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Thermoelastic Vibration and Stability of

Temperature-Dependent Carbon Nanotube-Reinforced

Composite Plates
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Abstract

The present article investigates the thermoelastic vibration and stability characteristics of car-

bon nanotube-reinforced composite (CNTRC) plates in thermal environment. The CNTRC

plates are made up of four different types of uniaxially aligned reinforcements. The single-

walled carbon nanotubes (SWCNTs) reinforcement is either uniformly distributed (UD) or

functionally graded (FG) according to linear functions of the thickness direction. The ma-

terial properties, of both matrix and CNTs, are temperature-dependent and the effective

elastic coefficients are evaluated by using a micromechanical model. The governing equa-

tions (GEs) are derived in their weak-form by using Hamilton’s Principle in conjunction

with the method of the power series expansion of the displacement components. The Ritz

method, based on highly stable trigonometric trial functions, is used as solution technique.

Convergence and stability of the proposed formulation have been thoroughly analyzed by

assessing many higher-order plate models. Thermal and mechanical pre-stresses are taken

into account. Moreover, the effect of significant parameters such as length-to-thickness ratio,

volume fraction, aspect ratio, loading-type, CNTs distribution as well as boundary conditions

is discussed.

Keywords: Quasi-3D plate theories, Thermoelastic Vibration, Elastic stability,

FG-CNTRC plates, Temperature-dependent materials, Ritz method.
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1. Introduction

Amongst a significant amount of reinforcement typologies used in the fabrication of ad-

vanced composite structures, carbon nanotubes (CNTs) have attracted a considerable interest

in the recent few years. CNTs have been discovered at the beginning of the nineties by Iijima

[1]. Their extraordinary mechanical, thermal and electrical properties led Harris [2] to de-

fine them the materials of the 21st century. They have low density and high stiffness and

strength aspect ratios. Once the perfect bonding between the CNTs and the polymeric ma-

trix has been guaranteed, then they can be considered as a valid alternative to classical fiber

reinforced composites. The reason behind their potential application lies in the performance

enhancement found out during experimental tests. In this respect, Quian et.al [3] discovered

that dispersing just the 1 wt% of multiwalled carbon nanotubes (MWCNTs) homogeneously

distributed within the polystyrene matrix, resulted in (36-42)% increase in the Young’s mod-

ulus and in the 25% increase of the breaking stress. Some other interesting results which

show evidence of a significant improvement of the mechanical characteristics can be found in

Refs. [4–8]. In real life engineering applications, the CNT-reinforced composite (CNTRC)

structures assumes the form of beams, plates and shells. Then, similarly to other type of

reinforced composites, their modal and stability characteristics need to be thoroughly inves-

tigated. In this respect, various analysis have already been carried out. More specifically,

Zhu et al. [9] analyzed the static and free vibration behaviour of CNTRC plates by using

the first order shear deformation plate theory (FSDT) and the finite element method (FEM).

Lei et al. [10] coped with the free vibration analysis of laminated functionally graded car-

bon nanotube-reinforced composite (FG-CNTRC) rectangular plates by virtue of the kp-Ritz

method. The isogeometric analysis of FG-CNTRC plates via a higher-order shear deforma-

tion theory (HSDT) was performed by Phung-Van et al. [11]. Alibeigloo and Emtehani [12]

dealt with static and free vibration analyses FG-CNTRC plates by means of the generalized

differential quadrature (GDQ) method. The same author [13] provided a three dimensional

solution based on the theory of elasticity for FG-CNTRC plates embedded in piezoelectric

layers. Arani et al. [14] studied the elastic stability of laminated composite rectangular

plates reinforced by single-walled carbon nanotubes (SWCNTs) by using both analytical and

finite element methods. Malekzadeh and Shojaee [15] analysed the buckling characteristics of

quadrilateral laminated plates with CNTs-reinforced layers. Ray and Batra [16] derived the

effective properties of CNTs and piezoelectric fibre reinforced hybrid smart composites. The
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same authors [17] analyzed the behaviour of a SWCNT-reinforced piezoelectric composite

for active control of smart structures. Zhang and Liew [18] provided a vibration analysis of

FG-CNTRC thick plates resting on elastic foundations by using the element free IMLS-Ritz

method. Thai et al. [19] have recently developed a naturally stabilized integration meshfree

formulation for the analysis of CNTRC plates. Results were provided in terms of dimension-

less stresses, displacements and natural frequencies. Bending and free vibration response of

FG graphene (GP) and CNTRC composite plates have been compared by Marcias et al. [20].

The results showed the superiority of the GPRC plates in terms of load bearing capacity for

both fully aligned and randomly oriented graphene sheets. The low velocity impact mod-

eling of FG-CNTRC plates with arbitrary geometry and general boundary conditions has

been studied by Fallah et al. [21]. Aeroelastic characteristics of FG-CNTRC plates under

a supersonic flow were investigated by Fazelzadeh at al. [22]. Ansari et al. [23] coped with

the free vibration analysis of FG-CNTRC elliptical plates by using the moving last square

(MLS) meshless method. The nonlinear free vibration analysis of FG-CNTRC quadrilateral

plates have been investigate by Setoodeh and Shojaee [24]. The authors used the GDQ

method in conjunction with the transformed weighing coefficients (TW-DQ), specifically in-

troduced to solve geometrically nonlinear free vibration problems. Kumar and Srinivas [25]

investigated the free vibration, buckling and bending behavior of FG-MWCNTs reinforced

polymer composite plates using the layer-wise formulation. A comprehensive free vibration

analysis of SWCNTs with elastic boundary conditions have been proposed by Jiang et al.

[26]. Semi-analytical solutions to buckling and free vibration analysis of CNTRC thin plates

were proposed by Wang et al. [27].

In this respect, it is also interesting to note that the use of exact solution techniques for both

free vibration and buckling analyses, such as those proposed in Refs. [28–31], could be, in a

relatively easy manner, extended to the analysis of FG-CNTRC plates.

As regard the use of CNTs-reinforced composite structures related to thermal applications, it

is worth mentioning the following articles. Zhang and Shen [32] predicted the temperature-

dependent elastic properties of SWCNTs by using molecular dynamics (MD) simulation. The

same authors [33] always by means of MD simulation carried out buckling and postbuckling

analysis of SWCNTs in thermal environments. Subsequently in Ref. [34], they extended the

thermal buckling and postbuckling analysis to FG-CNTRC plates. Recently, Shen and Wang

[35] dealt with the nonlinear vibration of compressed and thermally postbuckled CNTRC
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plates resting on elastic foundations. The same author [36] investigated also the nonlinear

vibration of CNTRC plates in thermal environments. Shen et. al [37] studied also the vi-

bration of thermally postbuckled sandwich plates with CNTRC face sheets resting on elastic

foundations. Alibeigloo and Liew [38] carried out a thermoelastic analysis of FG-CNTRC

plates using the theory of elasticity.

In the present article the method of power series expansion of displacement components, ex-

tensively employed in the analysis of laminated composite and FGM beams, plates and shells

[39–47] has been extended to provide a comprehensive thermoelastic vibration and elastic

stability analysis of CNTRC plates. In particular, the advanced quasi-3D plate theories with

hierarchical capabilities have been developed and then validated and assessed against results

available in literature. Highly stable trigonometric Ritz functions have been used in the ap-

proximation. A thorough convergence analysis has also been carried out. Both modal and

stability characteristics of the CNTRC plates under investigation have been studied while

varying significant parameters such as the environmental temperature, length-to-thickness ra-

tio, volume fraction, aspect ratio, CNTs distribution as well as boundary conditions. Finally,

from all of the carried out numerical analyses some conclusions have been drawn.

2. Effective material properties of CNTRC plates and temperature dependency

The present analysis takes into account four different types of CNTRC plates as shown

in Fig. 1. More specifically, the mathematical laws which characterise these distributions are

given as follows

VCNT = V ∗CNT UD CNTRC (1)

VCNT (z) =

(
1 +

2 z

h

)
V ∗CNT FG-V CNTRC (2)

VCNT (z) = 2

(
1− 2 |z|

h

)
V ∗CNT FG-O CNTRC (3)

VCNT (z) = 2

(
2 |z|
h

)
V ∗CNT FG-X CNTRC (4)

where

V ∗CNT =
wCNT

wCNT + ρCNT
ρm
− ρCNT

ρm
wCNT

(5)

is the CNTs volume fraction, wCNT is the mass fraction of the carbon nanotube in the com-

posite plate; ρm and ρCNT are the densities of the matrix and carbon nanotube, respectively.

