7 research outputs found

    Thermoelastic Vibration and Stability of Temperature-Dependent Carbon Nanotube-Reinforced Composite Plates

    Get PDF
    The present article investigates the thermoelastic vibration and stability characteristics of carbon nanotube-reinforced composite (CNTRC) plates in thermal environment. The CNTRC plates are made up of four different types of uniaxially aligned reinforcements. The single-walled carbon nanotubes (SWCNTs) reinforcement is either uniformly distributed (UD) or functionally graded (FG) according to linear functions of the thickness direction. The material properties, of both matrix and CNTs, are temperature-dependent and the effective elastic coefficients are evaluated by using a micromechanical model. The governing equations (GEs) are derived in their weak-form by using Hamilton’s Principle in conjunction with the method of the power series expansion of the displacement components. The Ritz method, based on highly stable trigonometric trial functions, is used as solution technique. Convergence and stability of the proposed formulation have been thoroughly analyzed by assessing many higher-order plate models. Thermal and mechanical pre-stresses are taken into account. Moreover, the effect of significant parameters such as length-to-thickness ratio, volume fraction, aspect ratio, loading-type, CNTs distribution as well as boundary conditions is discussed

    Multiscale modelling on material properties and mechanical behaviours of graphene reinforced polymer nanocomposites

    Get PDF
    Graphene possesses many superior properties, such as ultrahigh mechanical stiffness and strength, exceptional thermal and electrical conductivities as well as excellent optical properties. In many of the envisioned applications, graphene or its derivatives are incorporated into the polymer matrix to form graphene based nanocomposite systems in which the polymer matrices can work synergically with graphene fillers as functional components providing supports and protections to the embedded graphene. Two types of additive manufacturing (AM) techniques have been developed for the graphene reinforced polymer nanocomposites. One is the layer-by-layer (LbL) assembly technique which is a versatile process and capable of manipulating material composition and architectures at the nanoscale. The other AM technique is conventionally known as the extrusion-based 3D printing. This research focuses on the computational method and numerical modelling of material properties and mechanical behaviours of graphene-based polymeric nanocomposites. A hierarchical multiscale analysis approach is adopted and tailored specifically for the graphene-based polymeric nanocomposites fabricated using the AM techniques. Some of the important material characteristics at nano- and meso-scales such as molecular interactions and microstructure morphologies are simulated and discussed in details. The nonlinear mechanical behaviours e.g., bending, post-buckling and vibration of functionally graded graphene reinforced nanocomposite (FG-GRC) beams fabricated by LbL technique are subsequently carried out. Numerical analysis with various macroscaled parameters such as functionally graded patterns, temperature rises as well as foundation stiffnesses are presented and discussed. This study is crucial for engineering applications to evaluate mechanical behaviours of such nanocomposite materials with optimal arrangements and manufactured by using these two above-mentioned methods

    Free Vibration of Thick FGM Plates under TSDT and Thermal Environment

    Get PDF
    Three parameters of thermal environment, varied calculated shear correction, and third-order shear deformation theory (TSDT) of displacement are important in the frequency study. These three effects have been studied on the non-dimensional and dimensional frequencies of thick FGM plates. An additional c1 displacement term in nonlinear coefficient of TSDT is used to present the frequency of vibration into the simply homogeneous equation of thick FGM plates. The determinant of the coefficient matrix containing the c1 displacement term in dynamic differential equilibrium equations can be derived into the five degree polynomial free vibration equation. The non-dimensional and dimensional of natural frequency can be obtained. The effects of plate thickness, temperature of environment and power law index of FGM on the non-dimensional and dimensional frequency of FGM plates are investigated. &nbsp

    Study on Free Vibration and Wave Power Reflection in Functionally Graded Rectangular Plates using Wave Propagation Approach

