to q. We say that a
homomorphism from q′ to q is atom-surjective if for every atom A(t) ∈ q (respectively,
r(t1, t2) ∈ q), there is some atom A(t′) ∈ q′ (resp., r(t′1, t′2) ∈ q′) with h(t′) = t (resp.,
h(t′1) = t1 and h(t′2) = t2). Under this definition, q is minimal iff there are only
atom-surjective homomorphisms from q to itself.
Often, we will view queries as ABoxes, and ABoxes as interpretations. In particular,

given a CQ q without individual names, introduce an ABox individual ax for each variable
x ∈ var(q) and define Aq as the set of all assertions {A(ax) | A(x) ∈ q} ∪ {r(ax, ay) |
r(x, y) ∈ q}. For an ABox A, define the interpretation IA = (∆I , ·I) by taking

• ∆I = Ind(A);

• AI = {a | A(a) ∈ A} for all concept names A; and

• rI = {(a, b) | r(a, b) ∈ A} for all role names r.

This gives rise to an interpretation Iq = IAq for each query q. Note that for Boolean CQs,
there is a match of q in Iq′ iff there is a homomorphism from q to q′ iff q′ v q. Since for
Boolean CQs the conditions for having a match are very similar to the homomorphism
conditions, we will sometimes say that there is a homomorphism (instead of a match)
from a query into an interpretation.

As done often in the context of OBDA, we adopt the unique name assumption (UNA),
which requires that aI 6= bI for all interpretations I and all a, b ∈ NI with a 6= b. This
has no influence on the complexity results obtained.

5.2 The Framework of Probabilistic OBDA

In this section, we introduce our framework of ontology-based access to probabilistic
data (probabilistic OBDA). Let us start with defining the data model underlying our
approach. It is a rather general, probabilistic version of ABoxes which can be viewed as
an open-world variant of probabilistic databases in the sense of [36].

Let E be a countably infinite set of atomic (probabilistic) events. An event expression
is built up from atomic events using the Boolean operators ¬, ∧, ∨. We use expr(E) to
denote the set of all event expressions over E . A probability assignment for E is a map
E → [0, 1].

Definition 5.1 (pABox). A probabilistic ABox (pABox) is of the form (A, e, p) with
A an ABox, e a map A → expr(E), and p a probability assignment for EA, the atomic
events in A.

We consider as a running example a (fictitious) information extraction tool that is
gathering data from the web, see [64] for a similar setup.

114

5.2 The Framework of Probabilistic OBDA

Example 5.2. Assume we are gathering data about soccer players and the clubs they
play for in the current 2014 season, and we want to represent the result as a pABox.
(1) The tool processes a newspaper article stating that ‘Messi is the soul of the Argentinian
national soccer team’. Because the exact meaning of this phrase is unclear (it could refer
to a soccer player, a coach, a mascot), it generates the assertion Player(messi) associated
with the atomic event expression e1 with p(e1) = 0.7. The event e1 represents that the
phrase was interpreted correctly.
(2) The tool finds the Wikipedia page on Lionel Messi, which states that he is a soccer
player. Since Wikipedia is typically reliable and up to date, but not always correct, it
updates the expression associated with Player(messi) to e1 ∨ e2 and associates e2 with
p(e2) = 0.95.
(3) The tool finds an HTML table on the homepage of FC Barcelona saying that the
top scorers of the season are Messi, Villa, and Pedro. It is not stated whether the table
refers to the 2013 or the 2014 season, and consequently we generate the ABox assertions
playsfor(x,FCbarca) for x ∈ {messi, villa, pedro} all associated with the same atomic event
expression e3 with p(e3) = 0.5. Intuitively, the event e3 is that the table refers to 2014.
(4) Still processing the table, the tool applies the background knowledge that top scorers
are typically strikers. It generates three assertions Striker(x) with x ∈ {messi, villa, pedro},
associated with atomic events e4, e′4, and e

′′
4. It sets p(e4) = p(e′4) = p(e′′4) = 0.8. The

probability is higher than in (3) since being a striker is a more stable property than
playing for a certain club, thus this information does not depend so much on whether the
table is from 2013 or 2014.
(5) The tool processes the twitter message ‘Villa was the only one to score a goal in the
match between Barca and Real’. It infers that Villa plays either for Barcelona or for
Madrid, generating the assertions playsfor(villa,FCbarca) and playsfor(villa, realmadrid).
The first assertion is associated with the event e5, the second one with ¬e5. It sets
p(e5) = 0.5.

Intuitively, probabilistic ABoxes encode in a succinct way a distribution over a set of
possible worldsmuch in the way as probabilistic databases: every possible truth assignment
to the atomic events corresponds to a world whose probability is the probability of the
truth assignment (note: the atomic events are assumed independent). However, as usual
for OBDA, we adopt the open-world assumption, hence probabilistic ABoxes can be
viewed to encode a distribution over a set of possible open worlds. In our framework of
probabilistic OBDA, one intuitively computes the certain answers in every such world
and weights them according to the probability of the world. To be more precise, we
introduce the semantics of pABoxes (A, e, p) and the probability of certain answers. As
query language, we choose first-order queries since they are most general; later, we will
often work with conjunctive queries. Note that each E ⊆ EA can be viewed as a truth
assignment that makes all events in E true and all events in EA \ E false; we write

115

5 Ontology-Based Access to Probabilistic Data

E |= ψ in case a propositional formula ψ evaluates to 1 under E (viewed as a truth
assignment).

Definition 5.3 (Semantics). Let (A, e, p) be a pABox. For each E ⊆ EA, define
a corresponding non-probabilistic ABox AE := {α ∈ A | E |= e(α)}. The function p
represents a probability distribution on 2EA, by setting for each E ⊆ EA:

p(E) =
∏
e∈E

p(e) ·
∏

e∈EA\E

(1− p(e)).

The probability of an answer ~a ∈ Ind(A)n to an n-ary first-order query ϕ(~x) over a
pABox A and TBox T is

pT ,A(~a ∈ ϕ) =
∑

E⊆EA,
~a∈certT (ϕ,AE)

p(E).

For Boolean queries ϕ, we write p(T ,A |= ϕ) instead of pT ,A(() ∈ ϕ), where () denotes
the empty tuple.

Thus, for every E ⊆ EA, the ABox AE refers to a possible world with probability p(E).
Moreover, we assume pairwise independence of the atomic probabilistic events; this is
reflected in the computation of p(E). We pick up the web data extraction example
discussed above and illustrate how ontologies can help to reduce uncertainty.

Example 5.4. In the example, we use the DL-Lite TBox

T = { ∃playsfor v Player Player v ∃playsfor

∃playsfor− v SoccerClub Striker v Player }

and consider the following subcases of the example above.
(1) + (3) The resulting pABox comprises the following assertions with associated event
expressions:

Player(messi) e1 playsfor(messi,FCbarca) e3

playsfor(villa,FCbarca) e3 playsfor(pedro,FCbarca) e3

with p(e1) = 0.7 and p(e3) = 0.5. Without a TBox, messi is an answer to the query
Player(x) with probability 0.7, independent of the even e3. Because of the statement
∃playsfor v Player, using T (instead of the empty TBox) increases the probability of messi
to be an answer to the query Player(x) from 0.7 to 0.85: there is only one world AE
where messi is not certainly a player, namely for E = ∅ whose probability is 0.15.
(5) The resulting pABox is

playsfor(villa,FCbarca) e5 playsfor(villa, realmadrid) ¬e5

116

5.2 The Framework of Probabilistic OBDA

with p(e5) = 0.5. Although Player(villa) does not occur in the data, villa is an instance of
Player in every possible world, again by the TBox-statement ∃playsfor v Player. Thus,
the probability of villa to be an answer to the query Player(x) is 1.
(3)+(4) This results in the pABox

playsfor(messi,FCbarca) e3 Striker(messi) e4

playsfor(villa,FCbarca) e3 Striker(villa) e′4
playsfor(pedro,FCbarca) e3 Striker(pedro) e′′4

with p(e3) = 0.5 and p(e4) = p(e′4) = p(e′′4) = 0.8. Due to the last three CIs in T ,
each of messi, villa, pedro is an answer to the CQ ∃y playsfor(x, y) ∧ SoccerClub(y) with
probability 0.9.

Of course, some of the ABoxes AE might be inconsistent w.r.t. the TBox T used. In
this case, it may be undesirable to let them contribute to the probabilities of answers.
For example, if we use the pABox

Striker(messi) e1 Goalie(messi) e2

with p(e1) = 0.8 and p(e2) = 0.3 and the TBox Goalie u Striker v ⊥, then messi is an
answer to the query SoccerClub(x) with probability 0.24 while one would probably expect
it to be zero (which is the result when the empty TBox is used). We follow Antova, Koch,
and Olteanu and advocate a pragmatic solution based on rescaling [4]. More specifically,
we remove those ABoxes AE that are inconsistent w.r.t. T and rescale the remaining set
of ABoxes so that they sum up to probability one. In other words, we set

p̂T ,A(~a ∈ ϕ) =
pT ,A(~a ∈ ϕ)− p(T ,A |= ⊥)

1− p(T ,A |= ⊥)

where ⊥ is a Boolean query that is entailed exactly by those ABoxes A that are
inconsistent w.r.t. T . The rescaled probability p̂T ,A(~a ∈ ϕ) can be computed in PTime
when this is the case both for pT ,A(~a ∈ ϕ) and p(T ,A |= ⊥). Note that rescaling
results in some effects that might be unexpected such as reducing the probability of
messi to be an answer to Striker(x) from 0.8 to ≈0.74 when the above TBox is added.
However, increased uncertainty about messi being a Striker is not surprising since the
TBox and ABox are contradictory, even if the independence assumption is dropped. In
the remainder of the chapter, for simplicity we will only admit TBoxes T such that all
ABoxes A are consistent w.r.t. T .

5.2.1 Computational Problems

The main computational problem in traditional OBDA is, given an ABox A, query ϕ,
and TBox T , to produce the certain answers of ϕ relative to A and T . In our framework

117

5 Ontology-Based Access to Probabilistic Data

of probabilistic OBDA, we rather want to compute the probabilities pT ,A(~a ∈ ϕ) of
certain answers. More precisely, throughout this chapter we will study the following
family of problems indexed by fixed first-order queries ϕ and TBoxes T .

pOBDA(ϕ, T)

INPUT: pABox A, candidate answer ~a
OUTPUT: answer probability pT ,A(~a ∈ ϕ)

Thus, as recently initiated in [102], we pursue a non-uniform approach to study data
complexity. The notion of data complexity was introduced by Vardi [127] based on the
assumption that queries are typically small compared to data. Given the big amounts
of data available and to manage today, we argue that this is also the right complexity
measure for our setting. Note, though, that our framework yields one problem for each
query and TBox, while [102] has one problem for each TBox, that is, the query is part of
the input, similar to the setting in [18]. This is justified by the fact that there are virtually
no TBoxes such that all queries are tractable. Ideally, we would like to understand the
precise complexity of every query ϕ relative to every TBox T , against the background of
some preferably expressive ‘master logic’ used for T .

When considering data complexity for decision problems, one typically identifies easy
instances with PTime while hard instances are characterized by NP-hardness. As
pOBDA(ϕ, T) is not a decision problem, but rather closely related to counting problems,
we use #P as the natural analog to NP in counting complexity to identify intractable
problems. In particular, we say:

• a query ϕ is in PTime relative to a TBox T , or (with a slight abuse of notation)
pOBDA(ϕ, T) ∈ PTime, if there is a polynomial time algorithm that, given an
ABox A and a candidate answer ~a ∈ Ind(A)n to ϕ, computes pA,T (~a ∈ ϕ);

• a query ϕ is #P-hard relative to T if the aforementioned problem pOBDA(ϕ, T) is
hard for the counting complexity class #P.

As it is central to this chapter we give some details and complete problems for the
class #P, essentially following the seminal paper by Valiant [126]. Intuitively, #P is the
‘counting equivalent’ of NP and consists of all functions f : Σ∗ → N such that there is a
polynomial time, non-deterministic Turing machine Mf whose computation tree on input
w has precisely f(w) accepting configurations for all w ∈ Σ∗. We define #P-hardness via
Turing reductions, that is, reductions that have access to an oracle. In particular, we say
that a function f is #P-hard if every function g ∈ #P can be computed by a polynomial
time algorithm that uses f as an oracle. The first problem shown to be #P-complete is
the problem #SAT, that is, given a propositional formula, count the number of satisfying
assignments. Remarkably, it has turned out that a counting problem is often much more
difficult than its corresponding decision problem. For this chapter, the most relevant

118

5.2 The Framework of Probabilistic OBDA

such example is #MonBiDNF which is the problem of counting the number of satisfying
assignments to monotone bipartite DNF formulas, that is, formulas of the form

(xi1 ∧ yi1) ∨ . . . ∨ (xik ∧ yik)

such that the sets {xi1 , . . . , xik} and {yi1 , . . . , yik} are disjoint. Note that such every
formula is trivially satisfiable. In contrast, Provan and Ball proved the following surprising
theorem, which has turned out to be a useful tool to show #P-lower bounds in related
settings, see for example [36, 37, 61].

Theorem 5.5 ([113]). The problem #MonBiDNF is #P-hard.

Of particular interest when studying non-uniform complexity are dichotomy theorems.
Dichotomy theorems have been of interest for a long time in the areas of constraint
satisfaction problems, probabilistic databases, and more recently also in traditional
OBDA, see further [45, 102, 37, 25, 122]. In the context of our framework, dichotomy
theorems for a fixed class C of pairs (ϕ, T) of queries and TBoxes read as follows:

For every (ϕ, T) ∈ C, pOBDA(ϕ, T) is either in PTime or #P-hard.

Naturally, such theorems should speak over preferably rich classes C. Dichotomy results
are interesting, because they indicate a good understanding of the class of problems
given by C. However, a dichotomy theorem in the above form might be abstract in the
sense that it does not provide a transparent characterization, that is, it does not tell
which pairs (ϕ, T) are tractable and which are not. We will encounter later both abstract
theorems and dichotomies containing such characterizations.

5.2.2 Assertion-independent probabilistic ABoxes

We start with the observation that, unsurprisingly, pABoxes are too strong a formalism
to admit any useful tractable queries. Call a Boolean conjunctive query q trivial for T if
T |= q.

Theorem 5.6. For conjunctive queries q, we have:

• pOBDA(q, T) is #P-hard for every non-Boolean CQ q and TBox T ;

• pOBDA(q, T) is #P-hard for every Boolean CQ q and TBox T for which it is not
trivial. If q is trivial for T , then pT ,A(q) = 1 for all A.

Proof. The proof is by reduction of counting the number of satisfying assignments of
a propositional formula. Assume that q has answer variables x1, . . . , xn and let ϕ be
a propositional formula over variables z1, . . . , zm. Convert q, ϕ into a pABox A as
follows: take q viewed as an ABox, replacing every variable x with an individual name
ax; then associate every ABox assertion with ϕ viewed as an event expression over events

119

5 Ontology-Based Access to Probabilistic Data

z1, . . . , zm and set p(zi) = 0.5 for all i. We are interested in the answer ~a = ax1 · · · axn .
For all E ⊆ EA with E 6|= ϕ, we have AE = ∅. For a non-Boolean CQ q, we have
~a /∈ certT (q,AE) since Ind(AE) = ∅; for a Boolean CQ q, we have () /∈ certT (q, ∅), since
T 6|= q. For all E ⊆ EA with E |= ϕ, the ABox AE is the ABox-representation of q
and thus ~a ∈ certT (q,AE). Consequently, the number of assignments that satisfy ϕ is
pA,T (~a ∈ q) ·2m. Thus, there is a PTime algorithm for counting the number of satisfying
assignments given an oracle for computing answer probabilities for q and T . �

Observe that the reduction relies solely on the expressiveness of the associated event
expressions. In particular, restricting the annotations in pABoxes to DNF formulas does
not amend this strong negative result as also #DNF is #P-hard. Hence, Theorem 5.6
motivates the study of more lightweight probabilistic ABox formalisms. While pABoxes
roughly correspond to pc-tables, which are among the most expressive probabilistic data
models, we now move to the other end of the spectrum and introduce ipABoxes as a
counterpart of tuple-independent databases [36, 50]. From a pragmatic perspective, the
latter are arguably the most inexpressive probabilistic data model that is still useful,
see [125] for more discussion.

Definition 5.7 (ipABoxes). An assertion-independent probabilistic ABox (ipABox)
is a probabilistic ABox in which all event expressions are atomic and where each atomic
event expression is associated with at most one ABox assertion.

To save notation, we write ipABoxes in the form (A, p) where A is an ABox and p is a map
A → [0, 1] that assigns a probability to each ABox assertion. In this representation, the
events are only implicit (one atomic event per ABox assertion). We adapt Definition 5.3
for ipABoxes by defining p(A′) for each A′ ⊆ A as

p(A′) =
∏
α∈A′

p(α) ·
∏

α∈A\A′
(1− p(α)).

Thus, all assertions in the ABox A are viewed as independent events. Accordingly, for
first-order queries ϕ, we define

pA,T (~a ∈ ϕ) =
∑
A′⊆A

~a∈certT (ϕ,A′)

p(A′).

Reconsidering Example 5.2, observe that cases (1) and (4) yield ipABoxes, whereas cases
(2), (3), and (5) do not. For the remainder of the chapter, we assume that only ipABoxes
are admitted unless explicitly noted otherwise. Particularly, we modify the problem
pOBDA(ϕ, T) to admit only ipABoxes as input and define:

ipOBDA(ϕ, T)

INPUT: ipABox A, candidate answer ~a

120

5.3 The Dichotomy for First-Order Rewritable (ϕ, T)

OUTPUT: answer probability pA,T (~a ∈ ϕ)

We have already mentioned that our pABoxes can be seen as open world versions of
probabilistic databases in the sense of [36]. In the same way, assertion-independent
pABoxes are the counterpart of tuple-independent probabilistic databases (restricted to
relations of arity at most 2). A tuple-independent probabilistic database is a tuple
(R1, . . . , Rk, P) such that

• (R1, . . . , Rk) is a classical database, that is, each Ri is a relation;

• P is a function assigning each tuple appearing in some Ri a probability.

For example, for an ipABox (A, p), we can define a corresponding tuple-independent
database as follows. Every assertion α = A(a) with probability p(α) corresponds to a
tuple (a) in relation A and P (a ∈ A) = p(α) is the attached probability; analogously,
a role assertion α = r(a, b) with probability p(α) corresponds to the tuple (a, b) in a
relation R with assigned probability P ((a, b) ∈ R) = p(α). We use pdA(~a ∈ ϕ) to denote
the probability that ~a is an answer to the query ϕ given A viewed as a tuple-independent
probabilistic database in the described way. A closer look at the semantics of probabilistic
databases yields that in fact it agrees with our semantics given an empty TBox.

Observation 5.8. For each ipABox A, first-order query ϕ, and possible answer ~a we
have pdA(~a ∈ ϕ) = pA,∅(~a ∈ ϕ).

The following dichotomy theorem was recently shown in a series of papers [36, 35, 33, 37].

Theorem 5.9. For every fixed UCQ q, computing the probability pdA(~a ∈ q) on input
A,~a is either in PTime or #P-hard.

By Observation 5.8, we can state it in terms of our notation.

Corollary 5.10. For a fixed UCQ q, the problem ipOBDA(q, ∅) is either in PTime or
#P-hard.

5.3 The Dichotomy for First-Order Rewritable (ϕ, T)

We embark on our study of the complexity landscape of ipOBDA(ϕ, T) by first considering
query rewritings, an important and well-studied tool for traditional OBDA. The goal
of this section is to show that traditional query rewritings crystallize to have immense
practical and theoretical consequences in our probabilistic framework. In fact, we will
show the first, and most general dichotomy result. In order to proceed to the result, we
first introduce the necessary notions.

121

5 Ontology-Based Access to Probabilistic Data

Definition 5.11 (FO-rewritings). A FOQ ϕ(~x) is FO-rewritable relative to a TBox
T if one can effectively construct a FOQ ϕT (~x) such that certT (ϕ,A) = ans(ϕT , IA) for
every ABox A. In this case, ϕT (~x) is called a rewriting of ϕ relative to T . If ϕT (~x) is a
UCQ, it is called UCQ-rewriting.

The importance of FO-rewritings in traditional OBDA is immediate from this definition
and the fact that database management systems are highly optimized for the task of
FOQ answering: for computing the certain answers to ϕ relative A and T , one can simply
construct a first-order rewriting ϕT and then hand it over for execution to a database
system that stores A (viewed as database). Note that, in view of data complexity, the
actual size of ϕT does not matter. The following theorem demonstrates the effects of
FO-rewritability in our framework.

Theorem 5.12. For every FOQ ϕ and TBox T such that ϕ is first-order rewritable
relative to T , ipOBDA(ϕ, T) is either in PTime or it is #P-hard.

The proof of Theorem 5.12 involves the application of two deep theorems, namely
Theorem 5.9 and Rossman’s homomorphism preservation theorem. We start with
observing that first-order rewritings from traditional OBDA are also useful in our
framework of probabilistic OBDA. The following ‘lifting theorem’ is immediate from the
definitions.

Theorem 5.13 (Lifting Theorem). Let T be an FO-TBox, A a pABox, ϕ(~x) an n-ary
FOQ, ~a ∈ Ind(A)n a candidate answer for q, and ϕT (~x) an FO-rewriting of ϕ relative
to T . Then we have pT ,A(~a ∈ ϕ) = p∅,A(~a ∈ ϕT).

Proof. We have:

pA,T (~a ∈ q) =
∑

E⊆EA |~a∈certT (q,AE)

p(E)

=
∑

E⊆EA |~a∈ans(ϕ,A)

p(E)

= p∅,A(~a ∈ ϕ).

�

Theorem 5.13 is interesting from an application perspective as it enables the use of
probabilistic database systems such as MayBMS, Trio, and MystiQ for implementing
probabilistic OBDA [3, 129, 23]. In analogy to traditional OBDA, we compute the
FO-rewriting ϕ of q and T and feed it to the probabilistic database system. Although it
might be necessary to adapt pABoxes in an appropriate way in order to match the data
models of these systems, such modifications do not impair applicability of Theorem 5.13.

122

5.3 The Dichotomy for First-Order Rewritable (ϕ, T)

From a theoretical viewpoint, Theorem 5.13 establishes query rewriting as a useful tool
for analyzing data complexity in probabilistic OBDA. In fact, Theorem 5.13 implies that,
with respect to data complexity, computing the query probability of ϕ relative to A and
T is the same problem as computing the query probability of ϕT in A.

Corollary 5.14. If ϕT is an FO-rewriting of ϕ relative to T , then ipOBDA(ϕ, T) =
ipOBDA(ϕT , ∅).

Next, we show that whenever there is a first-order rewriting for a query relative to some
TBox, then there is a UCQ-rewriting. This generalizes a proposition given in [17] for
atomic queries, that is, queries of the form A(x), and ELI-TBoxes to our setting of FO-
queries and FO-TBoxes and uses Rossman’s homomorphism preservation theorem [119].

Proposition 5.15. For every FOQ ϕ and FO-TBox T such that ϕ is FO-rewritable
relative to T , we can effectively construct a UCQ-rewriting ϕT of ϕ relative to T .

Proof. Let ϕ̂(~x) be a FOQ with answer variables ~x = (x1, . . . , xk), T an FO-TBox, and
ϕ(~x) their FO-rewriting. The proof strategy is to first show that there is a FO-rewriting
ϕ′(~x) which is preserved under homomorphisms on finite interpretations. By Rossman’s
homomorphism preservation theorem [119], we can effectively construct an equivalent
positive-existential formula ϕ′′(~x). Finally, it is well-known that any positive-existential
formula is equivalent to a UCQ. For the construction of ϕ′(~x), we have to take care of
two subtle differences between ABoxes and interpretations:

(i) In an interpretation, two constants might be interpreted as the same domain
element, which is not the case for ABoxes due to the unique name assumption.

(ii) In an interpretation, there might occur elements that are not contained in the
interpretation of any relational symbol; such individuals cannot be reflected in an
ABox.

For dealing with Point (i), let Σc be the set of all constants appearing in ϕ. It is easy to
verify that if ϕ is a FO-rewriting, then so is ϕ′ = ϕ ∨ θ with

θ =
∨

a,b∈Σc,a6=b
a = b.

In order to show that ϕ′ is preserved under homomorphisms it suffices to consider
interpretations over the signature of all constant and relation symbols appearing in ϕ. A
homomorphism between two interpretations I = (∆I , ·I) and J = (∆J , ·J) is a mapping
h : ∆I → ∆J such that

• h(cI) = cJ for all constant symbols c;

• a ∈ AI implies h(a) ∈ AJ and (a, b) ∈ rI implies (h(a), h(b)) ∈ rJ .

123

5 Ontology-Based Access to Probabilistic Data

To show that ϕ′ is preserved under homomorphisms on finite interpretations, we as-
sume finite interpretations I and J , a tuple ~a ∈ (∆I)k with ~a ∈ ans(ϕ′, I), and a
homomorphisms h from I to J . We show h(~a) ∈ ans(ϕ′,J).

Assume first that there are distinct constant symbols c, d ∈ Σc such that either cI = dI

or cJ = dJ . Note that the former implies the latter as h is an homomorphism from I to
J . In both cases J |= θ and thus h(~a) ∈ ans(ϕ′,J). Hence, in what follows assume that
both in I and in J constants are interpreted as pairwise different domain elements. In
particular, we assume that cI = c and cJ = c for all constant symbols c ∈ Σc and that
the domains of I and J are disjoint otherwise, that is, ∆I ∩∆J = Σc. Thus, J 6|= θ
and it suffices to show that h(~a) ∈ ans(ϕ,J).

By Point (ii) above, there is not necessarily an ABox corresponding to J . To deal with
this, let X be a unary relation symbol not occurring in ϕ(~x), let I ′ be the interpretation
obtained by extending I with XI′ = ∆I , and define J ′ analogously. Clearly,
• ~a ∈ ans(ϕ, I) iff ~a ∈ ans(ϕ, I ′);

• h(~a) ∈ ans(ϕ,J) iff h(~a) ∈ ans(ϕ,J ′);

• h is still a homomorphism from I ′ to J ′.
Note that the construction of I ′ ensures the existence of an ABox AI such that I ′ = I(AI),
and analogously for J ′. As ϕ is FO-rewriting of ϕ̂ relative to T , it suffices to show that
h(~a) ∈ certT (ϕ̂,A). To see this, we show for an arbitrary modelM = (∆M, ·M) of T
and AJ that h(a) ∈ ans(ϕ,M).
Let Imh = {h(d) | d ∈ ∆I} denote the image of h in J . By construction of AJ and

the UNA, we have Imh ⊆ ∆M. Next, construct a model N = (∆N , ·N) of AI and T by
starting with the domain

∆N = (∆M \ Imh) ∪∆I .

For the definition of ·N we extend the homomorphism h to a mapping g : ∆N → ∆M:

g(d) =

{
h(d) if d ∈ ∆I ;

d otherwise.

Then, define ·N as follows:

• AN = {d ∈ ∆N | g(d) ∈ AM};

• rN = {(d, e) ∈ ∆N ×∆N | (g(d), g(e)) ∈ rM};
Clearly, g is a homomorphism from N toM. As it is also surjective, it is well-known
that we have for every first-order formula ψ(~x) and every valuation ν:

(N , ν) |= ψ(~x) ⇔ (M, g ◦ ν) |= ψ(~x).2 (†)

This yields N |= T since, by assumption,M |= T . Next, we show that N |= AI :
2(g ◦ ν)(x) = g(ν(x)) for all x.

124

5.4 The Dichotomy for DL-Lite TBoxes

• Assume A(a) ∈ AI . This implies a ∈ AI′ and thus h(a) ∈ AJ ′ . By definition of
AJ , we have A(h(a)) ∈ AJ and asM |= AJ , we get h(a) ∈ AM. By definition of
g, we have h(a) = g(a) and hence a ∈ AN , by Definition of ·N .

• For r(a, b) ∈ AI , we proceed analogously.

Now, by assumption we have I ′ 6|= θ and thus ~a ∈ ans(ϕ, I ′). From this, we obtain
~a ∈ certT (ϕ̂,AI), and thus ~a ∈ ans(ϕ̂,N). That is, we have (N , ν) |= ϕ̂(~x) for the
valuation that maps xi to ai for all i ∈ [1, k]. By Equation (†), we have that (M, g ◦ν) |=
ϕ̂(~x). It remains to observe that g(ν(xi)) = g(ai) = h(ai) for all i ∈ [1, k] to show that
h(~a) ∈ ans(ϕ̂,M). �

Now, the proof of Theorem 5.12 is immediate. Fix some ϕ, T such that ϕ is first-order
rewritable relative to T . By Corollary 5.14, we have for any first-order rewriting ϕT ,
ipOBDA(ϕ, T) = ipOBDA(ϕT , ∅). By Proposition 5.15, ϕT is equivalent to a UCQ-
rewriting ϕ′. Thus, we have ipOBDA(ϕT , ∅) = ipOBDA(ϕ′, ∅). Finally, Corollary 5.10
implies that ipOBDA(ϕ′, ∅) is either in PTime or #P-hard.
Let us conclude this section with two remarks. First, and disregarding the fact

that we study data complexity, let us note that there are no guarantees on the size of
the mentioned UCQ-rewriting ϕ′. Already the first-order rewriting we start with, ϕ,
is only required to be computable. Moreover, Rossman’s homomorphism preservation
theorem (hidden in the proof of Proposition 5.15) does not yield elementary constructions.
However, for restricted TBox and query languages there is hope for better bounds. Second,
notice that Theorem 5.12 is very abstract, in the sense that it states a strong dichotomy
result, but does not tell us which CQs are in PTime relative to which TBoxes. This will
be subject of the next section.

