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Abstract. In this paper, the wave propagation approach is presented to analyze the vibration and wave power 
reflection in FG rectangular plates based on the first order shear deformation plate theory. The wave propagation is 
one of the useful methods for analyzing the vibration of structures. This method gives the reflection and 
propagation matrices that are valuable for the analysis of mechanical energy transmission in devices.  It is 
assumed that the plate has two opposite edges simply supported while the other two edges may be simply supported 
or clamped. It is the first time that the wave propagation method is used for functionally graded plates. In this study, 
firstly, the matrices of reflection and propagation are derived. Second, these matrices are combined to provide an 
exact method for obtaining the natural frequencies. It is observed that the obtained results of the wave propagation 
method are in a good agreement with the obtained values in literature. At the end, the behavior of reflection 
coefficients for FG plates are studied for the first time. 

Keywords: Rectangular FG plate; Propagation matrix; Reflection matrix; Vibration analysis; FSDT. 

1. Introduction 

As powerful engines, turbines, reactors, and other machines have been developed in recent years in aerospace industries, 
the need for materials with high thermal and mechanical resistance has been identified. The gradual change in structure and 
properties has caused the application of such materials to spread, particularly in cases where different properties are needed in 
different regions. A common type of FGM includes a continuous combination of a ceramic and a metal. The change from pure 
metal to pure ceramic is incremental and continuous such that one surface is made of pure ceramic and the other of pure metal. 
The mechanical properties also change continuously through the thickness based on the compound type. 

The free vibrations of functionally graded materials have been studied widely in recent years. Zhao et al. [1] presented the 
free vibration analysis of metal and ceramic functionally graded plates that uses the element-free kp-Ritz method. Meiche et al. 
[2] presented a new hyperbolic shear deformation theory by taking into account the transverse shear deformation effects for the 
buckling and free vibration analysis of thick functionally graded sandwich plates. Hosseini-Hashemi et al. [3] presented an 
analytical solution for free vibration analysis of moderately thick rectangular plates which are composed of functionally graded 
materials and supported by either Winkler or Pasternak elastic foundations. Akbas [4] presented the free vibration analysis of 
an edge cracked functionally graded cantilever beam. Thai and Vo [5] developed a new sinusoidal shear deformation theory for 
bending, buckling, and vibration of functionally graded plates.  Mahi and Tounsi [6] presented a new hyperbolic shear 
deformation theory applicable to bending and free vibration analysis of isotropic, functionally graded, sandwich, and laminated 
composite plates. Akbas [7] presented the free vibration and bending of functionally graded beams resting on elastic 
foundation. Bennoun et al. [8] developed a new five-variable plate theory for the free vibration analysis of functionally graded 
sandwich plates. Zhang et al. [9] employed the first order shear deformation theory to account for the effect of transverse shear 
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deformation of the plates and used the element-free IMLS-Ritz method for numerical computation. Khorshidi et al. [10] 
investigated the free vibration analysis of the functionally graded rectangular nanoplates. Bellifa et al. [11] developed a new 
first-order shear deformation theory for bending and dynamic behaviors of functionally graded plates. Pradhan and 
Chakraverty [12] investigated the free vibration of functionally graded elliptic plates subjected to various classical boundary 
conditions. Houari et al. [13] developed a new simple higher-order shear deformation theory for bending and free vibration 
analysis of functionally graded plates. Bounouara et al. [14] presented a zeroth-order shear deformation theory for the free 
vibration analysis of functionally graded nanoscale plates resting on the elastic foundation. Abdelbari [15] presented a simple 
hyperbolic shear deformation theory for the analysis of functionally graded plates resting on the elastic foundation. Seref 
Doguscan [16] presented the free vibration and the static bending of a simply supported functionally graded plate with the 
porosity effect. Bessaim et al. [17] studied the mechanical buckling response of refined hyperbolic shear deformable 
functionally graded nanobeams embedded in an elastic foundation based on the refined hyperbolic shear deformation theory. 
Fouda et al. [18] presented the effect of porosity on mechanical behaviors of a power distribution functionally graded beam. 
Song et al. [19] investigated the free and forced vibration characteristics of functionally graded multilayer grapheme 
nanoplatelet (GPL)/polymer composite plates within the framework of the first-order shear deformation plate theory. Akbas 
[20] presented the stability analysis of a non-homogeneous plate with porosity effect. Moreover, Akbas [21] investigated the 
free vibration analysis of edge cracked cantilever microscale beams composed of functionally graded material based on the 
modified couple stress theory. In other work. Akbas [22] presented forced vibration responses of functionally graded 
nanobeams for the modified couple stress theory with damping effect. In addition, Akbas [23] investigated the thermal effects 
on the free vibration of functionally graded porous deep beams. Recently, Akbas [24] investigated the forced vibration analysis 
of functionally graded porous deep beams under the dynamic load. 