It should be noted that the overall mass fraction wCNT of the carbon nanotubes remains
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the same for all the CNTRC plates considered. The quantities VCNT and Vm represent the

volume fraction of the CNTs and the polymeric matrix, respectively, and they are related

by the equation VCNT (z) + Vm (z) = 1. The effective material properties of the two-phase

nanocomposite, based on the mixture of the CNTs and an isotropic polymer can be derived

by using either the Elshelby-Mori-Tanaka micromechanical model [48–50] or the extended

Voigt’s rule of mixture (ROM) [51]. In the present article the latter has been adopted and

the effective material properties can be expressed accordingly as follows

E11 (z, T ) = η1 VCNT (z) ECNT
11 (T ) + Vm (z) Em (T ) ;

η2

E22 (z, T )
=

VCNT (z)

ECNT
22 (T )

+
Vm (z)

Em
22 (T )

;

η3

G12 (z, T )
=

VCNT (z)

GCNT
12 (T )

+
Vm (z)

Gm
12 (T )

;

ν12 (z) = VCNT (z) νCNT12 + Vm (z) νm12;

ρ (z) = VCNT (z) ρCNT + Vm (z) ρm;

(6)

where ECNT
11 , ECNT

22 , GCNT
12 , νCNT12 and ρCNT are the Young’s modulii, the shear modulus, the

Poisson’s ratio and the density of the SWCNTs, respectively; Em, Gm, νm12 and ρm represent

the corresponding material properties of the isotropic matrix. In order to take into account

the scale-dependency of the effective material properties of the CNTs, the efficiency param-

eters ηi with i = 1, 2, 3 have been introduced. The latter have been computed by comparing

the results obtained via Molecular Dynamic (MD) simulations with those evaluated from

the ROM. The thermal expansion coefficients in the longitudinal and transverse direction,

respectively, are given as follows

α11 (z, T ) =
VCNT (z) ECNT

11 (T ) αCNT11 (T ) + Vm (z) Em (T ) αm (T )

VCNT (z) αCNT11 (T ) + Vm (z) αm (T )
;

α22 (z, T ) =
(
1 + νCNT12

)
VCNT (z) αCNT22 + (1 + νm12)Vm (z) αm (T )− ν12 (z) αCNT11 (T )

(7)

where αCNT11 , αCNT22 and αm are the thermal expansion coefficients of the CNT and the ma-

trix. It should be borne in mind that in the present article the materials are considered

temperature-dependent. Thus, the Young’s moduli, the shear modulus and the thermal

expansion coefficients, of both matrix and CNTs, are function of temperature T and the

plate-thickness coordinate z. In particular, in the present investigation the matrix is made

up of Poly Methyl Methacrylate (PMMA) whose material properties have a temperature
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dependency according to the following equations:

Em (T ) = (3.52− 0.0034T ) GPa; αm (T ) = 45 (1 + 0.0005 ∆T )× 10−6

K
; ρm = 1150

Kg

m3
;

νm = 0.34

(8)

The CNTs chosen as reinforcement are the armchair (10,10) SWCNTs, whose material prop-

erties at room temperature T0 = 300K are reported in Fig. 1, whilst their temperature

dependency is given as follows [35]

ECNT
11 (T ) =

(
6.18387− 0.00286 T + 4.22867× 106 T 2 − 2.2724× 109 T 3

)
TPa;

ECNT
22 (T ) =

(
7.75348− 0.00358 T + 5.30057× 106 T 2 − 2.84868× 109 T 3

)
TPa;

GCNT
12 (T ) =

(
1.80126 + 7.7845× 104 T − 1.1279× 106 T 2 + 4.93484× 1010 T 3

)
TPa;

αCNT11 (T ) =
(
−1.12148 + 0.02289 T − 2.88155× 105 T 2 + 1.13253× 108 T 3

) 10−6

K
;

αCNT22 (T ) =
(
5.43874− 9.95498× 104 T + 3.13525× 107 T 2 − 3.56332× 1012 T 3

) 10−6

K
;

νCNT12 = 0.175; ρCNT = 1400
Kg

m3

(9)

Where T = T0 +∆T . The variation of the CNTs thermo-mechanical properties with the tem-

perature as shown in Eq. (9) are reliable in the temperature range 300K ≤ T ≤ 1000K. Ta-

ble 1 shows the temperature-dependent material properties for an armchair (10, 10) SWCNT

evaluated by means of MD simulation. Table 2 provides the comparison of the Young’s mod-

ulii E11 and E22 computed by virtue of MD [52] and those evaluated by using the rule of

mixture (ROM). An excellent agreement can be observed.

3. Geometric and constitutive relations

The nomenclature and geometry of the CNTRC plate are shown in Fig. 1. In addition to

that, it is useful to recall that, the reference plane, often referred to as plate middle-surface,

which lies in the plane (xy) is named Ω whilst the z coordinate is referred to as thickness

coordinate. According to the classical nomenclature used in literature, the length of the plate

in the x and y-direction is indicated by a and b, respectively, while the thickness dimension

is denoted as h. Consistently to the reference coordinate system the stress and strain vectors

are indicated as follows

σ =
{
σxx σyy τxy τxz τyz σzz

}T
, ε =

{
εxx εyy γxy γxz γyz εzz

}T
(10)
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The strain-displacement relations are

ε = Du (11)

where D and u are a differential matrix operator and the displacement vector, defined as

follows

D =



∂
∂x

0 0

0 ∂
∂y

0

∂
∂y

∂
∂x

0

∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y

0 0 ∂
∂z


, u =


ux

uy

uz

 (12)

The 3D constitutive equations related to thermoelastic problem can be written in the follow-

ing compact form,

σ = C (z, T ) ε−Ξ (z, T ) ∆T (13)

where ∆T is the temperature variation and Ξ is the thermoelastic coupling coefficient which

is given as

Ξ (z, T ) = C (z, T ) α (z, T ) (14)

α is the vector including the coefficients of thermal expansion and assumes the following

form

α (z, T ) =
{
α11 (z, T ) α22 (z, T ) 0 0 0 α33 (z, T )

}T
(15)

and C is the constitutive matrix,

C (z, T ) =



C11 (z, T ) C12 (z, T ) 0 0 0 C13 (z, T )

C12 (z, T ) C22 (z, T ) 0 0 0 C23 (z, T )

0 0 C66 (z, T ) 0 0 0

0 0 0 C44 (z, T ) 0 0

0 0 0 0 C55 (z, T ) 0

C31 (, T ) C32 (z, T ) 0 0 0 C33 (z, T )


(16)

where the explicit expression of αii(z, T ) and Cij(z, T ) in terms of Young’s modulii and Pois-

son’s ratios can be found in standard composite materials textbook [53, 54] and represent the

effective elastic coefficients. In this respect, it is also useful to note that the effective Young’s

modulii, Poisson’s ratios and shear modulus are evaluated via an accurate micromechanical

model (see Eq. (1) for further details).
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4. Hierarchical plate models

Since the first pioneering derivation of the classical structural models, based on the Newto-

nian Mechanics (NM), such as those proposed by Kircchoff [55] and Reissner-Mindlin [56, 57],

scientists and researchers have focused their attention and efforts on the development of in-

creasingly accurate structural theories. By relying on the Lagrangian Mechanics (LM), the

method of power series expansion of the displacement components represents a generalisa-

tion of the aforementioned classical theories. In essence, each displacement component in the

displacement field is expanded at any desired order according to the computational cost and

the level of accuracy required. The methodology can be traced back to Washitsu [58] and

more recently Matsunaga [59] and Carrera [60, 61]. However, only in the last three decades

these new approach to the theory of structures has been fully exploited. This has only been

possible due to the significant enhancement in the computer performances. In this respect,

the advanced structural models have been successfully implemented in computer programs

and used both for real life engineering applications and for fundamental research.

According to this, relatively new, approach the most general displacement field assumes the

following form

ux (x, y, z, t) =

Nux∑
τux=1

Fτux (z) uxτux (x, y, t)

uy (x, y, z, t) =

Nuy∑
τuy=1

Fτuy (z) uyτuy (x, y, t)

uz (x, y, z, t) =

Nuz∑
τuz=1

Fτuz (z) uzτuz (x, y, t)

(17)

where Fτux , Fτuy , Fτuz are the thickness functions. They can be generic functions of the plate-

thickness coordinate. Their purpose is to accurately describe the plate kinematics through-

the-thickness direction. To this aim, in the present investigation Taylor polynomials have

been chosen. The functions uxτux , uyτuy , uzτuz represent the displacement vector components

and, finally, Nux , Nuy and Nuz are the orders of expansion of the in-plane and out-of-plane

displacement components, respectively.