5.4 The Dichotomy for DL-Lite TBoxes

The goal of this section is to fix a query and a TBox language—conjunctive queries
and DL-Lite—and get a better understanding of which queries q and TBoxes T are in
PTime. Since it is well-known that every CQ is first-order rewritable relative to every
DL-Lite-TBox [28], the following is an immediate consequence of Theorem 5.12

Corollary 5.16. Let T be a DL-Lite-TBox and q a CQ. Then, ipOBDA(q, T) is either
in PTime or #P-hard.

Recall that Corollary 5.14 enables us to study the complexity of ipOBDA(q, T) by looking
at the problem ipOBDA(ϕ, ∅) for first-order rewritings ϕ of q and T . Thus, in order
to understand the complexity of ipOBDA(q, T), we carry out a careful inspection of
FO-rewritings for DL-Lite-TBoxes and the dichotomy for tuple-independent probabilistic
databases given in Theorem 5.9. This will result in a concrete formulation of the

125

5 Ontology-Based Access to Probabilistic Data

dichotomy stated in Corollary 5.16 and provide a transparent characterization of the
PTime cases. For the sake of simplicity, we concentrate on CQs that are connected,
Boolean, and do not contain individual names. The general case is left for future work.

For analyzing the complexity of ipOBDA(q, T) via the FO-rewriting of q relative to T
it is worth noting that, in general, there are different ways to produce an UCQ-rewriting
for a given CQ and DL-Lite TBox [28, 26]. However, it is not hard to show that all
these rewritings are equivalent. Moreover, when we restrict our attention to reduced
UCQ-rewritings, that is, UCQs where every CQ is minimal and, if q v q′ for two disjuncts,
then q = q′, it turns out that there is a unique UCQ-rewriting for every CQ q and
DL-Lite TBox T (up to variable renaming). We are going to provide a characterization
of this unique rewriting which will be useful later, but before we need some notation.
For what follows, fix a TBox T . For two CQs q, q′, we say that q T -implies q′ and write
q vT q′ when certT (q,A) ⊆ certT (q′,A) for all ABoxes A. Note that for Boolean CQs
q vT q′ if, and only if, T ,Aq |= q′. We say that q and q′ are T -equivalent and write
q ≡T q′ if q vT q′ and q′ vT q. Finally, q is T -minimal if there is no q′ (q such that
q ≡T q′.

Example 5.17. Fix the TBox T = {A v ∃r, ∃r− v B,A′ v A, ∃r v A′} and consider
the queries:

q1 = ∃xy A(x), r(x, y), B(y) q2 = ∃x A(x)

q3 = ∃x A′(x) q4 = ∃x A(x), B(x).

It should be clear that q4 vT q2 and q1 vT q2 as q1, q4 contain additional atoms compared
to q2. Further, q2 vT q1 as T |= A v ∃r.B,3 and thus q1 ≡T q2. However, q2 6vT q4

as for A = {A(a)} we have T ,A |= q2 but T ,A 6|= q4. Further note that q2 ≡T q3 as
T |= A ≡ A′. In fact, ≡T is an equivalence relation and thus q1 ≡T q2 ≡T q3. Finally
note that minimality is not a total order, in particular, both q2 and q3 are T -minimal.

To have more control over the effect of the TBox, we will generally work with CQs q
and TBoxes T such that q is T -minimal. This is without loss of generality because for
every TBox T and any two T -equivalent CQs q, q′, we have that the answer probabilities
relative to T are identical for q and q′ and indeed ipOBDA(q, T) = ipOBDA(q′, T).
Moreover, for many TBox languages including DL-Lite, we can effectively find a CQ q′

that is T -minimal and such that q ≡T q′ [16].
The next lemma provides the promised characterization of the unique reduced UCQ-

rewriting, which is denoted with qT in what follows. Note that the proof of this theorem
does not depend on the TBox language; it is not hard to verify that it goes through
for full first-order logic (without equality). Let us also remark that this lemma is not
constructive in the sense that it does not immediately give us a FO-rewriting. However,
it gives us a condition that we can work with later.

3∃r.B is not a DL-Lite concept, but it should be clear what is meant.

126

5.4 The Dichotomy for DL-Lite TBoxes

Lemma 5.18. For each conjunctive query q and DL-Lite-TBox T , there is a unique
reduced UCQ-rewriting qT . In particular, qT consists of all q′ with q′ vT q such that

(∗) there is no CQ q′′ 6≡ q′ with q′ v q′′ and q′′ vT q.

Proof. “⊇”: Let q′ be a CQ with q′ vT q such that there is no q′′ 6≡ q′ with q′ v q′′ and
q′′ vT q. Note first that this implies minimality of q′, that is, there is no strict sub-query
of q′ that is equivalent to q′. Now, take any reduced UCQ-rewriting ϕ. As q′ vT q,
we have that T ,Aq′ |= q and, since ϕ is FO-rewriting, IAq′ |= ϕ. Hence, there is some
disjunct p of ϕ such that there is a homomorphism from p to q′, thus q′ v p. As p is a
disjunct of ϕ, we must have that p vT q. By our initial assumption, we get q′ ≡ p. As
both q′ and p are minimal, we get that in fact p = q′, thus q′ is a disjunct of ϕ.
“⊆”: Let q′ be a disjunct of some reduced UCQ-rewriting ϕ. Clearly, we have q′ vT q.
So assume that there is some q′′ 6≡ q′ with q′ v q′′ and q′′ vT q. By the latter, we have
T ,Aq′′ |= q. As ϕ is a FO-rewriting, this yields IAq′′ |= ϕ. Hence, there is some disjunct
p of ϕ such that there is a homomorphism from p to q′′, thus q′′ v p. As q′ v q′′, we also
have q′ v p. Since ϕ is reduced, we get q′ = p. Because of q′′ v p, this implies q′′ v q′,
hence q′ ≡ q′′, contradiction. �

As already mentioned, our approach to study the complexity of ipOBDA(q, T) is to look
at ipOBDA(qT , ∅) in the light of the dichotomy Theorem 5.9 for UCQs. However, also
Theorem 5.9 is abstract, so we need to substantiate it. As it is well-known that each
disjunct of qT is connected when q is connected, it suffices to consider the dichotomy
for the subcase where every disjunct is a connected CQ. We refer to such UCQs as
disjunctive sentences, in order to be consistent with [37].

5.4.1 Dichotomy for disjunctive sentences

We first need some additional notation. As mentioned, a disjunctive sentence is a formula

q = ∃x1 . . . xn (q1 ∨ . . . ∨ qk).

where each q` is a conjunction of atoms A(xi) or r(xi, xj), that is, we disallow con-
stants. We will usually omit the quantifiers and implicitly assume that every variable is
existentially quantified. We call a disjunctive sentence q = q1 ∨ . . . ∨ qk reduced if:

• each qi is minimal and

• qi v qj implies i = j for all i, j.

As we can effectively reduce a disjunctive sentence [29] and the resulting sentence has
the same complexity, we will restrict our attention to reduced sentences.
A root variable of a disjunctive sentence q is a variable that occurs in all atoms of q.

In what follows, we assume that, if a disjunctive sentence can be equivalently rewritten

127

5 Ontology-Based Access to Probabilistic Data

(by renaming variables) into one having a root variable, then it is rewritten. For example,
the query A(x) ∨B(y) is (equivalently) rewritten as A(x) ∨B(x), and thus has a root
variable. A root variable x of q is a weak separator variable of q if additionally for every
binary relation name r that occurs in the query, there is a number ir ∈ {1, 2} such
that every atom r(x1, x2) satisfies xir = x. A weak separator variable is a separator
variable for q when no atom of the form r(x, x) appears in q. As example, observe that
r(x, y), r(y, z) does have a root variable y, but no weak separator variable since y appears
at position 2 in r(x, y) and at position 1 in r(y, z). Moreover, the r(x, y), r(y, y) has the
weak separator variable y (choose ir = 2), but no separator variable because of r(y, y).
An example for a query with separator variable is A(x), r(x, y), s(z, x).

Recall that R(x, y) is either r(x, y) or r(y, x) for some role name r and that pdA(q)
denotes the probability of q in A viewed as a tuple-independent probabilistic database.
The dichotomy for disjunctive sentences is as follows.

Theorem 5.19 (Concrete Dichotomy for Disjunctive Sentences). Let q be a
reduced disjunctive sentence. Then computing pdA(q) is in PTime if:

(i) each disjunct of q is of the form R1(x, y), . . . , Rk(x, y); or

(ii) q has a weak separator variable.

Otherwise, it is #P-hard.

Consequences of this theorem are the facts that A(x), r(x, y) ∨B(x), r(z, x) is #P-hard,
but A(x), r(x, y) ∨B(x), r(x, x) is in PTime.
The proof of this theorem is adapted from [37]. We include it here in order to be

self-contained and because Theorem 5.19 is not explicit in [37]. We start with the PTime
case for which we need further notation. A disjunctive sentence q = q1 ∨ . . . ∨ qk is
symbol-connected if the graph (V,E) with

• V = {q1, . . . , qk}, and

• {qi, qj} ∈ E iff there is a relation name that occurs both in qi and qj

is connected. If a disjunctive sentence is not symbol-connected, we can read off its
connected components q1, . . . , q` from this graph (V,E).
We are going to give a polynomial time algorithm that computes pdA(q). For the sake
of simplicity, let us start with the case that there is a separator variable x∗, that is,
the subcase of condition (ii) where no atoms of the form r(x∗, x∗) appear. In order to
compute pdA(q), we will stepwise apply one of the rules depicted in Figure 5.1, where
[n] denotes the set {1, . . . , n}, and

([n]
k

)
denotes the set of k-elementary subsets of [n].

The rules are taken from [37] and their soundness is easy to verify. Let us only look at
the most interesting case, Independent Project. As x is a separator variable, any two

128

5.4 The Dichotomy for DL-Lite TBoxes

Equivalence Transformation We can transform q to any equivalent query.

Independent Join If the query q is a conjunction of symbol-disconnected queries
q1, . . . , qn, then compute pdA(q) = pdA(q1) · · · · · pdA(qn).

Independent Union If the query q is a disjunction of symbol-disconnected queries
q1, · · · , qn, then compute pdA(q) = 1− (1− pdA(q1)) · . . . · (1− pdA(qn)).

Independent Project If the query has a separator variable x, then compute pdA(q) =
1−

∏
a∈Ind(A)(1− pdA(q[a/x])).

Inclusion-exclusion principle If q is a disjunction of queries q1, . . . , qn, then its
probability can be computed by:

pdA(q1 ∨ . . . ∨ qn) =

n∑
k=1

(−1)k−1
∑

I∈([n]
k)

pdA(
∧
i∈I

qi).

There is a dual rule which is obtained by exchanging ∨ and ∧ in the above
rule (justified by the dual inclusion-exclusion principle).

Figure 5.1: The rules for computing query probabilities.

atoms at ∈ q[a/x] and at′ ∈ q[b/x] cannot be unified (by replacing free variables with
constants). Thus, the queries q[a/x] and q[b/x] are syntactically independent for a 6= b
which yields soundness of the rule. The algorithm proceeds as follows.

1. Let q1, . . . , qk be the symbol-connected components of q. We apply the rule
Independent Union:

pdA(q) = 1− (1− pdA(q1)) · . . . · (1− pdA(qk)).

2. Each qi has the separator variable x∗. We apply Independent Project:

pdA(qi) = 1−
∏

a∈Ind(A)

(1− pdA(qi[a/x
∗]).

3. Each disjunct of qi[a/x∗] can be written in the form

A1(a), . . . , Am(a), p1(z1), . . . , pn(zn) (∗)

where the zi are pairwise different variables, and each pi contains only atoms of the
form S(a, zi). Note that, semantically, the commas in (∗) are in fact conjunctions

129

5 Ontology-Based Access to Probabilistic Data

“∧”. Let q′i[a] be obtained from qi[a/x
∗] by distributing the outermost ∨ of qi[a/x∗]

over these conjunctions (but not inside the pi(zi)). This is an instance of rule
Equivalence Transformation.

4. The query q′i[a] is a conjunction of, say N , disjunctive sentences p1, . . . , pN each
of whose disjuncts is of the form A(a) or S1(a, z), . . . , S`(a, z). The probability
pdA(q′i[a]) is computed using the (dual) Inclusion-exclusion principle:

pdA(p1 ∧ . . . ∧ pN) =
N∑
k=1

(−1)k−1
∑

I∈([N]
k)

pdA(
∨
i∈I

pi).

5. The structure of qI :=
∨
i∈I pi for some non-empty I ⊆ [N] is as follows:

A1(a) ∨ . . . ∨Ak(a) ∨ q′I ,

where q′I is a disjunction of connected CQs of the form S1(a, z), . . . , S`(a, z). Using
Independent Union, we compute:

pdA(qI) = 1− (1− pdA(q′I)) ·
k∏
i=1

(1− pdA(Ai(a))).

6. Observe that pdA(Ai(a)) can be read off from A. Hence, it remains to compute
pdA(q′I). Since every atom has precisely one free variable, q′I can be viewed as a
query with a separator z. By rule Independent Project, we obtain:

p(q′I) = 1−
∏

b∈Ind(A)

(1− p(q′I [b/z])).

7. The query q′I [b/z] is the disjunction of, say M , conjunctive queries d1, . . . , dM ,
each of the form S1(a, b), . . . , S`(a, b). By the Inclusion-exclusion principle we can
compute:

pdA(d1 ∨ . . . ∨ dM) =
M∑
k=1

(−1)k−1
∑

I∈([M]
k)

pdA(
∧
i∈I

di).

8. For any non-empty I ⊆ [M], the query
∧
i∈I di can be viewed as a collection of

atoms of the form S(a, b). As all atoms are ground, we can apply Independent
Join to compute:

pdA(
∧
i∈I

di) =
∏

S(a,b)∈
⋃
i∈I di

pdA(S(a, b)).

130

5.4 The Dichotomy for DL-Lite TBoxes

Let us analyze the running time of this algorithm. Note that only in Steps 2 and 6, the
input is taken into account, by creating instances of the queries for every a ∈ Ind(A);
this is linear. In all other steps, we apply rules only depending on the (fixed) query q.
Thus, the algorithm runs in polynomial time.

We now show how to amend the algorithm in order to cover the more general condi-
tions (i) and (ii). We first deal with condition (i). If q is of the form in condition (1)
and additionally has a separator variable x∗, we are done as we can run the above steps.
Otherwise, q contains atoms r(x∗, y) and r(y, x∗). For handling those, we need the
following notion. We say that a query q̂ is ranked, if the set

{x < y | r(x, y) is atom in q̂}

can be extended to a total order. In particular, q is not ranked as the set necessarily
contains x∗ < y and y < x∗ which cannot be jointly satisfied by any total order. The
following proposition tells us that we can ‘rank’ each query.

Proposition 5.20 (Proposition 4.2 of [37]). Every disjunctive query q is equivalent (up
to polynomial time many-one reductions) to a ranked disjunctive query q over an extended
vocabulary. More specifically, the problem “given A, compute pdA(q)” can be reduced in
polynomial time to “given A, compute pA(q)”, and vice versa.

Proof. We assume that q has variables X = {x1, . . . , xn}. Fix a total order x1 < . . . < xn
on X and denote Xp = {x1, . . . , xp} for p ≤ n. A variable ranking ρ is a surjective map
ρ : X → Xp for some p ≤ n. Obtain the query qρ from q by replacing every atom at with
atρ where:

• A(xi)ρ = A(ρ(xi));

• r(xi, xj)ρ =

r=(ρ(xi)) if ρ(xi) = ρ(xj);

r≺(ρ(xi), ρ(xj)) if ρ(xi) < ρ(xj);

r�(ρ(xj), ρ(xi)) if ρ(xj) < ρ(xi).

The query q is defined as
∨
ρ qρ. Observe that each disjunct of qρ is connected when

every disjunct of q is connected. Assume some total order ≺ on the domain and obtain
A as follows:

• carry over all assertions of the form A(a) from A;

• For each assertion r(a, a) ∈ A, add r=(a) to A;

• For each assertion r(a, b) ∈ A with a ≺ b, add r≺(a, b) to A;

• For each assertion r(a, b) ∈ A with a � b, add r�(b, a) to A;

131

5 Ontology-Based Access to Probabilistic Data

• transfer all associated events in the obvious way.

It should be clear that pdA(q) = pdA(q) and that we can reconstruct A, q from A, q in
polynomial time. �

Example 5.21. Consider the unranked query q = r(x1, x2), r(x2, x1). There are three
variable rankings ρ1, ρ2, ρ3 given by ρ1(x1, x2) = (x1, x2), ρ2(x1, x2) = (x2, x1), and
ρ(x1, x2) = (x1, x1). Thus, the ranked query q is the disjunction of the following three
queries:

qρ1 = r≺(x1, x2), r�(x1, x2);

qρ2 = r�(x1, x2), r≺(x1, x2);

qρ3 = r=(x1), r=(x1).

Moreover, after reducing it, we get q = r=(x1) ∨ r≺(x1, x2), r�(x1, x2).

Turning back to our input query q, we generalize Example 5.21 and obtain that every
disjunct of q is of the form:

R=
1 (x∗), . . . , R=

k (x∗) ∨R≺1 (x∗, y), . . . , R≺k (x∗, y) ∨R�1 (x∗, y), . . . , R�k (x∗, y),

where R=
i = s=

i if Ri ∈ {si, s−i }, and R≺i is s≺i if Ri = si and s�i otherwise, and
analogously for R�i . Because x

∗ is in the first position of every appearing atom, x∗ is
a separator in q. Moreover, note that q does not contain atoms of the form r(x∗, x∗).
Hence, pdA(q) can be computed using the basic algorithm.

Assume finally that q is not of the form under point (i) of the theorem but has only a
weak separator variable. That is, q has a unique root variable x∗ but there are atoms of
the form r(x∗, x∗) in q. Consider again its ranking q. By construction, in the ranking
there are no atoms of the form r(x∗, x∗). Assume now that there is a relation name
s≺ such that there are disjuncts q1, q2 in q such that s≺(x∗, y1) ∈ q1 with x∗ 6= y1 and
s≺(y2, x

∗) ∈ q2 with x∗ 6= y2. By the construction in Proposition 5.20, there are disjuncts
q′1, q′2 in q such that s(x∗, y1) ∈ q1 with x∗ 6= y1 and s(y2, x

∗) ∈ q2 with x∗ 6= y2. This is
a contradiction, since then either q is of the form under point (i) or q does not have a
weak separator variable. This finishes the proof of the PTime-part of the theorem.

Before giving details of the #P-hardness part, let us start with some intuition. The
‘prototypical’ #P-hard query is:

q⊥ = ∃xy A(x), r(x, y), B(y).

Clearly, q⊥ has no root variable and thus does not satisfy conditions (i) or (ii). The
proof is via reduction from #MonBiDNF which is #P-hard by Theorem 5.5. Given a
formula ϕ =

∨
i(xi ∧ yi) over bipartite variable sets X and Y , define an ipABox A as

follows. A consists of assertions A(x) and B(y) for all variables x ∈ X and y ∈ Y . All

132

5.4 The Dichotomy for DL-Lite TBoxes

these assertions are annotated with probability 1/2. Moreover, for each clause x∧ y in ϕ,
A contains the assertion r(x, y) with probability 1. Then, we have that the probability
pdA(q⊥) is precisely #ϕ/2n, where n is the number of variables in ϕ. This prototypical
query q⊥ justifies the necessity of the existence of a root variable (note that a root variable
is required in both conditions for PTime). The fact that a root variable in condition (ii)
is insufficient is motivated by the fact that one can similarly show #P-hardness of the
query ∃xyz r(x, y), r(y, z) where y is root but not a separator variable.
For the full proof of hardness, it is important to know how the original dichotomy

from [37] is proved. Basically, (a superset of) the rules in Figure 5.1 are applied to a
ranked query q just as it was done above. When no rule is applicable anymore, the
algorithm returns ‘fail’ meaning that q is #P-hard. We next introduce the condition
of when no rule is applicable anymore. We say that a reduced disjunctive sentence is
immediately unsafe if it is ranked, symbol-connected, contains at least one variable, but
does not have a separator.

Theorem 5.22 (Theorem 4.5 of [37]). If a reduced disjunctive query q is immediately
unsafe, then computing pdA(q) on input A is #P-hard.

This theorem will be the basis for the #P-hardness part. So assume that q does not
satisfy condition (i) or condition (ii), that is,

(a) it has no root variable, or

(b) it has a unique root variable x∗, but this variable is not a weak separator.

We cannot apply Theorem 5.22 directly, as q is not necessarily ranked. By Proposi-
tion 5.20, we can consider its ranking q. Note that Example 5.21 shows that q might
not be reduced even if q is reduced, which again prevents application of Theorem 5.22.
However, in the subsequent lemma, we show that certain properties of q are invariant
under reduction.

Lemma 5.23. If q is a reduced disjunctive sentence and p is some disjunct in q, then
pτ is contained in the reduction of q for every injective variable ranking τ .

Proof. We show the statement for the variable ranking τ = id which maps every variable
to itself, and note that the proof extends to all injective variable rankings.
Suppose to the contrary that there is some disjunct p′ in q and a variable ranking ρ

such that pid v p′ρ but pid 6= p′ρ. Thus, there is a homomorphism h from p′ρ to pid. We
claim that h ◦ ρ is a homomorphism from p′ to p, contradicting q being reduced.

• If A(x) ∈ p′, then A(ρ(x)) ∈ p′ρ and since h is homomorphism, we have also
A(h(ρ(x))) ∈ pρ. Thus, A(h(ρ(x))) ∈ p.

• For r(x, y) ∈ p′, we distinguish cases:

133

5 Ontology-Based Access to Probabilistic Data

– If ρ(x) < ρ(y), then r≺(ρ(x), ρ(y)) ∈ p′ρ. Because h is a homomorphism,
we have r≺(h(ρ(x)), h(ρ(y))) ∈ pid. By definition of pid, there is some atom
r(h(ρ(x)), h(ρ(y))) ∈ p.

– If ρ(x) > ρ(y), then r�(ρ(y), ρ(x)) ∈ p′ρ. Because h is a homomorphism,
we have r�(h(ρ(y)), h(ρ(x))) ∈ pid. By definition of pid, there is some atom
r(h(ρ(x)), h(ρ′(y))) ∈ p.

– If ρ(x) = ρ(y), then r=(ρ(x)) ∈ p′ρ. Because h is a homomorphism, we have
r=(h(ρ(x))) ∈ pid, contradicting the definition of pid.

�

We are now coming back to our input query q satisfying (a) or (b) and let q be the
reduced ranking of q. In case of (a), there is a disjunct p in q that does not have a root
variable. By Lemma 5.23, the disjunct pid is also in q. Thus, q does not have a root
variable and hence it does not have a separator.

In case of (b), there are disjuncts q1, q2 of q, variables y1, y2, and a relation name r
such that

• x∗ is unique root variable in q1, r(x∗, y1) ∈ q1, and y1 6= x∗; and

• x∗ is unique root variable in q2, r(y2, x
∗) ∈ q2, and y2 6= x∗.

Let ρ, ρ′ be injective variable rankings with ρ(x∗) < ρ(y1) and ρ′(y2) < ρ′(x∗). By
Lemma 5.23, q contains disjuncts qρ, qρ′ such that:

• x∗ is unique root variable in qρ, r≺(x∗, y1) ∈ qρ, and y1 6= x∗; and

• x∗ is unique root variable in qρ′ , r≺(y2, x
∗) ∈ qρ′ , and y2 6= x∗.

Hence also in case (b), q does not have a separator.
If q is symbol-connected, q is #P-hard via Theorem 5.22. By Proposition 5.20, q

has the same complexity as q and is thus also #P-hard. If not, let q1, . . . , qk be its
connected-components. The algorithm from [37] applies rule Independent Union to get

pdA(q) = 1− (1− pdA(q1)) · . . . · (1− pdA(q`)).

As q does not have a separator, one of the qi does not have a separator. By Theorem 5.22,
qi is #P-hard. By completeness of the algorithm, also q is #P-hard. By Proposition 5.20,
also q is #P-hard.

134

5.4 The Dichotomy for DL-Lite TBoxes

r

s

t

t′
A

q1

s

r
t A

q2

ss

r

q3

A

C

B
s

r

q4

Figure 5.2: Example queries

5.4.2 Dichotomy for DL-Lite

We can now continue to show our characterization of the tractable pairs (q, T) for
DL-Lite-TBoxes T and CQs q. Inspired by Theorem 5.19, we introduce a class of queries
that will play a crucial role in our analysis.

Definition 5.24 (Simple Tree Queries). A CQ q is a simple tree if it has a root
variable, that is, a variable that occurs in all atoms in q.

As examples, consider the CQs in Figure 5.2. Queries q1, q2, q3 are all simple tree queries
whereas q4 is not: it contains atoms A(x), B(y), C(z) and thus no root variable. Recall
that, by Theorem 5.19, not being a simple tree query is a sufficient condition for being
intractable in the framework of probabilistic databases. We will first prove that this lifts
to our framework.

Theorem 5.25. Let q be a CQ and T a DL-Lite TBox such that q is T -minimal. If q
is not a simple tree query, then ipOBDA(q, T) is #P-hard.

Proof. We start by showing that the UCQ-rewriting qT of q relative to T contains a
disjunct which is not a simple tree query. By Lemma 5.18, there is a disjunct p such
that q v p and p vT q. Thus, there is a homomorphism h from p to q.

• If h is not atom-surjective, then there is a subquery q′ (q such that q′ v p. As
p vT q, we have q′ vT q, contradicting T -minimality of q.

• Assume now that p is a simple tree query, that is, there is a variable x appearing
in all atoms of p. Obviously, h(x) appears in all atoms of q as h is atom-surjective.
Thus, q is a simple tree query, contradiction.

Having established this, note that every disjunct of qT is a connected query if q itself
is connected. Thus, we can assume that qT is written as a disjunctive sentence, which
still contains p as a disjunct. However, as p is not a simple tree query, qT cannot
have a root variable. By Theorem 5.19, the problem of computing pdA(qT) is #P-hard.
By Observation 5.8, this is the same problem as computing pA(qT) which is in turn
equivalent to ipOBDA(q, T) by Corollary 5.14. �

135

5 Ontology-Based Access to Probabilistic Data

Hence, in order to obtain a dichotomy, it remains to analyze simple tree queries. The
central notion for this purpose is introduced next. We say that a role R (a role name r
or its inverse r−) is T -generated in a simple tree query q if one of the following holds:

(i) R(x, y) vT q;

(ii) there is an atom R(x, y) ∈ q with x 6= y and x root variable;

(iii) there is an atom A(x) ∈ q and T |= ∃R v A and x root variable;

(iv) there is an atom S(x, y) ∈ q such that y 6= x occurs only in this atom, T |= ∃R v ∃S,
and x root variable.

As examples, consider the queries in Figure 5.2. The role r is ∅-generated in q2 and q3

by item (ii) above. For the TBox T = {∃s v ∃r}, note that both q2 and q3 T -generate s
because of item (iv) above. For (i) consider the TBox T = {∃r− v ∃s, ∃s− v ∃t} and
the query ∃xy t(x, y). We then have r(x, y) vT q, thus r is T -generated.
The concrete version of the DL-Lite-dichotomy is now as follows.

Theorem 5.26 (Concrete Dichotomy for DL-Lite). Let T be a DL-Lite TBox and
q a T -minimal CQ. Then, ipOBDA(q, T) is in PTime if it is a simple tree query and
one of the following is satisfied:

(1) q is of the form S1(x, y), . . . , Sk(x, y) for roles S1, . . . , Sk;

(2) for all role names r: if both r and r− are T -generated in q, then r(x, y) vT q.

Otherwise, ipOBDA(q, T) is #P-hard.

Example 5.27. As exemplary consequences of Theorem 5.26, consider again the queries
q1, q2, and q3 in Figure 5.2 and let T∅ be the empty TBox. All CQs are T∅-minimal,
and q1 and q2 are in PTime. On the other hand, q3 is #P-hard as it is not of the
form S1(x, y), . . . , Sk(x, y) and both s and s− are T∅-generated but s(x, y) 6vT∅ q. Now
consider the TBox T = {∃s v ∃r}. Then q1 is T -minimal and still in PTime; q2 is
T -minimal, and is now #P-hard because both s and s− is T -generated. The CQ q3 can
be made T -minimal by dropping the r-atom, and is in PTime relative to T . Thus, the
TBox has influence on the complexity of a query q in all possible ways: q can become
harder in presence of T , or easier, or stay the same.