Even though there are some classical analytical and exact solutions of the plate theory, in these methods, the natural 
frequencies are obtained by applying the boundary conditions to the general solution of the differential equation. There is an 
alternative approach called the wave propagation method which considers vibrations as propagating waves traveling in the 
structures. 

Mace [25] expressed the vibrational behavior of beam systems in terms of waves of both propagating and near field types. 
Mei and Mace [26] presented wave reflection, transmission, and propagation in Timoshenko beams together with the wave 
analysis of vibrations in Timoshenko beam structures. Nikkhah Bahrami et al. [27] presented the modified wave approach for 
calculation of natural frequencies and mode shapes in arbitrary non-uniform beams. Bahrami et al. [28] analyzed the free 
vibration of annular circular and sectorial membranes using the wave propagation approach. In other work, Bahrami and 
Teimourian [29] combined the wave propagation approach with the nonlocal elasticity theory to analyze the buckling and free 
vibration of Euler-Bernoulli nanobeams. Ilkhani et al. [30] used the wave propagation approach to analyze the free vibrations 
analysis of thin rectangular macro- and nano-plates. Bahrami and Teimourian [31] presented the wave propagation approach 
for analyzing the free vibration and wave reflection in carbon nanotubes. Moreover, they presented the wave propagation 
approach for free vibration analysis of nan-uniform annular and circular membranes [32]. Recently, Bahrami and Teimourian 
[33] presented the wave propagation approach for free vibration analysis of non-uniform rectangular membranes. Moreover, 
Bahrami and Teimourian [34] developed the wave propagation technique for analyzing the wave power reflection in circular 
annular nanoplates. In another work, Bahrami [35] utilized the wave propagation method and the differential constitutive law 
consequent to the Eringen strain-driven integral nonlocal elasticity model to analyze the free vibration, wave power 
transmission, and reflection in multi-cracked nanorods. In addition, Bahrami [36] utilized the wave propagation method and 
the nonlocal elasticity theory to analyze the vibration, wave power transmission, and reflection in multi-cracked Euler-
Bernoulli nanobeams. Akbas [37] presented responses of an edge circular cantilever beam under the effect of an impact force. 
Besides, Akbas [38] investigated the effect of material-temperature dependent on the wave propagation of a cantilever beam 
composed of functionally graded material under the effect of an impact force. In another work, Akbas [39] studied the wave 
propagation in an edge cracked cantilever beam composed of functionally graded material under the effect of an impact force.  

According to the above-mentioned literature review, the wave propagation method for functionally graded plates has not 
been addressed. In addition, for the first time the effect of power law index on the wave power reflection is studied. In this 
study, first, the matrices of propagation and reflection are derived and next, by combining them, the characteristic equation of 
the plate is obtained. 

2. Modeling and Formulation 

2.1 Geometrical configuration 

In Figure 1, a functionally graded rectangular plate of length, width, and height is shown. Cartesian coordinates   is 
considered. 