    Get PDF
    In this paper, the wave propagation approach is presented to analyze the vibration and wave power reflection in FG rectangular plates based on the first order shear deformation plate theory. The wave propagation is one of the useful methods for analyzing the vibration of structures. This method gives the reflection and propagation matrices that are valuable for the analysis of mechanical energy transmission in devices.  It is assumed that the plate has two opposite edges simply supported while the other two edges may be simply supported or clamped. It is the first time that the wave propagation method is used for functionally graded plates. In this study, firstly, the matrices of reflection and propagation are derived. Second, these matrices are combined to provide an exact method for obtaining the natural frequencies. It is observed that the obtained results of the wave propagation method are in a good agreement with the obtained values in literature. At the end, the behavior of reflection coefficients for FG plates are studied for the first time

    Carbon Nano Tubes (CNTS) for the development of high-performance and smart composites.

    Get PDF
    Los nanotubos de carbono han atraído una enorme atención en los últimos años debido a sus propiedades multifuncionales sobresalientes. Un número cada vez mayor de trabajos de investigación de primera línea centran su interés en la búsqueda de aplicaciones prácticas que den uso de las notables propiedades de los nanotubos de carbono, incluyendo una elevada resistencia mecánica, propiedades piezorestivas, alta conductividad eléctrica, ligereza, excelente estabilidad química y térmica. En concreto, los estudios más recientes plantean dos grandes ramas de aplicación: fabricación de estructuras aligeradas de alta resistencia, y desarrollo de estructuras inteligentes. Con respecto a la primera línea de aplicación, el desarrollo de materiales compuestos ligeros de alta resistencia conecta con la creciente tendencia de la ingeniería estructural a incorporar materiales compuestos innovadores. Ejemplos recientes como el avión comercial Boeing 787, en el que la mitad del peso fue diseñado con materiales compuestos, predicen un futuro auspicioso para los nanotubos de carbono en la ingeniería aeronáutica. Sin embargo, aún resulta más interesante el comportamiento piezorresistivo de los compuestos reforzados con nanotubos de carbono, ya que posibilita la creación de estructuras que no sólo presentan altas capacidades portantes y reducido peso específico, sino que también ofrecen capacidades de auto-detección de deformaciones. Cuando el material se ve sometido a una deformación externa, en virtud de dicha propiedad piezoresistiva, la conductividad eléctrica varía de modo que es posible correlacionar su respuesta eléctrica con el campo deformacional aplicado. Estas propiedades multifuncionales entroncan con el nuevo paradigma de la Vigilancia de la Salud Estructural el cual aboga por el uso de materiales/estructuras inteligentes para resolver el problema de escalabilidad. En este contexto, la estructura o parte de ella presenta capacidades de auto-detección de tal manera que el mantenimiento basado en la condición puede llevarse a cabo sin necesidad de incluir sensores externos. En ambas líneas, la mayoría de las investigaciones han centrado el estudio en la experimentación, siendo mucho menor el número de trabajos que plantean modelos teóricos capaces de simular las propiedades mecánicas, eléctricas y electromecánicas de estos compuestos. Desde un punto de vista mecánico, existen estudios experimentales que informan acerca de los efectos perjudiciales sobre la respuesta macroscópica de aspectos micromecánicos tales como la tendencia a formar aglomerados, así como la curvatura de los nanotubos de carbono. Es por ello esencial desarrollar modelos teóricos que incorporen estos efectos y asistan al diseño de elementos estructurales reforzados con nanotubos de carbono. Respecto al estudio de las propiedades de conductividad y piezoresistividad, es esencial desarrollar formulaciones teóricas capaces de abordar la optimización de las propiedades de autodetección de deformaciones. Asimismo, es crucial comprender los diferentes mecanismos físicos que rigen la conductividad eléctrica de estos compuestos, de modo que sea posible incorporar su efecto diferencial dentro de un marco teórico. Por último, también es fundamental avanzar hacia el dominio del tiempo con el fin de desarrollar aplicaciones de vigilancia de la salud estructural basada en vibraciones. Con todo ello, los esfuerzos de esta tesis se han centrado en el modelado de las propiedades mecánicas, conductivas y electromecánicas de los compuestos reforzados con nanotubos de carbono para el desarrollo de estructuras inteligentes y de alta resistencia. Estas dos aplicaciones, a saber, compuestos de alta resistencia e inteligentes, han sido enmarcadas en el ámbito de los