Note that condition (1) of Theorem 5.26 corresponds to condition (1) of Theorem 5.19.
To see that condition (2) above reflects to condition (2) in Theorem 5.19, we prove the
following lemma justifying the notion of ‘being T -generated’. Its proof is based on a
careful analysis of FO-rewritings.

Lemma 5.28. Let T be a DL-Lite TBox, q be a T -minimal simple tree query, and qT
their reduced UCQ-rewriting. For every role R, the following are equivalent:

136

5.4 The Dichotomy for DL-Lite TBoxes

• R is T -generated;

• there is a disjunct q′ of qT that contains an atom R(x, y) where x is a root variable
of q′ and x 6= y.

For proving Lemma 5.28, it is helpful to characterize the notion of T -implication using
canonical models as defined in [94]. To construct the canonical model IT ,A of an ABox A
and a DL-Lite TBox T , we start with A viewed as an interpretation and then exhaustively
apply the CIs from T as rules, introducing fresh elements for existential quantifiers.
Formally, the domain of IT ,A consists of all paths of the form aR1 · · ·Rn, n ≥ 0, such
that the following conditions hold:

(agen) T ,A |= ∃R1(a) but R1(a, b) /∈ A for all b ∈ Ind(A) (written a cR1);

(rgen) for i < n, T |= ∃R−i v ∃Ri+1 and R−i 6= Ri+1 (written cRi cRi+1).

We denote by tail(σ) the last element in a path σ. Now, IT ,A is defined as follows:

∆IT ,A = {a · cR1 · · · cRn | a ∈ Ind(A), n ≥ 0, a cR1 · · · cRn},
aIT ,A = a, for all a ∈ Ind(A),

AIT ,A = {a ∈ Ind(A) | K |= A(a)} ∪ {σ ·R ∈ ∆IT ,A | T |= ∃R− v A},
P IT ,A = {(a, b) ∈ Ind(A)× Ind(A) | P (a, b) ∈ A} ∪

{(σ, σ · cP) ∈ ∆IT ,A ×∆IT ,A | tail(σ) cP } ∪
{(σ · cP− , σ) ∈ ∆IT ,A ×∆IT ,A | tail(σ) cP−},

where ‘·’ denotes concatenation. The following is the central property of canonical
models.

Theorem 5.29 ([94]). For every consistent DL-Lite KB K = (T ,A) and every CQ q,
we have T ,A |= q iff IT ,A |= q.

We will sometimes also use canonical models IT ,q for a CQ q and a TBox T , defined as
IT ,Aq (recall: Aq is q viewed as an ABox, i.e., the variables in q are viewed as the ABox
individuals of Aq). The following is proved in [16].

Lemma 5.30. For all CQs q, q′ and DL-Lite TBoxes T we have:

• q vT q′ iff T ,Aq |= q′ iff IT ,q |= q′.

Using these auxiliary results, we can prove Lemma 5.28.

Proof (of Lemma 5.28). “⇒”: We make a case distinction on how a role R can be
T -generated in q.

137

5 Ontology-Based Access to Probabilistic Data

(i) R(x, y) vT q. By Lemma 5.18, R(x, y) must be a disjunct of qT and we are done.

(ii) R(x, y) ∈ q with y 6= x and x root variable. We claim that qT has a disjunct that
includes an atom R(x′, y′) with x′ a root variable. By Lemma 5.18, there is a
disjunct p of qT with q v p and p vT q. If p = q, we are done. If not, let h be the
homomorphism from p to q.

We first show that there is some atom R(x′, y′) ∈ p with h(x′) = x and h(y′) = y.
Assume that this is not the case. Then h is also a homomorphism to q′ =
q \ {R(x, y)}. Hence q′ v p. As by assumption p vT q, we obtain q′ vT q,
contradicting T -minimality of q.

Consider the atom R(x′, y′) in p whose existence we just proved. Clearly, x′ 6= y′

since h(x′) 6= h(y′). Thus, it remains to show that x′ is a root variable in p. Note
that standard approaches such as the one in [28] generate UCQ-rewritings in which
every disjunct is a simple tree query if q is a simple tree query. Hence, if x′ is not a
root variable in p, then y′ is one. Thus, there must be an atom in p involving y′

but not x′. However, as h(y′) = y and y is a fresh variable, the only atom involving
y is R(x, y). Thus, the atom at cannot exist, contradiction.

(iii) A(x) ∈ q, x root variable in q, and T |= ∃R v A. Define p = (q\{A(x)})∪{R(x, y)}
for some fresh variable y. Note that p is a query with the same properties as q
under the previous point (ii). Thus, one can show in the same way that there is a
disjunct p′ in qT that includes an atom R(x′, y′) with x′ a root variable.

(iv) S(x, y) ∈ q, x root variable, y 6= x occurs only once, and T |= ∃S v ∃R. Identical
to previous case.

“⇐”: Assume now that qT contains a disjunct p with an atom R(x, y) where x is a root
variable and x 6= y. We show that R is T -generated in q. As p vT q, there is a match
π for q in IT ,p by Lemma 5.30. It is convenient to view IT ,p as a (potentially infinite)
ABox AT ,p that contains an assertion A(a) for each a ∈ AIT ,p and an assertion r(a, b) for
each (a, b) ∈ rIT ,p . By construction of the canonical model IT ,p, for every such assertion
α we find a single atom cause(α) ∈ p that ‘causes’ α in the sense that α is part of the
canonical model of {cause(α)} and T . In case there are multiple possible choices for
such a cause, we choose an arbitrary one.
For every atom at ∈ q, the match π identifies an assertion π(at) ∈ AT ,p. Let p′ ⊆ p

denote the query
p′ = {cause(π(at)) | at ∈ q}.

By definition of p′, we have IT ,p′ |= q and thus p′ vT q. By Lemma 5.18, p v p′, and
the fact that p is a disjunct in qT , we get that p ≡ p′, thus p = p′. Hence, every atom in
p is necessary.

138

5.4 The Dichotomy for DL-Lite TBoxes

Let us first consider the cases when p or q do not have unique root variables. If q has
two root variables then it is of the form S1(x′, y′), . . . , Sk(x

′, y′) and we have qT = q.
Thus, p = q and q contains the mentioned atom R(x, y) and R is T -generated in q. If p
has two root variables, then the following claim implies that R is T -generated in q:

Claim. If p has two root variables, then either p = R(x, y) or p ≡ q and they are of the
form S1(x, y), . . . , Sk(x, y) for k ≥ 2.

Proof of Claim. Assume that p has two root variables, that is, p = S1(x, y), . . . , Sk(x, y)
and Si = R for some i. If k = 1, we have p = R(x, y). For k > 1, define

p′′ = {cause(π(at)) | cause(π(at)) = π(at), at ∈ q}.

Construct a query p̂ as follows. Start with p′′ and add for every at ∈ q with cause(π(at)) 6=
π(at) the atoms S(x, y′), S(x′, y) where S(x, y) = cause(π(at)) and x′, y′ are fresh
variables. By construction, π is a match for q in IT ,p̂ and thus p̂ vT q by Lemma 5.30.
Now note that there is a homomorphism from p̂ to p, that is, p v p̂. By Lemma 5.18, we
have p ≡ p̂. However, this implies that p = p′′, thus π is a homomorphism from q to p,
that is, p v q. By Lemma 5.18 again, we get p ≡ q. This finishes the proof of the Claim.
We can thus assume that the unique root variable of p is x and the unique root variable
of q is x′. We make a case distinction on where π maps x′ in IT ,p.

• Assume first π(x′) = ax. By what was said above, there is an atom at ∈ q such
that cause(π(at)) = R(x, y). If at = R(x′, y′), we are done. If at = A(x′), the
construction of IT ,p yields that T |= ∃R v A, thus R is T -generated in q. Assume
now at = S(x′, y′). Again, the construction of IT ,p implies T |= ∃R v ∃S. Note
that y′ cannot appear twice in q as then R(x, y) cannot be the ‘cause’ of at.

• So assume finally that π(x′) 6= ax, that is x′, is mapped either to the anonymous
part of IT ,p or to some az ∈ Ind(Ap), z 6= x. As q is connected and a simple tree,
there is a single z ∈ var(q) such that π maps all variables to either ax or elements
of the form az · cR1 · · · cRk . This variable z can only be y as otherwise, R(x, y) is
not necessary in p, contradiction. However, in this case all atoms in p that involve
x but not y cannot be a cause of some atom in q, by construction of IT ,p. As x is
the unique root variable, there is at least one such atom. Thus, p is not minimal,
contradiction.

�

We are now ready to prove Theorem 5.26.

Proof (of Theorem 5.26). “⇒”: We show the contrapositive, that is, if q is not a simple
tree query or none of the conditions (1) and (2) are satisfied, then ipOBDA(q, T) is

139

5 Ontology-Based Access to Probabilistic Data

#P-hard. If q is not a simple tree query, Theorem 5.25 implies that answering q relative
to T is #P-hard. Assume now that q is a simple tree query but conditions (1) and (2)
are not satisfied, that is,

(1’) q is not of the form S1(x, y) . . . , Sk(x, y) for roles S1, . . . , Sk, and

(2’) there is a role name r such that both r and r− are T -generated in q but r(x, y) 6vT q.

In the proof of Lemma 5.28, we have already argued that we can write qT as a disjunctive
sentence with root variable x∗. By Lemma 5.28 and Item (2’), there are disjuncts
q1, q2 of qT and variables y1, y2 such that r(x∗, y1) ∈ q1, y1 6= x∗ and r(y2, x

∗) ∈ q2,
y2 6= x∗. Assume first some qi has two root variables. In this case, we have shown (in
the claim) in the proof of Lemma 5.28 that either qi = r(x, y) or qi = q, where q is of
the form S1(x, y), . . . , Sk(x, y) for some k ≥ 2. However, the former is in contradiction
to assumption (2’) while the latter contradicts (1’). Thus, x∗ is the unique root variable,
but clearly it is no weak separator variable. By Theorem 5.19 qT is #P-hard, thus
ipOBDA(q, T) is #P-hard.

“⇐”. Assume that q is a simple tree query that, together with T , satisfies condition (1)
or (2) from the theorem. In case of (1), qT = q and qT is in PTime by Theorem 5.19.
Otherwise, there is a unique root variable x∗. Assume now that there are two disjuncts of
qT that contain atoms r(x∗, y) and r(z, x∗) with y 6= x∗ and z 6= x∗. By Lemma 5.28, both
r and r− are T -generated in q. By condition 2, we have r(x, y) vT q. By Lemma 5.18,
r(x, y) is a disjunct in qT which is in contradiction to the existence of the two disjuncts
assumed above, that is, minimality of qT . �

5.5 Beyond First-order Rewritings: ELI-TBoxes

In the previous sections, we have established FO-rewritability as a tool for proving
PTime results for CQ answering in the context of probabilistic OBDA. The aim of this
section is to establish that, in a sense, the tool is complete: we prove that whenever
a CQ q is not FO-rewritable relative to a TBox T , then q is #P-hard relative to T ;
thus, when a query is in PTime relative to a TBox T , then this can always be shown
via FO-rewritability. To achieve this goal, we select a DL as the TBox language that,
unlike DL-Lite, also embraces non FO-rewritable CQs/TBoxes. Here we choose ELI,
which properly generalizes DL-Lite. Note that, in traditional OBDA, there is a drastic
difference in data complexity of CQ-answering between DL-Lite and ELI: the former is
in AC0 while the latter is PTime-complete.

In what follows, we again focus on Boolean, connected CQs q which can additionally
involve individual names. Our main theorem in this section is as follows.

Theorem 5.31. If a Boolean, connected CQ q is not FO-rewritable relative to an
ELI-TBox T , then ipOBDA(q, T) is #P-hard.

140

5.5 Beyond First-order Rewritings: ELI-TBoxes

As a consequence, we obtain an (abstract) dichotomy for full ELI.

Theorem 5.32 (ELI dichotomy). Let q be a Boolean, connected CQ and T an ELI-
TBox. Then q is in PTime relative to T or #P-hard relative to T .

Proof. If q is not FO-rewritable relative to T , then it is #P-hard, by Theorem 5.31.
Otherwise, we get a dichotomy by Theorem 5.12. �

The proof of Theorem 5.31 is rather long and involves some technical parts. We start ‘at
the tail’ and illustrate which property of non-FO-rewritability we are going to exploit.
We call an ABox connected if the graph (V,E) given by V = Ind(A) and (a, b) ∈ E iff
r(a, b) ∈ A for some r is connected.

Lemma 5.33. If a Boolean connected CQ q is not FO-rewritable relative to an ELI-TBox
T , then for every d > 0 there is a connected ABox Âd containing assertions

R1(a1, a2), . . . , Rd(ad, ad+1)

such that

• a1, . . . ad+1 do not occur in q;

• T , Âd |= q, but T ,A′ 6|= q when A′ is Âd with any of those assertions dropped;

• dropping any of those assertions makes the ABox disconnected.

Having established Lemma 5.33, we can prove Theorem 5.31 by a reduction from
the #P-hard problem MonBiDNF. More specifically, let ϕ be a formula of the form
(xi1 ∧ yj1) ∨ · · · ∨ (xik ∧ yjk) where the set X = {x1, . . . , xnx} of variables that occur on
the left-hand side of a conjunction in ϕ is disjoint from the set Y = {y1, . . . , yny} of
variables that occur on the right-hand side of a conjunction in ϕ. We define an ipABox
(Aϕ, pϕ) by starting with the ABox A := Â3 from Lemma 5.33 and duplicating the
assertions R1(a1, a2), R2(a2, a3), R3(a3, a4) using fresh individual names b1, . . . , bnx and
c1, . . . , cny as follows.

• start with the ABox A without R1(a1, a2), R2(a2, a3), R3(a3, a4); assign probabil-
ity 1 to all assertions;

• add the following assertions with probability 1:

A(bi) for all A(a2) ∈ A and 1 ≤ i ≤ nx
R(bi, d) for all R(a2, d) ∈ A and 1 ≤ i ≤ nx
A(ci) for all A(a3) ∈ A and 1 ≤ i ≤ ny

R(ci, d) for all R(a3, d) ∈ A and 1 ≤ i ≤ ny
R2(bi, cj) for each disjunct xi ∧ yj in ϕ;

141

5 Ontology-Based Access to Probabilistic Data

a1

b1

bnx

...

c1

cny

...

a4

bi

cj

R1

R1

R1

R3

R3

R3

R2

R2

R2

R2

Figure 5.3: Gadget for the #P-hardness proof.

• add the following assertions with probability 0.5,

R1(a1, bi) for 1 ≤ i ≤ nx
R3(ci, a4) for 1 ≤ i ≤ ny.

The construction is illustrated in Figure 5.3 where, in the middle part, there is an
R2-edge from bi to cj if, and only if, xi∧yj is a disjunct in ϕ, and dashed arrows indicate
probabilistic assertions. Apart from what is shown in the figure, each bi receives exactly
the same concept and role assertions that a2 has in A, and each ci is, in the same sense,
a duplicate of a1 in A.

We are interested in ABoxesA′ ⊆ Aϕ with pϕ(A′) > 0. Each such ABox has probability
1

2|X|+|Y |
and corresponds to a truth assignment δA′ to the variables in X ∪ Y : for xi ∈ X,

δA′(xi) = 1 iff R1(a1, bi) ∈ A′ and for yi ∈ Y , δA′(yi) = 1 iff R3(ci, a4) ∈ A′. Let #ϕ
the number of truth assignments to the variables X ∪ Y that satisfy ϕ. To complete the
reduction, we show that p(T ,Aϕ |= q) = #ϕ

2|X|+|Y |
. By what was said above, this is an

immediate consequence of the following claim.

Claim. For all ABoxes A′ ⊆ Aϕ with pϕ(A′) > 0, δA′ |= ϕ iff T ,A′ |= q.

Proof of the Claim. “if”. Let δA′ 6|= ϕ and assume to the contrary of what is to be shown
that T ,A′ |= q. Since δA′ 6|= ϕ and by construction of Aϕ, there are no i, j such that
R1(a1, bi), R2(bi, cj), R3(cj , a4) ∈ A′, so in particular A′ decomposes into two components
B1 and B2 where B1 contains the individual a1 and B2 contains the individual a4. As q
is connected and T is an ELI-TBox, we have either T ,B1 |= q or T ,B2 |= q. Obtain B′1
and B′2 as follows:

• B′1 is the connected component of a3 after dropping assertion R3(a3, a4) from A
(recall that A becomes disconnected, when dropping one atom);

• B′2 is the connected component of a2 after dropping assertion R1(a1, a2) from A.

142

5.5 Beyond First-order Rewritings: ELI-TBoxes

Clearly, Bi can be embedded into B′i for both i = 1, 2 preserving the constants that
appear in q.4 Thus, we also have that either T ,B′1 |= q or T ,B′2 |= q, both contradicting
Lemma 5.33.
“only if”. By construction of Aϕ, δA′ |= ϕ implies that, up to renaming of individual

names that do not occur in q, we have A ⊆ A′. Since T ,A |= q by choice of A, we must
thus also have T ,A′ |= q.

This finishes the proof of the Claim and thus of Theorem 5.31. The rest of this section is
devoted to the missing proof of Lemma 5.33. It consists of three steps:

• In the first step, we show that we can assume the TBox to be in a certain normal
form.

• In the second step, we introduce an appropriate fixpoint operator and define that
a query q is bounded relative to a TBox T if the operator stabilizes after finitely
many steps, similar to [102]. Boundedness is the central notion used here. In
particular, we will show that non-FO-rewritability implies unboundedness.

• Finally, we identify for every d > 0 a suitable ABox Ad and show, based on
unboundedness, that Ad can be transformed into an ABox having the properties
from Lemma 5.33.

5.5.1 TBox Normalization

Let T be an ELI-TBox and q a Boolean connected CQ. We show that we can assume
without loss of generality that T contains only CIs of the forms

A v B A v ∃R.B
B1 uB2 v A ∃R.B v A

where R ranges over roles and A, B, B1, B2 range over concept names and >. Let sub(T)
denote the set of all subconcepts of (concepts that occur in) T and reserve a concept
name XC for every C ∈ sub(T) \ (NC ∪ {>}) such that XC occurs neither in T nor in q.
Set

σ(C) =

C if C ∈ NC ∪ {>},
XD1 uXD2 if C = D1 uD2,

∃r.XD if C = ∃r.D.
Then put

T ′ =
⋃

CvD∈T
XC v XD ∪

⋃
C∈sub(T)\(NC∪{>})

XC ≡ σ(C).

4We have not formally defined the embedding of an ABox into an other; we mean it in the sense of
existence of a homomorphism on the level of assertions, i.e., individual names do not have to be
preserved.

143

5 Ontology-Based Access to Probabilistic Data

where C ≡ D abbreviates C v D,D v C. After further replacing each CI of the form
A v B1 u B2 with A v B1 and A v B2, T ′ is of the required syntactic form. Clearly,
the conversion can be done in polynomial time.
We want to replace T with the TBox T ′ in normal form. To implement this, we

consider ABoxes in a restricted signature. A predicate is either a concept name or a role
name and a signature is a set of predicates. We use sig(T) to denote the set of predicates
that occur in T and likewise for sig(q). A Σ-ABox is an ABox that contains only symbols
from Σ. We call a query q FO-rewritable relative to T over Σ-ABoxes if there is a FOQ
qT such that certT (q,A) = ans(qT ,A) for all Σ-ABoxes. Due to the following result, we
are indeed able to replace T with T ′ when we are careful about ABox signatures.

Theorem 5.34. Let Σ = sig(T) ∪ sig(q).

1. q is FO-rewritable relative to T (over all ABoxes) iff q is FO-rewritable relative to
T ′ over Σ-ABoxes;

2. q is #P-hard relative to T (over all ipABoxes) iff q is #P-hard relative to T ′ over
Σ-ipABoxes.

Proof. For Point 1, first assume that q is FO-rewritable relative to T and let ϕ be an
FO-rewriting. We show that ϕ is also an FO-rewriting of q relative to T ′ over Σ-ABoxes.
To this end, let A be a Σ-ABox. Since the fresh concept names XC occur neither in q
nor in A, it is easy to show that T ,A |= q iff T ′,A |= q. Since the former is equivalent
to IA |= ϕ, we are done. Conversely, assume that q is FO-rewritable relative to T ′ over
Σ-ABoxes and let ϕ′ be an FO-rewriting. Since each non-Σ-symbol is interpreted as the
empty set in IA for any Σ-ABox A, we can w.l.o.g. assume that no such symbol occurs
in ϕ′ (if it does, replace it with false). We show that ϕ′ is also an FO-rewriting of q
relative to T (over all ABoxes). Let A be an ABox and A|Σ the result of dropping all
non-Σ-assertions from A. We have:

T ,A |= q iff T ,A|Σ |= q since q and T contain only Σ-symbols
iff T ′,A|Σ |= q since the XC occur neither in q nor in A|Σ
iff IA|Σ |= ϕ′ since ϕ′ is an FO-rewriting

iff IA |= ϕ′ since there are no non-Σ-symbols in ϕ′.

For Point 2, first assume that q is #P-hard relative to T . Since T and q contain
only Σ-symbols, we have that T ,A |= q iff T ,A|Σ |= q for all ABoxes A and thus
p(T ,A |= q) = p(T ,A|Σ |= q) for all ipABoxes A. It follows that q is #P-hard relative
to T over Σ-ipABoxes. Since the fresh symbols XC do not occur in A or q, we have
T ,A |= q iff T ′,A |= q for all Σ-ABoxes A and thus also p(T ,A |= q) = p(T ′,A |= q) for
all Σ-ipABoxes. Hence, answering q relative to T over Σ-ipABoxes is simply the same
problem as answering q relative to T ′ over Σ-ipABoxes and we are done. For the converse

144

5.5 Beyond First-order Rewritings: ELI-TBoxes

direction, p(T ,A |= q) = p(T ′,A |= q) for all Σ-ABoxes A means that answering q
relative to T ′ over Σ-ipABoxes is simply a subproblem of answering q relative to T , thus
#P-hardness of the former implies #P-hardness of the latter. �

From now on, we will assume that T is in the normal form described above and denote
with Σ the signature before establishing normal form. In particular, T might contain
non-Σ symbols and we will always take care that input ABoxes use only symbols from Σ.

5.5.2 Fixpoint operator, Boundedness, and FO-rewritability

The purpose of this part is to establish a connection between FO-rewritability and
boundedness of an appropriate fixpoint operator, similar to what was observed in [102].
Given an ABox A and an a ∈ Ind(A), we denote with A|a the neighbourhood of a, i.e.,
the restriction of A to the individual name a and all members of {b | R(a, b) ∈ A} where
R is a role name or its inverse. For a TBox T , define

fT (A) = A ∪ {A(a) | a ∈ Ind(A) ∧ T ,A|a |= A(a)}.

Intuitively, fT locally applies the TBox to its argument in order to materialize implicit
knowledge. We set

f∞T (A) :=
⋃
i≥0

f iT (A),

where f iT (·) denotes application of fT , iterated i times. Note that the application of fT (·)
yields ABoxes, though not necessarily Σ-ABoxes. It is not hard to prove that for all
A ∈ NC and a ∈ NI, we have T ,A |= A(a) iff A(a) ∈ f∞T (A) [102]. We want to establish
an analogous claim for CQs, which requires first introducing several technical notions. In
particular, we construct a query qT from q and T such that answering q over a Σ-ABox
A is equivalent to answering qT over f∞T (A). Note that, despite reusing the symbol, qT
is in general not an FO-rewriting of q relative to T , which are not guaranteed to exist
in ELI; intuitively, qT constitutes the part of the FO-rewriting that deals with objects
generated by existential quantifiers.

We use EQ(q) to denote the set of all equivalence relations on term(q) such that a 6∼ b
for all distinct a, b ∈ NI. For every ∼ ∈ EQ(q), define a collapsing q∼ of q:

q∼ = {r(s[t], s[t′]) | r(t, t′) ∈ q} ∪ {A(s[t]) | A(t) ∈ q}.

where s[t] = a if the individual name a is in [t] and s[t] is the fresh variable z[t] otherwise.
We call a CQ q tree-shaped if there no cycle in q, that is, there is no sequence of distinct
atoms R1(t1, t2), R2(t2, t3), . . . , Rk(tk, tk+1) in q with tk+1 = t1. A splitting S of a CQ
q is a partition q0, . . . , qk of q (with q0 possibly empty and q1, . . . , qk non-empty) such
that we have

145

5 Ontology-Based Access to Probabilistic Data

1. q1, . . . , qk are tree-shaped queries with roots t1, . . . , tk;

2. term(qi) ∩ term(qj) = ∅ for 1 ≤ i < j ≤ k;

3. term(q0) ∩ term(qi) = {ti} for 1 ≤ i ≤ k;

4. Each qi does not contain individual names except for possibly ti.

Let split(q) denote the set of all splittings of q and let CN(T) denote the set of all
concept names occurring in T . Fix a splitting S = q0, . . . , qk of a CQ q and a map
ρ : {1, . . . , k} → 2CN(T). We use Aρ,i to denote the ABox {A(t̂i) | A ∈ ρ(i)} where t̂i = ti
if ti is an individual name and a fresh individual name â otherwise. We say that ρ is a
justification for S relative to T if for all i ∈ {1, . . . , k}, we have T ,Aρ,i |=ti qi meaning
that in every model I of Aρ,i and T , there is a match of the tree-shaped Boolean query qi
that maps its root ti to t̂i

I . Let just(S, T) denote all possible justifications of S relative
to T . We use qρ(i) to denote the query

∧
A∈ρ(i)A(ti) where, again ti denotes the root of

qi. For each ∼ ∈ EQ(q), set

q̂∼ =
∨

S=q0,...,qk∈split(q∼)

∃z[t̂1] · · · ∃z[t̂n]

∨
ρ∈just(S,T)

(
q0 ∧

k∧
i=1

qρ(i)

)
where [t̂1], . . . , [t̂n] are the equivalence classes of ∼ on var(q0) that do not contain an
individual name. Finally, we define the UCQ qT as

∨
∼∈EQ(q) q̂∼.

Theorem 5.35. For any CQ q, ELI-TBox T in normal form, and Σ-ABox A, we have
T ,A |= q iff If∞T (A) |= qT .

To prove Theorem 5.35, we introduce canonical models for ABoxes and ELI-TBoxes. Let
A be an ABox and T an ELI-TBox in normal form. A type for T is a set T ⊆ CN(T).
When a ∈ Ind(A), T, T ′ are types for T , and R is a role, we write

• a R T if T ,A |= ∃R.uT (a) and for each type S for T with T (S, we have
T ,A 6|= ∃R.uS(a);

• T R T
′ if T |= uT v ∃R.uT ′ and for each type S for T with T ′ (S, we have

T 6|= uT v ∃R.uS.

A path for A and T is a sequence p = aR1T1 · · ·Tn−1RnTn, n ≥ 0, with a ∈ Ind(A),
R1, . . . , Rn roles, and T1, . . . , Tn types for T such that a R1 T1 and Ti Ri Ti+1 for
1 ≤ i < n. When n > 0, we use tail(p) to denote Tn. Let Paths be the set of all paths for

146

5.5 Beyond First-order Rewritings: ELI-TBoxes

A and T and define the interpretation IA,T as follows:

∆IT ,A = Paths

AIT ,A = {a ∈ Ind(A) | T ,A |= A(a)} ∪
{p ∈ ∆I \ Ind(A) | T |= u tail(p) v A}

rIT ,A = {(a, b) ∈ Ind(A)× Ind(A) | r(a, b) ∈ A} ∪
{(p, prT) | prT ∈ Paths} ∪
{(pr−T, p) | pr−T ∈ Paths}

aIT ,A = a

It is standard to prove that IT ,A is canonical in the following sense.

Lemma 5.36. For any CQ q, ELI-TBox T in normal form, and ABox A, we have
T ,A |= q iff IT ,A |= q.

We are now ready to prove Theorem 5.35.

Proof (of Theorem 5.35). “if”. Assume that If∞T (A) |= qT . Thus, there is a disjunct q′ of
qT with If∞T (A) |= q′. Let π be a match of q′ in If∞T (A). By definition of qT , there is an
equivalence relation ∼ ∈ EQ, a splitting S = q0, . . . , qk ∈ split(q∼) and a ρ ∈ just(S, T)
such that q′ = q0 ∧

∧k
i=1 qρ(i). Note that If∞T (A) is in fact the same as IT ,A restricted to

Ind(A). Thus, π is a match of q′ in IT ,A that maps only to Ind(A). In particular, we
have π(ti) ∈ AIT ,A for every A(ti) ∈ qρ(i). As ρ is a justification for S relative to T , we
have T ,Aρ,i |=ti qi, for 1 ≤ i ≤ k. By construction of the canonical model IT ,A, there
is thus a match πi of qi in IT ,A such that the root ti of qi is mapped to π(ti). Define
π0 : term(q0)→ Ind(A) as follows:

π0(ti) =

{
a if t ∼ a for some a ∈ Ind(A),

π([t]) otherwise.