2.2 Material properties 

The functionally graded plate consists of two metal and ceramic parts which are integrated in such a way that material 
properties are continuously and gradually changed along with the plate thickness from purely metal properties in the bottom 

surface of plate ( )
2

h
z    to purely ceramic properties in the top of the plate ( )

2

h
z   . Assuming that the distribution of the 

material properties through thickness follows the power law, the following equation could be written. 
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Fig 1. Geometry of functionally graded rectangular plate 

 

m m c cP P V PV   (1) 

where mP and cP show metal and ceramic properties and mV  and cV show the volume fraction of the metal and ceramic parts 

in the bottom and top surfaces of the plate, respectively. By using the power distribution law, the volume fraction of the 
ceramic part is noted for each point of plate thickness in Eqs. (2) and (3). [40] 

1
( )

2
n

c

z
V

h
   (2) 

1m cV V   (3) 

Where n indicates the power law index of ceramic and the distribution of ceramic part is noted along with the plate. 
Therefore, according to the above-mentioned equation, the properties of the graded materials is a function of E , Young 
modulus, and unit mass of volume   along with the plate thickness as shown in the following equations.  

( ) ( )c m c mE z E E V E    (4) 

( ) ( )c m c mz V       (5) 

 

2.3 Governing Equations of motion 

The displacement components in Mindlin plate are assumed to be given as 

( , , )xu z x y t   (6a) 

( , , )yv z x y t   (6b) 

( , , )zw x y t  (6c) 

where ,u v , and w are the mid-plane displacements and x  and y  show normal rotation perpendicular to the middle of 

the plate around y  and x  axes, respectively. z  is the transverse displacement and t is the time variable. The strain 

equation could be written by using the above-mentioned displacement fields as follows: 

,xx x xz    (7a) 

,yy y yz    (7b) 

0zz   (7c) 

 , ,2xy x y y x

z      
(7d) 

 ,

1

2xz x z x      
(7e) 

 ,

1

2yz y z y      
(7f) 
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Therefore, the stress-strain relations could be defined as follows: 

2

( )
( )

1xx xx yy

E z  


 


 
(8a) 

2

( )
( )

1yy yy xx

E z  


 


 
(8b) 

0zz   (8c) 

( )xy xyG z   (8d) 

( )xz xzG z   (8e) 

( )yz yzG z   (8f) 

The stress resultants in the elastic plate are defined as follows: 
3

, ,( )xx x x y yM Ah      (9a) 

3
, ,( )yy y y x xM Ah      (9b) 

2
3

, ,

(1 )
( )

2xy x y y xM Ah
  

    (9c) 

2
,( )x x z xQ k hB      (9d) 

2
,( )y y z yQ k hB      (9e) 

where 
2 2

2

(8 3 ) 3(2 )1
[ ]

12(1 )(2 )(3 )(1 )
m cn n n E n n E

A
n n n

    


  
 (10a) 

1

2(1 ) 1
c mE nE

B
n




 
 (10b) 

and 2k is the shear correction factor. The governing differential equations of motion for the mindlin plate can be found as 
follows: 

3
, ,

1

12xx x xy y x xM M Q Ch      (11a) 

3
, ,

1

12xy x yy y y yM M Q Ch      (11b) 

3
, ,x x y y zQ Q P Dh     (11c) 

where  
2 2(8 3 ) 3(2 )

[ ]
(1 )(2 )(3 )

m cn n n n n
C

n n n

     


  
 (12a) 

1
c mn

D
n

 



 (12b) 

where dot-overscript denotes the derivation with respect to t . For generality and convenience, the following dimensionless 
terms are defined. 