5. Theoretical Formulation

In the derivation of what follows Hamilton’s principle (HP) is employed to derive the

governing equations in their weak form. The solution is then sought by using the Hierarchical
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Trigonometric Ritz Formulation (HTRF). In its classical from HP can be written as∫ t2

t1

δL dt = 0 (18)

where t1 and t2 are the initial and the generic instant of time; L is the Lagrangian which

assumes the following form

L = T − Π where Π = Φe + Φσ (19)

T is the kinetic energy and Π is the total potential energy of the system; Φe and Φσ are the

potential strain energy and the potential energy due to the thermal and/or mechanical initial

stresses, respectively. HP can be alternatively written in terms of displacements as follows∫ t2

t1

{∫
V

[
C11 (z, T ) δux,x ux,x + C66 (z, T ) δux,y ux,y + C55 (z, T ) δux,z ux,z+

C12 (z, T ) δux,x uy,y + C66 (z, T ) δux,y uy,x+

C13 (z, T ) δux,x uz,z + C55 (z, T ) δux,z uz,x+

C12 (z, T ) δuy,x ux,y + C66 (z, T ) δuy,y ux,x+

C22 (z, T ) δuy,y uy,y + C66 (z, T ) δuy,x uy,x + C44 (z, T ) δuy,z uy,z+

C44 (z, T ) δuy,y uz,z + C23 (z, T ) δuy,z uz,y+

C13 (z, T ) δuz,x ux,z + C55 (z, T ) δuz,z ux,x+

C44 (z, T ) δuz,y uy,z + C23 (z, T ) δuz,z uy,y+

C44 (z, T ) δuz,z uz,z + C55 (z, T ) δuz,x uz,x + C33 (z, T ) δuz,y uz,y

]
dV+∫

V

[
σ̃(0)
xx δux,x ux,x + σ̃(0)

yy δux,y ux,y + τ̃ (0)
xy δux,x ux,y

σ̃(0)
xx δuy,x uy,x + σ̃(0)

yy δuy,y uy,y + τ̃ (0)
xy δuy,x uy,y

σ̃(0)
xx δuz,x uz,x + σ̃(0)

yy δuz,y uz,y + τ̃ (0)
xy δuz,x uz,y

]
dV+∫

V

[
ρ (δu̇x u̇x + δu̇y u̇y + δu̇z u̇z)

]
dV

}
dt = 0

(20)

where ρ is the material density; σ̃
(0)
xx , σ̃

(0)
yy and τ̃

(0)
xx are the initial stress due to mechanical,

thermal or thermo-mechanical effects. The , x; , y; and , z represent derivative with respect

to these variables, and (̇) indicates the time derivative. It should also be noted that in Eq.

(20), it has been highlighted the dependency of the effective elastic coefficients from both

the thickness coordinate z and the temperature T . The former is due to the FG-CNTs

distributions the latter is related to the temperature-dependency of both matrix and CNTs

(see Eqs. (8) and (9) for more information).

9



  

5.1. The Hierarchical Ritz Formulation

In the Ritz method the displacement amplitude vector components uxτux , uyτuy and uzτuz

are expressed in series expansion and the displacement field assumes the following form

ux (x, y, z, t) =
N∑
i=1

Nux∑
τux=1

Uxτux i (t) Fτux (z) ψxi (x, y) eiω t

uy (x, y, z, t) =
N∑
i=1

Nuy∑
τuy=1

Uyτuy i (t) Fτuy (z) ψyi (x, y) eiω t

uz (x, y, z, t) =
N∑
i=1

Nuz∑
τuz=1

Uzτuz i (t) Fτuz (z) ψzi (x, y) eiω t

(21)

where N indicates the order of expansion in the Ritz approximation; Uxτux i, Uyτuy i, Uzτuz i are

the time-dependent unknown coefficients; and ψxi , ψyi , ψzi are the Ritz functions appropri-

ately selected with respect to the features of the problem under investigation. Convergence

to the exact solution is guaranteed if the Ritz functions are admissible functions in the used

variational principle (more information can be found in Refs. [39, 40, 62, 63]).

5.2. Explicit form of the virtual potential and kinetic energy

Once Eq.(21) is substitute into Eq.(20), it is then possible to express all of the energy

contributions appearing in Hamilton’s principle, namely δΦe, δΦσ and δT , in terms of Ritz

functions, effective elastic coefficients and thickness functions. The integral subscripts repre-

sent the in-plane and out-of-plane integration domains, and are indicated as follows

Ax ∈ [0, a] ; Ay ∈ [0, b] ; Az ∈ [−h/2, h/2] (22)

5.2.1. Virtual potential strain energy

The δΦe can actually be considered as the summation of the following nine contributions

δΦuxux
e = δUxτux i (t)

[ ∫
Az
C11 (z, T ) Fτux (z) Fsux (z) dz

∫
Ax

∫
Ay
ψxux i,x (x, y)ψxux j ,x (x, y) dx dy

+

∫
Az
C66 (z, T ) Fτux (z) Fsux (z) dz

∫
Ax

∫
Ay
ψxux i,y (x, y)ψxux j ,y (x, y) dx dy

+

∫
Az
C55 (z, T ) Fτux ,z (z) Fsux ,z (z) dz

∫
Ax

∫
Ay
ψxux i (x, y)ψxux j (x, y) dx dy

]
Uxsuxj (t)

δΦuxuy
e = δUxτux i (t)

[ ∫
Az
C12 (z, T ) Fτux ,x (z) Fsuy ,y (z) dz

∫
Ax

∫
Ay
ψxux i (x, y)ψyuy j (x, y) dx dy

+

∫
Az
C66 (z, T ) Fτux (z) Fsuy (z) dz

∫
Ax

∫
Ay
ψxux i,y (x, y)ψyuy j ,x (x, y) dx dy

]
Uysuy j (t)

10



  

δΦuxuz
e = δUxτux i (t)

[ ∫
Az
C13 (z, T ) Fτux (z) Fsuz ,z (z) dz

∫
Ax

∫
Ay
ψxux i,x (x, y)ψzuz j (x, y) dx dy

+

∫
Az
C55 (z, T ) Fτux ,z (z) Fsuz (z) dz

∫
Ax

∫
Ay
ψxux i (x, y)ψzuz j ,x (x, y) dx dy

]
Uzsuz j (t)

δΦuyux
e = δUyτuy i (t)

[ ∫
Az
C12 (z, T ) Fτuy (z) Fsux (z) dz

∫
Ax

∫
Ay
ψyuy i,y (x, y)ψxux j ,x (x, y) dx dy

+

∫
Az
C66 (z, T ) Fτuy (z) Fsux (z) dz

∫
Ax

∫
Ay
ψyuy i,x (x, y)ψxux j ,y (x, y) dx dy

]
Uxsuxj (t)

δΦuyuy
e = δUyτuy i (t)

[ ∫
Az
C22 (z, T ) Fτuy (z) Fsuy (z) dz

∫
Ax

∫
Ay
ψyuy i,y (x, y)ψyuy j ,y (x, y) dx dy

+

∫
Az
C66 (z, T ) Fτuy (z) Fsuy (z) dz

∫
Ax

∫
Ay
ψyuy i,y (x, y)ψyuy j ,x (x, y) dx dy

+

∫
Az
C44 (z, T ) Fτuy ,z (z) Fsuy ,z (z) dz

∫
Ax

∫
Ay
ψyuy i (x, y)ψyuy j (x, y) dx dy

]
Uysuy j (t)

δΦuyuz
e = δUyτuy i (t)

[ ∫
Az
C44 (z, T ) Fτuy ,z (z) Fsuz (z) dz

∫
Ax

∫
Ay
ψyuy i (x, y)ψzuz j ,y (x, y) dx dy

+

∫
Az
C23 (z, T ) Fτuy (z) Fsuz ,z (z) dz

∫
Ax

∫
Ay
ψyuy i,y (x, y)ψzuz j (x, y) dx dy

]
Uzsuz j (t)

δΦuzux
e = δUzτuz i (t)

[ ∫
Az
C13 (z, T ) Fτuz ,z (z) Fsux (z) dz

∫
Ax

∫
Ay
ψzuz i,x (x, y)ψxux j (x, y) dx dy

+

∫
Az
C55 (z, T ) Fτuz (z) Fsux ,z (z) dz

∫
Ax

∫
Ay
ψzuz i,x (x, y)ψxux j (x, y) dx dy

]
Uxsuxj (t)

δΦuzuy
e = δUzτuz i (t)

[ ∫
Az
C44 (z, T ) Fτuz (z) Fsuy ,z (z) dz

∫
Ax

∫
Ay
ψzuz i,y (x, y)ψyuy j (x, y) dx dy

+

∫
Az
C23 (z, T ) Fτuz ,z (z) Fsuy (z) dz

∫
Ax

∫
Ay
ψzuz i (x, y)ψyuy j ,y (x, y) dx dy

]
Uysuy j (t)

δΦuzuz
e = δUzτuz i (t)