It can be verified that π0 ∪ π1 ∪ · · · ∪ πk is a match of q in IT ,A. By Lemma 5.36, we
have A, T |= q as required.
“only if”. Assume that T ,A |= q. By Lemma 5.36, this means IT ,A |= q. Let π be a

match of q in IT ,A and let a1, . . . , ak be the elements of Ind(A) that are in the range of
π. Define a splitting S = q0, . . . , qk of q, where

• q0 involves all atoms A(t), r(t, t′) in q with π(t), π(t′) ∈ Ind(A);

• qi involves all atoms A(t), r(t, t′) in q \ q0 with π(t), π(t′) of the form aip for some
p.

Define a justification ρ for S relative to T by setting ρ(i) = {A ∈ CN(T) | ai ∈ AIT ,A}
for 1 ≤ i ≤ k. Then, q′ = q0 ∧

∧k
i=1 qρ(i) is a disjunct in qT and it can be verified that

If∞T (A) |= q′. �

147

5 Ontology-Based Access to Probabilistic Data

We will now provide the central definition of boundedness and its connection to (non-)FO-
rewritability.

Definition 5.37 (Boundedness). A CQ q is k-bounded relative to a TBox T over
Σ-ABoxes if for every Σ-ABox A, we have that IfkT (A) |= qT iff If∞T (A) |= qT . We say
that q is bounded relative to a TBox T over Σ-ABoxes if it is k-bounded for some k.

Theorem 5.38. If a CQ q is bounded relative to T over Σ-ABoxes, then it is FO-
rewritable relative to T over Σ-ABoxes.

Proof. Assume that q is bounded relative to T over Σ-ABoxes and let k > 0 be such
that IfkT (A) |= qT iff If∞T (A) |= qT for every Σ-ABox A. The proof idea is to express the
k-fold application of fT in first-order logic, that is, we can give a first-order rewriting of
q relative to T .
Observe that Σ is finite, and thus there are only finitely many neighborhoods Aa

that can occur in a Σ-ABox A, up to isomorphism. Every such neighborhood N with
individual name a in the center can be converted in a straightforward way into an
existential, conjunctive, positive FO-formula:

ϕN =
∧

A(a)∈N

A(x) ∧
∧

b∈Ind(N)

∃y :
(∧
R(a,b)∈N

R(x, y) ∧
∧

B(b)∈N

B(y)
)
.

For each concept name A, we use ΓA to denote the set of neighborhoods N with center
a such that A(a) ∈ fT (N). For every concept name A and i ≥ 0, set

• q0
A(x) := A(x)

• qi+1
A (x) := qiA ∨

∨
N∈ΓA

ϕ′N where ϕ′N is obtained from ϕN by replacing, for each

concept name B, every atom B(z) with qiB[z/x].

The following can be proved by induction on i:

Claim. For every Σ-ABox A and i ≥ 0, we have IA |= qiA[a] iff A(a) ∈ f iT (A).

Let q̂T be qT with every atom A(t) replaced with qkA[t/x]. We show that q̂T is an
FO-rewriting of q relative to T , which finishes the proof. By the above claim, we
have IA |= q̂T iff IfkT (A) |= qT . By choice of k, this is the case iff If∞T (A) |= qT . By
Theorem 5.35, this is equivalent to T ,A |= q. �

5.5.3 Construction of Âd from Lemma 5.33

In the following, we fix some d and construct an ABox satisfying the properties of Âd
from Lemma 5.33. Let q be unbounded relative to T over Σ-ABoxes and set

m = |T | · |qT | · (|T |+ |qT |)d + 1.

148

5.5 Beyond First-order Rewritings: ELI-TBoxes

The choice of m will become clear at the end of this section. Since q is not bounded
relative to T , there is a Σ-ABox A0 such that IfmT (A0) |= qT , but Ifm−1

T (A0) 6|= qT . As
it is now, we cannot make any assumption about the shape of A0. The goal here is to
construct a ‘forest-shaped’ ABox with bounded outdegree with the same properties as
A0. In the first step, we show what is meant with ‘forest-shaped’.
Choose a concrete match π of qT in IfmT (A0) and denote with ran(π) the range of π,

that is, the set {π(t) | t ∈ term(qT)}. In the first step, we to construct a Σ-ABox A1 as
follows:

• a π-path in A0 of length n is a sequence p = a0R1a1 · · ·Rnan such that a0 ∈ ran(π)
and Ri(ai−1, ai) ∈ A0 for 1 ≤ i ≤ n; we use tail(p) to denote an;

• Ind(A1) is the set of all π-paths in A0 of length at most m;

• if A(a) ∈ A0, p ∈ Ind(A1), and tail(p) = a, then A(p) ∈ A;

• if pRa ∈ Ind(A1), then R(p, pRa) ∈ A1;

• if r(a, b) ∈ A0 and a, b ∈ ran(π), then r(a, b) ∈ A1.

• these are all assertions in A1.

Intuitively, A1 is a (finite) unraveling of A0 that preserves the range of π and is of depth
m. Thus, A1 is of a special shape:

• the elements in ran(π) form a ‘core’ whose relational structure is not restricted in
any way;

• each ‘root’, that is, each element a ∈ ran(π), gives rise to a tree-shaped sub-ABox
of A1, namely the restriction to the individuals p of the form a · p′.

Lemma 5.39. IfmT (A1) |= qT , but Ifm−1
T (A1) 6|= qT .

Proof. We first verify the following claim.

Claim. For all i ≤ m, p ∈ Ind(A1) with tail(p) = a, and A ∈ NC, we have

(a) A(p) ∈ f iT (A1) implies A(a) ∈ f iT (A0).

(b) if p is of length at most m− i, then A(a) ∈ f iT (A0) implies A(p) ∈ f iT (A1).

Proof of the Claim. The proof is by induction on i. The induction start is trivial by
construction of A1. For the induction step, note that, by definition of fT , we have
A(p) ∈ f iT (A1) iff f i−1

T (A1)|p, T |= A(p). By induction hypothesis and the construction

149

5 Ontology-Based Access to Probabilistic Data

of A1, we have f i−1
T (A1)|p ⊆ f i−1

T (A0)|a with equality if p is of length at most m− i.5
This implies f i−1

T (A0)|a, T |= A(a), i.e., A(a) ∈ f iT (A0), and implication in the converse
direction holds, when the length of p is at most m − i. This finishes the proof of the
Claim.
To see that IfmT (A1) |= qT , let q′ be a disjunct of qT such that π (the match used for the
construction of A1) is a match for q′ in IfmT (A0). We claim that π is also a match of qT
in IfmT (A1):

• r(t, t′) ∈ q′ implies r(π(t), π(t′)) ∈ fmT (A0) and thus r(π(t), π(t′)) ∈ A0. By
construction of A1, r(π(t), π(t′)) ∈ A1 ⊆ fmT (A1);

• A(t) ∈ q′ implies A(π(t)) ∈ fmT (A0). By part (b) of the claim, A(π(t)) ∈ fmT (A1).

For Ifm−1
T (A1) 6|= qT , assume that there is a match τ of qT in Ifm−1

T (A1). By part (a)
of the claim and the construction of A1, the mapping h that maps every element p of
Ifm−1
T (A1) to tail(p) in Ifm−1

T (A0) is a homomorphism. Thus, h ◦ τ is a match for qT in
Ifm−1
T (A0), contradiction. �

Next, we ‘minimize’ A1 by exhaustively applying the following operation: if α ∈ A1 is
an assertion involving a non-root element, that is, a path p of length at least 1, and
If∞T (A−1) |= qT for A−1 = A1 \ {α}, then replace A1 with A−1 . Let A2 be the Σ-ABox
finally obtained. For i ≥ 0, we say that A2 has outdegree at most i if every individual in
A2 has at most i successors that are not roots, that is, for every p ∈ Ind(A1), we have∣∣{p′ ∈ Ind(A2) \ Ind(A0) | ∃R : R(p, p′) ∈ A2}

∣∣ ≤ i.
Lemma 5.40. A2 satisfies the following:

1. There is some m′ ≥ m with I
fm
′

T (A2)
|= qT , but Ifm′−1

T (A2)
6|= qT ;

2. A2 has outdegree at most |T |+ |qT |.

Proof. For Point 1, it suffices to show that Ifm−1
T (A2) 6|= qT and If∞T (A2) |= qT . The

former is a consequence of the facts that Ifm−1
T (A1) 6|= qT , A2 ⊆ A1, and qT is a UCQ;

the latter is is immediate by construction of A2.
For Point 2, assume to the contrary of what is to be shown that there is a p ∈ Ind(A2)

such that the cardinality of

Γ = {p′ ∈ Ind(A2) \ Ind(A0) | ∃R : R(p, p′) ∈ A2}

exceeds |T |+ |qT |. Fix a match π of qT in If∞T (A2) and mark all those individual names
in Γ that are in the range of π. For each ∃R.A v B ∈ T such that B(p) ∈ f∞T (A2),
mark an individual name p′ ∈ Γ such that

5Containment of neighborhoods is meant independent from the individual names; for instance,
{A(a), r(a, b)} ⊆ {A(c), r(c, d), B(d)}.

150

5.5 Beyond First-order Rewritings: ELI-TBoxes

1. R(p, p′) ∈ A2 and A(p′) ∈ f jT (A) for some j < m;

2. there is no p′′ that satisfies Point 1 for some smaller j.

Note that such a p′ need not exist, in which case no node is marked for ∃r.A v B. Since
|Γ| > |T |+ |qT |, there is at least one element p0 ∈ Γ that is not marked. Consider the
ABox A−2 obtained from A2 by dropping the (unique) assertion R(p, p0) that caused p0

to be in Γ and all other assertions involving an individual name with prefix p0. As each
disjunct in qT is connected, we do not drop marked individuals. Based on the normal
form of T and the definition of fT , it is not hard to show that no deductions are lost.

Claim. For all i ≥ 0, p ∈ Ind(A−2), and concept names A, we have A(p) ∈ f iT (A−2) iff
A(p) ∈ f iT (A2).

Proof of the Claim. The direction “only if” is immediate as A−2 ⊆ A2. For the other
direction, observe that it is trivially true for i = 0. For i > 0, assume that A(p) is added
to f iT (A2). By definition of fT and the normal form of T , there is a point p′ such that
R(p, p′) ∈ A2, B(p′) ∈ f i−1

T (A2), and ∃R.B v A ∈ T . If there is such a point p′ 6= p0,
then p′ is an individual name in A−2 and we can apply induction hypothesis. Otherwise,
we have p′ = p0, contradicting the marking condition. This finishes the proof of the
Claim.

Consequently, π is still a match of qT in If∞T (A−2), contradicting minimality of A2. �

We are finally ready to prove that A2 satisfies the conditions of Lemma 5.33. We say
that a path p′ ∈ Ind(A2) is an extension of a path p ∈ Ind(A2) if p′ = pRa for some R
and a. We claim that A2 contains a sequence of assertions

R1(p1, p2), . . . , Rd(pd, pd+1)

such that p1 is of length one and pi+1 is an extension of pi for all i < d. Assume this is
not the case. Then all paths in Ind(A) are of length at most d. Since A2 is forest-shaped
with at most |qT | roots, Point 2 of Lemma 5.40 yields |Ind(A2)| ≤ |qT | · (|T | + |qT |)d.
Note that iterated applications of fT can assign, in the worst case, every concept name
from T to every individual name. Hence, for an ABox B with i elements, we have
f `T (B) = f `+1

T (B) where ` = |T | · i. Applied to A2, we obtain f `T (A2) = f `+1
T (A2) where

` = |T | · |qT | · (|T |+ |qT |)d. This is in contradiction to Point 1 of Lemma 5.40 and the
fact that m′ ≥ m > `.
It suffices to note that, by Theorem 5.35, If∞T (A2) |= qT implies T ,A |= q. On the

other hand, by construction of A2, we have If∞T (A−2) 6|= qT for every subset A−2 =

A2 \ {Ri(pi, pi+1)}. By Theorem 5.35, we get T ,A−2 6|= q for each such A−2 . Finally, by
construction of A2, the sequence is the unique path from p1 to pd+1.

151

5 Ontology-Based Access to Probabilistic Data

5.6 Monte Carlo Approximation

The results in Sections 5.4 and 5.5 show that PTime complexity is an elusive property
even for ipABoxes and relatively inexpressive TBox languages such as DL-Lite and
ELI. Of course, the same is true for probabilistic databases, even for very simple data
models such as tuple independent databases. To address this fundamental problem,
researchers and users are often trading accuracy for efficiency, replacing exact answers
with approximate ones. In particular, it is popular to use Monte Carlo approximation in
the form of fully polynomial randomized approximation schemes (FPRASes). An FPRAS
for a Boolean CQ q and TBox T is a randomized polynomial time algorithm that, given
an ipABox A and an error bound ε > 0, computes a real number x such that

Pr
(|p(T ,A |= q)− x|

p(T ,A |= q)
≤ 1

ε

)
≥ 3

4
.

In words: with a high probability—the value of 3
4 can be amplified by standard methods—

the algorithm computes a result that deviates from the actual result by at most factor 1
ε .

The term ‘fully polynomial’ refers to the fact that the run-time of the algorithm is
polynomial in both the size of A and the error bound ε. For more details on FPRASes
and related results, consult [128].

The goal of this section is revisit probabilistic OBDA in the light of FPRASes. In
particular, we want to reconsider the results obtained so far and check the existence
of an FPRAS in each case. A technical peculiarity is that non-existence of an FPRAS
cannot be proved (so far) without complexity theoretic assumptions. For example, it is
well-known that #SAT—and, in general, the counting version of any NP-hard decision
problem—has no FPRAS unless NP = RP [83], which is commonly assumed not to be
the case. On the positive side, by a classical result by Karp and Luby, there is an FPRAS
for #DNF, that is, for counting the number of satisfying assignments of a propositional
formula in DNF [88].

Let us start with considerations regarding our data model. It follows from the proof
of Theorem 5.6 and the fact that #SAT does not admit an FPRAS that over pABoxes
every CQ does not have an FPRAS relative to every FO-TBox. However, the existence
of an FPRAS is not precluded per se in case the event expressions are restricted to DNF
formulas (in contrast to #P-hardness of exact reasoning). Quite to the contrary, Fagin
et al. observed that there is an FPRAS for UCQs over probabilistic databases when the
event expressions are given in DNF [44, Theorem A.14]. We thus have:

Theorem 5.41. Let q be an arbitrary UCQ. Then:

• There is no FPRAS for answering q relative to any FO-TBox over full pABoxes
(unless RP = NP);

152

5.6 Monte Carlo Approximation

• There is an FPRAS for answering q relative to the empty TBox over pABoxes
where event expressions are given in DNF.

Motivated by the second point of the theorem, we turn our attention to restricted versions
of pABoxes. Remarkably, FO-rewritability and the connection to tuple-independent
databases turn out to be useful tools again. To be more specific, assume any pair
of first-order query and TBox (ϕ, T) such that ϕ is FO-rewritable relative to T . By
Proposition 5.15, there is a UCQ-rewriting ϕT of ϕ relative to T . By the Lifting
Theorem 5.13, we can answer ϕT over A (viewed as a tuple-independent database)
instead of computing p(T ,A |= ϕ) directly. By the mentioned observation from [44],
there exists an FPRAS for ϕT . We thus obtain:

Theorem 5.42. If a FOQ ϕ is FO-rewritable relative to a FO-TBox T , then there is
an FPRAS for computing the query probability over pABoxes when event expressions are
given in DNF. In particular, there is an FPRAS for ipOBDA(ϕ, T).

This observation clearly gives hope for the practical feasibility of probabilistic OBDA. In
particular, Theorem 5.42 implies that for every CQ (even every UCQ) and DL-Lite-TBox,
we can approximate the query probability. It is thus natural to ask whether FPRASes
also exist for (CQs and) TBoxes formulated in richer ontology languages. No general
positive result can be expected for expressive DLs that involve all Boolean operators
such as ALC. As analyzed in detail in [102], there is a large class of Boolean CQs q and
ALC-TBoxes T such that, given a non-probabilistic ABox A, it is coNP-hard to check
the entailment T ,A |= q. As argued above, the corresponding counting (or probability
computation) problem cannot have an FPRAS, and thus we obtain the following.

Theorem 5.43. There are CQs q and ALC-TBoxes T such that there is no FPRAS for
q and T (unless RP = NP).

Consequently, it is interesting to study ELI as the TBox language, where traditional
OBDA is in PTime data complexity for all CQs q and TBoxes T . By what was said
above, the case when q is FO-rewritable relative to T is already captured by Theorem 5.42.
Hence, the remaining cases are those that involve a TBox which is not FO-rewritable.
Ideally, one would like to have a full classification of all pairs (q, T) according to whether
or not an FPRAS exists. Since the above results indicate that pABoxes with event
expressions in DNF are promising we take them into account as well.
Again, if a query q is FO-rewritable relative to T , then there is an FPRAS both for

ipOBDA(q, T) and pOBDA(q, T) restricted to pABoxes with event expressions in DNF
(by Theorem 5.42). If, on the other hand, q is not FO-rewritable relative to T , the
picture gets less positive. In what follows, we illustrate the computational behavior for a
single pair of query and TBox and argue that (some of) our observations can be lifted to
all non-FO rewritable pairs using Lemma 5.33.

153

5 Ontology-Based Access to Probabilistic Data

Let us introduce a reliability problem for graphs. A reliability network is a tuple
G = (V,E, p) where (V,E) is a directed graph and p is a mapping that associates to every
edge e ∈ E a probability p(e) that the edge is present. Intuitively, edges fail independently
with probability 1− p(e). The semantics is defined as for pABoxes, that is, each subset
E′ ⊆ E is a possible world with probability p(E′) =

∏
e∈E′ p(e) ·

∏
e∈E\E′(1 − p(e)).

Given two vertices s, t ∈ V , we define the probability ps,t(G) that s, t are connected as
the sum of the probability of all possible worlds such that there is a path from s to t.

s-t-reliability

INPUT: reliability network G = (V,E, p), two vertices s, t ∈ V
OUTPUT: ps,t(G).

It is well-known that this problem is #P-hard [126], but it is open whether the problem
can be approximated; an FPRAS is known to exist only under strong assumptions on
G [132]. Note, however, the existence of an FPRAS for the ‘dual’ problem: given a
reliability network, what is the probability that (V,E) becomes disconnected [87].

Theorem 5.44. For q = A(x) and T = {∃r.A v A}, ipOBDA(q, T) and s-t-reliability
are equivalent under polynomial time reductions, thus, the latter admits an FPRAS iff
the former does.

Proof. For the reduction from s-t-reliability to ipOBDA(q, T), assume a reliability network
G = (V,E, p), define the ipABox A by adding for all (u, v) ∈ E the assertion r(u, v) to
A and annotating it with probability p(e). Add additionally the assertion A(t). It is not
difficult to verify that p(T ,A |= A(s)) = ps,t(G). For the converse reduction, assume
some ipABox A. Construct a reliability network G = (V,E, p) as:

• V = Ind(A) ∪ {x};

• E = {(a, b) | r(a, b) ∈ A} ∪ {(a, x) | A(a) ∈ A};

• for an edge e = (a, b) ∈ E, define p(e) as p(r(a, b));

• for an edge e = (a, x) ∈ E, define p(e) = 1.

Also in this case, it is not hard to verify that p(T ,A |= A(a)) = pa,x(G) for all
a ∈ Ind(A). �

We leave a generalization of Point (1) as interesting future work. However, let us note
that, when allowing pABoxes with DNF annotations, no FPRASes exist anymore if the
query is not FO-rewritable relative to the TBox. In particular, we obtain the following
characterization of FPRAS existence.

Theorem 5.45. For Boolean connected CQs q and ELI-TBoxes T , there is an FPRAS
for pOBDA(q, T) over pABoxes restricted to DNF event expressions iff q is FO-rewritable
relative to T .

154

5.7 Conclusion and Future Directions

Proof. The “if”-direction is a consequence of Theorem 5.42. For the “only if”-direction
assume that q is not FO-rewritable relative to T . We reduce from counting #SAT which
has no FPRAS unless NP = PTime. Let ϕ be a CNF formula with k clauses ϕ1, . . . , ϕk.
By Lemma 5.33 there is an ABox A = Âk containing a chain

R1(a1, a2), . . . , Rk(ak, ak+1)

such that T ,A |= q and removing one of Ri(ai, ai+1) leads to the fact that q is not
implied anymore. Define the pABox (A, e, p) as follows:

• e(Ri(ai, ai+1)) = ϕi for each 1 ≤ i ≤ k;

• e(α) = x ∨ ¬x for all assertions α ∈ A \ {R1(a1, a2), . . . , Rk(ak, ak+1)};

• p(x) = 1/2 for all variables x occurring in ϕ.

We then have that every truth assignment v to variables in ϕ corresponds to a world
Av ⊆ A, and vice versa. Moreover, we have that T ,Av |= A(a0) iff v |= ϕ; hence
p(T ,A |= A(a0)) = #ϕ/2n where n is the number of variables in ϕ. �

5.7 Conclusion and Future Directions

We have introduced the framework for ontology-based access to probabilistic data and
we have analyzed the data complexity of computing answer probabilities therein. We
believe that the introduced setup is of general interest and potentially useful for a wide
range of applications including the already mentioned information extraction, machine
translation, and dealing with data that arises from sensor networks. All these applications
can potentially benefit from a fruitful interplay between ontologies and probabilities; in
particular, we have argued that the ontology can help to reduce the uncertainty of the
data. There are various directions for future work.

Generalizations of the presented results

The concrete dichotomy for DL-Lite covers a basic DL-Lite dialect and connected
conjunctive queries. An obvious possibility for future work is to extend this result to
more expressive versions of DL-Lite that, for example, allow for role hierarchy statements
and functionality axioms. Although we believe that the techniques we presented are
helpful for doing so, let us note that for some combinations the universal first-order
rewritability is lost. This would require to investigate new techniques or to adapt those
developed for ELI. Another possibility would be to allow full conjunctive queries or
even UCQs.

Another interesting direction is the generalization of the ELI dichotomy to other logics.
While the part when q is FO-rewritable relative to T is always covered by Theorem 5.12,

155

5 Ontology-Based Access to Probabilistic Data

recall that the proof for ‘non-FO-rewritability implies #P-hardness’ was non-trivial
and required a good understanding of first-order rewritability in ELI. There are two
natural generalizations of ELI: Horn description logics and ALCI. Since the former
are technically quite similar in traditional OBDA [17], we believe that an extension to
them is not too hard. In contrast, the generalization towards ALCI is probably more
difficult, as FO-rewritability of conjunctive queries relative to ALCI-TBoxes is not yet
well-understood.

Implementation

From an application perspective, it would obviously be desirable to put our framework
to work in an actual implementation and verify its utility in settings such as web data
extraction or data cleaning. We believe there is legitimate hope for practicality given
our positive results for computing approximate answer probabilities. Moreover, we have
demonstrated that in many cases, mostly for DL-Lite, it can be implemented on top
of existing probabilistic database systems, analogously to traditional OBDA. However,
in an actual application, one is additionally interested in reasoning services different
from standard query answering. A prominent such example is the computation of
the top-k answers, that is, a potential user is not interested in all answer tuples and
their probabilities but only in the k most probable ones, and sometimes not even in
the probabilities then. Other helpful reasoning services include explanation, that is,
explaining the high/low probability of query answers, and support for feedback, that is,
allowing the user to correct wrongly extracted data. In this way, the system learns and
provides increasingly better answers.
We have mostly dealt with query rewriting as a tool and ignored the potentially

substantial increase of the query size involved. For addressing this issue in traditional
OBDA, Kontchakov et al. introduced the ‘combined approach’ [94]. There, the query
and the data is preprocessed—both in polynomial time—and the modified query is
executed on the modified data; the TBox can be dropped. While obviously such an
algorithm cannot exist for a #P-hard pair (q, T) (unless PTime = NP), this approach
is potentially useful for the PTime cases and thus of practical relevance.

Extensions of the Framework

Our framework allows for uncertain data only. However, similar settings might require
also uncertainty in (different levels of) the TBox. For example, probabilities on the
rules—corresponding to probabilities on concept inclusions—are allowed in [116, 50, 108].
While we believe that this is not too useful in the sketched application of information
extraction, we can imagine that there are settings where such an extension is in fact
necessary. It would be interesting to investigate the computational implications of such
an extension. Note that an extension to ontologies as in Chapters 3 and 4 is semantically

156

5.7 Conclusion and Future Directions

delicate: a probabilistic ABox fixes a single distribution over (open) worlds whereas an
ontology restricts possible distributions and it is not clear to which to give priority.

Orthogonally, one can imagine statements in the TBox that model statistical knowledge
from the domain of discourse; this is done for example in [14, 92] in classical AI settings
and in [34] in a probabilistic database setting. However, there are intricate semantical
problems and it remains to be seen whether we can extend our framework to this
direction.

157

6 Computational Complexity of the
Product Logic K×K

The purpose of this chapter is to study the complexity of the satisfiability problem in
the product logic K×K and some variants thereof. The name ‘product logics’ stems
from the fact that the semantics is defined based on frames obtained as direct products
of standard frames. For example, the logic K4×K is interpreted on structures whose
underlying frame is the asynchronous product of a transitive frame (for K4) with an
arbitrary frame (for K).

Remarkably, there is a close semantical connection between product logics and ProbFO
as introduced in Chapter 3, and thus its sublogic ProbEL. To be more specific, ProbFO
can be viewed as a generalization of the first-order modal logic S5FO.1 For a formal
definition of the logic S5FO, we refer the interested reader to the chapters about first-
order modal logics in [52, Part III]. For our purposes, it suffices to mention that S5FO
has a ‘product like’ semantics and that one can view the domain of the S5-frame as the
set of worlds. Recall that, in ProbFO, the worlds cannot be distinguished in the sense
that when we compute w(ϕ), we need to take all worlds into account; in a way, this is
captured by the modal logic S5 which is based on equivalence relations as frames. In
fact, the mentioned connection becomes apparent in the qualitative fragments:

• ProbFO01 from Section 3.1.3 is a notational variant of S5FO; and

• ProbEL01 from Section 4.3.2 is a notational variant of the modal description logic
S5EL, an EL-fragment of S5FO.

We refrain from giving the details of being a ‘notational variant’ and only note that,
intuitively, one can replace a subformula w(ϕ) > 0 with ♦ϕ and vice versa.
In general, it has been observed that the complexity (of satisfiability) in the product

of two logics is often considerably more difficult than in the components. As an example,
consider the basic modal logic K and its variant K4 for reasoning over transitive frames,
for both of which satisfiability is PSpace-complete [96]. In contrast, only nonelementary
upper bounds were known for K×K and K4×K [54, 105]. Even worse, satisfiability
becomes undecidable in K×K×K [74] and K4×K4 [55].

The mentioned decidability result for K×K was first shown by Gabbay and Shehtman
in 1998 [54] and using the same technique decidability in nonelementary time was

1S5 is the modal logic based on frames where the accessibility relation is an equivalence.

159

6 Computational Complexity of the Product Logic K×K

shown for the closely related logics K4 ×K, S4 ×K, and S52 ×K (S4 (S4 and S52

are introduced in the chapter). In 2001, Marx and Mikulás gave an alternative proof
of the nonelementary upper bound for K ×K and, additionally, proved NExpTime-
hardness [105], which also carries over to the mentioned logics. Moreover, in the same
paper they conjectured completeness for nonelementary time. Since then, the lower
bound was not improved, and as a matter of fact, the precise complexity of all these
logics is stated as interesting open question in [52]. Thus, the main aim of this chapter
is to:

close the complexity gap for K×K, K4×K, S4×K, and S52×K by giving
a nonelementary lower bound for the satisfiability problem.

Related Work

The study of many-dimensional modal logics was motivated by the good computational
properties of modal logics and the need of combining different modalities in one appli-
cations, for example, when modeling the evolution of knowledge over time. The field
received a lot of interest in the past twenty years; two excellent overviews are given
by [52] and [20, Chapter 15]. Two important ways of combining two (or more) logics
are fusions and products. Intuitively, the fusion of two logics corresponds to a largely
independent combination of the logics. Due to that independence, fusions often lead
to computationally well-behaved logics. For example the fusion of (unimodal) K with
itself is the bimodal logic K2 and thus of the same complexity, PSpace. We refer the
interested reader to the respective chapter in [52]. Products, on the other hand, have
been shown to be a computationally delicate operation.
There are several product logics known to be complete for nonelementary time. Let

us first mention LTL ×K, the product of linear temporal logic with K, for which a
nonelementary lower bound [52, 71] was proved using the ‘yardstick’ technique introduced
by Stockmeyer [123]. Note that the proof of this theorem relies on the fact that LTL
includes the ‘until’-operator. This lower bound transfers via polynomial time reductions
to, for example, PDL ×K and KC ×K where KC is K extended with the ‘common
knowledge relation’ C—intuitively, C is the reflexive, transitive closure of the accessibility
relation—see [52].
It is interesting to note that the asynchronous product (underlying the semantics of

product logics) has served to model the behavior of concurrent processes in the realm of
verification, see for instance [114]. There is, however, a slight difference in the adopted
semantics. While in the field of many-dimensional logics, usually, a free interpretation
of the propositional variables in the product structure is allowed, in verification, the
interpretation is inherited from the underlying component structures. We will call the
former ‘uninterpreted product structure’ and the latter ‘interpreted product structure’.
Moreover, the verification community is typically interested in model checking instead of
satisfiability.