21
2

1 2 1 2

 , ,  ,  ,  
Lx y h C

X Y a
L L L L Ah

         (13) 

where  , , and   are thickness to length ratio, aspect ratio, and Eigen frequency parameter. The non-dimensional 

equations of motion based on the Mindlin plate theory by using dimensionless terms are as follows [3]: 
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2 2 2
2 2

, , , , ,2
1 11

( ) ( ) 0
12x xx x yy x xx y xy x z x x

k B

A

         
  

        (14a) 

2 2 2
2 2

, , , , ,2
1 11

( ) ( ) 0
12y xx y yy x xy y yy y z y y

k B

A

          
  

        (14b) 

2 2
2

, , , , 2
( ) 0z xx z yy x x y y z

DA

BCk

            (14c) 

where 1

1

2

 
  and 1

1

2

 
 . x , y , and z  are the dimensionless rotational and transverse displacements which 

are defined as follows: 

( , , ) ( , ) i t
x xX Y t x y e     (15a) 

( , , ) ( , ) i t
y yX Y t x y e     (15b) 

1

( , )
( , , )

i t
z

z

x y e
X Y t

L






  (15c) 

where   is the natural frequency of the plate. 

3. Solving by the wave propagation method 

By defining the non-dimensional functions x , y , and z  in the form of the dimensionless functions of potential 

1W , 2W , 3W , and 4W , the governing equations can be obtained [3] as 

1 , 2 , ,x x x y x z yf W f W W     (16a) 

1 , 2 , ,y x y y y z xf W f W W      (16b) 

z x yW W    (16c) 

where 

 2

2

2

2

      1,2
i

f
DA

BCk
i

 


 i  (17) 

   If the equations of motion are rewritten, the differential equations will be decoupled for these functions as 
2 2

, , 1x xx x yy xW W W     (18a) 

2 2
, , 2y xx y yy yW W W     (18b) 

2 2
, , 3z xx z yy zW W W     (18c) 

In which 2 2
1 2,  , and 2

3  are defined as follows: 

2 2 2 2 2
2 2 2 2 2 2 2

2 2 2 2
2
1 2 2

2
2 2

(12 ) 48 ( 12 )( ) ( (12 ))
1

24
24 ( )

D Bk Bk Bk D D Bk

C C CA A A A
Bk Bk

A A

     
   

 

    
   (19a) 

2 2 2 2 2
2 2 2 2 2 2 2

2 2 2 2
2
1 2 2

2
2 2

(12 ) 48 ( 12 )( ) ( (12 ))
1

24
24 ( )

D Bk Bk Bk D D Bk

C C CA A A A
Bk Bk

A A

     
   

 

    
   (19b) 

2 2 2
2
1 2

11 12

Bk

A

 
 

   (19c) 

By considering the simply support conditions in the corners 1 0X   and 1 1X   and using the method of separation of 

variables, an answer set is obtained for equations (18) as 
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     1 1 1 2 1 sin cos sin XC Y YW C m       (20a) 

     2 3 2 4 2 sinh cosh sinC Y XYW C m       (20b) 

     3 5 3 6 3 sinh cosh cosC Y XYW C m      (20c) 

where  
2

2 2 3
2 2 2 2 2 2 2 2 2 2

3
2

1 1 ( ) ( )  ( )   m m m                    (21) 

Based on the first-order shear theory, the boundary conditions for two parallel corners (for example 0X   and 1X  ) 
are as follows: 

Simply supported: 0xy zyM      (22) 

 

Clamped: 0x y z      (23) 

By replacing the formulas iW in equations related to the potential function and considering the following equations, 

i could be found as 

       sin  ;cos ;  sinh ;cosh
2 2 2 2

i i i ie e e e e e e e

i

       

   
      

     (24) 

which yields 

1 1 2 2

3 3

' ' ' '
1 1 2 1 3 2 4 2

' '
5 3 6 3 1

[

) cos( )

i Y i Y Y Y
x

Y Y

C f m e C f m e C f m e C f m e

C e C e m X

   

 

    

  

 



   

 
 (25a) 

1 1 2 2

3 3

'' '' '' ''
1 1 1 2 1 1 3 2 2 4 2 2

'' ''
5 3 6 1

[

]sin( )

i Y i Y Y Y
y

Y Y

C f e C f e C f e C f e

C m e C m e m X

   

 

    

  

 



   

 
 (25b) 

1 1 2 2''' ''' ''' '''
1 2 3 4 1[ ]sin( )i Y i Y Y Y

z C e C e C e C e m X          (25c) 

in which 

' ' ' 3 41 2 1 2
1 2 3;  ;  C

2 2 2

C CiC C iC C
C C

  
    (26a) 