[ ∫
Az
C44 (z, T ) Fτuz (z) Fsuz (z) dz

∫
Ax

∫
Ay
ψzuz i,y (x, y)ψzuz j ,y (x, y) dx dy

+

∫
Az
C55 (z, T ) Fτuz (z) Fsuz (z) dz

∫
Ax

∫
Ay
ψzuz i,x (x, y)ψzuz j ,x (x, y) dx dy

+

∫
Az
C33 (z, T ) Fτuz ,z (z) Fsuz ,z (z) dz

∫
Ax

∫
Ay
ψzuz i (x, y)ψzuz j (x, y) dx dy

]
Uzsuz j (t)

(23)
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5.2.2. Virtual potential energy due to the initial stresses

A similar consideration can be drawn for the δΦσ, whose contributions are given by

δΦuxux
σ = δvK δUxτux i (t)

[ ∫
Az
σ̃xxFτux (z) Fsux (z) dz

∫
Ax

∫
Ay
ψxux i,x (x, y)ψxux j ,x (x, y) dx dy

+

∫
Az
σ̃yyFτux (z) Fsux (z) dz

∫
Ax

∫
Ay
ψxux i,y (x, y)ψxux j ,y (x, y) dx dy

+

∫
Az
τ̃xyFτux (z) Fsux (z) dz

∫
Ax

∫
Ay
ψxux i,x (x, y)ψxux j ,y (x, y) dx dy

]
Uxτuxj (t)

δΦuyuy
σ = δvK δUyτuy i (t)

[ ∫
Az
σ̃xxFτuy (z) Fsuy (z) dz

∫
Ax

∫
Ay
ψyuy i,x (x, y)ψyuy j ,x (x, y) dx dy

+

∫
Az
σ̃yyFτuy (z) Fsuy (z) dz

∫
Ax

∫
Ay
ψyuy i,y (x, y)ψyuy j ,y (x, y) dx dy

+

∫
Az
τ̃xyFτuy (z) Fsuy (z) dz

∫
Ax

∫
Ay
ψyuy i,x (x, y)ψyuy j ,y (x, y) dx dy

]
Uyτuy j (t)

δΦuzuz
σ = δUzτuz i (t)

[ ∫
Az
σ̃xxFτuz (z) Fsuz (z) dz

∫
Ax

∫
Ay
ψzuz i,x (x, y)ψzuz j ,x (x, y) dx dy

+

∫
Az
σ̃yyFτuz (z) Fsuz (z) dz

∫
Ax

∫
Ay
ψzuz i,y (x, y)ψzuz j ,y (x, y) dx dy

+

∫
Az
τ̃xyFτuz (z) Fsuz (z) dz

∫
Ax

∫
Ay
ψzuz i,x (x, y)ψzuz j ,y (x, y) dx dy

]
Uzτuz j (t)

(24)

The tracer δwK has been introduced in order to retain and/or discard the full nonlinear terms.

In the latter case, namely δwK = 0, the von kármán approximation is assumed.

5.2.3. Virtual kinetic energy

Finally, the three non-zero contributions related to the δT , can be written as

δT uxux = δU̇xτux i (t) ρ
[ ∫
Az
Fτux (z) Fsux (z) dz

∫
Ax

∫
Ay
ψxux i (x, y)ψxux j (x, y) dx dy

]
U̇xτuxj (t)

δT uyuy = δU̇yτuy i (t) ρ
[ ∫
Az
Fτuy (z) Fsuy (z) dz

∫
Ax

∫
Ay
ψyuy i (x, y)ψyuy j (x, y) dx dy

]
U̇yτuy j (t)

δT uzuz = δU̇zτuz i (t) ρ
[ ∫
Az
Fτuz (z) Fsuz (z) dz

∫
Ax

∫
Ay
ψzuz i (x, y)ψzuz j (x, y) dx dy

]
U̇zτuz j (t)

(25)

where being the density ρ a constant can be moved outside the integration operation.
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5.3. Weak-form of the governing equations

By combining Eqs. (23), (24) and (25) with Eq. (18) and by assuming a simple harmonic

motion {Uτ i (t)} =
{
Ûτ i

}
eiωt, the weak-form of the GEs in their discretized form is obtained

as follows

δ
{
Ûτ i

}
:

(
[Kτ s i j] + λij

[
K

(σ)
τ s i j

]
− ω2

ij [Mτ s i j]
){

Ûs j

}
= {0s j} (26)

where [Kτ s i j],
[
K

(σ)
τ s i j

]
and [Mτ s i j] represent the stiffness, the initial stress and mass nuclei,

respectively. Equation (26) can be alternatively written in a more explicitly form as

δ


Ûxτux i

Ûyτuy i

Ûzτuz i

 :



Kτux sux i j Kτux suy i j Kτux suz i j

Kτuy sux i j Kτuy suy i j Kτuy suz i j

Kτuz sux i j Kτuz suy i j Kτuz suz i j

+

λij


δvK K

(σ)
τux sux i j

0τux suy i j 0τux suz i j

0τuy sux i j δvK K
(σ)
τuy suy i j

0τuy suz i j

0τuz sux i j 0τuz suy i j K
(σ)
τuz suz i j

−

ω2
ij


Mτux sux i j 0τux suy i j 0τux suz i j

0τuy sux i j Mτuy suy i j 0τuy suz i j

0τuz sux i j 0τuz suy i j Mτuz suz i j





Ûxsux j

Ûysuy j

Ûzsuz j

 =


0sux j

0suy j

0suz j

 (27)

Equation (27) allows us to carry out several thermoelastic vibration and stability analy-

ses of the CNTRC plates under investigation by simply considering the solution of various

eigenvalue problems.

6. Numerical results and discussion

The results have been computed by using highly stable trigonometric trial functions, for

both simply-supported and clamped boundary condition, as shown in Eqs. (28) and (29). The

classical acronym system [64, 65] has also been used to show the results. More specifically,

the acronym EDNuxNuyNuz has been employed, where E means that the classical equivalent

single layer approach, for the plate kinematic description, has been introduced; D states

that the Principle of Virtual Displacements (PVD) (or Hamilton’s principle in the dynamic

case) has been used in the analysis, and finally the three subscripts, Nux, Nuy and Nuz are

the expansion orders and represent independent free input parameters. Two different study
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cases are proposed. The first one is related to the computation of the dimensionless eigen-

frequency parameters ω̂ = ω a2

h

√
ρm
Em

of FG-CNT plates aimed to shown the high accuracy

level obtained by the hierarchical modelling with respect to other methodologies present in

literature.

Simply-supported plate

ψuxmn (x, y) =
M∑
m

N∑
n

cos
(mπx

a

)
sin
(nπy

b

)
;

ψuymn (x, y) =
M∑
m

N∑
n

sin
(mπx

a

)
cos
(nπy

b

)
;

ψuzmn (x, y) =
M∑
m

N∑
n

sin
(mπx

a

)
sin
(nπy

b

)
;

(28)

Clamped plate

ψuxmn (x, y) =
M∑
m

N∑
n

sin
(mπx

a

)
sin
(nπy

b

)
;

ψuymn (x, y) =
M∑
m

N∑
n

sin
(mπx

a

)
sin
(nπy

b

)
;

ψuzmn (x, y) =
M∑
m

N∑
n

sin
(mπx

a

)
sin
(nπy

b

)
;

(29)

The same investigation also shows the effect of the thermal environment on the modal charac-

teristics of the FG-CNTRC plates made-up of temperature-dependent materials. The second

study case deals with the buckling analysis of FG-CNTRC plates. Once again, the stability

characteristics of the structure under investigation are analyzed and the respective dimen-

sionless critical buckling loads N∗cr = Ncr
b2

Emh3
due to axial and/or biaxial pre-stresses are

compared and contrasted with those available in literature.