160

6.1 Preliminaries

Finally, let us mention that the trees we define to show the lower bound are similar to
trees introduced in [48, Chapter 10]. We discuss their relationship in more detail later,
when we have all our definitions available.

Contribution and Structure of the Chapter

The chapter is structured as follows. In Section 6.1, we will give the necessary preliminaries
for products of modal logics. Most importantly, besides the standard ‘uninterpreted’
semantics used in the context of modal logics, we additionally introduce the mentioned
‘interpreted’ semantics from the field of verification. We first show that satisfiability in
the uninterpreted semantics is at least as hard as in the interpreted semantics. This
enables us to use the interpreted semantics throughout this chapter. In Section 6.2, we
prove the nonelementary lower bound proceeding in three steps. First, we describe and
introduce a family of nonelementarily branching trees, which are later used to encode
numbers. In the second step, we give formulas which enforce these trees. Finally, we show
that satisfiability of formulas with switching depth (the minimal modal depth among the
two dimensions) ` is `-NExpTime-hard for every ` ≥ 1. This confirms Marx and Mikulás
conjecture and implies the main result of this chapter: satisfiability in K×K is hard for
nonelementary time. In Section 6.3, we use the obtained result to derive nonelementarily
lower bounds for the variants K4×K, S4×K, and S52×K. In Section 6.4, we conclude
the chapter, give some related open problems, and point out an additional application of
our lower bound technique.

6.1 Preliminaries

First, we introduce the syntax and semantics of the two-dimensional modal logic K×K
along the lines of the standard text book by Gabbay et al. [52]. Then, we formally define
the problems studied in this chapter. Finally, we state and prove some important facts
about bisimulation equivalence for product structures.

6.1.1 Many-dimensional modal logics

Let us fix a countable set of accessibility relations A and a countable set of propositional
variables P. Formulas of multimodal logic are defined by the following grammar, where a
and p range over A and P, respectively:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ♦aϕ.

We introduce the usual abbreviations > = p ∨ ¬p for some p ∈ P, ⊥ = ¬>, ϕ1 ∨ ϕ2 =
¬(¬ϕ1 ∧ ¬ϕ2), and �aϕ = ¬♦a¬ϕ. For A ⊆ A and P ⊆ P, we say that (A,P) is a
signature and ϕ is an (A,P)-formula if the set of accessibility relations (respectively, the

161

6 Computational Complexity of the Product Logic K×K

set of propositional variables) that appear in ϕ is a subset of A (respectively, P). With
|ϕ| we denote the length of ϕ, that is, the number of symbols required to write ϕ down.

Multimodal logic formulas are interpreted in pointed Kripke structures, or just pointed
structures. Given finite sets of accessibility relations A ⊆ A and propositions P ⊆ P, an
(A,P)-Kripke structure S consists of

• a relational structure or Kripke frame F = (W, { a−→ | a ∈ A}) where W is a
nonempty set of worlds and each a−→ is a binary accessibility relation over W , and

• a family of interpretations {Wp ⊆W | p ∈ P}.

Given a Kripke structure S, we refer to the frame underlying S with F(S). Moreover,
given a frame (W, { a−→ | a ∈ A} we write s a−→ t instead of (s, t) ∈ a−→ and call
each such t a successor of s. A pointed (A,P)-structure is a pair (S, s) where S is an
(A,P)-structure and s is a world of S.

The truth relation (S, s) |= ϕ for (A,P)-formulas ϕ and pointed (A,P)-structures
(S, s) is given by structural induction on the definition of ϕ:

(S, s) |= p iff s ∈Wp

(S, s) |= ¬ϕ iff not (S, s) |= ϕ
(S, s) |= ϕ1 ∧ ϕ2 iff (S, s) |= ϕ1 and (S, s) |= ϕ2

(S, s) |= ♦aϕ iff ∃s′ : s a−→ s′ and (S, s′) |= ϕ.

A pointed (A,P)-structure (S, s) satisfies an (A,P)-formula ϕ if (S, s) |= ϕ. In this case,
we say that (S, s) is a model of ϕ. Moreover, we call ϕ satisfiable if it has a model.

A frame F = (W, { a−→ | a ∈ A}) is a tree if

• W ⊆ A∗ is a prefix-closed set of words;

• a−→ and b−→ are disjoint for a 6= b;

• for all s, t ∈W and a ∈ A we have s a−→ t if, and only if t = sa.

We will refer with root to the node ε ∈ W . We also call a structure S a tree if its
underlying frame F(S) is a tree.
Fix nonempty, finite, and disjoint sets A1,A2 ⊆ A of accessibility relations and

nonempty, finite, and disjoint sets P1,P2 ⊆ P of propositional variables. Let A = A1 ∪A2

and P = P1 ∪ P2. For frames Fi = (Wi, {
a−→i | a ∈ Ai}), i ∈ {1, 2}, we define the

asynchronous product F1 × F2 as the frame (W, { a−→ | a ∈ A}) where

• W = W1 ×W2, and

• for each s = 〈s1, s2〉 ∈W and t = 〈t1, t2〉 ∈W we have s a−→ t if and only if:

– a ∈ A1 implies s1
a−→1 t1 and s2 = t2; and

162

6.1 Preliminaries

– a ∈ A2 implies s2
a−→2 t2 and s1 = t1.

We define two kinds of product structures, namely uninterpreted product structures and
interpreted product structures. An (A,P)-structure S = (W, { a−→ | a ∈ A}, {Wp | p ∈ P})
is

• an uninterpreted product structure if F(S) = F1 × F2, where each Fi is a frame
(Wi, {

a−→i | a ∈ Ai}).

• an interpreted product structure if F(S) = F(S1) × F(S2) for two structures
Si = (Wi, {

a−→i | a ∈ Ai}, {Wp,i | p ∈ Pi}) and for all i ∈ {1, 2}, p ∈ Pi we have:

〈s1, s2〉 ∈Wp if and only if si ∈Wp,i.

Note that in the former, there are no restrictions on how propositional variables are
interpreted, while in the latter, the interpretation of the propositional variables in S
is inherited from the component structures S1 and S2. We also write S = S1 ×id S2,
where the superscript “ id” indicates that the interpretation of propositional variables is
identical to the respective component structure. To the best of our knowledge, interpreted
product structures have not been considered in the field of many-dimensional modal
logics; however, they will turn out more convenient for enforcing structures, as we have
more control of the propositions. Note that the interpreted product structures introduced
in [114] are more general in that they are parametrized by how the interpretations are
inherited. However, for our purposes this simplified definition suffices. In case of pointed
structures (S1, s1), (S2, s2), the interpreted product structure is (S1 ×id S2, 〈s1, s2〉).

Example 6.1. As an example, consider Figure 6.1. In parts (a) and (b), there are two
structures S1 and S2 based on disjoint (A1,P1) and (A2,P2) with P1 = {p}, P2 = {q},
A1 = {↓}, and A2 = {→}. In part (c), there is the interpreted product of S1 and S2.
Note that when making a →-transition, i.e. a transition in A2, the interpretation of p, a
proposition in P1, does not change. In particular, we have for all i, j that

(S1 ×id S2, 〈i, j〉) |= (p→ �→p) ∧ (♦→p→ p).

This is the crucial property that distinguishes interpreted from uninterpreted product
structures, like the one in part (d) of Figure 6.1 which is based on the frame F(S1)×F(S2).
There, the above formula is not satisfied in every 〈i, j〉.

We will also need the notion of switching depth, introduced in [105]. Given (A,P) as
above, i.e., A = A1] A2 and P = P1] P2, and an (A,P)-formula ϕ, we define depthi(ϕ)

163

6 Computational Complexity of the Product Logic K×K

1

2

(a) S1

p
1 2 3

(b) S2

q
11 12 13

21 22 23

(c) S1 ×id S2

p p p

q

q 11 12 13

21 22 23

(d) uninterpr. prod.

p q

p
q

q

Figure 6.1: Example of some product structures.

for i ∈ {1, 2} inductively by:

depthi(p) = 0 p ∈ P

depthi(¬ϕ) = depthi(ϕ)

depthi(ϕ1 ∧ ϕ2) = max{depthi(ϕ1), depthi(ϕ2)}
depthi(♦aϕ) = depthi(ϕ) if a /∈ Ai

depthi(♦aϕ) = depthi(ϕ) + 1 if a ∈ Ai

and the switching depth of ϕ as min{depth1(ϕ), depth2(ϕ)}. As an example, let A1 = {a},
A2 = {b}, and p, q ∈ P. Then the formulas p ∧ q and ♦a♦ap have switching depth 0;
the formulas ♦a♦b(p ∧ q) and ♦b(p ∨�aq) have switching depth 1; finally, the formula
♦a♦b♦a♦b> has switching depth 2.

6.1.2 Decision problems

Let us say that ϕ is (un-)interpreted satisfiable if there is an (un-)interpreted pointed
product structure (S, s) satisfying ϕ. Throughout the chapter, we will focus on the
following decision problems.

K2-SAT

INPUT: (A,P)-formula ϕ
OUTPUT: Is ϕ uninterpreted satisfiable?

K2
id-SAT

INPUT: (A,P)-formula ϕ
OUTPUT: Is ϕ interpreted satisfiable?

Note that, here and in what follows, the partition of A and P into A1] A2 and P1] P2,
respectively, is rather implicit, but it will be always understood from the context. In
particular, all results already hold for one accessibility relation for each dimension.
To the best of our knowledge, K2

id-SAT was not studied so far, since the interpreted
semantics stems from the verification community who typically studies model checking.
However, considering interpreted product structures is more convenient as, intuitively,

164

6.1 Preliminaries

we have more control of the propositions. Indeed, it turns out that for showing lower
bounds, we can restrict our attention to K2

id-SAT: the following proposition shows that
K2-SAT is at least as difficult as K2

id-SAT.

Proposition 6.2. There is a polynomial time many-one reduction from K2
id-SAT to

K2-SAT which preserves the switching depth.

Proof. Let A = A1] A2 be the set of accessibility relations, P = P1] P2 be the set of
propositional variables, and ϕ be some (A,P)-formula. The idea is to give a formula χ
that admits only product models which are in fact interpreted product structures, in
particular, ϕ is interpreted satisfiable if and only if ϕ ∧ χ is uninterpreted satisfiable.

We need the following definition. The set of modal sequences ms(ψ) ⊆ A∗ of a formula
ψ is inductively defined as follows:

ms(p) = {ε}
ms(¬ψ) = ms(ψ)

ms(ψ1 ∧ ψ2) = ms(ψ1) ∪ms(ψ2)

ms(♦aψ) = ({a} ·ms(ψ)) ∪ {ε}

Intuitively, the set ms(ψ) of modal sequences denotes the set of all sequences of modalities
that can be found along the path to some node in the syntax tree of ψ. We note that
|ms(ϕ)| ≤ |ϕ| and that the maximal length of an element of ms(ϕ) is at most |ϕ|.

If w = a1 · · · an ∈ A∗ we denote with�w the sequence of boxes�a1 · · ·�an . Particularly,
�ε is the empty sequence of boxes. Moreover, define the relation w−→ =

a1−→ ◦ a2−→
◦ · · · ◦ an−→. For i ∈ {1, 2} and a word w ∈ A∗ let w \ i ∈ (A \ Ai)

∗ be the word that
results from w by removing all occurrences of all symbols from Ai and let w�i ∈ A∗i be
the word that results from w by removing all occurrences of all symbols from A \ Ai. We
define the following formula χ:

χ =
∧

i∈{1,2}

∧
w∈ms(ϕ)

∧
p∈Pi

�w�i((p→ �w\i p) ∧ (♦w\i p→ p))

We define ϕ′ = ϕ ∧ χ. Note that ϕ′ has the same switching depth as ϕ and can be
constructed in polynomial time from ϕ. Therefore it suffices to show that ϕ is interpreted
satisfiable if and only if ϕ′ is uninterpreted satisfiable.

Since every interpreted product satisfies χ, it follows that ϕ′ is uninterpreted satisfiable
if ϕ is interpreted satisfiable. For the other direction let S = (W, { a−→ | a ∈ A}, {Wp |
p ∈ P}) be an (A,P)-structure such that F(S) = F1 × F2 with Fi = (Wi, {

a−→ | a ∈ Ai})
and assume that (S, s0) |= ϕ ∧ χ for some s0 ∈W . Let

WR = {s ∈W | ∃w ∈ ms(ϕ) : s0
w−→ s}.

165

6 Computational Complexity of the Product Logic K×K

We define for each i ∈ {1, 2} an (Ai,Pi)-structureSi = (Wi, {
a−→ | a ∈ Ai}, {Vp | p ∈ Pi})

with underlying frame F(Si) = Fi such that (S1 ×id S2, s0) |= ϕ. For giving the
interpretations Vp we need the following statement, where we denote the i-th component
of a tuple t with t(i).

Claim 1. For all s, t ∈WR, i ∈ {1, 2}, and p ∈ Pi: if s(i) = t(i) then (s ∈Wp ⇔ t ∈Wp).

Proof of Claim 1. Since s, t ∈WR there exist w, v ∈ ms(ϕ) such that

s0
w−→ s and s0

v−→ t.

Since S is a product model and s(i) = t(i), there exists some r with

s0
w�i−→ r, s0

v�i−→ r, r
w\i−→ s, r

v\i−→ t.

Since (S, s0) |= χ, we get s ∈ Wp ⇒ r ∈ Wp ⇒ t ∈ Wp and analogously t ∈ Wp ⇒ s ∈
Wp, which proves Claim 1.

Let us now define for all p ∈ Pi

Vp = {s(i) ∈Wi | s ∈WR ∩Wp}.

With Claim 1, we get for all s ∈WR:

s ∈Wp ⇔ s(i) ∈ Vp (6.1)

It remains to show that (S1 ×id S2, s0) |= ϕ. For a sequence w ∈ ms(ϕ), let subw(ϕ) be
the set of all subformulas ψ of ϕ such that in the syntax tree for ϕ there exists a path to
an occurrence of ψ such that w is the sequence of modalities along this path. We prove
by induction on the structure of a subformula ψ ∈ subw(ϕ) that for all s ∈ WR with
s0

w−→ s:
(S, s) |= ψ ⇔ (S1 ×id S2, s) |= ψ.

For the induction base consider a propositional variable p ∈ P and assume that p ∈ Pi
and s ∈WR. We get:

(S, s) |= p ⇔ s ∈Wp
(6.1)⇔ s(i) ∈ Vp ⇔ (S1 ×id S2, s) |= p

For the induction step, the operators ∧ and ¬ are straightforward. Finally, let ψ =
♦aθ ∈ subw(ϕ) and assume that s0

w−→ s. Hence, θ ∈ subwa(ϕ). We have:

(S, s) |= ♦aθ ⇔ ∃s′ : s a−→ s′ ∧ (S, s′) |= θ
hyp⇔ ∃s′ : s a−→ s′ ∧ (S1 ×id S2, s

′) |= θ

⇔ (S1 ×id S2, s) |= ♦aθ

166

6.1 Preliminaries

Note that we can apply induction hypothesis since w ∈ ms(ϕ) and ♦aθ ∈ subw(ϕ) imply
that wa ∈ ms(ϕ) and, moreover, s0

w−→ s and s a−→ s′ imply s0
wa−→ s′.

Since ϕ ∈ subε(ϕ), s0 ∈ WR, and s0
ε−→ s0, this shows that (S1 ×id S2, s0) |= ϕ.

Overall, we have given a reduction from K2
id-SAT to K2-SAT. �

Note that the proof of this proposition does not make any assumption about the underlying
frames. In particular, this implies that Proposition 6.2 holds also for restricted frame
classes, for example, when we allow only for transitive frames in the components. We
will need this later in Section 6.3.

6.1.3 Bisimulation equivalence

Let S = (W, { a−→ | a ∈ A}, {Wp | p ∈ P}) and S′ = (W ′, { a−→′ | a ∈ A}, {W ′p | p ∈ P})
be two (A,P)-structures. A bisimulation between S and S′ is a binary relation R ⊆
W ×W ′ such that for each (s, s′) ∈ R the following holds:

(1) s ∈Wp if and only if s′ ∈W ′p for all p ∈ P,

(2) for each s a−→ t there exists s′ a−→′ t′ such that (t, t′) ∈ R, and

(3) for each s′ a−→′ t′ there exists s a−→ t such that (t, t′) ∈ R.

In case there is a bisimulation R between S and S′ with (s, s′) ∈ R we say that (S, s)
is bisimilar to (S′, s′) and write (S, s) ∼ (S′, s′) or, in case S and S′ are clear from the
context, s ∼ s′. We also say that (S, s) and (S′, s′) are equivalent up to bisimulation.
It is well-known that modal logic cannot distinguish between bisimilar structures, i.e.,
if (S, s) ∼ (S′, s′) then (S, s) |= ϕ if and only if (S′, s′) |= ϕ for all (A,P)-formulas ϕ,
see for instance [19]. The following proposition (which is straightforward to prove) lifts
this statement to many-dimensional modal logics, that is, modal logic formulas cannot
distinguish between interpreted product structures whose components are bisimilar.

Proposition 6.3. Let A = A1] A2, P = P1] P2, and for each i ∈ {1, 2} assume
two pointed (Ai,Pi)-structures (Si, si) and (S′i, s

′
i) with (Si, si) ∼ (S′i, s

′
i). Then we

have (S1 ×id S2, 〈s1, s2〉) ∼ (S′1 ×id S′2, 〈s′1, s′2〉). In particular, (S1 ×id S2, 〈s1, s2〉) and
(S′1 ×id S′2, 〈s′1, s′2〉) satisfy the same (A,P)-formulas.

Proof. Assume for i ∈ {1, 2} structures Si = (Wi, {
a−→i| a ∈ Ai}, {Wp,i | p ∈ Pi}) and

S′i = (W ′i , {
a−→i
′ | a ∈ Ai}, {W ′p,i | p ∈ Pi}) and worlds si ∈ Wi, s′i ∈ W ′i . Moreover, let

S = (W, { a−→| a ∈ A}, {Wp | p ∈ P}) and S′ = (W ′, { a−→′ | a ∈ A}, {W ′p | p ∈ P}) be
the respective interpreted products S = S1 ×id S2 and S′ = S′1 ×id S′2 and assume for
each i ∈ {1, 2} a bisimulation Ri ⊆Wi ×W ′i such that (si, s

′
i) ∈ Ri. We claim that

R = {(〈t1, t2〉, 〈t′1, t′2〉) | for all i ∈ {1, 2} : (ti, t
′
i) ∈ Ri}

167

6 Computational Complexity of the Product Logic K×K

is a bisimulation. For showing this, assume (t, t
′
) ∈ R where t = 〈t1, t2〉 ∈W1 ×W2 and

t
′
= 〈t′1, t′2〉 ∈ W ′1 ×W ′2. Hence, ti ∼ t′i and thus ti ∈ Wp,i ⇔ t′i ∈ W ′p,i for each p ∈ Pi

and each i ∈ {1, 2}. By definition of interpreted product structures, we get t ∈ Wp if
and only if t′ ∈W ′p for each p ∈ P. This establishes point (1) of R being a bisimulation.
For proving point (2), let us assume t a−→ u, where u = 〈u1, u2〉 ∈W1 ×W2. Then there
exists some i ∈ {1, 2} such that a ∈ Ai, ti

a−→ ui and t3−i = u3−i. Since (ti, t
′
i) ∈ Ri

and ti
a−→ ui there exists some u′i ∈ W ′i such that t′i

a−→ ′ u′i and (ui, u
′
i) ∈ Ri. Set

u′ = 〈u′1, u′2〉 with u′i as mentioned and u′3−i = t′3−i. Thus, we have t′ a−→′ u′. Moreover,
by construction we have (uj , u

′
j) ∈ Rj for each j ∈ {1, 2}, hence (u, u′) ∈ R by definition

of R. This establishes point (2). Point (3) can be proved analogously.
In particular, we have (S, 〈s1, s2〉) ∼ (S′, 〈s′1, s′2〉). Thus, (S, 〈s1, s2〉) and (S′, 〈s′1, s′2〉)

satisfy the same (A,P)-formulas. �

6.2 K2-SAT is hard for nonelementary time

The goal of this section is to show a nonelementary lower bound for K2
id-SAT. We proceed

in three steps:

(1) define a family of trees and show how they encode elementary numbers;

(2) give a family of formulas that enforce the trees previously defined;

(3) use these formulas to show `-NExpTime hardness for every ` ≥ 1.

To make (1) and (2) more precise, recall the function Tower : N× N→ N, defined as

Tower(0, n) = n for all n ≥ 0;

Tower(`+ 1, n) = 2Tower(`,n) for all `, n ≥ 0.

The goal is to give a family of formulas {ϕ`,n | `, n ≥ 0} (over a signature to be specified
later) such that for each `, n ∈ N the following holds:

• |ϕ`,n| ≤ exp(`) · poly(`, n), and

• if (S×idS, 〈s, s〉) |= ϕ`,n, then both (S, s) and (S, s) are bisimilar to particular tree
structures and s and s have at least Tower(`, n) successors in S and S, respectively.
Moreover, these tree structures encode a number from [0,Tower(`+ 1, n)− 1].

6.2.1 Trees encoding numbers

Figure 6.2 illustrates the idea how a tree encodes a number: the node s has successors
s0, . . . , sm such that each si is the root of some tree that encodes (inductively) the
number i. Additionally, each node si might be labeled with a propositional variable b.

168

6.2 K2-SAT is hard for nonelementary time

s

s0

0

b s1

1

¬b s2

2

¬b . . . si

i

b . . . sm

m

b

Figure 6.2: Intuition of trees encoding numbers.

The value encoded by s is the binary number (least significant bit to the left) that we
can read off from the successors: bit i is 1 iff si satisfies b. Hence, the number encoded
by the tree in Figure 6.2 is of the form 100 . . . 1 and the i-th bit is 1. Note that the
encoded number is in the interval [0, 2m+1 − 1].

We need some additional propositional variables. In order to give a formal definition
of the above described trees, fix a signature ({a},Pn) with

Pn = {b0, . . . , bn−1, b,minb,min←b ,min¬b,min←¬b}.

The following definition gives a family of tree structures over this signature. Note that
these are implicitly pointed structures, pointed at their root. A tree Υ`,n(j, V) has four
parameters: `, n determine the outdegree of Tower(`, n), j is the encoded value, and V
is the set of propositions from Paux = {b,minb,min←b ,min¬b,min←¬b} satisfied in the root
of the tree. The definition is by induction on `.

Definition 6.4. For ` = 0, let j ∈ [0, 2n−1] and V ⊆ Paux. Then Υ0,n(j, V) is a pointed
({a},Pn)-structure (S, s) with S = ({s}, ∅, {Wp | p ∈ Pn}) such that

• j =
∑
{2i | i ∈ [0, n− 1], s ∈Wbi} and

• for each p ∈ Paux we have (S, s) |= p iff p ∈ V .

For ` > 0, let j ∈ [0,Tower(` + 1, n) − 1] and V ⊆ Paux. We define the tree Υ`,n(j, V)
as follows. Set m = Tower(`, n) − 1 and let I+ ⊆ [0,m] be the unique set such that
j =

∑
i∈I+ 2i and let I− = [0,m] \ I+. Now, fix a sequence (S0, s0), . . . , (Sm, sm) of

trees of the form Υ`−1,n(i, Vi), that is each (Si, si) encodes the value i, such that for all
i ∈ [0,m] we have:

(i) (Si, si) |= b iff i ∈ I+,

(ii) (Si, si) |= minb iff i = min(I+),

(iii) (Si, si) |= min¬b iff i = min(I−),

169

6 Computational Complexity of the Product Logic K×K

(iv) (Si, si) |= min←b iff i < min(I+) or I+ = ∅,

(v) (Si, si) |= min←¬b iff i < min(I−) or I− = ∅,
We obtain the tree Υ`,n(j, V) = (S, s) by taking the union of all structures S0, . . . ,Sm,
adding a world s, adding the pairs (s, si) to a−→ for all i ∈ [0,m], and labeling s with
precisely the propositions in V .

First note that this definition uniquely determines the trees Υ`,n(j, V). For ` = 0, this
is easily seen; for ` > 0 observe that j uniquely determines I+. By condition (i) the
interpretation of b in the worlds si is defined. Moreover, conditions (ii)-(v) imply (in
this order) that:

• minb identifies the minimal i such that si satisfies b;

• min¬b identifies the minimal i such that si satisfies ¬b;

• min←b labels all successors left of minb (or all successors if minb does not exist);

• min←¬b labels all successors left of min¬b (or all successors if min¬b does not exist).

As an example, Figure 6.3 shows the tree Υ1,3(175, {b,minb}). It is not hard to verify
that each of the si is a tree Υ0,3(i, Vi) for some Vi and that conditions (i)-(v) from
Definition 6.4 are satisfied. In particular, the successors of s give rise to the binary
number 11110101 (least significant bit to the left) which equals 175. As required, minb

holds in the minimal position where b holds and min←b holds in all positions left of minb;
and analogously for min¬b and min←¬b.

We will sometimes drop V from the notation Υ`,n(j, V) if we want to refer to the set of
all trees of this form; in particular, we say ‘some Υ`,n(j)’ instead of ‘Υ`,n(j, V) for some
set V ’ given that no confusion is possible. In the same way as Υ`,n(j, V), we can define
trees Υ`,n(j, V) over the signature ({a},Pn) where Pn = {p | p ∈ Pn}. In particular,
Υ`,n(j, V) is obtained from Υ`,n(j, V) by replacing a−→ by a−→ and every proposition
p ∈ Pn by p ∈ Pn.
It is worth mentioning that the defined trees Υ`,n(j) are similar to the trees T (j)

introduced in [48, Chapter 10] and used for example in [38]. In particular, they both
represent the number j and have small depth, but high outdegree. However, there are
some differences. Note first that the root of T (j) has a child for those numbers i such that
the i-th bit in j is 1. In contrast, the root of Υ`,n(j) has, independent of j, Tower(`, n)
children each corresponding to one bit position and the bits set to 1 are marked with the
proposition b. Moreover, as we use two-dimensional modal logic instead of first-order
logic as in [48] to enforce our trees, we face two problems: First, we cannot enforce
them up to isomorphism but only up to bisimulation equivalence. Second, as the logic is
much weaker, we need some auxiliary propositional variables (or unary predicates). The
particular difficulty is expressing a “less-than” or “successor” predicate and we use the
propositions from Paux for this purpose.

170

6.2 K2-SAT is hard for nonelementary time

s
b,minb

s0

b

min←¬b
minb

s1

b0

b

min←¬b

s2

b1

b

min←¬b

s3

b0b1

b

min←¬b

s4

b2

min¬b

s5

b0b2

b

s6

b1b2

s7

b0b1b2

b

Figure 6.3: The (1, 3)-tree Υ1,3(175, {b,minb}).

6.2.2 Formulas enforcing the trees Υ`,n(j)

We are now ready to give the announced family of formulas {ϕ`,n | `, n ≥ 0}. Intuitively,
the formulas ϕ`,n enforce up to bisimulation equivalence products of trees Υ`,n(j) and
Υ`,n(j); that is, any model (S×S, 〈s, s〉) of ϕ`,n has the property that there is some j
and trees Υ`,n(j),Υ`,n(j) such that (S, s) ∼ Υ`,n(j) and (S, s) ∼ Υ`,n(j).
The formulas we construct will be over the signature (A,P) with A = {a, a} and

P = Pn ∪ Pn. We start with some auxiliary formulas eq`,n, first`,n, last`,n, and succ`,n
whose names indicate their meaning on the (interpreted) product of two trees Υ`,n(j1)
and Υ`,n(j2). For the sake of simplicity, we write ♦,�,♦,� instead of the modalities
♦a,�a,♦a,�a, respectively.
For ` = 0, the auxiliary formulas are defined as follows:

eq0,n =
∧

i∈[0,n−1]

bi ↔ bi

first0,n =
∧

i∈[0,n−1]

¬bi ∧ ¬bi

last0,n =
∧

i∈[0,n−1]

bi ∧ bi

succ0,n =
∨

i∈[0,n−1]

(¬bi ∧ bi ∧
∧

j∈[0,i−1]

(bj ∧ ¬bj) ∧
∧

j∈[i+1,n−1]

bj ↔ bj)

For ` > 0 we define them as follows:

eq`,n = ��
(
eq`−1,n → (b↔ b)

)
first`,n = �¬b ∧�¬b

last`,n = �b ∧�b

succ`,n = ♦¬b ∧��(eq`−1,n → ((min¬b ↔ minb) ∧ ((¬min←¬b ∧ ¬min¬b)→ (b↔ b))))

171

6 Computational Complexity of the Product Logic K×K

The following lemma shows that these auxiliary formulas indeed express what they
suggest to express. For brevity and since we only deal with the interpeted product we
drop the superscript id.