' ' '4 3 6 5 5 6
4 5 6;  C ;  C

2 2 2

C C C C C C
C

    
    (26b) 

Therefore, ''
iC and '''

iC can be written based on '
iC  as 

' '' ''' ' '' ''' ' '' '''
1 1 1 2 2 2 33 3;  ;     CC iC C C iC C C C       (27a) 

' '' ''' ' '' ''' ' ''
4 4 4 5 5 5 6 6;   C ;   CC C CC A C        (27b) 

Finally, it yields 

 
1

3

1 2

3

2' ' ' '
1 1 1 3 2 4 2

1'

2

5 3 6
'

3

cos
Y Y

x Y Y

i Y i YC f C f f fm e m e C m e C

C

m e
m X

e eC

  

 

   


   

 



   
  

  
 (28a) 

 
3

1 1 2 2

3

2 4

5

3
' ' ' '
1 1 1 1 1 2 2 2 2

1'
6
'

sin  
Y

i iY Y

y Y

Y YC if Ce e C e C e
m X

C m e C m e

if f f

 

  





     

 

    
  

   
 (28b) 

 1 1 2 2' ' ' '
1 2 3 4 1sinY Yi Yi Yw e C e C e C XC e m           (28c) 

Sentences with even indexes display a wave in the positive direction of the dimensionless Y axis and sentences with odd 
indexes display a wave in the negative direction of the Y  axis. Therefore, it can be written as 

   

1 1

2 2

3 3

' '
2 1

' '
4 3

' '
6 5

;     

Y i Y

Y

i

Y

Y Y

e e

a x e a x e

e

C C

C C

C C e













 



   
          
   
      

 (29) 
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4. Propagation Matrix 

Figure 2 shows two points on the plate at distance 0Y apart in Y  direction where Positive- and negative-going waves 
propagate from one point to another. By using Eqs. (29), they are related by 

 

 
Fig. 2. Positive and negative going propagating waves in FG Mindlin plate 

 

       0 0 0 0,   a Y Y F YYa a F a YY          (30) 

where F   and F  are the propagation matrix in the positive and negative directions, respectively. Replacing Eq. (29) in Eq. 
(30) yields 
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The propagation functions in the positive and negative directions are equal to each other and they are called F .  

5. Reflection Matrix 

When the propagated waves in the plate are collided to the boundaries, they are reflected and this action obviously presents 
that as long as the plate is vibrating, positive and negative waves are propagating in the environment. The equation of positive 
and negative travelling waves with the reflection matrix r is provided as 

 

a ra   (32) 
 
For the simply supported and clamped boundary condition, the reflection of the propagated waves in the plate is expressed. 
 

5.1 Reflection matrix for the simply support boundary condition 

The conditions for the simply supported boundary are as follows: 

0xy zyM      (33) 

The incoming wave to this boundary is called a and the reflected wave from the boundary is called a . 
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1 1 1 1 2 3 3 3 32 2 2 0x m a f m a f m a f a af m a                    
(34b) 

1 1 2 2 0z a a a a           
(34c) 

The reflection matrix can be obtained by writing it in the form of matrix. For the simply supported mode, the reflection 
matrix is  

sr I   (35) 
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5.2 Reflection matrix for the Clamped boundary condition 

In the clamped mode, the boundary condition is as follows: 

0x y z      (36) 
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(37b) 

1 1 2 2[ ] 0w a a a a        
(37c) 

Therefore, the reflection matrix for the clamped mode is as follows: 
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 (38) 

6. Analyzing the free vibrations of the FG Mindlin plate 

Consider the plate shown in Fig. 2. For analyzing this plate using our wave method, two wave domains for the positive 
travelling wave and two wave domains for the negative travelling wave in the direction of Y at two beginning and ending 
points are considered. These waves can be related to each other using the obtained propagation and reflection matrices. 