6.1. Free Vibration of FG-CNTRC Plates

A first validation of the proposed formulation is carried out for the case of free vibration

analysis. For all of the numerical examples proposed in this section the material properties

are those given by Eqs.(8) and (9) for the room temperature T = 300K. For the CNTs

they can similarly be obtained from Table 1. For this specific case the considered volume

fractions and related efficiency parameters are: V ∗CNT = 0.11 with η1 = 0.149 and η2 = 0.934;
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V ∗CNT = 0.14 with η1 = 0.150 and η2 = 0.941; and V ∗CNT = 0.17 with η1 = 0.149 and

η2 = 1.381. Beside, the assumptions η2 = η3 and G12 = G13 = G23 are also made. Tables 3, 4

and 5 show the first six dimensionless frequency parameters of a simply-supported CNTRC

square plate with CNT volume fraction V ∗CNT = 0.11, V ∗CNT = 0.14 and V ∗CNT = 0.17,

respectively, and length-to-thickness ratio a/h = 50. In each of the aforementioned tables

the CNTs are considered uniformly distributed (UD) and functionally graded according to

three different laws: FG-V, FG-O and FG-X (see Eq.(1) for further details). By means

of the hierarchical approach various theories have been tested and a good convergence is

reached with the plate model ED555. It should be borne in mind that the present hierarchical

formulation has been derived in its generalized form, which means that the expansion orders

of the displacement components are free parameters in the model. However, in this specific

case, being the focus of the article on the investigation of the modal characteristics of the

CNTRC plate, for convenience they have been increased simultaneously and uniformly. The

results obtained by virtue of the HTRF have been compare with those computed by using the

finite element (FE) commercial software Ansys [66], and with two formulations available in

literature. The first one is a FSDT-based FEM and the second is a TSDT-based isogeometric

formulation with non-uniform NURBS basis functions. In order to study the accuracy of

the above mentioned methodologies both the average and the maximum difference, with

respect to the FE software Ansys results, have been evaluated. From all of the proposed

numerical examples the plate models ED444 and ED555 turned out to be the most accurate.

The average ∆% is significantly below the 0.5% in all of the addressed study cases, reaching

its minimum of 0.12% in the specific case of V ∗CNT = 0.14 and CNTs distribution FG-X.

It should also been highlighted the unsuitableness of the ED222 plate model which leads to

higher average ∆%. However, the latter in the worst case scenario, related to V ∗CNT = 0.17

and CNTs distribution FG-O, is 4.23%. Before dealing with the fully clamped boundary

condition a proper convergence analysis has been proposed in Table 6. The trigonometric

trial functions given in Eq. (29) showed, as expected a high computational stability along

with an acceptable rate of convergence. The convergence analysis has been carried out for

the first six dimensionless frequencies of a CNTRC square plate and for all of the four CNTs

distributions by using the ED555 plate model, V ∗CNT = 0.11 and a length-to-thickness ratio

a/h = 50. Similarly to the simply-supported CNTRC plate case, Table 7, 8 and 9, show the

first six dimensionless frequency of a fully clamped CNTRC square plate, with CNTs volume

15



  

fraction V ∗CNT = 0.11, V ∗CNT = 0.14 and V ∗CNT = 0.17, respectively. Once again the plate

models ED444 and ED555 proved their high level of accuracy providing the best results. More

specifically, the lowest average ∆% is 0.98% obtained in the case of V ∗CNT = 0.11 and CNTs

distribution UD, however with these models the average ∆% never exceeded the 2% in all of

the addressed study cases. The highest average ∆% is 6.20% obtained by using ED222 plate

model in the case of V ∗CNT = 0.17 and CNTs distribution FG-O.

6.2. Thermal effect on the modal characteristics of temperature-dependent FG-CNTRC Plates

The modal characteristics of temperature-dependent CNTRC plates are investigate in

Figures 2 and 3. The temperature-dependency of both matrix and (10, 10) single-walled

carbon nanotube (SWCNT) (see Fig. 1 for more details) are given in Eqs. (8) and (9).

Moreover, for comparison purpose, Table 1 shows the material properties of the SWCNT

computed by using the molecular dynamics (MD) and for several temperature values ranging

from 300K to 1000K. Figure 2 depicts the effect of the thermal environment on the first three

modes of a CNTRC square plate with volume fraction V ∗CNT = 0.17; efficiency parameters

η1 = 0.142, η2 = 1.626 and η3 = 1.138; length-to-thickness ratio a/h = 40 and UD, FG-O

and FG-X CNTs distributions, respectively. Following this order, Fig. 2 (a), Fig. 2 (c) and

Fig. 2 (e) refer to the simply-supported boundary condition (SSSS) whilst Fig. 2 (b), Fig.

2 (d) and Fig. 2 (f) to the fully clamped (CCCC) one. As expected, in either cases the

modal characteristics are significantly affected by the temperature in both the pre- and post-

buckled state. The modal interchange or mode shifting phenomenon occurs. In the CCCC

case the mode veering between the second and the third mode is also observed. Being the

critical temperature lower in the SSSS case than the CCCC case the temperature range of

investigation has been chosen to be 300K−500K and 300K−700K, respectively. Amongst

the CNTs distributions analysed the FG-X showed the highest critical temperature and the

FG-O the lowest one. In Fig. 3 the first, second and third mode of the three different CNTs

distributions have been compared for both SSSS and CCCC boundary conditions.

6.3. Elastic Stability of FG-CNTRC Plates

A comprehensive elastic stability analysis, at room temperature T = 300K for both axial

and biaxial prestress conditions has been proposed in Tables 10 and 11, respectively. Various

hierarchical plate models have been assessed. In both cases the critical buckling loads have

been evaluated for simply-supported CNTRC square plate, with length-to-thickness ratio
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a/h = 100, considering several values of the volume fraction V ∗CNT = 0.11, V ∗CNT = 0.14

and V ∗CNT = 0.17, with the same efficiency parameters used in the free vibration analysis,

and for UD, FG-O and FG-X CNTs distributions. The results obtained with the proposed

formulation have been compared with those available in literature and computed by using

ISML-Ritz. The comparison showed an excellent agreement. For the same cases, the effect

of the aspect ratio a/b has also been investigated in Fig. 4. The analysis showed that, for

both axial and biaxial loadings the critical buckling load decreases when increasing the aspect

ratio (a/b). Moreover, the highest critical buckling load is obtained by using a FG-X CNTs

distribution and the lowest by using the FG-O one.

7. Conclusions

The present article investigated the thermoelastic vibration and the buckling characteris-

tics of temperature-dependent carbon nanotube-reinforced composite (CNTRC) plates. The

latter have been considered made up of four different types of uniaxially aligned reinforce-

ments. More specifically, uniformly distributed (UD) and functionally graded (FG-V, FG-O

and FG-X). The governing equations (GEs) have been derived by using Hamilton’s princi-

ple (HP) in conjunction with higher order plate models hierarchically generated by using the

method of power series expansion of displacement components. The GEs have been solved by

using the Hierarchical Trigonometric Ritz Method (HTRM) based on highly stable trigono-

metric trial functions, leading to the Navier-type closed-form solution in the specific case of

simply-supported boundary condition. From all of the carried out numerical investigations

the following conclusions can be drawn:

• The use of higher order structural models is an absolute mandatory requirement when

dealing with carbon nanotube-reinforced composites. In this respect, it has been ob-

served that both for vibration and buckling analyses, the employment of the ED444

and ED555 plate models led to the highest level of results accuracy, when compared to

commercial FEM software results, with respect to those proposed in literature and/or

obtained by using the ED222.

• In the specific case of free vibration of UD and FG CNTRC plates the ED444 and ED555

led to an average ∆% of the first six dimensionless frequencies of less than the 0.5%

in the case of simply-supported boundary condition and less than the 2% for the fully
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clamped one. On the contrary, for the same two investigations the ED222 plate model

led to an average ∆% equal and higher than the 5%, respectively.

• The thermal environment affects dramatically the modal characteristics of the CNTRC

plates. More specifically, modal interchange and/or modal shifting phenomena occurs

repeatedly while increasing the temperature, in both the pre- and post-buckled state.

Moreover, the FG-X CNTRC plate showed the highest critical temperature and the

FG-O the lowest one.

• The elastic stability analysis showed that an increase of the simply-supported CNTRC

plate aspect ratio leads to a significant reduction of the dimensionless critical buckling

load. The CNTs distribution FG-X has the highest critical buckling load amongst those

analysed whilst the FG-O the lowest.
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Tables

Table 1: Temperature-dependent material properties for (10, 10) SWCNT computed via MD [67].

Temperature ECNT11 (TPa) ECNT22 (TPa) GCNT12 (TPa) αCNT11 (10−6/K) αCNT22 (10−6/K)

300 5.6466 7.0800 1.9445 3.4583 5.1682

500 5.5308 6.9348 1.9643 4.5361 5.0189

700 5.4744 6.8641 1.9644 4.6677 4.8943

1000 5.2814 6.6220 1.9451 4.2800 4.7532

Table 2: Comparison of Young’s modulii for PMMA/CNT reinforced composites at T = 300K

V ∗
CN MD[52] ROM

E11 (GPa) E22 (GPa) E11 (GPa) η1 E22 (GPa) η2

0.12 94.6 2.9 94.78 0.137 2.9 1.022

0.17 138.9 4.9 138.68 0.142 4.9 1.626

0.28 224.2 5.5 224.50 0.141 5.5 1.585
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Table 3: First 6 dimensionless frequency parameters of simply-supported UD and FG-CNTs reinforced com-

posite plates with CNT volume fraction V ∗
CNT = 0.11.