Lemma 6.5. Let `, n ≥ 0, let j1, j2 ∈ [0,Tower(` + 1, n) − 1], V1, V2 arbitrary and fix
T = Υ`,n(j1, V1) and T = Υ`,n(j2, V2). Then the following holds:

(a) T× T |= eq`,n if and only if j1 = j2.

(b) T× T |= first`,n if and only if j1 = j2 = 0.

(c) T× T |= last`,n if and only if j1 = j2 = Tower(`+ 1, n)− 1.

(d) T× T |= succ`,n if and only if j2 = j1 + 1.

Proof. We show the statement by induction on `. Let T and T be as in the lemma. Note
first that the statement does not depend on V1, V2, so we will drop them here. Moreover,
let s and s denote the roots of Υ`,n(j1) and Υ`,n(j2), respectively.

For the induction base let ` = 0. For (a) we have (Υ`,n(j1)×Υ`,n(j2)) |= eq0,n if and
only if (bi holds in s ⇔ bi holds in s) for all i ∈ [0, n− 1] if and only if j1 = j2. Both (b)
and (c) can be proved in analogy to (a). For (d) we have (Υ`,n(j1)×Υ`,n(j2)) |= succ0,n

if and only if there is some i ∈ [0, n− 1] such that

• s does not satisfy bi and s satisfies bi,

• for each j ∈ [0, i− 1]: s satisfies bj and s does not satisfy bj , and

• for each j ∈ [i+ 1, n− 1]: s satisfies bj if and only if s satisfies bj .

This is equivalent to j2 = j1 + 1.
For the induction step let ` > 0. The cases (a), (b), and (c) are straightforward. Let

us prove case (d). Recall that, according to Definition 6.4, there are two uniquely defined
sets I+

1 and I+
2 representing (the bits set to 1 in the binary encoding of) j1 and j2,

respectively. The formula succ`,n states the following:

• there is a k ∈ [0,Tower(`, n)− 1] such that k /∈ I+
1 ;

• if k0 is the minimal k ∈ [0,Tower(`, n)− 1] such that k /∈ I+
1 , then k0 is also the

minimal k ∈ [0,Tower(`, n)− 1] such that k ∈ I+
2 ;

• for all k0 < k < Tower(`, n) we have k ∈ I+
1 iff k ∈ I+

2 .

Thus, the binary representations (least significant bit to the left) of j1 and j2 are
of the form 1k00c1 . . . cm and 0k01c1 . . . cm for some bits c1, . . . , cm ∈ {0, 1}; that is
j2 = j1 + 1. �

172

6.2 K2-SAT is hard for nonelementary time

The next definition gives the family of (A,P)-formulas {ϕ`,n | `, n ≥ 0}; the subsequent
theorem states that they satisfy the desired properties.

Definition 6.6. Set ϕ0,n = eq0,n∧�⊥∧�⊥ and for each ` ≥ 1 define ϕ`,n, by induction
on `, as the conjunction of the following formulas:

(1)
∧

i∈[0,n−1]

¬bi ∧ ¬bi

(2) �♦ϕ`−1,n

(3) �♦ϕ`−1,n

(4) ♦♦(ϕ`−1,n ∧ first`−1,n)

(5) �
(
�¬last`−1,n → ♦succ`−1,n

)
(6) ��(eq`−1,n →

∧
p∈Pn

(p↔ p))

(7) ♦(min¬b ∨min←¬b) ∧ ♦(minb ∨min←b)

(8) �(((min¬b ∨min←b)→ ¬b) ∧ ((min←¬b ∨minb)→ b)))

(9) ��(succ`−1,n →
∧

x∈{b,¬b}

((minx ∨min
←
x)↔ min←x)))

Theorem 6.7. For every `, n ≥ 0 the following holds:

(a) (S×S, 〈s, s〉) |= ϕ`,n if and only if there exists j ∈ [0,Tower(`+ 1, n)− 1] such that
(S, s) is bisimilar to some Υ`,n(j) and (S, s) is bisimilar to some Υ`,n(j).

(b) |ϕ`,n| ≤ 3` · poly(`, n) and the formula ϕ`,n is computable in time 3` · poly(`, n).

(c) The switching depth of ϕ`,n is `.

Before giving the complete formal proof of Theorem 6.7, we want to give some intuition.
Parts (b) and (c) are straightforward consequences of the definition of ϕ`,n. For Part (a)
observe that it is routine to verify that the product of any Υ`,n(j) and Υ`,n(j) satisfies
ϕ`,n. The difficult part is to show that ϕ`,n enforces such models, that is, each model of
ϕ`,n is of the form T× T, where T and T are bisimilar to structures Υ`,n(j) and Υ`,n(j),
respectively, for some j. Obviously, this is the case for ϕ0,n.
For ` > 0, let (S×S, 〈s, s〉) |= ϕ`,n. By induction, formula (2) implies that for each

successor t of s it holds that (S, t) is bisimilar to some Υ`−1,n(i). Formula (3) implies
the analogous property for every successor t of s.

173

6 Computational Complexity of the Product Logic K×K

Formulas (3)-(5) together imply that for every i ∈ [0,Tower(`, n) − 1] there is a
successor si of s such that (S, si) is bisimilar to some Υ`−1,n(i) and, analogously, there
is a successor si of s such that (S, si) is bisimilar to some Υ`−1,n(i): By formula (4),
there are such s0 and s0. The existence of s0 and formula (5) imply the existence of s1.
Formula (3) implies that there is some s1, and so on.

Observe now that, in principle, there might be successors si 6= s′i of s such that (S, si)
and (S, s′i) are bisimilar to Υ`,n(i, V) and Υ`,n(i, V ′) for different sets V 6= V ′. This
is ruled out by applying formula (6) twice: For any proposition p ∈ Pn we have: p is
satisfied in (S, si) if and only if p is satisfied in (S, si) if and only if p is satisfied in
(S, s′i). Hence, we can talk about the successors si and si, respectively.

The successors si and si encode binary numbers N and N , respectively, in the natural
way: The i-th bit2 of N is 1 if and only if (S, si) satisfies b and analogously for N . Note
that formula (6) implies that N = N .
Finally, formulas (7)-(9) ensure that the successors si and si are labeled with the

propositions minb,min¬b,min←b ,min←¬b and minb,min¬b,min
←
b ,min

←
¬b, respectively, in a

way such that (S, s) is bisimilar to some Υ`,n(N) and (S, s) is bisimilar to some Υ`,n(N);
that is, they ensure that conditions (ii)-(v) from Definition 6.4 are satisfied. This is
actually the most subtle part of the following proof of Theorem 6.7.

Proof of Theorem 6.7. Part (c) is an immediate consequence of Definition 6.6.

We show part (b) by induction on ` starting with ` = 0. For ϕ0,n =
∧
i∈[0,n−1] bi ↔

bi ∧�⊥ ∧�⊥ the statement is trivial. Let now be ` > 0. The formula ϕ`−1,n occurs 3
times in ϕ`,n. The auxiliary formulas succ`−1,n, eq`−1,n, last`−1,n, and first`−1,n are all
polynomially sized in ` and n. Thus, overall we get |ϕ`,n| = 3 · |ϕ`−1,n|+ poly(`, n). Thus,
we obtain by induction hypothesis |ϕ`,n| = 3` · poly(`, n).

Let us finally prove part (a). With (1), (2), . . . , (9) we refer to the formulas from
Definition 6.6.

“if”: We prove the “if”-direction by induction on `. For the induction base, assume ` = 0.
Assume some j ∈ [0,Tower(1, n)− 1] = [0, 2n − 1] such that (S, s) is bisimilar to some
Υ0,n(j) and (S, s) is bisimilar to some Υ0,n(j). It is clear that (S×S, 〈s, s〉) |= �⊥∧�⊥.
Moreover, Proposition 6.3 and Point (a) of Lemma 6.5 imply that (S×S, 〈s, s〉) |= eq0,n.
Hence, (S×S, 〈s, s〉) |= ϕ0,n.

For the induction step, assume ` ≥ 1. Let j be arbitrary in [0,Tower(`+ 1, n)− 1] and
assume (S, s) is bisimilar to some Υ`,n(j, V1) and (S, s) is bisimilar to some Υ`,n(j, V2).
By Proposition 6.3, it suffices to show that Υ`,n(j, V1)×Υ`,n(j, V2) |= ϕ`,n. Let r and r
be the root of Υ`,n(j, V1) and Υ`,n(j, V2). Note that none of the formulas (1)-(9) refers
to the propositions possibly in V1, V2, so in what follows we drop V1, V2.

2Again, the least significant bit is the 0-th bit.

174

6.2 K2-SAT is hard for nonelementary time

Clearly, formula (1) holds in Υ`,n(j)×Υ`,n(j) as neither Υ`,n(j) satisfies any bi nor
does Υ`,n(j) satisfy any proposition bi.

For formula (2) let t be any successor of r. By Definition 6.4, the subtree T rooted in t
is some Υ`−1,n(i, V) for some i ∈ [0,Tower(`, n)− 1] and a set V . Also by Definition 6.4,
there is a successor t of r such that the subtree T rooted in t is Υ`−1,n(i, V). By induction
hypothesis, we have T× T |= ϕ`−1,n. Formula (3) holds for analogous reasons.
For formula (4) observe that, by Definition 6.4, there are successors t and t of r

and r, respectively, such that the subtrees T and T rooted in t and t are Υ`−1,n(0, V)
and Υ`−1,n(0, V), respectively (for fixed sets V, V). Point (b) of Lemma 6.5 implies
T× T |= first`−1,n. Hence, formula (4) is satisfied.
For formula (5) assume that t is an arbitrary successor of r. By Definition 6.4, the

subtree T rooted in t is some Υ`−1,n(i) for some i ∈ [0,Tower(`, n)− 1]. We distinguish
the following cases on i.

• i = Tower(`, n) − 1. By Definition 6.4, there is a successor t of r such that the
subtree T rooted in t is some Υ`−1,n(i). By point (c) of Lemma 6.5, we have
T× T |= last`−1,n.

• i < Tower(`, n) − 1. By Definition 6.4, there is a successor t of r such that the
subtree T rooted in t is some Υ`−1,n(i+ 1). By point (d) of Lemma 6.5, we have
T× T |= succ`−1,n.

For formula (6) let t and t be arbitrary successors of r and r, respectively. There
are k, i ∈ [0,Tower(`, n)− 1] such that the subtree T (resp., T) rooted in t (resp., t) is
some Υ`−1,n(k) (resp., some Υ`−1,n(i)). Now, assume that T× T |= eq`−1,n. Point (a)
of Lemma 6.5 implies that k = i. Recall that by conditions (i)-(v) of Definition 6.4 the
interpretation of the propositions in t and t is uniquely determined by k = i. Hence, a
proposition p ∈ Pn holds in t if and only if p holds in t.

For formula (7) observe that, by conditions (iii) and (v) in Definition 6.4, either there
is some successor of r labeled with minb or all successors of r are labeled with min←b .
Thus, Υ`,n(j)×Υ`,n(j) |= ♦(minb ∨min←b). Similarly, conditions (ii) and (iv) imply that
either there is some successor of t labeled with min¬b or all successors of t are labeled
with min←¬b. Hence, Υ`,n(j)×Υ`,n(j) |= ♦(min¬b ∨min←¬b).

For formula (8) observe that, by conditions (i), (iii), and (iv) in Definition 6.4, every
successor of r that satisfies min¬b or min←b does not satisfy b. Analogously, every successor
of r that satisfies min←¬b or minb satisfies b.

For formula (9), let t and t be arbitrary successors of r and r, respectively. There are
k, i ∈ [0,Tower(`, n)− 1] such that the subtrees T and T rooted in t and t, respectively
are some Υ`−1,n(k) and Υ`−1,n(i). Now, assume that T×T |= succ`−1,n. By Point (d) of
Lemma 6.5 we have i = k+1. We need to show that T×T |=

∧
x∈{b,¬b}((minx∨min

←
x)↔

min←x). We only show it for x = ¬b, because the case x = b can be proved analogously.

175

6 Computational Complexity of the Product Logic K×K

If j = Tower(`+ 1, n)− 1, then by condition (v) of Definition 6.4, every successor of r
(respectively, r) is labelled with min←¬b (resp., min

←
¬b). Hence, T×T |= (min¬b∨min

←
¬b)↔

min←¬b) holds.
Now, assume that j < Tower(`+ 1, n)− 1. Put m = Tower(`, n)− 1 and let t0, . . . , tm

be the successors of r such that the subtree Tk rooted in tk is some Υ`−1,n(k) for all
k ∈ [0,m]. Analogously, define t0, . . . , tm to be the successors of r such that the subtree
Tk rooted in tk is some Υ`−1,n(k) for all k ∈ [0,m]. We have that t = ti and t = ti+1.
By conditions (i),(iii), and (v) of Definition 6.4, there is some m0 ∈ [0,m] such that

• Tm0 |= min¬b and Tm0 |= min¬b,

• Tk |= min←¬b and Tk |= min
←
¬b for all k < m0, and

• Tk |= ¬min¬b ∧ ¬min←¬b and Tk |= ¬min¬b ∧ ¬min
←
¬b for all k > m0.

Now, it is easy to verify that T× T = Ti × Ti+1 |= (min¬b ∨min
←
¬b)↔ min←¬b.

“Only-if”: We prove also the “only-if” direction by induction on `. For ` = 0 assume
(S×S, 〈s, s〉) |= ϕ0,n. Thus, both s and s do not have any successors and due to point
(a) of Lemma 6.5 there exists some j ∈ [0,Tower(1, n)− 1] such that (S, s) is bisimilar
to some Υ0,n(j) and (S, s) is bisimilar to some Υ0,n(j).
For the induction step, let us assume ` ≥ 1 and (S × S, 〈s, s〉) |= ϕ`,n and put

m = Tower(`, n)− 1.

Claim 1. For each successor t of s we have that (S, t) is bisimilar to some Υ`−1,n(i) for
some i ∈ [0,m] and for each i ∈ [0,m] there is a successor si of s such that (S, si) is
bisimilar to some Υ`−1,n(i). The analogous property holds for S.

Proof of Claim 1. Let t be an arbitrary successor of s. By formula (2), there is a successor
t of t such that (S×S, 〈t, t〉) |= ϕ`−1,n. By induction hypothesis, there is a i ∈ [0,m]
such that (S, t) is bisimilar to some Υ`−1,n(i) (and (S, t) is bisimilar to some Υ`−1,n(i)).
Analogous reasoning for formula (3) yields that for every successor t of s there is some
i ∈ [0,m] such that (S, t) is bisimilar to some Υ`−1,n(i).

Moreover, formulas (3),(4), and (5) imply that there are successors s0, . . . , sm of s and
s0, . . . , sm of s such that (S, si) is bisimilar to some Υ`−1,n(i) and (S, si) is bisimilar to
some Υ`−1,n(i): By formula (4) and point (b) of Lemma 6.5, there are such s0, s0. By
formula (5) and points (c) and (d) of Lemma 6.5, there is such an s1. By formula (3)
(and reasoning as above), there is such an s1. Inductively repeating the argument yields
the claimed s0, . . . , sm and s0, . . . , sm. This proves Claim 1.

Claim 2. If t, t′ are successors of s that are bisimilar to Υ`−1,n(i, V) and Υ`−1,n(i, V ′)
for some i ∈ [0,m], then (S, t) ∼ (S, t′). The analogous property holds for (S).

Proof of Claim 2. It suffices to show that (S, t) and (S, t′) satisfy the same propositions
from Pn. By applying formula (6) twice, we have for each p ∈ Pn that (S, t) |= p iff
(S, si) |= p iff (S, t′) |= p. This proves Claim 2 as it shows V = V ′.

176

6.2 K2-SAT is hard for nonelementary time

By Claims 1 and 2, it is well-defined to set

I+ = {i ∈ [0,m] | (S, si) |= b} and j =
∑
i∈I+

2i.

Let moreover V ⊆ Pn be the set of all propositions such that (S, s) |= p, and define V
analogously. By formula (1), V does not contain propositional variables bi for i ∈ [0, n−1].
Thus, we can finally define (T, t) = Υ`,n(j, V) and (T, t) = Υ`,n(j, V).

Claim 3. (T, t) ∼ (S, s) and (T, t) ∼ (S, s).

Proof of Claim 3. We only prove (T, t) ∼ (S, s) since the other case can be proved
analogously. For each i ∈ [0,m] define ti to be the unique successor of t such that (T, ti)
is of the form Υ`−1,n(i) and define (T, ti) analogously.
Note first that (S, s) and (T, t) satisfy the same atomic propositions (namely those

from V) by definition of T. Thus, it remains to show the ‘back-and-forth’ condition
of bisimulation, that is, for every successor s′ of s we find a successor t′ of t such that
(S, s′) ∼ (T, t′), and vice versa. By Claims 1 and 2, it suffices to show for each i ∈ [0,m]
that (S, si) ∼ (T, ti). As both (S, si) and (T, ti) are bisimilar to some Υ`−1,n(i), it
remains to show (S, si) |= p if and only if (T, ti) |= p for all p ∈ Pn.

By definition of I+, j, and since (T, t) = Υ`,n(j, V), we surely have (S, si) |= b if and
only if (T, ti) |= b. It is also not hard to verify that they agree on the propositions
{b0, . . . , bn−1}: If ` > 1, then both (S, si) 6|= bk and (T, ti) 6|= bk for any k ∈ [0, n− 1]; if
` = 1, then (S, si) and (T, ti) are (0, n)-trees and i uniquely determines the interpretation
of these propositions by Definition 6.4.
It remains to consider the propositional variables from {min¬b,min←¬b,minb,min←b }.

We concentrate on the propositions min¬b and min←¬b since for the others it can be proved
analogously. First, note that we have the following:

(a) For each i ∈ [0,m] we have that (S, si) does not satisfy both min¬b and min←¬b since
otherwise this would imply (S, si) |= b ∧ ¬b by formula (8), a contradiction.

(b) If there exists some i0 ∈ [0,m] such that (S, si0) |= min¬b ∨min←¬b, then (S, si) |=
min←¬b for all i ∈ [0, i0 − 1]: By formula (6), we have (S, si0) |= min¬b ∨ min

←
¬b.

By formula (9), we obtain (S, si0−1) |= min←¬b. This argument can be continued
inductively.

As (S×S, 〈s, s〉) satisfies formula (7) one of the following cases has to appear:

Case 1. There exists some i0 ∈ [0,m] such that (S, si0) |= min¬b. We observe:

(c) (S, si0) |= ¬b by formula (8);

(d) (S, si) |= min←¬b for each i ∈ [0, i0 − 1] by point (b) above and hence (S, si) |= b
by formula (8) for each i ∈ [0, i0 − 1];

177

6 Computational Complexity of the Product Logic K×K

(e) (S, si) 6|= (min←¬b ∨min¬b) for each i ∈ [i0 + 1,m]. Assume the contrary, namely
(S, si) |= (min←¬b ∨min¬b) for some i ∈ [i0 + 1,m]. By point (b) above, we get in
particular (S, si0) |= min←¬b, which is in contradiction to point (a).

By comparing the above points (a) to (e) with conditions (i)-(v) of Definition 6.4, one
sees that (S, si) and (T, ti) satisfy the same propositions from {min¬b,min←¬b} for each
i ∈ [0,m].

Case 2. There is no i ∈ [0,m] such that (S, si) |= min¬b. We observe:

(c’) There exists some i0 ∈ [0,m] such that (S, si0) |= min←¬b by formula (7) and hence
(S, si0) |= b by formula (8);

(d’) (S, si) |= min←¬b for each i ∈ [0, i0 − 1] by point (b) above and hence (S, si) |= b
by formula (8) for each i ∈ [0, i0 − 1];

(e’) (S, si) |= min←¬b and thus (S, si) |= b by formula (8) for each i ∈ [i0 + 1,m]. This
is proved by repeatedly applying the following three steps:

(i) By formula (9), (S, si0) |= min←¬b implies (S, si0+1) |= min¬b ∨min
←
¬b.

(ii) Assume (S, si0+1) |= min¬b. By formula (6), we have (S, si0+1) |= min¬b,
contradicting the assumption for Case 2. Thus, (S, si0+1) |= min

←
¬b.

(iii) By formula (6), we have (S, si0+1) |= min←¬b.

By comparing the above points (a), (b), and (c’) to (e’) with conditions (i)-(v) of
Definition 6.4 one sees that Ei and Ti satisfy the same propositions from {min¬b,min←¬b}
for each i ∈ [0,m]. This concludes the proof Claim 3 and thus of Theorem 6.7. �

6.2.3 `-NExpTime-hardness for each ` ≥ 1

We are now ready to proceed to the main result of Section 6.2. By making use of the
formulas ϕ`,n, we can encode big numbers. In the proof of the following proposition
we use these numbers to encode (the coordinates of) big tiling problems. Recall that
`-NExpTime =

⋃
k≥0 NTIME(Tower(`, nk)) for ` ≥ 0.

Theorem 6.8. The following holds:

• For each ` ≥ 1, K2
id-SAT restricted to formulas of switching depth ` is `-NExpTime-

hard under polynomial time many-one reductions.

• In particular, K2
id-SAT is nonelementary.

For the proof of Theorem 6.8, we need to introduce tilings and tiling problems. A
tiling system is a tuple S = (Θ,H,V), where Θ is a finite set of tile types, H ⊆ Θ×Θ
is the horizontal matching relation, and V ⊆ Θ × Θ is the vertical matching relation.
A mapping τ : [0, k − 1] × [0, k − 1] → Θ for k ≥ 0 is a k-solution for S if for all
(x, y) ∈ [0, k − 1]× [0, k − 1] the following holds:

178

6.2 K2-SAT is hard for nonelementary time

• if x < k − 1, τ(x, y) = θ, and τ(x+ 1, y) = θ′, then (θ, θ′) ∈ H, and

• if y < k − 1, τ(x, y) = θ, and τ(x, y + 1) = θ′, then (θ, θ′) ∈ V.

Let w = θ0 · · · θn−1 ∈ Θn be a word and let k ≥ n. With Solk(S,w) we denote the set of
all k-solutions τ for S such that τ(x, 0) = θx for all x ∈ [0, n− 1]. For a tiling system
S = (Θ,H,V) we define its `-EXP-tiling problem as follows:

`-EXP-tiling problem for S = (Θ,H,V)

INPUT: A word w ∈ Θn.
OUTPUT: Does SolTower(`,n)(S,w) 6= ∅ hold?

The following result is well-known, see for instance [22, 30].

Theorem 6.9. For each ` ≥ 1, there exists a fixed tiling system S` such that the `-EXP-
tiling problem for S` is hard for `-NExpTime under polynomial time many-one
reductions.

The proof of this theorem is based on the observation that from a nondeterministic
t(n)-time bounded Turing machine M one can construct a tiling system SM which
simulates M in the following sense: from an input w of length n for M one can construct
a word xw of length n over the tile types of SM such that M accepts w if and only if
Solt(n)(SM , xw) 6= ∅. Intuitively, in a t(n)-solution τ for SM each row, i.e., the sequence
τ(0, i), . . . , τ(t(n)− 1, i) for some i, encodes a configuration. The horizontal matching
relation of SM ensures that each row is a valid configuration, while the vertical matching
relation guarantees valid transitions between configurations.

We can finally prove Theorem 6.8. We give the detailed proof only for ` ≥ 2 and just
remark that for ` = 1 it is a straightforward adaption of Definition 6.6 and Theorem 6.7.
The structure of the proof (for ` ≥ 2) is as follows:

• In the first step, we define structures, called grid element trees representing one
particular cell, i.e., a triple (X,Y, θ) of two coordinates X, Y , and a tile type θ, of
the Tower(`, n)-solution. Moreover, we provide a formula gridel enforcing (again:
up to bisimulation equivalence) such grid element trees.

• In the second step, we define structures, called tiling trees representing a complete
Tower(`, n)-solution for some fixed tiling system S.

• Finally, we give a formula tiling that enforces tiling trees (up to bisimulation) and
a formula ϕw that deals with the input w of length n. In particular, tiling ∧ ϕw
will be satisfiable if and only if SolTower(`,n)(S,w) is not empty.

The proof reuses ideas of the proofs of Lemma 6.5 and Theorem 6.7, so we will not give
all details. However, all missing details are straightforward variants of the mentioned
proofs.

179

6 Computational Complexity of the Product Logic K×K

Proof of Theorem 6.8. Fix some ` ≥ 2 and let S` = (Θ,H,V) be some tiling system
such that the `-EXP-tiling problem for S` is hard for `-NExpTime (exists by
Theorem 6.9). We give a polynomial time many-one reduction from the `-EXP-tiling
problem for S` to K2

id-SAT restricted to formulas of switching depth `. Let w =
θ0 · · · θn−1 be an input word for the `-EXP-tiling problem for S` and let m = Tower(`−
1, n)− 1.

We add to the set of propositions Pn from the previous section all tile types from
θ ∈ Θ and two additional propositions x and y, and analogously, we add propositions θ
for θ ∈ Θ, x, and y to Pn. The sets A = {a},A = {a} remain unchanged. For z ∈ {x, y}
we define Υ

(1,z)
`−1,n(j) as the tree Υ`−1,n(j, {b, z}) and Υ

(0,z)
`−1,n(j) as Υ`−1,n(j, {z}). In the

same way define Υ
(β,z)
`−1,n(j).

Now, assume X,Y ∈ [0,Tower(`, n)−1] and θ ∈ Θ. Note that X,Y uniquely determine
sets Ix, Iy ⊆ [0,m] by

X =
∑
i∈Ix

2i and Y =
∑
i∈Iy

2i.

Then the grid element tree G(X,Y, θ) is obtained as follows:

• Take the disjoint union of a root node r and all trees from the set

U = {Υ(1,x)
`−2,n(i) | i ∈ Ix} ∪ {Υ(0,x)

`−2,n(i) | i /∈ Ix} ∪

{Υ(1,y)
`−2,n(i) | i ∈ Iy} ∪ {Υ(0,y)

`−2,n(i) | i /∈ Iy}.

• Add an a-transition from the root r to the root of each tree from U .

• Label the root r with θ.

For an example grid element tree, see Figure 6.4. The tree G(X,Y, θ) is obtained from
G(X,Y, θ) by replacing every accessibility relation a−→ by a−→ and every proposition p
by p.
In order to enforce grid element trees, we need to slightly modify the formulas used

in the proof of Theorem 6.7. For this purpose, it is useful to have for z ∈ {x, y} the
abbreviations ♦zψ = ♦(z∧ψ), �zψ = �(z → ψ), ♦zψ = ♦(z∧ψ), and �zψ = �(z → ψ).
Then, for z ∈ {x, y} we can define relativized formulas ϕz`−1,n, eqz`−1,n, firstz`−1,n, lastz`−1,n,
and succz`−1,n by replacing in the definitions of the formulas ϕ`−1,n, eq`−1,n, first`−1,n,
last`−1,n, and succ`−1,n every modality ♦ (resp., �, ♦, �) by ♦z (resp., �z, ♦z, �z). All
occurrences of ϕ`−2,n, eq`−2,n, first`−2,n, last`−2,n, and succ`−2,n are not changed, i.e., we
do not replace modalities within these formulas. The following Claim can be verified
along the lines of the proof of Lemma 6.5.

Claim 1. Let Nx, Ny, Nx, Ny ∈ [0,Tower(`, n)−1] and θ, θ′ ∈ Θ and let T = G(Nx, Ny, θ)
and T = G(Nx, Ny, θ

′) be grid element trees. Then the following holds for all z ∈ {x, y}:

180

6.2 K2-SAT is hard for nonelementary time

r
θ

Υ`−2,n(0)

x, b

· · · Υ`−2,n(m)

x,¬b

Υ`−2,n(0)

y,¬b

· · · Υ`−2,n(m)

y,¬b

Figure 6.4: Example grid element tree. The root r has m+ 1 successors labeled with x
and m+ 1 successors labeled with y; hence, the grid element tree encodes
two numbers X and Y .

(a) T× T |= eqz`−1,n if and only if Nz = Nz.

(b) T× T |= firstz`−1,n if and only if Nz = Nz = 0.

(c) T× T |= lastz`−1,n if and only if Nz = Nz = Tower(`, n)− 1.

(d) T× T |= succz`−1,n if and only if Nz = Nz + 1.