;b Fa a Fb      (39) 

In which F  is the propagation matrix of the wave between two points of A and B. Moreover, using the propagation and 
reflection equations in the boundaries yields 

;  A Ba r a b r b      (40) 

In which Ar  and Br  are the reflection matrices in the boundaries A and B, respectively. Writing equations in the form of 

matrix leads to 
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 (41) 

and for having determinant answer, this matrix must be zero. By equalizing the determinant of this matrix to zero, the 
frequency characteristic equation of the system is obtained. 

7. Results and Discussion 

7.1 Frequency calculation 
The values obtained from the wave propagation method and the results obtained from the research literature are compared 

for the validation of the results. Here, the letters S and C represent the simply supported and clamped boundary conditions. For 
example, in the SCSC boundary condition, the edges along 0X   and 1X   are simply supported boundary conditions 
and the edges along 0Y  and 1Y   are clamped boundary conditions. The values of n and m represented the vibrational 
modes has n and m half-wave in x and y directions, respectively. The values of material properties for FG plates are listed in 
Table 1.  

 
Table 1. The material properties of FG plate 

Materials 
Properties 

E (Gpa) 3( / )Kg m    

Al 70 2702 0.3 
Al2O3 380 3800 0.3 

Moreover, the shear correction factor for FG plate ( 2 3/Al Al O  ) is as follows [3]: 

2 0.025 2 0.0605
0.750( )(10 2) 0.640( )(10 1)

6
n n n nk e e e e            (42) 
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The procedure of obtaining the plate frequencies is specified by the wave propagation method as shown in Fig. 3. The plot 
of the real and imaginary part changes of the determinants of equation (41) in terms of the dimensionless frequency for the 
SCSC boundary condition and assuming m = 1, 1  , 5n  , and 0.2   is shown in Fig. 3. As shown in the figure, the 

intersection of the real and imaginary curves of the determinant with the zero axis represents the roots of the determinant and 
hence the frequency of the plate. There is another root around natural frequency in which no marked change occurs in the real 
and imaginary parts. This frequency root is cut off. The cut off frequency is the frequency in which the type of wave 
frequencies before and after it does not change. 

In Table 2, the dimensionless frequencies of the wave method are compared with reference results [1] for simply supported 
boundary condition, 0,0.5,1, 4,10n   , 1  , and 0.05,0.1,0.2   are compared and the obtained values indicate the high 

accuracy of the wave propagation method. In Tables 3-5, the dimensionless frequency values for different boundary conditions 
of SSSS, SCSS, and SCSC are listed for different values of power law index and thickness to length ratio. The 
values 0,0.5,1, 2,5,10n  , 1   and 0.05,0.1,0.2   are assumed. 

 
 

Fig. 3. Real and imaginary parts of determinant of Eq. (41) 

Table 2. Dimensionless frequency * c

c
h E

  for SSSS FG square plate 

  Method 
n  

0  0.5  1 4 10 

0.05 Present [3] 
0.0148 
0.0148 

0.0125 
0.0128 

0.0113 
0.0115 

0.0098 
0.0101 

0.0094 
0.0096 

0.1 Present [3] 
0.0577 
0.0577 

0.0490 
0.0492 

0.0442 
0.0445 

0.0381 
0.0382 

0.0364 
0.0362 

0.2 Present [3] 
0.2114 
0.2112 

0.1808 
0.1806 

0.1652 
0.1650 

0.1377 
0.1371 

0.1300 
0.1304 

Table 3. Dimensionless frequency * c

c
h E

  for SSSS FG square plate ( 2)   

  
n  

0  0.5  1  2  5  10  

0.05 0.0093 0.0079 0.0071 0.0064 0.0061 0.0059 

0.1 0.0365 0.0310 0.0279 0.0254 0.0240 0.0232 

0.2 0.1376 0.1173 0.1059 0.0961 0.0901 0.0867 

Table 4. Dimensionless frequency * c

c
h E

  for SCSS FG square plate 

  
n  

0  0.5  1  2  5  10  

0.05 0.0176 0.0150 0.0135 0.0123 0.0116 0.0112 

0.1 0.0678 0.0576 0.0520 0.0473 0.0445 0.0428 

0.2 0.2385 0.2048 0.1854 0.1680 0.1557 0.1486 
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Table 5. Dimensionless frequency * c