Theory CNTs Dimensionless circular frequency parameters

ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6 Ave. ∆% Max ∆%

ANSYS[9] UD 19.184 23.310 34.272 52.770 70.363 72.395

FEM[9] 19.223 23.408 34.669 54.043 70.811 72.900 (0.90) (2.37)

IGA[11] 19.093 22.968 34.017 53.664 70.808 72.569 (0.80) (1.77)

ED555 19.154724 23.273341 34.056917 51.964761 70.019200 72.128768 (0.41) (1.43)

ED444 19.154727 23.273346 34.056931 51.964806 70.019372 72.128951 (0.41) (1.43)

ED333 19.221850 23.337562 34.119735 52.045212 70.911035 73.021444 (0.80) (1.27)

ED222 19.352357 23.909889 35.580480 54.708048 71.124312 73.507819 (2.29) (3.59)

ANSYS FG-V 16.216 21.030 32.740 51.354 59.584 62.198

FSDT 16.252 21.142 33.350 53.430 60.188 62.780 (1.43) (4.04)

IGA 16.093 20.683 32.700 53.040 59.872 62.118 (1.07) (3.28)

ED555 16.179357 21.016365 32.753504 51.376757 59.185989 61.810534 (0.28) (0.67)

ED444 16.185794 21.021991 32.759051 51.383828 59.275523 61.895883 (0.22) (0.51)

ED333 16.229501 21.070030 32.821306 51.482582 59.865904 62.491816 (0.29) (0.47)

ED222 16.415851 21.786687 34.520642 54.490465 60.345530 63.317125 (3.24) (6.11)

ANSYS FG-O 14.290 19.274 31.013 49.326 52.569 55.362

FSDT 14.302 19.373 31.615 51.370 53.035 55.823 (1.40) (4.14)

IGA 14.153 19.154 31.711 52.422 52.616 55.123 (1.77) (6.28)

ED555 14.244495 19.273679 31.066976 49.422629 52.132323 54.961790 (0.37) (0.83)

ED444 14.246045 19.281061 31.085604 49.456969 52.135617 54.969339 (0.40) (0.82)

ED333 14.290482 19.320230 31.122404 49.505440 52.785186 55.607653 (0.30) (0.44)

ED222 14.502066 20.151149 33.048505 52.877584 53.158568 56.417744 (3.80) (7.20)

ANSYS FG-X 22.910 26.660 37.016 54.912 79.630 82.297

FSDT 22.984 26.784 37.591 56.964 83.150 84.896 (2.28) (4.42)

IGA 22.880 26.183 36.238 55.066 83.604 83.703 (1.83) (4.99)

ED555 22.899359 26.621053 36.939037 54.783982 79.413104 82.321825 (0.16) (0.27)

ED444 22.899576 26.622095 36.941792 54.788863 79.420116 82.321867 (0.15) (0.26)

ED333 23.012997 26.732435 37.048563 54.917445 79.617223 83.721663 (0.43) (1.73)

ED222 23.110938 27.190610 38.291257 57.253818 83.283214 83.871324 (2.85) (4.59)

∆% =
‖ωi

FE−ωi‖
‖ωi‖ × 100

26



  

Table 4: First 6 dimensionless frequency parameters of simply-supported UD and FG-CNTs reinforced com-

posite plates with CNT volume fraction V ∗
CNT = 0.14.

Theory CNTs Dimensionless circular frequency parameters

ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6 Ave. ∆% Max ∆%

ANSYS[9] UD 21.311 25.192 35.866 54.320 77.629 79.482

FEM[9] 21.354 25.295 36.267 55.608 78.110 80.015 (0.90) (2.37)

IGA[11] 21.290 24.933 35.678 55.280 78.110 80.087 (0.80) (1.77)

ED555 21.316807 25.190847 35.685862 53.543395 77.389752 79.324843 (0.41) (1.43)

ED444 21.316811 25.190854 35.685877 53.543442 77.389970 79.325072 (0.41) (1.43)

ED333 21.407796 25.277658 35.767291 53.638524 78.558066 80.492722 (0.80) (1.27)

ED222 21.523244 25.802317 37.154424 56.212177 78.740381 80.918332 (2.29) (3.59)

ANSYS FG-V 17.956 22.531 34.052 52.739 65.893 68.315

FSDT 17.995 22.643 34.660 54.833 66.552 68.940 (1.40) (3.97)

IGA 17.879 22.222 34.013 54.412 66.438 68.506 (1.03) (3.17)

ED555 17.942047 22.539770 34.089285 52.791386 65.521810 67.951263 (0.24) (0.56)

ED444 17.950118 22.546752 34.095649 52.798782 65.630378 68.055287 (0.19) (0.40)

ED333 18.010588 22.611638 34.174749 52.916274 66.431454 68.861324 (0.50) (0.82)

ED222 18.181412 23.280738 35.805109 55.836993 66.897195 69.637341 (3.18) (5.87)

ANSYS FG-O 15.788 20.469 31.918 50.145 58.237 60.782

FSDT 15.801 20.563 32.509 52.184 58.748 61.277 (1.36) (4.07)

IGA 15.701 20.455 32.840 53.668 58.490 60.805 (1.83) (7.03)

ED555 15.762809 20.487997 31.992908 50.268185 57.840778 60.420071 (0.33) (0.68)

ED444 15.764676 20.496740 32.015213 50.309400 57.844896 60.429148 (0.36) (0.67)

ED333 15.821589 20.546817 32.059141 50.360497 58.660650 61.231256 (0.49) (0.74)

ED222 16.013895 21.333902 33.941566 53.696129 58.992078 61.962359 (3.72) (7.08)

ANSYS FG-X 25.474 29.065 39.257 57.272 82.437 90.389

FSDT 25.555 29.192 39.833 59.333 87.814 91.299 (2.23) (6.52)

IGA 25.528 28.616 38.313 56.981 85.793 92.220 (1.79) (4.07)

ED555 25.494920 29.049380 39.196075 57.155288 82.231606 90.413433 (0.13) (0.25)

ED444 25.495233 29.050924 39.200313 57.163023 82.242998 90.413497 (0.12) (0.24)

ED333 25.662265 29.212836 39.352315 57.332553 82.484937 92.380535 (0.64) (2.20)

ED222 25.746570 29.620180 40.494217 59.520313 85.946373 92.504353 (2.78) (4.26)

∆% =
‖ωi

FE−ωi‖
‖ωi‖ × 100
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Table 5: First 6 dimensionless frequency parameters of simply-supported UD and FG-CNTs reinforced com-

posite plates with CNT volume fraction V ∗
CNT = 0.17.

Theory CNTs Dimensionless circular frequency parameters

ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6 Ave. ∆% Max ∆%

ANSYS[9] UD 23.649 28.865 42.667 65.880 86.830 89.403

FEM[9] 23.697 28.987 43.165 67.475 87.385 90.031 (0.93) (2.42)

IGA[11] 23.528 28.440 42.362 67.018 87.328 89.569 (0.86) (1.73)

ED555 23.607166 28.813752 42.390850 64.861260 86.385312 89.054639 (0.58) (1.55)

ED444 23.607170 28.813759 42.390867 64.861313 86.385508 89.054849 (0.57) (1.55)

ED333 23.687237 28.890408 42.466526 64.960028 87.454626 90.125203 (0.61) (1.40)

ED222 23.840791 29.563775 44.179538 68.077089 87.705809 90.698715 (2.10) (3.55)

ANSYS FG-V 19.938 26.061 40.871 64.318 73.285 76.622

FSDT 19.982 26.206 41.646 66.943 74.030 77.343 (1.45) (4.08)

IGA 19.777 25.620 40.781 66.318 73.560 76.443 (1.07) (3.11)

ED555 19.898602 26.072204 40.952033 64.457195 72.839476 76.202418 (0.30) (0.61)

ED444 19.905218 26.079670 40.963255 64.475578 72.929427 76.288836 (0.27) (0.49)

ED333 19.962324 26.151511 41.071180 64.653916 73.673832 77.045250 (0.43) (0.55)

ED222 20.192625 27.048744 43.193616 68.405533 74.204475 78.014494 (3.36) (6.36)

ANSYS FG-O 17.529 23.659 38.109 60.652 64.581 68.011

FSDT 17.544 23.783 38.855 63.179 65.154 68.579 (1.58) (5.17)

IGA 17.398 23.754 39.579 64.620 65.571 67.836 (2.22) (6.54)

ED555 17.488469 23.713227 38.291799 60.968695 64.147499 67.652333 (0.44) (0.67)

ED444 17.485945 23.702780 38.263790 60.915618 64.127237 67.629872 (0.42) (0.70)

ED333 17.539211 23.777396 38.389754 61.127691 64.831470 68.335753 (0.49) (0.78)

ED222 17.815062 24.869534 40.925278 65.314737 65.570199 69.393428 (4.23) (7.69)

ANSYS FG-X 28.322 33.274 46.797 69.940 101.739 101.877

FSDT 28.413 33.434 47.547 72.570 102.939 105.334 (1.79) (3.76)

IGA 28.228 32.412 45.090 68.729 103.301 104.608 (2.09) (3.65)

ED555 28.267076 33.170785 46.636889 69.703620 101.370680 101.534726 (0.31) (0.36)

ED444 28.267778 33.173974 46.645177 69.718383 101.392357 101.535121 (0.30) (0.34)

ED333 28.430119 33.331665 46.799333 69.909919 101.694342 103.549252 (0.38) (1.64)

ED222 28.539922 33.844995 48.179079 72.488918 103.717839 105.730924 (2.47) (3.78)

∆% =
‖ωi

FE−ωi‖
‖ωi‖ × 100
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Table 6: Convergence analysis of the first 6 dimensionless frequency parameters of fully clamped UD and

FG-CNTs reinforced composite plates with CNT volume fraction V ∗
CNT = 0.11 and by using a ED555 plate

model.

