9 research outputs found

    Computational Study of 1-(3-Nitrobenzoyloxymethyl)-5-Fluorouracyl Derivatives as Colorectal Cancer Agents

    Get PDF
    Cancer is one of the chronic diseases with a reasonably high increase at this time. One type of cancer with the highest mortality rate is colorectal cancer. Colorectal cancer is cancer that occurs in the colon and rectum. Based on GLOBOCAN data (2018), cases of colorectal cancer in Indonesia reached 8.6% or 30,017 people and were the second most common cause of death in men and the third in women. The development of cancer drugs to obtain drugs with better activity, lower toxicity, and working more selectively through structural modifications is still being carried out until now. This study aims to determine the pharmacokinetic properties and stable interactions between the thymidylate synthase and one of the 78 derivatives of 1-(3-nitrobenzoiloximethyl)-5-fluorouracyl (NB5FU) by in silico, namely molecular docking, and molecular dynamics simulations. The result shows that the NB5FU78 derivative compounds have better pharmacokinetic properties than NB5FU. Lipinski's rules of five criteria that fill the requirements have a smaller free bond energy value than NB5FU. Based on the results of molecular dynamics simulations carried out for 5 ns, the NB5FU78 derivative has a stable interaction with the thymidylate synthase (TS) receptor with total bond energy of -36.36 kcal/mol

    Reverse Docking, Molecular Docking, Absorption, Distribution, and Toxicity Prediction of Artemisinin as an Anti-diabetic Candidate

    Get PDF
    Aldose reductase is an enzyme that catalyzes one of the steps in the sorbitol (polyol) pathway that is responsible for fructose formation from glucose. In diabetes, aldose reductase activity increases as the glucose concentration increases. The purpose of this research was to identify and develop the use of artemisinin as an anti-diabetic candidate through in silico studies, including reverse docking, receptor analysis, molecular docking, drug scan, absorption, and distributions and toxicity prediction of artemisinin. Based on the results, we conclude that artemisinin can be used as an anti-diabetic candidate through inhibition of aldose reductase

    Synthesis and virtual screening of bis-(4-(tert-butyl)-N-(methylcarbamothioyl) benzamide)-Iron (III) complex as an anticancer candidate

    Get PDF
    Thiourea derivatives were much used in drug discovery and drug-making, such as for an anticancer. The formation of drug complexes can increase lipophilicity through chelation formation, and the drug action is significantly upward due to the effective permeability to the center. In another study, the alteration of the compound becomes the complex with metal will grow in its activity so recently we have synthesized the Bis-(4-(Tert-Butyl)-N-(Methylcarbamothioyl) Benzamide)-Iron (III) complex.  The synthesis of Fe (III) metal with the 4-(Tert-Butyl)-N-(Methylcarbamothioyl) Benzamide in ethanol by reflux at 75oC for 7 hours. Hot Stage Microscopy, UV-Visible Spectrophotometry Infrared Spectrophotometry, and Massa Spectrophotometry were used to characterize the complex. This study concerns representing, inferring, and predicting pharmacokinetics and toxicity and molecular docking complexes. The complex weight was 0.29469 g. Its purity has been tested using the melting point determination and has obtained its range was 113o-115oC. The Characteristics of Bis-(4-(Tert-Butyl)-N-(Methylcarbamothioyl) Benzamide)-Iron(III) complex have a maximum wavelength of 260,0 nm and provide absorption of Fe-O vibrations at wavenumbers 478,2 cm-1and 588 cm-1, and the m/z complex of spectrophotometry mass was 559,31. The molecular docking process was performed using AutodockTools-1.5.6 software. It showed that Bis-(4-(Tert-Butyl)-N-(Methylcarbamo-thioyl)Benzamide)-Iron(III) complex could interact with ribonucleotide reductase enzyme, and it has better interaction than the 4-(Tert-Butyl)-N-(Methylcarbamothioyl)Benzamide with the binding affinity energy (ΔG)of  -8,52 kcal/mole and the constant inhibition (Ki ) of 568,55 nM

    Synthesis and virtual screening of bis-(4-(tert-butyl)-N-(methylcarbamothioyl) benzamide)-Iron (III) complex as an anticancer candidat

    Get PDF
    Thiourea derivatives were much used in drug discovery and drug-making, such as for an anticancer. The formation of drug complexes can increase lipophilicity through chelation formation, and the drug action is significantly upward due to the effective permeability to the center. In another study, the alteration of the compound becomes the complex with metal will grow in its activity so recently we have synthesized the Bis-(4-(Tert-Butyl)-N-(Methylcarbamothioyl) Benzamide)-Iron (III) complex. The synthesis of Fe (III) metal with the 4-(Tert-Butyl)-N- (Methylcarbamothioyl) Benzamide in ethanol by reflux at 75oC for 7 hours. Hot Stage Microscopy, UV-Visible Spectrophotometry Infrared Spectrophotometry, and Massa Spectrophotometry were used to characterize the complex. This study concerns representing, inferring, and predicting pharmacokinetics and toxicity and molecular docking complexes. The complex weight was 0.29469 g. Its purity has been tested using the melting point determination and has obtained its range was 113o -115oC. The Characteristics of Bis-(4-(Tert-Butyl)-N-(Methylcarbamothioyl) Benzamide)- Iron(III) complex have a maximum wavelength of 260 nm and provide absorption of Fe-O vibrations at wavenumbers 478.2 cm-1 and 588 cm-1 , and the m/z complex of spectrophotometry mass was 559.31. The molecular docking process was performed using AutodockTools-1.5.6 software. It showed that Bis-(4-(Tert-Butyl)-N-(Methylcarbamo-thioyl)Benzamide)-Iron(III) complex could interact with ribonucleotide reductase enzyme, and it has better interaction than the 4-(Tert-Butyl)-N-(Methylcarbamothioyl)Benzamide with the binding affinity energy (ΔG)of -8.52 kcal/mole and the constant inhibition (Ki ) of 568.55 nM

    PP-002

    Get PDF

    PP-001

    Get PDF

    PP-017

    Get PDF

    PP-010

    Get PDF
    corecore