c
h E

  for SCSC FG square plate 

  
n  

0  0.5  1  2  5  10  

0.05 0.0214 0.0182 0.0164 0.0149 0.0141 0.0136 

0.1 0.0807 0.0688 0.0622 0.0565 0.0529 0.0508 

0.2 0.2707 0.2336 0.2122 0.1921 0.1765 0.1675 

 
7.2 Study on wave power reflection in FG plates 

The power carried in propagating wave is proportional to the square of the wave amplitude. Therefore, the power reflected 

per unit incident power can be calculated by the square of the reflection coefficients 
2

( , )r i j [25]. So, the reflected power can 

be calculated at the boundaries. The relation between positive and negative travelling waves with the reflection matrix  
could be defined as follow: 

1 2 3 1(1,1) (1, 2) (1,3)r a r a r a a       (43a) 

1 2 3 2(2,1) (2, 2) (2,3)r a r a r a a       (43b) 

1 2 3 3(3,1) (3, 2) (3,3)r a r a r a a       (43c) 

Therefore, ( , )r i j  represents the reflection contribution of the j-th incident wave in the i-th reflected wave. Two types of 

waves are defined here: propagating wave and attenuating wave. If 1 is real, the first wave is the propagating kind and if it is 

imaginary, it is attenuating one. Moreover, if 2  and 3  are real, the type of second and third wave is attenuating, and if they 

are imaginary, the wave type is propagating.  
For the simply supported boundary condition, the reflection coefficients are constant. But for the clamped boundary 

condition, the situation is different. Figures 4-12 show the reflection matrix coefficients chart in terms of frequency for 
different values of power law index and clamped boundary condition.  Here, the   value equals to 0.2. As is clear, the curve 
has jumps or sharp drops at three points and these points are cut off frequencies. The frequency range is divided into four 
section. The first range is frequency values less than the first cut off frequency. The second range is frequency values between 
the first and second cut off frequency. The third range is frequency values between the second and third cut off frequency and 
the fourth range is frequency values more than the third cut off frequency. According to Figs. 4-12, it is observed that by 
increasing the power law index, the first cut off frequency increases and then decreases. Besides, by increasing the power law 
index, the second and third cut off frequencies decrease and then increase. The changing process of cut off frequency values 
due to the increase of power law index leads to defining the first critical power law index and the second critical power law 
index and here, they are specified as 1cn  and 2cn . In the first frequency range, by increasing the power law index, the 

coefficients (3,1)r , (3, 2)r , and (3,3)r  increase until they reach to 2cn  and then decrease. This means that by increasing 

the power law index to 2cn , the power of reflected wave with 3  wave number increases and by increasing the power law 

index for more than 2cn  , the waves power with 3 wave number decreases. 

  

Fig. 4. Variation of (1,1)cr  with respect to eigenfrequency 

parameter 

Fig. 5. Variation of (1,2)cr  with respect to eigenfrequency 

parameter 

In the second frequency range, the values of second cut off frequency are decreased by increasing the power law index until 
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it reaches to 2cn and then increase. The value of (1,1)r  coefficient is constant for each power law index and equals to the unit. 