Frequency CNTs M,N

Distribution 4 6 8 10 12 14

ω̂1 UD 42.812075 40.795355 40.164209 39.896015 39.760393 39.683430

ω̂2 57.372793 46.904018 45.309396 44.645167 44.297950 44.092426

ω̂3 101.978627 60.016601 57.259561 56.038208 55.367213 54.954512

ω̂4 109.425118 99.144240 80.501128 76.777016 75.029009 74.025266

ω̂5 160.856048 102.183022 98.185069 97.754274 97.527898 97.396026

ω̂6 186.046331 102.578592 101.107178 100.464867 100.125601 99.852160

ω̂1 FG-V 37.436613 35.244062 34.532846 34.222250 34.062039 33.969712

ω̂2 53.660254 42.357020 40.571564 39.816899 39.418654 39.181397

ω̂3 89.895326 56.826591 53.865035 52.542169 51.811638 51.360801

ω̂4 98.448299 86.599576 78.511765 74.631952 72.803677 71.751666

ω̂5 159.972540 90.741574 85.446473 84.917960 84.635760 84.468938

ω̂6 180.194159 99.674840 88.996718 88.221496 87.806994 87.559700

ω̂1 FG-O 33.728312 31.482112 30.735397 30.403804 30.231048 30.130901

ω̂2 51.007183 38.987180 37.121225 36.326980 35.905654 35.653698

ω̂3 81.687450 53.762488 50.738081 49.378344 48.624702 48.158520

ω̂4 90.948176 78.032243 75.464790 71.537016 69.685253 68.618254

ω̂5 159.051815 82.493365 76.747184 76.157040 75.841847 75.655587

ω̂6 175.646660 91.869678 80.581181 79.728806 79.272460 79.000025

ω̂1 FG-X 48.916891 47.123078 46.571290 46.338627 46.221221 46.154591

ω̂2 62.208951 52.701982 51.253265 50.653206 50.340325 50.155412

ω̂3 114.375562 65.178814 62.565838 61.415973 60.786079 60.399298

ω̂4 121.086751 105.863625 85.299004 81.679288 79.982954 79.010720

ω̂5 163.056135 111.842152 111.003488 108.466835 106.169478 104.831925

ω̂6 188.527562 114.909741 113.303723 110.627434 110.429145 110.313177
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Table 7: First 6 dimensionless frequency parameters of fully clamped UD and FG-CNTs reinforced composite

plates with CNT volume fraction V ∗
CNT = 0.11.

Theory CNTs Dimensionless circular frequency parameters

ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6 Ave. ∆% Max ∆%

ANSYS[9] UD 39.580 43.633 54.076 72.573 97.437 98.942

FEM[9] 39.730 43.876 54.768 74.488 98.291 100.537 (1.22) (2.64)

IGA[11] 40.332 44.438 55.894 78.249 101.566 103.738 (4.00) (7.82)

ED555 39.683430 44.092426 54.954512 74.025266 97.396026 99.852160 (0.98) (2.00)

ED444 39.683564 44.092570 54.954684 74.025519 97.397101 99.852635 (0.98) (2.00)

ED333 40.229315 44.607614 55.412097 74.440290 99.837674 100.286887 (2.12) (2.57)

ED222 40.399810 45.227050 56.972371 77.317605 100.062620 102.857380 (4.05) (6.54)

ANSYS FG-V 33.967 38.727 50.129 68.973 84.997 87.839

FSDT 34.165 39.043 51.204 72.202 86.291 89.084 (1.86) (4.68)

IGA 34.413 39.273 52.074 75.791 87.974 90.649 (3.86) (9.89)

ED555 33.969712 39.181397 51.360801 71.751666 84.468938 87.559700 (1.43) (4.03)

ED444 34.022715 39.228833 51.400790 71.786916 84.709464 87.790925 (1.41) (4.08)

ED333 34.390862 39.580215 51.730721 72.124871 86.489928 89.554257 (2.49) (4.57)

ED222 34.738907 40.483208 53.721439 75.574842 87.358698 90.784764 (4.95) (9.57)

ANSYS FG-O 30.161 35.165 46.811 65.631 76.338 79.376

FSDT 30.303 35.444 47.878 68.842 77.468 80.460 (1.88) (4.89)

IGA 30.452 35.843 49.533 74.080 78.417 81.422 (4.48) (12.9)

ED555 30.130901 35.653698 48.158520 68.618254 75.655587 79.000025 (1.71) (4.55)

ED444 30.134924 35.668922 48.195592 68.685486 75.663110 79.015704 (1.74) (4.65)

ED333 30.536643 36.029509 48.497001 68.950811 77.712747 81.015660 (2.71) (5.06)

ED222 30.841058 37.033215 50.797317 72.944260 78.159961 81.950943 (5.48) (11.1)

ANSYS FG-X 45.896 49.609 59.271 76.535 101.276 109.493

FSDT 46.166 49.934 60.225 79.534 108.694 110.921 (2.57) (7.32)

IGA 47.238 50.746 60.969 81.883 116.195 117.486 (6.18) (14.7)

ED555 46.154591 50.155412 60.399298 79.010720 104.831925 110.313177 (1.84) (3.51)

ED444 46.154788 50.156262 60.401601 79.015007 104.838136 110.313756 (1.85) (3.52)

ED333 47.000451 50.964426 61.130921 79.674642 105.512334 113.728674 (3.41) (4.18)

ED222 47.124097 51.448507 62.418705 82.135913 109.448834 113.877436 (5.18) (8.07)

∆% =
‖ωi

FE−ωi‖
‖ωi‖ × 100
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Table 8: First 6 dimensionless frequency parameters of fully clamped UD and FG-CNTs reinforced composite

plates with CNT volume fraction V ∗
CNT = 0.14.

Theory CNTs Dimensionless circular frequency parameters

ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6 Ave. ∆% Max ∆%

ANSYS[9] UD 43.426 47.237 57.288 75.445 101.841 105.539

FEM[9] 43.583 47.479 57.968 77.395 106.371 106.487 (1.67) (4.45)

IGA[11] 44.511 48.370 59.388 81.416 110.865 112.889 (5.38) (8.86)

ED555 43.595844 47.747259 58.214197 77.002138 102.818188 105.663813 (1.04) (2.06)

ED444 43.596003 47.747426 58.214392 77.002414 102.818688 105.665082 (1.04) (2.06)

ED333 44.305306 48.419530 58.810942 77.530358 103.343466 108.675392 (2.40) (2.97)

ED222 44.453519 48.979529 60.265969 80.274011 107.689319 108.861786 (4.42) (6.40)

ANSYS FG-V 37.357 41.857 52.906 71.567 92.669 95.324

FSDT 37.568 42.175 53.963 74.785 94.022 96.573 (1.76) (4.50)

IGA 38.013 42.588 54.963 78.458 96.503 98.985 (4.17) (9.63)

ED555 37.365457 42.300702 54.130008 74.368879 92.122273 95.010829 (1.37) (3.92)

ED444 37.429145 42.358178 54.178369 74.410358 92.396933 95.275823 (1.35) (3.97)

ED333 37.926161 42.832608 54.617283 74.841342 94.710871 97.566367 (2.70) (4.58)

ED222 38.260317 43.680245 56.510131 78.169231 95.571096 98.751888 (4.92) (9.23)

ANSYS FG-O 33.217 37.869 49.020 67.477 83.601 86.383

FSDT 33.369 38.145 50.055 70.646 84.799 87.511 (1.79) (4.70)

IGA 33.678 38.762 52.054 76.464 86.363 89.153 (4.96) (13.3)