materiales poliméricos y de cemento, respectivamente. La razón de esta distinción se debe a la presunción de que los compuestos poliméricos pueden encontrar aplicaciones directas como paneles de fuselaje para estructuras de aeronaves, así como refuerzos mecánicos sobre estructuras pre-existentes. En cuanto al uso de nanotubos de carbono como inclusiones multifuncionales para compuestos inteligentes, tanto los materiales poliméricos como los de base cemento ofrecen una amplia gama de aplicaciones potenciales. Sin embargo, la similitud entre los compuestos de base cemento y el hormigón estructural convencional sugiere la idea de desarrollar sensores embebidos que ofrezcan una monitorización continua integrada sin comprometer a priori la durabilidad de la estructura huésped. Tanto las propiedades mecánicas como las conductivas han sido estudiadas mediante métodos de homogeneización de campo medio. Aspectos micromecánicos tales como la relación de aspecto, el contenido, la distribución de la orientación, la ondulación o la aglomeración de los nanotubos se han estudiado en detalle e incorporado al análisis de diferentes elementos estructurales. De manera similar, se han estudiado las propiedades de conductividad eléctrica y auto-detección de deformaciones bajo cargas cuasi-estáticas mediante modelos mixtos de homogenización micromecánica de Mori-Tanaka. Los principales mecanismos que gobiernan las propiedades de transporte eléctrico de estos compuestos, a saber, los efectos de túnel cuántico y la formación de canales conductores, se han incorporado por separado en las simulaciones a través de la teoría de percolación de fibras conductoras. Los resultados teóricos han sido validados con éxito mediante experimentos en condiciones de laboratorio. Finalmente, se ha desarrollado un nuevo circuito equivalente piezorresistivo/piezoeléctrico para el modelado electromecánico de materiales de base cemento reforzado con nanotubos de carbono en el dominio del tiempo. Con los experimentos como base de validación, se ha demostrado que el enfoque propuesto proporciona resultados precisos y ofrece un marco teórico apto para aplicaciones de procesamiento de señales y monitorización de la salud estructural. Se espera que el trabajo desarrollado en esta tesis pueda proporcionar herramientas valiosas que permitan profundizar en la comprensión de los principales aspectos físicos que controlan las propiedades mecánicas, eléctricas y electromecánicas de los compuestos reforzados con nanotubos de carbono. Además, se espera que los resultados presentados en esta tesis impulsen el desarrollo de materiales compuestos auto-sensibles embebidos para aplicaciones de vigilancia de la salud estructural.Carbon nanotubes have drawn enormous attention in recent years due to their outstanding multifunctional properties. A constantly growing number of works at the front line of research pursue potential applications of their remarkable physical properties, including elevated load-bearing capacity, piezoresistive properties, high electrical conductivity, lightness, and excellent chemical and thermal stability. In particular, most recent works contemplate two different application branches: manufacture of light-weight high-strength structures, and development of smart structures. With regard to the first line of application, the development of high-strength lightweight composites connects with the growing tendency of structural engineering to incorporate advanced composite materials. Recent noticeable examples such as the commercial aircraft Boeing 787, in which half of the total weight was designed with composite materials, predict an auspicious future for carbon nanotubes in aircraft structures. Nonetheless, what is even more interesting is the piezoresistive behavior of carbon nanotube-reinforced composites, which allows us to create structures that are not only high-strength and lightweight but also strain-sensitive. When the composites are subjected to external strain fields, in virtue of such piezoresistive properties, the overall electrical conductivity varies in such a way that it is possible to correlate the electrical response with the deformational state of the material. These multifunctional properties are in line with the new paradigm of Structural Health Monitoring which advocates the use of smart materials/structures to solve the scalability issue. In this context, the structure or part of it presents self-sensing capabilities in such a way that the condition-based maintenance can be conducted without necessitating external off-the-shelf sensors. In both lines, most investigations have focused on experimentation. Conversely, the number of theoretical models capable of simulating the mechanical, electrical, and electromechanical properties of these composites is still scarce. From a mechanical point of view, experiments have reported about the detrimental effects of micromechanical aspects such as