Therefore, if the wave with 1 wave number encounters to a clamped boundary condition, the power of reflected wave with 

1 wave number is always equal to the initial wave. In addition, by increasing the frequency value, (2,2)r  and (3,3)r  

increase and then decrease until they reach to the unit value. In other words, if the wave with 2 and 3 wave number 

encounters to a clamped boundary condition in the second cut off frequency, the power of reflected wave with 2  and 

3 wave number is equal to the initial wave, respectively. In this frequency range, all coefficients of reflectance matrix except  

0 50 100 150 200 250 300

Eigenfrequency parameter

0

0.5

1

1.5

n=0
n=0.25
n=1
n=5
n=10

  

Fig. 6. Variation of (1,3)cr  with respect to eigenfrequency 

parameter 

Fig. 7. Variation of (2,1)cr  with respect to eigenfrequency 

parameter 

  

Fig. 8. Variation of (2,2)cr  with respect to eigenfrequency 

parameter 

Fig. 9. Variation of (2,3)cr  with respect to eigenfrequency 

parameter 

  

Fig. 10. Variation of (3,1)cr  with respect to eigenfrequency 

parameter 

Fig. 11. Variation of (3,2)cr  with respect to eigenfrequency 

parameter 
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Fig. 12. Variation of (3,3)cr  with respect to eigenfrequency parameter 

for (1,1)r , (2,1)r , (1,3)r , and (2,3)r  by increasing the power law index to 2cn  increase and then decrease. In this 

frequency range, the value of (1,3)r  and (2,3)r  coefficients varies in two ways. Until half the second frequency range, these 

coefficients increase with increasing the power law index until they reach to 1cn  and then decrease. Then, for the rest of the 

second frequency range, these coefficients decrease with increasing the power law index until they reach to 2cn  and then 

increase. The (2,1)r  coefficient value decrease with increasing the power law index until they reach to 2cn  and then increase. 

Moreover, the (1,1)r  value is constant and independent of the power law index.  

In the third frequency range, the values of the third cut off frequency are reduced by increasing the power law index until it 
reaches the value of 2cn  and then increases. In this range, the values of coefficients of (2,2)r and (3,3)r for all values of the 

FGM parameter are approximately constant and equal to one. Moreover, the values of (1,1)r  and (3,2)r  reduce with 

increasing frequency and the values of (1,3)r  ، (2,1)r  ، (2,3)r  and (3,1)r  increase by increasing the frequency. Also, the 

value of (1,2)r increases until it reaches the maximum value, and then decreases until reaching the value of zero. The value of 

coefficients (1,1)r  and (3,2)r  decreases until it reaches 1cn  with increasing the power law index and then increases. The 

value of the coefficient (3,1)r decreases until it reaches 2cn  with increasing the power law index meter and then increases. 

Besides, the rest of the reflection matrix coefficients increases until it reaches 1cn with increasing the power law index and then 

decreases. 
In the fourth frequency range, the values of the coefficients (1,1)r , (2,2)r , and (3,3)r converge to the unit value. This 

means that, when a wave with a wave number of 1 , 2 , and 3  encounters  a clamped boundary condition at a high 

frequency range, the reflection wave power with the wave number of 1 ، 2  , and 3 res (1,2)r  in the high frequency range 

approaches to 2. That is, in the high frequency range, if the wave with a wave number of 2  encounters a clamped boundary 

condition, the wave power reflected with the wave number of 2 will be four times greater. The rest of the reflection matrix 

coefficients approach zero at a high frequency range. In this frequency range, the value of coefficients (1,1)r and (3,2)r  with 

increasing the power law index decreases by the 1cn  and then increase. The value of coefficients (1,3)r and (2,3)r  increase 

up to 1cn by increasing power law index and then decrease. The value of the coefficient (3,1)r  decreases until it reaches 

2cn with increasing the power law index and then increases. Also, the other reflection matrix coefficients increase up to 

1cn then by increasing the power law index decrease. 

8. Conclusion 

This paper presents the free vibration analysis of the rectangular Mindlin plates using wave propagation method. 
Dimensionless natural frequencies of the plate are compared with the available literature and excellent agreement is observed. 
Also, for the first time, the effect of power law index on wave power reflection was studied.  It was observed that by 
increasing the FGM parameter, the first cut off frequency increases and then decreases. Also, by increasing the FGM Parameter, 
the second and third cut off frequencies decrease and then increase. The changing process of cut off frequency values due to 
the increase of FGM parameter leads to defining the first critical FGM parameter and the second critical FGM parameter. 
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