ED555 33.198575 38.347877 50.357105 70.486192 82.938704 86.005844 (1.62) (4.46)

ED444 33.203179 38.365055 50.399502 70.563991 82.947643 86.023946 (1.66) (4.57)

ED333 33.703327 38.806196 50.740722 70.813562 85.433622 88.446634 (2.83) (4.94)

ED222 33.979997 39.755669 52.990808 74.802520 85.826068 89.294304 (5.38) (10.9)

ANSYS FG-X 50.125 53.706 63.184 80.410 105.403 117.701

FSDT 50.403 54.025 64.112 83.394 112.896 119.134 (2.44) (7.11)

IGA 51.893 55.194 65.003 85.524 121.074 125.823 (6.22) (14.9)

ED555 50.383571 54.238450 64.292261 82.875033 108.984563 118.441347 (1.73) (3.40)

ED444 50.383847 54.239724 64.295847 82.881918 108.994874 118.442051 (1.73) (3.41)

ED333 51.557753 55.363548 65.309273 83.782869 109.879754 122.898310 (3.69) (4.42)

ED222 51.662420 55.790586 66.477193 86.059415 113.565364 123.018073 (5.24) (7.74)

∆% =
‖ωi

FE−ωi‖
‖ωi‖ × 100
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Table 9: First 6 dimensionless frequency parameters of fully clamped UD and FG-CNTs reinforced composite

plates with CNT volume fraction V ∗
CNT = 0.17.

Theory CNTs Dimensionless circular frequency parameters

ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6 Ave. ∆% Max ∆%

ANSYS[9] UD 48.888 54.019 67.198 90.400 120.647 123.489

FEM[9] 49.074 54.324 68.069 92.868 121.669 124.518 (1.11) (2.73)

IGA[11] 49.777 54.982 69.447 97.561 125.557 128.316 (3.81) (7.92)

ED555 49.007391 54.585902 68.286948 92.262055 120.515946 123.715333 (0.88) (2.06)

ED444 49.007547 54.586069 68.287151 92.262357 120.517195 123.716614 (0.88) (2.06)

ED333 49.662550 55.203811 68.836165 92.763066 123.470561 125.190632 (2.09) (2.61)

ED222 49.863838 55.934481 70.671035 96.138377 123.737062 127.249257 (3.78) (6.35)

ANSYS FG-V 41.833 47.908 62.387 86.200 104.900 108.533

FSDT 42.078 48.309 63.755 90.293 106.513 110.055 (1.88) (4.75)

IGA 42.324 48.517 64.720 94.571 108.326 111.750 (1.54) (4.35)

ED555 41.882159 48.567382 64.095369 89.950501 104.394034 108.362304 (1.54) (4.35)

ED444 41.936580 48.620796 64.151460 90.016567 104.641680 108.603050 (1.55) (4.43)

ED333 42.402574 49.079745 64.613376 90.530614 106.896662 110.843864 (2.74) (5.02)

ED222 42.807571 50.218913 67.179378 94.996583 107.784370 112.213417 (5.20) (10.2)

ANSYS FG-O 37.073 43.228 57.568 80.745 94.059 97.793

FSDT 37.247 43.577 58.890 84.717 95.462 99.142 (1.89) (4.92)

IGA 37.443 44.308 61.620 92.497 96.479 100.327 (5.04) (14.6)

ED555 37.127393 43.998012 59.542239 84.860429 93.560166 97.719384 (1.84) (5.10)

ED444 37.141475 44.059893 59.686515 85.215517 93.580971 97.769905 (1.98) (5.54)

ED333 37.558833 44.431807 59.992774 85.478275 95.733005 99.865156 (3.01) (5.86)

ED222 37.982064 45.852798 63.257477 91.150351 96.345571 101.169734 (6.20) (12.9)

ANSYS FG-X 56.907 61.817 74.496 96.950 128.908 136.114

FSDT 57.245 62.236 75.746 100.850 137.913 138.485 (2.62) (6.99)

IGA 58.403 62.844 75.747 102.050 143.956 146.263 (5.06) (11.7)

ED555 57.004141 62.288487 75.723438 99.887283 133.203333 136.259960 (1.51) (3.33)

ED444 57.004761 62.291252 75.730851 99.901074 133.223827 136.260682 (1.52) (3.35)

ED333 58.222998 63.452273 76.776568 100.852807 134.215517 141.223329 (3.32) (4.11)

ED222 58.362429 63.996473 78.214532 103.578969 138.560548 141.392560 (4.88) (7.49)

∆% =
‖ωi

FE−ωi‖
‖ωi‖ × 100
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Table 10: Buckling of simply-supported UD and FG-CNTs reinforced composite plates axially loaded with

V ∗
CNT = 0.11, 0.14, 0.17, a/b = 1 and b/h = 100.

Theory CNTs Volume fraction Ave. ∆% Max ∆%

0.11 0.14 0.17

IMLS-Ritz [51] UD 39.1158 49.0816 57.4776

ED555 39.334856 49.374527 60.443991 (2.11) (5.16)

ED444 39.334857 49.374528 60.443992 (2.11) (5.16)

ED333 39.406144 49.484275 60.549905 (2.30) (5.35)

ED222 39.946269 50.022968 61.342023 (3.59) (6.72)

IMLS-Ritz FG-O 21.3316 26.3572 31.2163

ED555 21.414541 26.484689 32.657457 (1.83) (4.62)

ED444 21.420788 26.493133 32.688792 (1.88) (4.72)

ED333 21.454885 26.542122 32.732285 (2.05) (4.86)

ED222 22.122609 27.223833 33.886651 (5.18) (8.55)

IMLS-Ritz FG-X 56.7373 71.5516 83.6142

ED555 57.106845 72.014264 88.091710 (2.22) (5.36)

ED444 57.108217 72.016497 88.096832 (2.22) (5.36)

ED333 57.256546 72.266440 88.361911 (2.53) (5.68)

ED222 57.747511 72.744511 89.048491 (3.32) (6.50)

∆% =

∥∥∥N∗
cro

−N∗
crp

∥∥∥∥∥∥N∗
crp

∥∥∥ × 100
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Table 11: Buckling of simply supported UD and FG-CNTs reinforced composite plates bi-axially loaded with

V ∗
CNT = 0.11, 0.14, 0.17, a/b = 1 and b/h = 100.

Theory CNTs Volume fraction Ave. ∆% Max ∆%

0.11 0.14 0.17

IMLS-Ritz [51] UD 11.4103 13.2793 17.7656

ED555 11.549701 13.632032 17.911821 (1.57) (2.66)

ED444 11.549701 13.632033 17.911822 (1.57) (2.66)

ED333 11.566299 13.648468 17.936610 (1.70) (2.78)

ED222 12.139084 14.302295 18.780521 (6.60) (7.70)

IMLS-Ritz FG-O 7.7153 8.7948 12.0667

ED555 7.828845 8.928406 12.019023 (1.13) (1.52)

ED444 7.837719 8.939839 12.065473 (1.08) (1.65)

ED333 7.845862 8.951059 12.075687 (1.18) (1.78)

ED222 8.567793 9.687575 13.355731 (10.6) (11.0)

IMLS-Ritz FG-X 14.2345 16.2428 23.6906

ED555 14.593240 16.652545 23.548948 (1.88) (2.52)

ED444 14.595710 16.656560 23.558099 (1.88) (2.55)

ED333 14.618168 16.691424 23.599486 (1.95) (2.76)

ED222 15.613256 17.668386 24.891228 (7.84) (9.69)

∆% =

∥∥∥N∗
cro

−N∗
crp

∥∥∥∥∥∥N∗
crp

∥∥∥ × 100
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Figures

(10,10)

Figure 1: Carbon nanotube-reinforced plate configurations.
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(a) Simply-supported plate (b) Clamped plate

(c) (d)

(e) (f)

Figure 2: Effect of the thermal environment ont the first 3 modes of the temperature-dependent CNTRC

plates: (a), (c) and (e) SSSS boundary condition; (b), (d) and (f) CCCC boundary condition;.
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(a) Simply-supported plate (b) Clamped plate

(c) (d)

(e) (f)

Figure 3: Effect of the thermal environment ont the first 3 modes of the temperature-dependent CNTRC

plates: (a) and (b) - Mode 1; (c) and (d) - Mode 2; (e) and (f) - Mode 3.
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(a) V ∗
CNT = 0.11 (b) V ∗

CNT = 0.11

(c) V ∗
CNT = 0.14 (d) V ∗

CNT = 0.14

(e) V ∗
CNT = 0.17 (f) V ∗

CNT = 0.17

Figure 4: Dimensionless critical buckling load of CNTRC plates: (a), (c) and (e) - Axial buckling load; (b),

(d) and (f) - Biaxial buckling load.
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