Using the relativized version of ϕ`−1,n we can enforce grid element trees. We define gridel
as the conjunction of∨

θ∈Θ

(θ ∧ θ ∧
∧

κ∈Θ\{θ}

(¬κ ∧ ¬κ)) ∧ ��((x⊕ y) ∧ (x⊕ y)) ∧ ϕx`−1,n ∧ ϕ
y
`−1,n,

and ∧
p∈Pn\Θ

(¬p ∧ ¬p) ∧
∧

2≤i≤`−1

∧
p∈Θ∪{x,y}

�i�
i
(¬p ∧ ¬p)

where ⊕ denotes “exclusive or” and �i denotes the sequence of i boxes �. Intuitively,
the first formula expresses that (i) the root is labeled with precisely one symbol θ ∈ Θ
and (ii) we can associate precisely two values with the grid element structure: the value
enforced by ϕx`−1,n (in analogy to Theorem 6.7) and the value enforced by ϕy`−1,n. Addi-
tionally, all successor worlds are labeled with either x or y, so the formula ϕx`−1,n, ϕ

y
`−1,n

really determine all successor worlds. The second formula is just an auxiliary formula
restricting the newly introduced propositions appropriately, similar to formula (1) of
Definition 6.6. The following claim makes this property of gridel explicit.

Claim 2. For all structures (S, s) and (S, s) we have that (S×S, 〈s, s〉) |= gridel if and
only if there are X,Y ∈ [0,Tower(`, n) − 1] and θ ∈ Θ such that (S, s) and (S, s) are
bisimilar to grid element structures G(X,Y, θ) and G(X,Y, θ), respectively.

181

6 Computational Complexity of the Product Logic K×K

Next, let τ : [0,Tower(`, n)− 1]2 → Θ be a mapping. We define the tiling tree T(τ) as
follows:

• Take the disjoint union of a root node r and all grid element trees from the set

U = {G(X,Y, τ(X,Y)) | X,Y ∈ [0,Tower(`, n)− 1]}.

• Add an edge from the root r to the root of each tree from U .

Intuitively, a tiling tree T(τ) represents the mapping τ as follows: for every X,Y in
the domain of τ it has a successor that is a grid element tree encoding the triple
(X,Y, τ(X,Y)). The copy T(τ) is defined as usual. The following claim states the
existence of a formula that enforces tiling trees.

Claim 3. There is a formula tiling of switching depth ` such that for all pointed structures
(S, s) and (S, s) we have (S × S, 〈s, s〉) |= tiling if and only if there is a Tower(`, n)-
solution τ of S` such that (S, s) is bisimilar to the tiling tree T(τ) and (S, s) is bisimilar
to T(τ).

Proof of Claim 3. We take for tiling the conjunction of the following formulas:

(1)
∧
p∈Pn

(¬p ∧ ¬p)

(2) ♦♦(gridel ∧ firstx`−1,n ∧ firsty`−1,n)

(3) �♦gridel

(4) �♦gridel

(5) ��((eqx`−1,n ∧ eqy`−1,n)→
∧
θ∈Θ(θ ↔ θ))

(6) �(�¬lastx`−1,n → ♦(succx`−1,n ∧ eqy`−1,n ∧
∨

(θ1,θ2)∈H

(θ1 ∧ θ2)))

(7) �(�¬lasty`−1,n → ♦(succy`−1,n ∧ eqx`−1,n ∧
∨

(θ1,θ2)∈V

(θ1 ∧ θ2)))

To show that the formula tiling satisfies the statements from the Claim we proceed
similarly as in the proof of Theorem 6.7. Observe first that tiling has switching depth `.
For the “if”-direction of the statement assume a Tower(`, n)-solution τ and structures
(S, s) and (S, s) that are bisimilar to T(τ) and T(τ), respectively. It is routine to verify
that (S×S, 〈s, s〉) satisfies all the formulas (1)-(7) given above.

For the “only-if”-direction assume that (S×S, 〈s, s〉) |= tiling. Formulas (3) and (4)
enforce that for all successors t and t of s and s, respectively, we have that (S, t) is

182

6.2 K2-SAT is hard for nonelementary time

bisimilar to some grid element tree G(X,Y, θ) and (S, t) is bisimilar to some grid element
tree G(X,Y, θ). Formula (2) enforces the existence of successors t and t such that
(S, t) is bisimilar to the grid element tree G(0, 0, θ) and (S, t) is bisimilar to the grid
element tree G(0, 0, θ′) for some θ, θ′ ∈ Θ. Starting from this G(0, 0, θ), formulas (6),
(7), and (4) inductively enforce the existence of grid element trees G(i, j, θ) for each
i, j ∈ [0,Tower(`, n) − 1] and some θ. Assume a successor t of s such that (S, t) is
bisimilar to the grid element tree G(i, j, θ). If i < Tower(`, n) − 1, then formula (6)
enforces the existence of a successor t of s such that (S, t) is bisimilar to a grid element
tree G(i + 1, j, θ′) with (θ, θ′) ∈ H. Likewise, if j < Tower(`, n) − 1, then formula (7)
enforces the existence of a successor t of s such that (S, t) is bisimilar to a grid element
tree G(i, j + 1, θ′) with (θ, θ′) ∈ V. In both cases, by formula (4), there is some successor
s′ of s such that (S, s′) is bisimilar to G(i+ 1, j, θ′) or G(i, j + 1, θ′), respectively.
Thus, for each i, j ∈ [0,Tower(`, n) − 1] there are worlds t, t, and a tile type θ ∈ Θ

such that

• t is a successor of s and t is a successor of s;

• (S, t) is bisimilar to the grid element tree G(i, j, θ);

• (S, t) is bisimilar to the grid element tree G(i, j, θ).

Assume now that there are successors t, t′ of s such that (S, t) is bisimilar to G(i, j, θ1) and
(S, t′) is bisimilar to G(i, j, θ2). By the above, there is a successor t of s such that (S, t) is
bisimilar to G(i, j, θ′) for some θ′. By Claim 1, we have (S×S, 〈t, t〉) |= eqx`−1,n ∧eqy`−1,n.
By formula (5), we obtain θ′ = θ1. Analogously, we get θ′ = θ2 and thus θ1 = θ2. Hence,
for every i, j ∈ [0,Tower(`, n)− 1] there is a unique θij such that for all successors t of s
with (S, t) bisimilar to G(i, j, θ′) we have θ′ = θij (and analogously, for all successors
t of s). Thus, the mapping τ defined by τ(i, j) = θij is well-defined. Moreover, by
construction it is a Tower(`, n)-solution for S`.
We claim that (S, s) and (S, s) are bisimilar to the tiling trees T(τ) and T(τ),

respectively. By the properties observed above, it suffices to note that the (S, s) and
(S, s) do not satisfy any propositions from Pn by formula (1) as required by the definition
of a tiling tree. This finishes the proof of Claim 3.

Finally, it is straightforward to write down a formula ϕw expressing that τ(i, 0) = θi
for all i ∈ [0, n − 1]. We can for each i ∈ [0, n − 1] give a formula vali such that for
all structures (S, s), (S, s) that are bisimilar to grid element structures G(X,Y, θ) and
G(X ′, Y ′, θ′), respectively, we have that (S×S, 〈s, s〉) |= vali if and only if X = X ′ = i.
Hence, we can define

ϕw =

n−1∧
i=0

��(vali ∧ firsty`−1,n → θi).

183

6 Computational Complexity of the Product Logic K×K

Hence, SolTower(`,n)(S`, w) 6= ∅ if and only if tiling ∧ ϕw is interpreted satisfiable. It
remains to note that the size of the formula ϕw is polynomial in the size of w. This
concludes the proof. �

The following corollary is an immediate consequence of Proposition 6.2 and Theorem 6.8.

Corollary 6.10. The following holds:

• For each ` ≥ 1, K2-SAT restricted to formulas of switching depth ` is `-NExpTime-
hard under polynomial time many-one reductions.

• In particular, K2-SAT is nonelementary.

As a final remark let us mention that there is a close connection of our lower bound
technique and the decision procedure devised in [105]. In a nutshell, it is a filtration
algorithm that factors through the set Dm(P) of (A,P)-formulas of modal depth at most
m. Clearly, there are infinitely such formulas but it is well-known that (i) there are finitely
(more precisely: Tower(m, |P|)) many up to equivalence and (ii) each equivalence class
can be described by a tree of depth at most m and having an outdegree of Tower(m, |P|)
in the worst case. In fact, they claim that their decision procedure can actually be
strengthened to filter only through D`(P) where ` is the switching depth of some formula
ϕ [105] and our result shows that there is no better way than that.

6.3 Hardness results for K4×K, S4×K, and S52 ×K

In this section, we prove further nonelementary lower bound results for the satisfiability
problem of two-dimensional modal logics on restricted classes of frames. We hereby
close nonelementary complexity gaps that were stated as open problems in [55]. Again,
we exploit Proposition 6.2 and focus on satisfiability in interpreted product structures.
Note that this is possible since Proposition 6.2 does not make any assumption on the
underlying frames and thus holds also for restricted frame classes. Let us define the
following logics:

• K4 ×K: Two-dimensional modal logic restricted to products based on frames
F1 × F2 where F1 is a frame (W,−→a) such that −→a is transitive.

• S4 × K: Two-dimensional modal logic restricted to products based on frames
F1 × F2 where F1 is a frame (W,

a−→) such that −→a is transitive and reflexive.

• S52 ×K: Two-dimensional modal logic restricted to products based on frames
F1 × F2 where F1 is a frame (W,≡,≈) with equivalence relations ≡ and ≈.

184

6.3 Hardness results for K4×K, S4×K, and S52 ×K

We lift the terminology regarding satisfiability from the previous previous section. For
instance, we say that an (A,P)-formula ϕ is uninterpreted (interpreted) satisfiable in, say,
K4×K if there is an uninterpreted (interpreted) product model of ϕ with underlying
frame F1 × F2 and F1 transtive.
Note that the lower bounds from the last section already hold for formulas having

only accessibility relations a−→, a−→, i.e., one accessibility relation for each component.
Hence, throughout this section we fix A = {a, a} and some countable set P = P1 ∪ P2 of
propositons. As in the previous section we will abbreviate ♦a with ♦ and ♦a with ♦. The
idea for all three logics is to lift existing reductions from satisfiability in (one-dimensional)
K to satisfiability in (one-dimensional) K4,S4, S52, see [96, 69, 52].
Let us start with K4 × K; the case S4 × K works analogously. The idea for the

reduction is to introduce additional propositions h0, . . . , hn to simulate levels in the
model. Intuitively, hi will be true in some world s′ precisely when s′ is i transitions
away from s, the world where the input formula is witnessed. More formally, let ϕ be
an (A,P)-formula with depth1(ϕ) = r and let h0, . . . , hr be fresh propositions. For every
0 ≤ k ≤ r, we specify by structural induction a translation function tk such that tk is
defined for an input formula ψ whenever depth1(ψ) + k ≤ r. More precisely, we set

tk(p) = Hk ∧ p for all p ∈ P
tk(¬ψ) = Hk ∧ ¬tk(ψ)

tk(ψ1 ∧ ψ2) = tk(ψ1) ∧ tk(ψ2)

tk(♦ψ) = ♦tk(ψ)
tk(♦ψ) = Hk ∧ ♦(Hk+1 ∧ tk+1(ψ))

where Hk = hk ∧
∧
i6=k ¬hi and k < r in the definition of tk(♦ψ). We show that the

translation is satisfiability preserving. More precisely, we prove the following lemma.

Lemma 6.11. For every (A,P)-formula ϕ we have: ϕ is interpreted satisfiable in K2

iff t0(ϕ) is interpreted satisfiable in K4×K.

Proof. We assume that ϕ is defined over P = P1 ∪ P2 for disjoint P1 and P2. Moreover
set r = depth1(ϕ). As in Section 6.2 we will write S1 ×S2 for S1 ×id S2.
Assume first that ϕ is interpreted satisfiable in K×K. Thus, there are structures

Si = (Wi,−→i, {Wi,p | p ∈ Pi})

(i ∈ {1, 2}) and s = 〈s1, s2〉 ∈ W1 ×W2 such that (S1 ×S2, s) |= ϕ. Without loss of
generality we assume that S1 is a tree with root s1. Define

S′1 = (W1,−→+
1 , {W

′
1,p | p ∈ P1 ∪ {h0, . . . , hr}}),

where

• −→+
1 is the transitive closure of −→1,

185

6 Computational Complexity of the Product Logic K×K

• W ′1,p = W1,p for all p ∈ P1, and

• W ′1,hi = Vi, where Vi is defined to be the set of worlds s′ such that the (unique)
path in S1 from s1 to s′ has length i, i.e., consists of i transitions.

Note that by construction of S′1, we have for all x ∈W1 ×W2, k ∈ [0, r]:

(S′1 ×S2, x) |= Hk ⇔ x ∈ Vk ×W2. (6.2)

We prove by induction on the structure of ϕ that for each subformula ψ it holds: for all
i ∈ [0, r] and all x ∈ Vr−i ×W2. we have

depth1(ψ) ≤ i ⇒
(
(S1 ×S2, x) |= ψ ⇔ (S′1 ×S2, x) |= tr−i(ψ)

)
.

For the induction base, assume ψ = p for some atomic proposition p ∈ P1∪P2, i arbitrary
in [0, r], and fix an arbitrary x = 〈x1, x2〉 ∈ Vr−i ×W2. The statement is then a direct
consequence of (6.2).

For the induction step, assume ψ is not atomic and i ∈ [0, r] such that i ≥ depth1(ψ),
and let us fix some x ∈ Vr−i ×W2. We make a case distinction on the structure of ψ.
For the cases ¬χ, χ1 ∧ χ2, and ♦χ the equivalence follows straightforwardly from (6.2)
and the induction hypothesis since depth1(ψ) = depth1(χ) and depth1(χi) ≤ depth1(ψ)
for i ∈ {1, 2}.

It remains to consider the case ψ = ♦χ. Then depth1(χ) = depth1(ψ)− 1 ≤ i− 1 and
we have that (S1 ×S2, x) |= ψ is equivalent to the following:

∃y ∈ Vr−(i−1) ×W2 : x −→1 y and (S1 ×S2, y) |= χ

IH⇔ ∃y ∈ Vr−i+1 ×W2 : x −→1 y and (S′1 ×S2, y) |= tr−i+1(χ)

(6.2)⇔ ∃y ∈ Vr−i+1 ×W2 : x −→+
1 y and (S′1 ×S2, y) |= Hr−i+1 ∧ tr−i+1(χ)

⇔ (S′1 ×S2, x) |= ♦(Hr−i+1 ∧ tr−i+1(χ))

(6.2)⇔ (S′1 ×S2, x) |= Hr−i ∧ ♦(Hr−i+1 ∧ tr−i+1(χ))

⇔ (S′1 ×S2, x) |= tr−i(ψ).

Since depth1(ϕ) = r, (S1 ×S2, s) |= ϕ, and s ∈ V0 ×W2 we get (S′1 ×S2, s) |= t0(ϕ).
Hence t0(ϕ) is interpreted satisfiable in K4×K.

For the other direction assume that t0(ϕ) is interpreted satisfiable in K4×K. Thus,
there are a transitive structure S1 = (W1,−→1, {W1,p | p ∈ P1 ∪ {h0, . . . , hr}}) and
a structure S2 = (W2,−→2, {W2,p | p ∈ P2}) and s = 〈s1, s2〉 ∈ W1 ×W2 such that
(S1 ×S2, s) |= t0(ϕ). For each 0 ≤ i ≤ r we set

Ti = W1,hi \ (
⋃
j 6=i

W1,hj),

186

6.3 Hardness results for K4×K, S4×K, and S52 ×K

corresponding to the formulas Hi in S1. In particular, we have for all x ∈ W1 ×W2,
k ∈ [0, r]:

(S1 ×S2, x) |= Hk ⇔ x ∈ Tk ×W2. (6.3)

Define a structure S′1 = (W ′1,−→′1, {W ′1,p | p ∈ P1) by taking

• W ′1 =
⋃

0≤i≤r Ti,

• −→′1 = −→1 ∩ (
⋃

0≤i<r Ti × Ti+1), and

• W ′1,p = W1,p ∩W ′1 for all p ∈ P1.

We prove by structural induction that for each subformula ψ of ϕ we have: for all
i ∈ [0, r] and all x ∈ Tr−i ×W2 it holds

depth1(ψ) ≤ i ⇒
(
(S1 ×S2, x) |= tr−i(ψ) ⇔ (S′1 ×S2, x) |= ψ

)
For the induction base assume ψ = p for some atomic proposition p ∈ P1 ∪ P2, x ∈
Tr−i × W2, and i ≥ depth1(ψ) = 0 arbitrary. We have (S1 × S2, x) |= tr−i(p) iff
(S1 ×S2, x) |= Hr−i ∧ p iff (S′1 ×S2, x) |= p where the last equivalence is due to (6.3)
and the definition of W ′1,p.
For the induction step assume that ψ is not atomic, let i ∈ [0, r] be such that

depth1(ψ) ≤ i and fix an arbitrary x = 〈x1, x2〉 ∈ Tr−i×W2. We make a case distinction
on the structure of ψ. For the cases ¬χ, χ1 ∧ χ2, and ♦χ the equivalence follows directly
from the induction hypothesis and (6.3). For the remaining case ψ = ♦χ we have
depth1(χ) = depth1(ψ)− 1 ≤ i− 1 and (S1 ×S2, x) |= tr−i(ψ) is equivalent to:

(S1 ×S2, x) |= Hr−i ∧ ♦(Hr−i+1 ∧ tr−i+1(χ))

(6.3)⇔ (S1 ×S2, x) |= ♦(Hr−i+1 ∧ tr−i+1(χ))
Def. Tr−i+1⇔ ∃y ∈ Tr−i+1 ×W2 : x −→1 y and (S1 ×S2, y) |= Hr−i+1 ∧ tr−i+1(χ)

(6.3)⇔ ∃y ∈ Tr−i+1 ×W2 : x −→1 y and (S1 ×S2, y) |= tr−i+1(χ)

Def. −→′1⇔ ∃y ∈ Tr−i+1 ×W2 : x −→′1 y and (S1 ×S2, y) |= tr−i+1(χ)
IH⇔ ∃y ∈ Tr−i+1 ×W2 : x −→′1 y and (S′1 ×S2, y) |= χ

⇔ (S′1 ×S2, x) |= ♦χ

By assumption we have (S1 ×S2, s) |= t0(ϕ), s ∈ T0 ×W2, and depth1(ϕ) = r. Thus,
the above equivalence implies (S′1 ×S2, s) |= ϕ and thus, ϕ is interpreted satisfiable in
K×K. �

Lemma 6.11 provides a reduction of K2
id-SAT to interpreted satisfiability in K4 ×K.

Similarly, one can give a reduction of K2
id-SAT to interpreted satisfiability in S4 ×K.

Finally, Proposition 6.2 together with Theorem 6.8 yields the following result.

187

6 Computational Complexity of the Product Logic K×K

Theorem 6.12. Satisfiability in K4×K and S4×K is nonelementary.

Next, we study the combination S52 ×K. As already announced, we lift the reduction
from S52 to K, see for instance [69, 52], to the two-dimensional case. Intuitively,
one transition in K is simulated by two transitions in S52. This is possible since the
composition of two equivalence relations is neither symmetric nor transitive in general
and using the fresh variable p∗ we can enforce a nontrivial transition, that is we change
equivalence classes. Let us define the translation function ·† by

q† = p∗ ∧ q for all q ∈ P

(ϕ1 ∧ ϕ2)† = p∗ ∧ ϕ†1 ∧ ϕ
†
2

(¬ϕ)† = p∗ ∧ ¬(ϕ†)

(♦ϕ)† = p∗ ∧ ♦ϕ†
(♦ϕ)† = p∗ ∧ ♦≡(¬p∗ ∧ ♦≈(p∗ ∧ ϕ†))

where ♦≡ and ♦≈ refer to the two modalities in the S52-component and p∗ is a fresh
propositional variable in the signature of the first component. It is routine to prove the
following.

Lemma 6.13. For every (A,P)-formula ϕ we have: ϕ is interpreted satisfiable in K2

iff ϕ† is interpreted satisfiable in S52 ×K.

Proof. We assume that ϕ is defined over P = P1 ∪ P2 for disjoint P1 and P2 with
p∗ 6∈ P1 ∪ P2.
Assume first that ϕ is interpreted satisfiable in K ×K. Thus, there are structures

S1 = (W1,
a−→, {W1,p | p ∈ P1}), S2 = (W2,

b−→, {W2,p | p ∈ P2}), and a world
s ∈W1×W2 such that (S1×S2, s) |= ϕ. Define an S52-structureS′1 = (W ′1,≡,≈,{W ′1,p |
p ∈ P1 ∪ {p∗}}) as follows:

• W ′1 = W1]
a−→,

• ≡ is the reflexive, transitive, and symmetric closure of {(w, (w,w′)) | w a−→ w′},

• ≈ is the reflexive, transitive, and symmetric closure of {((w,w′), w′) | w a−→ w′},

• W ′1,p = W1,p for p ∈ P1,

• W ′1,p∗ = W1.

Now, one can prove by induction on the structure of a formula ψ that for every world
w ∈W1 ×W2 we have:

(S1 ×S2, w) |= ψ ⇔ (S′1 ×S2, w) |= ψ†.

188

6.3 Hardness results for K4×K, S4×K, and S52 ×K

For the induction base, i.e., when ψ is a propositional variable, the statement is imme-
diately true, by definition of the structure S′1. For the cases ¬χ, χ1 ∧ χ2 and ♦χ, the
statement follows directly from the induction hypothesis.
So assume ψ is of the form ♦χ. Suppose first that (S1 ×S2, 〈s1, s2〉) |= ♦χ. Thus,

there is some world s′1 such that s1
a−→ s′1 and (S1 ×S2, 〈s′1, s2〉) |= χ. By induction

hypothesis, we have (S′1 × S2, 〈s′1, s2〉) |= χ†. By definition of S′1, we have s1 ≡
(s1, s

′
1), (s1, s

′
1) ≈ s′1, {s1, s

′
1} ⊆ W ′1,p∗ , and (s1, s

′
1) /∈ W ′1,p∗ . Obviously, this yields

(S′1 × S2, 〈s1, s2〉) |= p∗ ∧ ♦≡(¬p∗ ∧ ♦≈(p∗ ∧ χ†)). For the other direction suppose
(S′1 × S2, 〈s1, s2〉) |= p∗ ∧ ♦≡(¬p∗ ∧ ♦≈(p∗ ∧ χ†)). Thus, there are worlds t, s′1 ∈ W ′1
with s1 ≡ t, t ≈ s′1, s1, s

′
1 ∈W ′1,p∗ , and t /∈W ′1,p∗ such that (S′1 ×S2, 〈s′1, s2〉) |= χ†. By

definition of S′1, we know that s′1 ∈ W1, t = (s1, s
′
1), and s1

a−→ s′1. As s′1 ∈ W1, the
induction hypothesis implies (S1 ×S2, 〈s′1, s2〉) |= χ. Hence, (S1 ×S2, 〈s1, s2〉) |= ♦χ.
In particular, we obtain (S′1 ×S2, s) |= ϕ†, and thus, ϕ† is interpreted satisfiable in

S52 ×K.

Assume now that ϕ† is interpreted satisfiable in S52 ×K. Hence, there is an S52-
structure

S1 = (W1,≡,≈, {W1,p | p ∈ P1 ∪ {p∗}}),

a structure S2 = (W2,
b−→, {W2,p | p ∈ P2}), and s ∈W1×W2 such that (S1×S2, s) |=

ϕ†. Define a structure S′1 = (W ′1,
a−→, {W ′1,p | p ∈ P1}) as follows:

• W ′1 = W1,p∗

• a−→ = {(u, v) | ∃w ∈W1 \W1,p∗ : u ≡ w ≈ v}

• W ′1,p = W1,p ∩W1,p∗ for all p ∈ P1

One can prove by induction on the structure of a formula ψ that for every world
w ∈W ′1 ×W2 we have:

(S1 ×S2, w) |= ψ† ⇔ (S′1 ×S2, w) |= ψ

Again, the case when ψ is a propositional variable is immediately clear from the definition
of S′1. Also the cases ¬χ, χ1 ∧ χ2, and ♦χ are direct consequences of the induction
hypothesis.

For the case ψ = ♦χ assume first that (S1 ×S2, 〈s1, s2〉) |= (♦χ)†. By the semantics,
there is some t /∈ W1,p∗ and s′1 ∈ W1,p with s1 ≡ t and t ≈ s′1 such that (S1 ×
S2, 〈s′1, s2〉) |= χ†. By induction, we have (S′1 × S2, 〈s′1, s2〉) |= χ. Moreover, the
definition of S′1 yields s1

a−→ s′1. By the semantics, we get (S′1 × S2, 〈s1, s2〉) |= ♦χ.
For the other direction assume (S′1 ×S2, 〈s1, s2〉) |= ♦χ. Hence, there is some world s′1
such that s1

a−→ s′1 and (S′1 ×S2, 〈s′1, s2〉) |= χ. By induction, (S1 ×S2, 〈s′1, s2〉) |= χ†.

189

6 Computational Complexity of the Product Logic K×K

By definition of a−→, there is some t ∈W1 \W1,p∗ such that s1 ≡ t ≈ s′1. By definition
of S′1, we have s1, s

′
1 ∈W1,p∗ . Thus, the semantics yields (S1 ×S2, 〈s1, s2〉) |= (♦ χ)†.

Observe now that (S1 × S2, s) |= ϕ† implies s ∈ W ′1 ×W2 by the definition of †.
Therefore, we get (S′1 ×S2, s) |= ϕ and ϕ is interpreted satisfiable in K×K. �

The following theorem is an immediate consequence of Lemma 6.13, Proposition 6.8,
and Proposition 6.2. It is worth mentioning that the nonelementary lower bound for
S52×K is in sharp contrast to NExpTime-completeness for satisfiability in S5×K [104].

Theorem 6.14. Satisfiability in S52 ×K is nonelementary.

6.4 Conclusions, open problems, further applications

We have defined a class of trees and a family of formulas enforcing these trees up to
bisimulation equivalence. Using these formulas, we were able to show nonelementary
lower bounds for satisfiability in K × K and, via reductions from this, for K4 × K,
S4×K, and S52 ×K. The applied reductions are lifted from the one-dimensional cases
in a straightforward way, so there are potentially more corollaries of this form.

A related interesting open problem is the satisfiability problem for products where one
underlying frame is linear. For instance, one can study satisfiability in the logics L ×K
for L ∈ {Lin, Log({(N, <)}),K4.3} where:

• Lin × K: two-dimensional modal logic restricted to products based on frames
F1 × F2 where F1 is a frame (W,

a−→) such that a−→ is a linear order on W ;

• Log({(N, <)} ×K: two-dimensional modal logic restricted to products based on
frames of the form (N, <)× F2;

• K4.3×K: two-dimensional modal logic restricted to products based on frames
F1×F2 where F1 is a frame (W,

a−→) and a−→ is transitive and weakly connected.3

In all listed cases, the precise complexity of the satisfiability problem is open and only a
nonelementary upper bound is known [52]. We believe that it is not possible to adapt
our techniques to these cases, as our technique heavily relies on tree structures; in
particular, the enforced trees Υ`,n(j) have a very large outdegree of Tower(`, n). Note
that for L = LTL a nonelementary lower bound is known whose proof, however, uses
the ‘until’-operator U .
One further application of the presented technique, namely showing lower bounds

for sizes of logical decomposition, is studied in [57]. Full details are out of scope here;
however, we want to give some intuition about the implications of our technique. Logical

3A frame (W,
a−→) is weakly connected if s a−→ t and s

a−→ t′ implies t a−→ t′ or t′ a−→ t for all
s, t, t′ ∈W .

190

6.4 Conclusions, open problems, further applications

decomposition can concisely be summarized as follows: A logic L admits decomposition
with respect to some composition operation op on structures if all L-properties that are
interpreted on structures composed using op, are already determined by the L-properties
of the component structures. As example for a decomposability theorem consider the
following special case of a general theorem where L is modal logic K and op is the
interpreted product.

Theorem 6.15 ([114]). From an (A,P)-formula ϕ with A = A1 ∪ A2, P = P1 ∪ P2, one
can compute a tuple (Ψ1,Ψ2, β) where

• Ψi = {ψji | j ∈ Ji} is a finite set of (Ai,Pi)-formulas for i ∈ {1, 2} and

• β a positive Boolean formula over variables X = {xji | i ∈ {1, 2}, j ∈ Ji}

such that for every (Ai,Pi)-structure Si and every world si of Si:

(S1 ×id S2, 〈s1, s2〉) |= ϕ ⇔ µ |= β.

where µ : X → {0, 1} is defined by µ(xji) = 1 if and only if (Si, si) |= ψji .

This is, for instance, useful in model checking. Intuitively, instead of checking that
ϕ holds in the interpreted product of (S1, s1) and (S2, s2) we can perform a number
of checks, namely those in Ψi, in the components and obtain the result as a Boolean
combination β of the results of the checks in the components.
Logical decomposition dates back to the work of Mostowski [106] and Feferman and

Vaught [46], where it is shown that first-order logic is decomposable with respect to a
general product operation, which covers also disjoint union and product. Later, both for
more expressive logics and for more sophisticated operations such decomposability results
have been proved, see [103] for a survey. Logical decomposition has several powerful
application in computer science. To mention just one example, it should be clear from
Theorem 6.15 that data complexity of model checking in K does not change when going
to interpreted product structures: For a fixed formula, also the decomposition is fixed
(though possibly large), so data complexity remains the same.