agglomeration of fillers and curviness on the macroscopic properties. Hence, it is essential to develop theoretical models that allow us to include these effects and assist the design of composite structural elements. With regard to the study of the conductivity and piezoresistivity of carbon nanotube-reinforced composites, it is essential to develop theoretical formulations capable of tackling the optimization of their strain sensitivity. In addition, it is crucial to understand the different physical mechanisms that govern the electrical conductivity of these composites and include them separately in the theoretical framework. Finally, it is also fundamental to move towards the time domain in order to develop applications for vibration-based structural health monitoring. Overall, all the efforts of this thesis have been put into the modeling of the mechanical, conductive and electromechanical properties of carbon nanotube-reinforced composites for the development of high-strength and smart structures. These two applications, namely high-strength and smart composites, have been framed in the realm of polymeric and cement-based materials, respectively. The reason for this distinction is the idea that polymer composites with high load-bearing capacity can find direct applications as fuselage panels for aircraft structures, as well as mechanical reinforcements attached to pre-existing structures. With regard to the use of carbon nanotubes as fillers for smart composites, both polymer and cement-based materials offer an enormous range of potential applications. Nonetheless, the similarity between cement-based composites and regular structural concrete suggests the idea of developing continuous embedded monitoring systems without compromising the durability of the hosting structure a priori. Both mechanical and conductive properties have been studied by means of mean-field homogenization methods. Micromechanical aspects such as filler aspect ratio, content, orientation distribution, waviness or agglomeration have been studied in detail and incorporated to the analysis of different structural elements. Similarly, the electrical conductivity and strain-sensing properties of these composites under quasi-static loadings have been studied by means of mixed Mori-Tanaka micromechanics models. The main mechanisms that underlie the electrical conduction of these composites, namely quantum tunneling effects and conductive networks, have been distinguished by a percolative-type behavior. The theoretical results have been successfully validated by means of experiments under laboratory conditions. Finally, a novel piezoresistive/piezoelectric equivalent lumped circuit has been developed for the electromechanical modeling of carbon nanotube-reinforced cement-based materials in the time domain. With experiments as validating basis, the proposed approach has been shown to provide accurate results and offers a theoretical framework readily applicable to signal processing applications and structural health monitoring. The work developed in this thesis is envisaged to provide valuable tools to further the understanding of the main physical aspects that control the mechanical, electrical and electromechanical properties of composites doped with carbon nanotubes. Furthermore, it is expected to boost the development of embedded self-sensing carbon nanotube-reinforced composites for structural health monitoring applications.Premio Extraordinario de Doctorado U

    Recent Advances in Theoretical and Computational Modeling of Composite Materials and Structures

    Get PDF
    The advancement in manufacturing technology and scientific research has improved the development of enhanced composite materials with tailored properties depending on their design requirements in many engineering fields, as well as in thermal and energy management. Some representative examples of advanced materials in many smart applications and complex structures rely on laminated composites, functionally graded materials (FGMs), and carbon-based constituents, primarily carbon nanotubes (CNTs), and graphene sheets or nanoplatelets, because of their remarkable mechanical properties, electrical conductivity and high permeability. For such materials, experimental tests usually require a large economical effort because of the complex nature of each constituent, together with many environmental, geometrical and or mechanical uncertainties of non-conventional specimens. At the same time, the theoretical and/or computational approaches represent a valid alternative for designing complex manufacts with more flexibility. In such a context, the development of advanced theoretical and computational models for composite materials and structures is a subject of active research, as explored here for a large variety of structural members, involving the static, dynamic, buckling, and damage/fracturing problems at different scales
    corecore