Let us call D = (Ψ1,Ψ2, β) the decomposition of ϕ and define |D| = |β| +
∑

i,j |ψ
j
i |

to be its size. Theorems such as Theorem 6.15 are often proved by showing that the
decomposition is effectively computable. However, this typically yields nonelementary
sized decompositions. Applying our technique together with techniques from [38], one
can show for several cases, that is, logics L and composition operations op, that this
nonelementary blow-up is unavoidable. For instance, one can prove the following theorem.

Theorem 6.16 ([57]). Every logic that is at least as expressive as and at most elemen-
tarily less succinct than modal logic K does not have elementary sized decompositions in
the sense of Theorem 6.15.

191

7 Conclusion and Outlook

In this thesis, we have investigated several approaches to enrich classical logics with the
goal to improve the modeling of and reasoning about dynamic aspects like uncertainty
or change. Common to all approaches considered here is the underlying possible world
semantics known from modal logics. The approaches differ, however, in the way the
reason over the set of possible worlds. In the first part, probability theory is used to give
each world a weight, which intuitively represents the degree of belief that this world is the
actual world. We studied two prominent applications in this spirit, namely ontological
reasoning in probabilistic first-order logics and ontology-based access to probabilistic
data. In the second part, the worlds are viewed as the states of a relational structure and
modal logic K is used both for modeling/reasoning inside the world and for accessing
the states in the relational structure. The logic obtained in this combination is called
K×K. We here restate the central results that were obtained in the thesis. We refrain,
however, from mentioning possible future work and open problems since this was treated
in detail in the respective chapters.

Ontological reasoning in fragments of probabilistic first-order logics

In Chapters 3 and 4, we revisited probabilistic first-order logic for subjective uncer-
tainty (ProbFO) introduced by Halpern and Bacchus in the early 1990s [67, 13] under
computational complexity aspects. For this purpose, we pursued an indepth-study of
fragments of ProbFO and provided general and thorough explanations for the compu-
tational complexity in these logics. We started with pinpointing the reasons for the
disastrous complexity beyond recursive enumerability. Then, we identified a condition,
monodicity, that in contrast to classical approaches leads to manageable fragments. In
a nutshell, monodic ProbFO offers an object-centered account for uncertainty, that
is, one can express uncertainty about the properties of individuals but not about the
relations among them. We presented a suitable abstraction of probabilistic structures,
quasi-models, and showed how to exploit them to show (i) recursive enumerability and
axiomatizability of monodic ProbFO, (ii) restrictions to decidable fragments of FO yields
decidable fragments of monodic ProbFO. The proof of Point (ii) is provides upper bounds
for monodoc ProbL for some decidable first-order fragments L. Most notably, we obtain
a matching 2ExpTime upper bound for monodic ProbGF. Moreover, Point (ii) yields a
transparent explanation of the good computational properties of a family of probabilistic
description logics (ProbDLs) that were recently introduced [101].

193

7 Conclusion and Outlook

We then turned our attention to members of the mentioned family of ProbDLs. Our
particular aim was to investigate whether there are well-behaved variants based on
the well-known tractable description logic EL. We started with monodic fragments of
ProbEL where probabilistic operators are allowed to be applied to concepts only. A bit
discouraging, we proved that any extension of EL with a single probabilistic operator
P∼p (only applied to concepts) leads to ExpTime-hardness of subsumption relative to
general TBoxes. However, we were able to show that subsumption relative to classical
TBoxes is tractable when admitting an arbitrary probabilistic operator P∼pC with
∼ ∈ {>,≥}. When adding probabilistic roles and thus leaving the monodic fragment we
were able to provide a PSpace algorithm for subsumption relative to general TBoxes
when probability values are restricted to 0 and 1. This is surprising since so far all
two-dimensional extensions of EL have the same complexity as the corresponding variant
of ALC, which is 2ExpTime-complete in this case. We also show maximality of this
fragment by establishing a 2ExpTime lower bound for any extension with a single
proabilistic operator, applied to concepts or roles.

Ontology-based access to probabilistic data

We argued that in the recently popular setting of ontology-based data access (OBDA)
it is sometimes necessary to deal with uncertainty in the data. We addressed this in
Chapter 5, by laying out the framework of ontology-based access to probabilistic data
(pOBDA) and studying the complexity of query answering therein. On a high level,
this framework relates to probabilistic databases in the same way as OBDA relates to
classical databases. We were able to exploit this close relation by lifting results and
techniques from both the field of OBDA and probabilistic databases to our framework.
In particular, we showed the usefulness of first-order rewritings [28] and the dichotomy
of UCQs for tuple-independent probabilistic databases [37]. As a first step, we make the
observation that a too expressive datamodel leads to intractability of all queries. We
thus, restrict the datamodel to an open world variant of tuple-independent databases,
where each tuple comes with a weight and all tuples are independent from each other.
The most important results in this section are:

• a dichotomy for (Boolean, connected) CQ q and DL-Lite TBoxes T , that is,
answering q relative to T is either possible in polynomial time or #P-hard;

• a concrete characterization of which (q, T) are tractable;

• every instance query is tractable relative to every DL-Lite TBox, even for more
expressive DL-Lite dialects;

• a dichotomy for (connected) CQs q and ELI TBoxes T (most notably: non-first-
order rewritability leads to #P-hardness).

194

Hence, similar to probabilistic databases, tractability is an elusive property. We addressed
this by also studying approximations of query probabilities via the notion of FPRASes,
that is polynomial time approximations. There, the picture is more encouraging. The
following are our main results.

• every CQ and DL-Lite TBox admit an FPRAS, even when allowing for a more
expressive datamodel than above;

• over this more expressive datamodel, a CQ is tractable relative to an ELI TBox if,
and only if it is first-order rewritable;

• over the standard data model, we show the close connection of non-first-order
rewritability to notoriously hard probabilistic reliability problems.

We believe (as argued) that this chapter is most relevant for practical applications, for
example for managing automatically extracted information. Moreover, we have shown
that first-order rewritability allows us to directly implement the framework on top of
existing probabilistic database management systems.

Satisfiability in K×K

In the last chapter, we studied the satisfiability problem in the two-dimensional modal
logic K ×K. In particular, we settled the precise complexity for this problem to be
complete for nonelementary time by improving the best known NExpTime lower bound
to a nonelementary lower bound. As a basic preliminary step, and of independent interest,
we showed how to enforce nonelementarily branching trees in this logic. These trees
were then used to represent arbitrary large elementary numbers. This representation
enabled us to reduce from appropriate tiling problems to show k-NExpTime-hardness
for every k ≥ 1. In a second step, we lifted the well-known one-dimensional reductions
of (satisfiability in)K to K4, S4, and S52 to show hardness for nonelementary time also
for the logics K×K4, K× S4, and K× S52.

195

List of Figures

1.1 Example for the possible worlds semantics. 5
1.2 Some data about soccer players and their clubs. 7
1.3 Extracted data in a probabilistic database. 8

2.1 Example for a probabilistic interpretation. 22

3.1 Example for a probabilistic structure. 30
3.2 Idea underlying the Proof of Claim 1. 51
3.3 Axiomatization for monodic ProbFO. 54
3.4 Axiomatization for ordered fields. 55

4.1 Intuition for non-convexity. 78
4.2 TBox completion rules for subsumption in ProbEL∼p,=1

c 85
4.3 Illustration of the reasoning in Example 4.15. 96
4.4 Saturation rules for cl(Γ). 97
4.5 The rules for completing the data structures. 99

5.1 The rules for computing query probabilities. 129
5.2 Example queries . 135
5.3 Gadget for the #P-hardness proof. 142

6.1 Example of some product structures. 164
6.2 Intuition of trees encoding numbers. 169
6.3 The (1, 3)-tree Υ1,3(175, {b,minb}). 171
6.4 Example grid element tree. 181

197

Bibliography

[1] M. Abadi and J. Y. Halpern. Decidability and expressiveness for first-order logics
of probability. Information and Computation, 112:1–36, 1994.

[2] H. Andréka, I. Németi, and J. van Benthem. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, 27:217–274, 1998.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational
processing of uncertain data. In Proceedings of the 26th International Conference
on Data Engineering (ICDE 2008), pages 983–992, 2008.

[4] L. Antova, C. Koch, and D. Olteanu. 10(10
6) worlds and beyond: efficient

representation and processing of incomplete information. VLDB Journal, 18(5):1021–
1040, 2009.

[5] A. Artale, R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal-
ising tractable description logics. In Proceedings of the Fourteenth International
Symposium on Temporal Representation and Reasoning. IEEE Computer Society
Press, 2007.

[6] A. Artale, C. Lutz, and D. Toman. A description logic of change. In M. Veloso, edi-
tor, Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI 2007), pages 218–223. AAAI Press, 2007.

[7] E. Artin and O. Schreier. Algebraische Konstruktion reeller Körper. Abhandlungen
aus dem Mathematischen Seminar der Universität Hamburg, 5:85–99, 1927.

[8] F. Baader. Terminological cycles in a description logic with existential restric-
tions. In Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI 2003), pages 325–330. Morgan Kaufmann, 2003.

[9] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI
2005), pages 364–369. Professional Book Center, 2005.

[10] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. LTCS-Report
LTCS-05-01, Chair for Automata Theory, Institute for Theoretical Computer
Science, Dresden University of Technology, Germany, 2005. See http://lat.inf.tu-
dresden.de/research/reports.html.

199

Bibliography

[11] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In K. Clark
and P. F. Patel-Schneider, editors, In Proceedings of the OWLED 2008 DC Work-
shop on OWL: Experiences and Directions, 2008.

[12] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[13] F. Bacchus. Representing and reasoning with probabilistic knowledge - a logical
approach to probabilities. MIT Press, 1990.

[14] F. Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller. From statistical knowledge
bases to degrees of belief. Artificial Intelligence, 87(1-2):75–143, 1996.

[15] V. Bárány, B. ten Cate, and L. Segoufin. Guarded negation. In Proceedings of
the 38th International Colloquium on Autamata, Languages, and Programming
(ICALP 2011), volume 6756, pages 356–367. Springer, 2011.

[16] M. Bienvenu, C. Lutz, and F. Wolter. Query containment in description logics re-
considered. In Proceedings of the 13nd International Joint Conference on Principles
of Knowledge Representation and Reasoning (KR 2012). AAAI Press, 2012.

[17] M. Bienvenu, C. Lutz, and F. Wolter. First-order rewritability of atomic queries in
horn description logics. In Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI 2013). IJCAI/AAAI, 2013.

[18] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter. Ontology-based data access: A
study through disjunctive datalog, CSP, and MMSNP. In Proceedings of the 32nd
ACM Symposium on Principles of Database Systems (PODS 2013). ACM Press,
2013.

[19] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2001.

[20] P. Blackburn, F. Wolter, and J. van Benthem, editors. Handbook of Modal Logic.
Elsevier, 2006.

[21] P. Bohannon, S. Merugu, C. Yu, V. Agarwal, P. DeRose, A. Iyer, A. Jain, V. Kakade,
M. Muralidharan, R. Ramakrishnan, and W. Shen. Purple sox extraction manage-
ment system. SIGMOD Record, 37(4):21–27, Mar. 2008.

[22] E. Börger, E. Grädel, and Y. Gurevich. The classical decision problem. Universitext.
Springer-Verlag, Berlin, 2001.

200

Bibliography

[23] J. Boulos, N. N. Dalvi, B. Mandhani, S. Mathur, C. Ré, and D. Suciu. MYSTIQ: a
system for finding more answers by using probabilities. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD 2005),
pages 891–893, 2005.

[24] T. Brázdil, V. Forejt, J. Kretínský, and A. Kucera. The satisfiability problem for
probabilistic CTL. In Proceedings of the 23rd Annual IEEE Symposium on Logic
in Computer Science (LICS 2008), pages 391–402. IEEE Computer Society, 2008.

[25] A. A. Bulatov. The complexity of the counting constraint satisfaction problem.
In Proceedings of 35th International Colloquium on Automata, Languages and
Programming (ICALP 2008), pages 646–661. Springer, 2008.

[26] A. Calì, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework
for tractable query answering over ontologies. In Proceedings of the 28th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS
2009), pages 77–86. ACM, 2009.

[27] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proceedings of the 10th
International Conference on Principles of Knowledge Representation and Reasoning
(KR 2006), pages 260–270, 2006.

[28] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning, 39(3):385–429, 2007.

[29] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In Proceedings of the 9th Annual ACM Symposium on
Theory of Computing (STOC 1977), pages 77–90. ACM, 1977.

[30] B. S. Chlebus. From domino tilings to a new model of computation. In A. Skowron,
editor, Symposium on Computation Theory, volume 208 of Lecture Notes in Com-
puter Science, pages 24–33. Springer, 1984.

[31] P. C. G. da Costa and K. B. Laskey. Pr-owl: A framework for probabilistic
ontologies. In Proceedings of the Fourth International Conference on Formal
Ontology in Information Systems (FOIS 2006), pages 237–249. IOS Press, 2006.

[32] N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt.
Communications of the ACM, 52(7):86–94, 2009.

[33] N. N. Dalvi, K. Schnaitter, and D. Suciu. Computing query probability with
incidence algebras. In Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART

201

Bibliography

Symposium on Principles of Database Systems (PODS 2010), pages 203–214. ACM,
2010.

[34] N. N. Dalvi and D. Suciu. Answering queries from statistics and probabilistic
views. In Proceedings of the 31st International Conference on Very Large Data
Bases (VLDB 2005), pages 805–816. ACM, 2005.

[35] N. N. Dalvi and D. Suciu. The dichotomy of conjunctive queries on probabilistic
structures. In Proceedings of the 26th ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (PODS 2007), pages 293–302. ACM,
2007.

[36] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.
VLDB Journal, 16(4):523–544, 2007.

[37] N. N. Dalvi and D. Suciu. The dichotomy of probabilistic inference for unions of
conjunctive queries. Journal of the ACM, 59(6):30, 2012.

[38] A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt. Model Theory Makes
Formulas Large. In Proceedings of 34th International Colloquium on Automata,
Language, and Programming (ICALP 2007), volume 4596. Springer, 2007.

[39] R. de Salvo Braz, E. Amir, and D. Roth. Lifted first-order probabilistic inference.
In Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005), pages 1319–1325. Professional Book Center, 2005.

[40] R. de Salvo Braz, E. Amir, and D. Roth. A survey of first-order probabilistic
models. In Innovations in Bayesian Networks: Theory and Applications, pages
289–317. Springer, 2008.

[41] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee, R. McCann, M. Sayyadian,
and W. Shen. Community information management. IEEE Data Engineering
Bulletin, 29(1):64–72, 2006.

[42] P. Domingos and W. A. Webb. A tractable first-order probabilistic logic. In
Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI 2012).
AAAI Press, 2012.

[43] E. A. Emerson. Temporal and modal logic. In HANDBOOK OF THEORETICAL
COMPUTER SCIENCE, pages 995–1072. Elsevier, 1995.

[44] R. Fagin, B. Kimelfeld, and P. G. Kolaitis. Probabilistic data exchange. Journal
of the ACM, 58(4):15, 2011.

202

Bibliography

[45] T. Feder and M. Y. Vardi. Monotone monadic snp and constraint satisfaction. In
Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC
1993), pages 612–622. ACM, 1993.

[46] S. Feferman and R. L. Vaught. The first order properties of products of algebraic
systems. Fundamenta Mathematicae, 47:57–103, 1959.

[47] M. Finger, R. Wassermann, and F. G. Cozman. Satisfiability in EL with sets
of probabilistic aboxes. In Proceedings of the 24th International Workshop on
Description Logics (DL 2011). CEUR-WS.org, 2011.

[48] J. Flum and M. Grohe. Parametrized Complexity Theory. Springer, 2006.

[49] N. Fuhr. Probabilistic datalog: Implementing logical information retrieval for
advanced applications. Journal of the American Society for Information Science,
51:2000, 1999.

[50] N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integration of
information retrieval and database systems. ACM Transactions on Information
Systems, 15(1):32–66, 1997.

[51] T. Furche, G. Gottlob, G. Grasso, O. Gunes, X. Guo, A. Kravchenko, G. Orsi,
C. Schallhart, A. J. Sellers, and C. Wang. DIADEM: domain-centric, intelligent,
automated data extraction methodology. In Proceedings of the 21st World Wide
Web Conference (WWW 2012), pages 267–270. ACM, 2012.

[52] D. M. Gabbay, Á. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications. Elsevier, 2003.

[53] D. M. Gabbay and V. B. Shehtman. Undedidability of modal and intermediate first-
order logics with two individual variables. Journal of Symbolic Logic, 58(3):800–823,
1993.

[54] D. M. Gabbay and V. B. Shehtman. Products of Modal Logics, Part 1. Logic
Journal of the IGPL, 6(1):73–146, 1998.

[55] D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Products of ’transitive’
modal logics. Journal of Symbolic Logic, 70(3):993–1021, 2005.

[56] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT
Press, 2007.

[57] S. Göller, J. C. Jung, and M. Lohrey. The complexity of decomposing modal and
first-order theories. In Proceedings of the 27th Annual IEEE Symposium on Logic
in Computer Science (LICS 2012), pages 325–334. IEEE, 2012.

203

Bibliography

[58] S. Göller, J. C. Jung, and M. Lohrey. The complexity of decomposing modal and
first-order theories. In ACM Transactions on Computational Logic, to appear.

[59] G. Gottlob, T. Lukasiewicz, and G. I. Simari. Conjunctive query answering in
probabilistic datalog+/- ontologies. In Proceedings of 5th International Conference
on Web Reasoning and Rule Systems (RR 2011), pages 77–92. Springer, 2011.

[60] E. Grädel. On the restraining power of guards. Journal of Symbolic Logic,
64(4):1719–1742, 1999.

[61] E. Grädel, Y. Gurevich, and C. Hirsch. The complexity of query reliability. In
Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS 1998), pages 227–234. ACM Press, 1998.

[62] E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable
first-order logic. Bulletin of Symbolic Logic, 3:53–69, 1997.

[63] T. J. Green and V. Tannen. Models for incomplete and probabilistic information.
IEEE Data Engineering Bulletin, 29(1):17–24, 2006.

[64] R. Gupta and S. Sarawagi. Creating probabilistic databases from information
extraction models. In Proceedings of the 32nd International Conference on Very
Large Data Bases (VLDB 2006), pages 965–976. ACM, 2006.

[65] V. Gutiérrez-Basulto, J. Jung, C. Lutz, and L. Schröder. A closer look at the
probabilistic description logic Prob-EL. In Proceedings of the 25th AAAI Conference
on Artificial Intelligence (AAAI 2011). AAAI Press, 2011.

[66] V. Gutiérrez-Basulto, J. Jung, C. Lutz, and L. Schröder. The complexity of
probabilistic EL. In Proceedings of the 24th International Workshop on Description
Logics (DL 2011), volume 745 of CEUR Workshop Proceedings, 2011.

[67] J. Y. Halpern. An analysis of first-order logics of probability. Artificial Intelligence,
46(3):311–350, 1990.

[68] J. Y. Halpern. Reasoning about uncertainty. MIT Press, 2005.

[69] J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal
logics of knowledge and belief. Artificial Intelligence, 54(2):319–379, 1992.

[70] J. Y. Halpern and M. O. Rabin. A logic to reason about likelihood. Artificial
Intelligence, 32:379–405, 1987.

[71] J. Y. Halpern and M. Y. Vardi. The complexity of reasoning about knowledge and
time. i. lower bounds. Journal of Computer and System Sciences, 38(1):195–237,
1989.

204

Bibliography

[72] D. Harel. Recurring dominoes: making the highly undecidable highly understand-
able. Annals of Discrete Mathematics, 24:51–72, 1985.

[73] A. Herzig. Modal probability, belief, and actions. Fundamenta Informaticae,
57(2-4):323–344, 2003.

[74] R. Hirsch, I. M. Hodkinson, and Á. Kurucz. On modal logics between K x K x K
and S5 x S5 x S5. Journal of Symbolic Logic, 67(1):221–234, 2002.

[75] I. Hodkinson. Monodic packed fragment with equality is decidable. Studia Logica,
72:185–197, 2002.

[76] I. Hodkinson. Complexity of monodic guarded fragments over linear and real time.
Annals of Pure and Applied Logic, 138:94–125, 2006.

[77] I. Hodkinson, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. On
the computational complexity of decidable fragments of first-order linear temporal
logics. In Proceedings of 10th International Symposium on Temporal Representation
and Reasoning/4th International Conference on Temporal Logic (TIME-ICTL
2003), pages 91–98. IEEE Computer Society, 2003.

[78] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragment of first-order
temporal logics. Annals of Pure and Applied Logic, 106:85–134, 2000.

[79] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Monodic fragments of first-order
temporal logics: 2000-2001 A.D. In Proceedings of the 8th Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR 2001), pages 1–23.
Springer, 2001.

[80] D. E. Holmes and L. C. Jain, editors. Innovations in Bayesian Networks: Theory
and Applications, volume 156 of Studies in Computational Intelligence. Springer,
2008.

[81] T. Imielinski and W. L. Jr. Incomplete information in relational databases. Journal
of the ACM, 31(4):761–791, 1984.

[82] M. Jaeger. Probabilistic reasoning in terminological logics. In Proceedings of
the 4th International Conference on Principles of Knowledge Representation and
Reasoning (KR 1994), pages 305–316. Morgan Kaufmann, 1994.

[83] M. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169–188,
1986.

205

Bibliography

[84] J. C. Jung and C. Lutz. Ontology-based access to probabilistic data with owl-ql.
In Proceedings of the 11th International Semantic Web Conference (ISWC 2012).
Springer, 2012.

[85] J. C. Jung and C. Lutz. Ontology-based access to probabilistic data. In Proceedings
of the 26th International Workshop on Description Logics (DL 2013), pages 258–270.
CEUR-WS.org, 2013.

[86] J. C. Jung, C. Lutz, S. Goncharov, and L. Schröder. Monodic fragments of
probabilistic first-order logic. In Proceedings of the 41st International Colloquium
on Autamata, Languages, and Programming (ICALP 2014), 2014.

[87] D. R. Karger. A randomized fully polynomial time approximation scheme for the all-
terminal network reliability problem. SIAM Journal on Computing, 29(2):492–514,
1999.

[88] R. M. Karp and M. Luby. Monte-carlo algorithms for enumeration and reliability
problems. In Proceedings of 24th Annual Symposium on Foundations of Computer
Science (FOCS 1983), pages 56–64. IEEE Computer Society, 1983.

[89] Y. Kazakov. Consequence-driven reasoning for horn shiq ontologies. In Proceedings
of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009),
pages 2040–2045. IJCAI/AAAI, 2009.

[90] S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. Exponential lower
bounds and separation for query rewriting. In Proceedings of 39th International
Colloquium on Automata, Languages and Programming (ICALP 2012), pages
263–274. Springer, 2012.

[91] D. Koller and N. Friedman. Probabilistic Graphical Models - Principles and
Techniques. MIT Press, 2009.

[92] D. Koller and J. Halpern. Irrelevance and conditioning in first-order probabilistic
logic. In Proceedings of the 13th National Conference on Artificial Intelligence
(AAAI 1996), pages 569–576. AAAI Press/The MIT Press, 1996.

[93] D. Koller, A. Y. Levy, and A. Pfeffer. P-classic: A tractable probablistic description
logic. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI 1997), pages 390–397. AAAI Press/The MIT Press, 1997.

[94] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The
combined approach to query answering in dl-lite. In Proceedings of the 12th
International Conference on Principles of Knowledge Representation and Reasoning
(KR 2010). AAAI Press, 2010.

206

Bibliography

[95] H. E. Kyburg. The Logical Foundation of Statistical Inference. D. Reidel, Dortrecht,
Netherlands, 1974.

[96] R. E. Ladner. The Computational Complexity of Provability in Systems of Modal
Propositional Logic. SIAM Journal on Computing, 6(3):467–480, 1977.

[97] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. A brief
survey of web data extraction tools. SIGMOD Record, 31(2):84–93, 2002.

[98] P. S. Laplace. Essai philosophique sur les probabilités. Courcier Imprimeur,Paris,
1816.

[99] T. Lukasiewicz. Expressive probabilistic description logics. Artificial Intelligence,
172(6-7):852–883, 2008.

[100] T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in description
logics for the semantic web. Journal of Web Semantics, 6(4):291–308, 2008.

[101] C. Lutz and L. Schröder. Probabilistic description logics for subjective uncertainty.
In Proceedings of the 12th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2010). AAAI Press, 2010.

[102] C. Lutz and F. Wolter. Non-uniform data complexity of query answering in
description logics. In Proceedings of the 13th International Conference on Principlies
of Knowledge Representation and Reasoning (KR 2012). AAAI Press, 2012.

[103] J. A. Makowsky. Algorithmic uses of the Feferman-Vaught Theorem. Annals of
Pure and Applied Logic, 126(1-3):159–213, 2004.

[104] M. Marx. Complexity of products of modal logics. Journal of Logic and Computa-
tion, 9(2):197–214, 1999.

[105] M. Marx and S. Mikulás. Products, or How to Create Modal Logics of High
Complexity. Logic Journal of the IGPL, 9(1):71–82, 2001.

[106] A. Mostowski. On direct products of theories. Journal of Symbolic Logic, 17:1–31,
1952.

[107] R. Ng and V. S. Subrahmanian. Probabilistic logic programming. Information and
Computation, 101(2):150–201, 1992.

[108] R. T. Ng and V. S. Subrahmanian. Stable semantics for probabilistic deductive
databases. Information and Computation, 110(1):42–83, 1994.

[109] M. Niepert, J. Noessner, and H. Stuckenschmidt. Log-linear description logics. In
Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI 2011), pages 2153–2158. IJCAI/AAAI, 2011.

207

Bibliography

[110] N. J. Nilsson. Probabilistic logic. Artificial Intelligence., 28(1):71–87, 1986.

[111] J. Pearl. Probabilistic reasoning in intelligent systems - networks of plausible
inference. Morgan Kaufmann series in representation and reasoning. Morgan
Kaufmann, 1989.

[112] D. Poole. First-order probabilistic inference. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI 2003), pages 985–991. Morgan
Kaufmann, 2003.

[113] J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM Journal on Computing, 12(4):777–788,
1983.

[114] A. Rabinovich. On compositionality and its limitations. ACM Transactions on
Computational Logic, 8(1), 2007.

[115] L. D. Raedt and K. Kersting. Probabilistic inductive logic programming. In
Proceedings of 15th International Conference on Algorithmic Learning Theory
(ALT 2004), pages 19–36. Springer, 2004.

[116] L. D. Raedt, A. Kimmig, and H. Toivonen. Problog: a probabilistic prolog and
its application in link discovery. In In Proceedings of 20th International Joint
Conference on Artificial Intelligence (IJCAI 2007), pages 2468–2473. AAAI Press,
2007.

[117] H. Reichenbach. The Theory of Probability: An Inquiry into the Logical and
Mathematical Foundations of the Calculus of Probability. University of California
Press, Berkely and Los Angeles, 1949.

[118] M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62:107–136, 2006.

[119] B. Rossman. Homomorphism preservation theorems. Journal of the ACM, 55(3),
2008.

[120] A. D. Sarma, O. Benjelloun, A. Y. Halevy, and J. Widom. Working models for
uncertain data. In Proceedings of the 22nd International Conference on Data
Engineering (ICDE 2006). IEEE Computer Society, 2006.

[121] M. Schaefer. Complexity of some geometric and topological problems. In Proceedings
of 17th International Symposium on Graph Drawing (GD 2009), volume 5849, pages
334–344. Springer, 2010.

208

Bibliography

[122] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC 1978), pages 216–226.
ACM, 1978.

[123] L. J. Stockmeyer. The complexity of decision problems in automata theory and
logic. PhD thesis, Department of Electrical Engineering, MIT, 1974.

[124] U. Straccia. Top-k retrieval for ontology mediated access to relational databases.
Information Sciences, 198:1–23, 2012.

[125] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011.

[126] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410–421, 1979.

[127] M. Y. Vardi. The complexity of relational query languages (extended abstract). In
Proceedings of the 14th Annual ACM Symposium on Theory of Computing (STOC
1982), pages 137–146. ACM, 1982.

[128] V. V. Vazirani. Approximation algorithms. Springer, 2001.

[129] J. Widom. Trio: A system for integrated management of data, accuracy, and
lineage. In Proceedings of the 2nd Conference on Innovative Data Systems Research
(CIDR 2005), pages 262–276, 2005.

[130] F. Wolter and M. Zakharyaschev. Modal description logics: Modalizing roles.
Fundam. Inform., 39(4):411–438, 1999.

[131] F. Wolter and M. Zakharyaschev. Axiomatizing the monodic fragment of first-order
temporal logic. Annals of Pure and Applied Logic, 118:133–145, 2002.

[132] R. Zenklusen and M. Laumanns. High-confidence estimation of small s-t reliabilities
in directed acyclic networks. Networks, 57(4):376–388, 2011.

209

